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Abstract 

Fractions are widely recognised as one of the most difficult areas of the school 

mathematics curriculum to teach and learn. A deep understanding of fractions supports further 

learning in areas such as algebra, proportional reasoning, and statistics. In Australia, research has 

established that many students in the primary and middle years of schooling experience 

considerable difficulty in recognising, naming, and renaming common fractions. This difficulty is 

consistently reflected in Australian students’ results on international assessments of mathematical 

literacy.   

One issue contributing to these difficulties, is the way in which fractions are represented 

in the Australian Mathematics Curriculum content descriptors. Within the early years, children 

are expected to recognise equal parts of a whole, primarily emphasising the part-whole meaning 

of fractions. This focus promotes an additive, counting-based approach to the teaching and 

learning of fractions. Such an approach overlooks the critical foundations fractions have in fair 

sharing contexts and masks the multiplicative nature of fractions. 

The foundation of early fraction understanding needs to be based on fair sharing or equal 

partitioning. Fair sharing is an intuitive idea that very young children experience in a range of 

contexts before they begin school. Research on children’s early number learning suggests that 

fair sharing is a highly spatial activity. This is particularly evident when children share 

collections of items, or partition continuous objects fairly based on attributes such as geometric 

similarities and spatial arrangements.  

Spatial reasoning and its association with mathematics achievement is well established in 

the literature. Although there is increasing interest in examining young children's spatial 
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reasoning and mathematical development in general, there is very little research that has 

examined the role spatial reasoning may play in relation to early fraction learning. This thesis 

aims to address this gap in the research.   

A Design-Based Research (DBR) methodology was employed, to explore the extent to 

which young children could demonstrate an understanding of a broader range of fraction 

meanings, experienced through a spatial reasoning approach. Consistent with DBR, a local 

instruction theory was developed to frame the design and implementation of an iterative teaching 

experiment that introduced children to the fraction as an operator, fraction as a measure and 

fraction as a relation meanings. The local instruction theory was represented by a series of 

conjectured key indicators that proposed a pathway for developing the three meanings of 

fractions through a spatial reasoning approach. The key indicators informed the design of an 

intervention program comprising of 13 consecutive 60-minute lessons, which were implemented 

with 70, Year 1 and 2 children at three primary schools in regional South Australia. In its final 

form, the four key indicators of the local instruction theory were: creating and justifying equal 

shares; reinitialising the unit; recognising proportional equivalence and connecting 

multiplicative relations.  

The results of the study revealed that young children developed rich understandings of the 

three meanings of fractions, which were directly supported by spatial reasoning. The children 

demonstrated an understanding of the fraction as an operator meaning, through a focus on spatial 

visualisation to predict and justify the outcome of sharing geometric shapes, and small collections 

of objects. The children developed the fraction as a measure meaning specifically in the way 

they were able to work with unit fractions, composite units, and their ability to name different 

fraction parts. Spatial structuring was a critical construct that supported the children’s ability to 

make connections about the associated fraction as a measure ideas, and fraction magnitude. 
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Further, the children demonstrated an ability to recognise fraction and proportional equivalence, 

through contexts that developed their spatial proportional reasoning. The children were able to 

work with early fraction as a relation ideas, specifically simple ratio, which was supported by 

spatial structuring. Additionally, the influence of spatial structuring within fraction as a relation 

contexts, positively influenced children’s part-part relations for whole number quantities. 

Another critical finding of this study was the way in which children used gesture to 

communicate both spatial and mathematical knowledge. The children's spontaneous use of 

gesture throughout the intervention provided greater insights into their use of spatial reasoning 

strategies, and how these were connected to their understanding of fractions. This is an important 

finding that makes a significant contribution to what is currently known about how young 

children use self-initiated gestures to explain and communicate their mathematical thinking.   

As the three meanings of fractions are not typically taught or considered to be entirely 

appropriate for children in the early years, this study challenges the foundations of the current 

curriculum expectations that promote additive approaches to learning fractions. The findings 

provide powerful insights into what is possible in the early years of schooling. Specifically, the 

ability for children to develop a multiplicative foundation for an extended range of fraction 

meanings, though a spatial reasoning approach. Given the persistent difficulties children in the 

middle and upper years of primary education experience with fractions, an explicit emphasis on 

spatial reasoning in the early years of school provides an important alternative approach to the 

teaching and learning of factions.  
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Chapter 1: Introduction 

As a primary school teacher, a parent and now an educational researcher, I have always 

been fascinated with how children learn and experience mathematics. This fascination stems from 

my own educational experiences and reflections on how I made sense of mathematics growing 

up. This introductory chapter will outline the journey I took throughout my educational 

experiences that provided the motivation for this PhD research project.  

1.1 Personal Experiences 

Growing up, I did not engage with how mathematics was taught at school. I was taught 

using a procedural-based approach where the focus was on memorising facts and arithmetic 

procedures. This meant I found maths lessons quite disconnected from real-life experiences. I 

never excelled in the subject, and I certainly never felt confident in my abilities throughout my 

schooling. However, I was very musical from an early age, learning and playing several 

instruments largely by ear with high levels of success. It was not until my undergraduate studies 

that I recognised that the reason I was good at music was because I could ‘see’ the structure of 

the compositions I was playing and had memorised. At its heart, music involves understanding 

fractions, whole numbers, and proportional relationships. I discovered that I had developed these 

mental models of music, which now I realise is the ability to visualise complex mathematical 

relationships. Yet, I could not understand why my teachers throughout primary and secondary 

schooling did not capitalise on this understanding to promote my mathematical abilities. During 

my undergraduate studies, I recognised these connections and, subsequently, these experiences 

paved the way to developing a love and passion for providing children with meaningful and rich 

mathematics education.  
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Throughout the early stages of my classroom teaching career (2007–2010), I had the 

opportunity to be involved in a sustained Numeracy Project as part of a Catholic Education South 

Australia (CESA) initiative. The project was designed to support teachers in exploring evidenced-

based pedagogical approaches to teaching and learning mathematics through an action research 

project.  

While the project enabled me to examine most aspects of my mathematics teaching 

program, I gained several insights into children’s fraction understanding that eventually led to 

this PhD study. During my time on the Numeracy Project, I noticed that young children would 

engage in fair sharing contexts in an informal, yet relatively accurate manner. I observed that 

during play, they could create a balanced mixture of sand and water, estimating and adjusting the 

proportions to ensure the mix was neither too wet nor too dry for building a sandcastle. Another 

observation was that young children could share items among several people fairly, and visually 

estimate and divide lumps of playdough into relatively equal parts when playing—even 

redistributing parts if more or fewer shares were required. When, however, similar tasks were set 

in classroom contexts, children failed to consistently demonstrate this ease in creating fair shares 

and distribution. This was highlighted to me in an activity that required a length of rope to be 

partitioned into quarters and then eighths by pegging fraction symbols onto the rope. The activity 

was introduced to my Year 3 class at the time (~8–9 years old), as follows:  

This rope represents a pathway between the front of the school building and the start of 

the carpark. Our principal wants four light posts to be installed along the path equally to 

make it safer at night. Can you use pegs and post-it notes to label where each light will 

go? What do you notice about the position of each light? Can you describe how the 

pathway was divided?  

After the children had completed this component of the task, I posed the following extension:  
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Uh oh! The groundsman accidentally ordered eight lights, not four! Our principal said he 

would like us to install all eight lights to make the path as bright as possible. If we had to 

divide this pathway equally to for all eight lights, how can we use the previous task to 

help us? What do you notice about the number of lights and the distance between them?  

Many of the children at the time stated that there was ‘not enough rope’ to partition into 

eighths after they had quartered the rope. This difficulty indicated that the children considered 

eighths to be the same size as quarters when stating that they could not ‘fit’ eighths along the 

length of rope. This suggested a lack of experience with making and naming fractions and the 

ability to visualise the relationship between the number of parts created from a given whole and 

their size.  

In another teaching experience with a group of children exploring odd and even numbers, 

a common definition children provided was ‘even numbers can be divided into two equal groups, 

odd numbers cannot’. In response to this statement, during one such lesson, I asked one child the 

following question:  

What if you and I had three chocolate bars to share between us? As there are three in total, 

does that mean we cannot share them fairly between the two of us? Would you just let me 

have two, and you have one?  

In this instance, the child could determine that this was not a fair outcome. Quickly, the 

child suggested we cut the third bar in half, so we each received 1-and-a-half chocolate bars, thus 

indicating they could easily visualise this fair sharing context. However, when I asked the child 

to think back to their definition of odd and even numbers, the child was perplexed, suggesting 

they had little experience articulating the relationship between fractions as numbers more 

generally. Although the children in these examples had been exposed to fraction ideas in the 

previous two years of schooling (such as partitioning continuous wholes and discrete sets into 
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halves, quarters, and eighths), their thinking suggested a lack of understanding between 

partitioning in a range of different fractional contexts and representations. These difficulties 

surprised me, as I had witnessed the children’s ability to engage in many of these ideas with ease 

during their play, so I expected they would have been able to clearly articulate an appreciation of 

the outcome of sharing situations and the size of parts created in relation to one another.  

After completing the Numeracy Project, I started my Master of Education by coursework. 

There was a small research component of the degree where I investigated children’s development 

of time concepts. I chose this topic to research because I was interested in how children visualise 

and develop their understanding of an area of mathematics that they cannot physically see, hear, 

touch, or manipulate—they can only experience. In this small study, I found that using number 

lines and multi-link cubes to represent the relationships between time units (such as minutes, 

hours, quarter, and half hours) greatly enhanced children’s ability to visualise the mathematical 

ideas of time when learning to read analogue clocks, which also included an appreciation of 

fractions.  

During my time as a classroom teacher, I also started lecturing at the University of South 

Australia in the Mathematics Education courses for the Early Childhood and Primary initial 

teacher education programs. I was encouraged to apply because of my involvement in the CESA 

Numeracy Project and the completion of my Master of Education. What I soon discovered was 

that overwhelmingly, the pre-service teachers (PSTs) demonstrated a lack of confidence in their 

understanding of fractions, referring to them as confusing and difficult. What appeared to be a 

common factor in PSTs’ lack of confidence and competence was their inability to visualise and 

reasonably estimate the size of different fractions. For example, when PSTs were asked to 

explain, without calculating, which fraction was bigger (e.g., 
6

7
 or 

7

8
 presented as symbols), or if 
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asked to predict a reasonable outcome for dividing and multiplying fractions, the vast majority 

stated the only way they could do it was to remember the procedures and formulas required for 

each problem (i.e., finding the common denominator, or invert and multiply respectively). Few 

could estimate or provide a justification for their answer. In many ways, the PSTs exhibited the 

same problems I saw with the children in the early years of primary school; that is, there seemed 

to be difficulty in visualising the size of the fractions they were dealing with and predicting the 

outcomes of dividing different quantities more generally. Clearly, the development of fractions 

had been a difficult process throughout their primary and secondary schooling experiences, which 

provided another reason for me to examine this issue.  

1.2 The Issue 

The difficulties children (and PSTs) experience with fractions are not isolated to my own 

teaching experiences. A 2013 report by the Queensland Studies Authority revealed that many 

students in Years 7 and 9 were demonstrating difficulty with early fundamental concepts and 

ideas for fractions (such as partitioning and the part-whole relationship), which are expected to be 

mastered in the early years of schooling (Queensland Studies Authority, [QSA], 2013). In 2015, 

70% of Australian Year 4 children achieved the ‘intermediate’ international benchmark for the 

Trends in Mathematics and Science Study (TIMMS) for mathematics—the second-lowest 

achievement band of the test. In TIMMS, the children demonstrated the weakest understanding in 

the domain of number, compared to geometry, measurement, and data domains (Thomson et al., 

2017b). Within the number domain, TIMMS assessed the topics of whole numbers, fractions, 

decimals and expressions, simple equations, and relationships. In the most recent TIMMS 

assessment (2019), 22 countries outperformed Australian Year 4 students in mathematics. 
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Concerningly, Year 4 TIMMS mathematics results in Australia have not improved since 2007 

(Thomson et al., 2020).  

Similar trends are reported in the Programme for International Student Assessment 

(PISA) data. For example, results suggested that students in Australia have been declining in their 

mathematical capabilities since 2003 (Thomson et al., 2017a). Similarly, the National 

Assessment Program Literacy and Numeracy (NAPLAN) data suggest that for the Year 3 

Numeracy assessment, there has been no evidence of national improvement in the scores over the 

past decade (McGaw et al., 2020).  

In a large-scale project commissioned by the Victorian Department of Education and 

Training, in partnership with Catholic Education Commission of Victoria, in early 2000, the 

following difficulties in fractions exhibited by many children in Years 5 to 9 were identified:  

• ‘Reading, renaming, ordering, interpreting, and applying common fractions, particularly 

those greater than 1.  

• Reading, renaming, ordering, interpreting, and applying decimal fractions.  

• Recognising the applicability of ratio and proportion and justifying this mathematically in 

terms of fractions, percentages, or written ratios.’ (Siemon et al., 2000, p. 21).  

Siemon (2003) argues that partitioning is the missing link between young children’s 

experiences with fractions in the early years of schooling and their performance and capabilities 

for multiplicative and proportional reasoning in later years. Partitioning is the ‘behaviours that 

create equal-sized groups… [in which] division is most directly derived from equi-partitioning, 

with multiplication following as its inverse, rather than the traditional view that multiplication 

precedes division’ (Confrey et al., 2009, p. 347). While Siemon’s (2003) research reports on 

middle school data from nearly 20 years ago, the current national and international mathematics 
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assessment data suggests these issues are still plaguing primary and middle school children today. 

This implies that partitioning and fair sharing are not being adequately established in the early 

years of schooling. My experiences as a junior primary classroom teacher and a PST lecturer 

suggest this is still the case.  

1.2.1 Fractions: A Critical Mathematical Domain 

A strong understanding of fractions is foundational for engaging with a range of other 

mathematical ideas, such as decimal fractions, percentages, rates, ratios, and proportions. These 

are also required for more complex domains of mathematics such as algebra, proportional 

reasoning, and statistics (Hilton et al., 2016; Lamon, 2007; Pearn & Stephens, 2016; Stohl, 2005; 

Siegler et al., 2011). Fractions, therefore, act as a gateway to more complex areas of mathematics 

and without a sound understanding, children will struggle to engage in these areas of 

mathematics in upper primary and secondary school (Hilton et al., 2016). However, the 

importance of understanding and working flexibly with fractions is not just confined to the 

classroom. An understanding of fractions is required for engagement in a myriad of contexts in 

our daily lives. For example, understanding interest rates on loans and investments, calculating 

different measures such as time and distance (and speed which is the associated ratio of these two 

measures); through to cooking a meal which often requires an understanding of the different 

quantities of ingredients required (typically presented as fractions and decimal fractions). Yet this 

area of mathematics, although embedded early in school curricula and prevalent in many of our 

daily activities, presents a significant challenge to many children—and often their teachers 

(Fuchs et al., 2013; Hansen et al., 2017; Xie & Masingila, 2017).  

As noted earlier, I was surprised early in my teaching career by the difficulties children 

exhibited with fractions, given their importance, and children’s intuition and experiences in their 

daily play activities. I soon realised that inhibiting factors were contributing to such difficulties, 
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which still exist now. The first was from a curriculum perspective, where the content for fractions 

in the Australian Curriculum, Mathematics version 8.4 (Australian Curriculum Assessment and 

Reporting Authority [ACARA], n.d) is quite scarce. For example, there is no content explicitly 

related to fractions in Foundation (the first year of formal schooling). In Year 1, children were 

only expected to identify representations of 1-half. However, there is no mention of whether this 

is in continuous or discrete contexts. By the end of Year 2, children are only required to divide 

small collections and shapes into halves, quarters, and eighths. Not only is the content limited 

within these year levels, but the primary emphasis in the expectations is on simple, proper 

fractions and the part-whole meaning only. What is also evident in the curricula demands is that 

there is no connection to how fractions and whole number ideas are related or integrated.  

Given the PISA, TIMMS and NAPLAN results mentioned above, it would seem that 

these problems may be due, in part, to the types of early mathematical experiences to which 

children in Australia are exposed. It appears that, this is impacting on their ability to work with 

more complex areas of mathematics in the later years of primary school and beyond. Yet 

children’s play would suggest we can capitalise on their informal mathematical experiences and, 

use these opportunities to develop a range of meaningful fraction ideas and understandings.  

1.3 Possibilities 

My fascination with young children’s mathematical development and the recognition that 

they can engage in powerful mathematical ideas earlier than expected, led me to examine theories 

of number development more broadly. Over the past 50 years, there has been extensive research 

conducted on young children’s rational number reasoning from the fields of neuroscience, 

psychology, and mathematics education. Children’s early fraction, whole number, and 

proportional reasoning capabilities from ‘the brain level to the classroom level’ (Obersteiner et 
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al., 2019, p. 135) have been explored. Yet, there appears to be a lack of integration across and 

between these disciplines specifically related to young children’s fraction development (Bruce et 

al., 2017; Obersteiner et al., 2019). This disconnect means that much of the research is confined 

to discrete fields and does not allow the translation of theory into practice (Bruce et al., 2017).  

Adding to this disconnect, there are differing perspectives on how young children 

understand fractions. For example, Steffe (2001) believes that children’s fraction development is 

built on their whole number knowledge based on a foundation of counting and measurement. 

However, other researchers such as Pepper (1991) and Confrey et al. (2014b) suggest that young 

children’s fraction understanding develops independently or in parallel to their whole number and 

counting abilities through an awareness of equality and fair shares. This perspective is supported 

by research from the neuroscience and psychology fields. For instance, a range of studies 

conducted with children in the pre- and early years of school identified that young children have 

an appreciation of non-symbolic and non-numerical fraction quantities and ratios. For example, 

children can identify proportional relationships in non-symbolic contexts, such as matching water 

and juice ratios between different size containers or identifying halving and doubling 

relationships between geometric shapes. These findings suggested that there is a spatial reasoning 

element to young children’s development of quantity implicit in these perspectives. My 

hypothesis of this connection led me to the large body of work that suggests strong spatial 

reasoning abilities are predictive of children’s success in mathematics and science at school and 

beyond (Kell et al., 2013; Newcombe, 2010; Uttal & Cohen, 2012). Despite the powerful 

influence spatial reasoning has on general mathematics performance (Bruce et al., 2015b; Mix & 

Cheng, 2012; Mulligan, 2015; Sinclair & Bruce, 2014; Wai et al., 2009) and the implied use of 

spatial reasoning in children’s early experiences of fractions, there is a lack of research on how it 

may help children develop an extended range of fraction understandings. This gap in current 
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research implied to me that there is an opportunity to explore innovative and integrated 

theoretical interventions exploring the role spatial reasoning can play in young children’s fraction 

development. This context provided the motivation for the present study.   

1.4 Organisation of the Thesis 

This study explores to what extent and in what ways young children can develop an 

extended range of fraction meanings through a spatial reasoning approach. A Design-Based 

Research (DBR) methodology was employed to explore this problem through a series of iterative 

teaching experiments. Through the construction and refinement of a local instruction theory 

(Gravemeijer & Van Eerde, 2009), an intervention program taught in several early years’ 

classrooms provided the basis for contributing new theoretical and practical insights for young 

children’s fraction development. The presentation of this study is organised in the following 

format.  

Chapter Two: This chapter provides a critical review of the research literature concerning 

the teaching and learning of fractions in the early years of primary school. In addition, the review 

considers the difficulties many children face in developing a conceptual understanding of 

fractions. A range of theoretical perspectives on the development of fraction understanding are 

considered and critiqued. 

This chapter also examines interdisciplinary literature that discusses spatial reasoning and 

its role in assisting in developing mathematical knowledge, particularly fractions. In contrast to 

the literature on children’s fraction understanding, which is predominantly derived from the 

mathematics education domain, the spatial reasoning constructs related to fraction development 

are generated from a modest number of studies from the fields of psychology and neuroscience. 
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The discussion and critical analysis of these theoretical frameworks are used to justify the 

approach that underpins this study. 

Chapter Three: This chapter discusses the theoretical paradigm of interpretivism, and the 

research methods used in this educational study. Design-based research (DBR) is discussed and 

justified within the broader interpretivist research paradigm that guides the study’s design. Three 

DBR phases—preparation, teaching experiment and retrospective analysis—are explained. Next, 

the development of the intervention program based on a conjectured local instruction theory is 

presented, based on a synthesis of the literature in Chapter 2. The process of how the intervention 

program was designed, implemented, and refined iteratively throughout the study is explained. 

Participants, data collection methods and analysis are described. Finally, trustworthiness and 

ethics considerations are discussed. 

Chapter Four: As part of Phase One (the preparation phase), the results from the pilot of 

the intervention program are described. This chapter discusses how the tasks were trialled for 

inclusion in the intervention program and insights into how children engaged with the concepts, 

skills and ideas are analysed. Findings are used to explain and justify the refinement of the local 

instruction theory and intervention program. 

Chapter Five and Chapter Six: The analyses and findings from Phase Two (the teaching 

experiment) are presented in respective chapters. The findings illustrate how the children in each 

Class A and Class B engaged with the intervention program and how this provided evidence to 

support the local instruction theory. Minor refinements were made during each iteration 

(characteristic of undertaking DBR), including a change in timing and delivery of the 

intervention program for Class C, due to the COVID-19 pandemic unfolding during this time.  

Chapter Seven: This chapter moves the thesis into Phase Three (the retrospective 

analysis) where the study’s results are discussed, and the local instruction theory confirmed as a 
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consequence of this study. The research questions are answered and a discussion of the findings 

in relation to the literature is undertaken to interpret the insights identified. The significance of 

this study for teaching fractions in the early years of primary school is detailed. 

Chapter Eight: The study’s implications are discussed from pedagogical and curricula 

perspectives. The chapter details the limitations of the study, including that more broadscale 

research is required to strengthen the theoretical and practical outputs empirically. 

Recommendations on how this study’s design could be enhanced for greater fidelity and the 

organisational mechanisms required to better support teachers in developing fraction knowledge 

in the future are presented. The thesis concludes with recommendations for future research and 

my final reflections. 
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Chapter 2: The Development of Early Fraction Understanding 

2.1 Chapter Overview 

This study explores the theoretical perspectives on how children develop a range of 

fraction ideas and meanings in the early years of primary school to consider the role spatial 

reasoning may play in this development. As described in Chapter 1, there are concerns over 

children’s mathematical competencies in Australia, including their fraction understanding and 

ability to work with an extended range of fraction ideas throughout primary and secondary school 

(Callingham & Siemon, 2021; Siemon, 2016; Thomson et al., 2020). Recent national and 

international assessment data suggests that children are not developing the fundamental ideas 

required to work with an extended range of rational number concepts, which requires 

understanding the relationships between whole numbers and fractions. Moreover, as introduced 

in the previous chapter, the requirements of the Australian Curriculum (version 8.4) suggest that 

children are not being provided with sufficient opportunities to explore and develop early fraction 

ideas because of the limited content evident in the early years of the curriculum. 

Research into the nature and acquisition of rational number knowledge and, more 

specifically, fractions, is extensive, yet the problems children typically experience with fractions 

remain consistent in the research concerning this important area of mathematics, especially in 

Australia (Thomson, 2020). This chapter reviews research on how children come to understand 

fractions and the implications this has for teaching and learning rational number in the early 

years. 

To explore this educational issue, the chapter begins by defining what fractions are 

through discussing the underpinning concepts and the multiple meanings of fractions in section 
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2.2. This section explores how children typically develop these concepts and fraction meanings 

and what conceptual and pedagogical issues are raised in the literature concerning young 

children’s experiences. Section 2.3 identifies and critically discusses contemporary theories of 

early rational number development and how these theories influence different approaches to 

fraction instruction. Based on the analysis of these theories, common characteristics that underpin 

young children’s engagement with early fraction ideas are identified.  

Advances in neuroscience and psychology suggest that young children engage with such 

ideas in non-symbolic, spatial contexts; therefore, spatial reasoning and the relationship to 

fraction development are explored in section 2.4. The role multimodal representations play in 

developing early fraction knowledge is addressed in section 2.5, as representations play a critical 

role in mathematical development generally within the early years. However, this section also 

reflects on the role of representations in relation to the spatial reasoning influences considered in 

the previous section, to include a discussion on gesture. Section 2.6 presents the central insights 

gained from this literature review about young children’s potential for learning an extended range 

of fraction ideas and states the research questions formulated as a result of this review. Section 

2.7 concludes the chapter with a summary of the key understandings generated from this review. 

2.2 Exploring the Complexities of Fractions 

Fractions play a crucial role in mathematical development. Theoretically, they are 

essential because they require a flexible and deeper understanding of quantity beyond what is 

typically experienced with whole numbers (Siegler et al., 2011). Educationally, a deep 

understanding of fractions is imperative because of the fundamental role they play in developing 

more complex mathematical concepts, such as algebraic thinking and proportional reasoning 

(Empson et al., 2006; Hackenberg, 2013; Lamon, 2012). Research has established that a solid 
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understanding of fractions at a primary school level has strong predictive outcomes for future 

mathematical competency (Confrey, 2012; Hilton et al., 2016; Lortie-Forgues et al., 2015; 

Siegler et al., 2012). Despite the wealth of research conducted in this area (e.g., Behr et al., 1992; 

Booth & Newton, 2012; Confrey et al., 2014b; Ni & Zhou, 2005; Steffe & Olive, 2010; Siegler et 

al., 2012), many children and adults experience considerable difficulty with reading, recognising, 

and renaming fractional quantities in different contexts (Siemon, 2003; Siemon et al., 2006). 

Current evidence suggests that children are not engaging with fraction ideas that allow them to 

build sophisticated understandings represented through the various meanings of fractions 

(Cortina et al., 2014; Thomson et al., 2020). Cortina et al. (2014) state, ‘there remains great 

dissatisfaction with the typical levels of fraction understanding attained by most students and, 

more importantly, with what is known about how to improve the situation’ (p. 1). To explore 

these issues, the underpinning concepts, and meanings of fractions in terms of the difficulties 

children commonly experience in their development will now be discussed. 

2.2.1 Underpinning Concepts for Fraction Understanding 

It is widely acknowledged by many authors working in the field of fractions that there are 

three fundamental concepts for developing fraction understanding: partitioning, unitising, and 

quantitative equivalence (e.g., Confrey & Maloney, 2010; Kieren, 1993; Lamon, 1996, 2007; 

Pitkethly & Hunting, 1996). Partitioning is considered the foundational concept for working with 

fractions because it is underpinned by the process of fair sharing—whether a group of objects or 

single item—and is an activity that very young children engage with in their typical play 

experiences (Confrey, 2012; Lamon, 1996). Partitioning is also referred to as equipartitioning by 

some researchers (referring to the necessity for all parts to be equal, e.g., Confrey, 2012). For the 

purposes of the present study, the term ‘partitioning’ implies equal parts and is used throughout 

this thesis. 
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2.2.1.1 Partitioning 

The process of dividing a whole or unit into equal-sized parts is described as partitioning 

(Lamon, 2012; Mack, 2001). However, it requires more than just the act of creating equal parts or 

groups; it is the ability to recognise the relationship between the number of equal parts and the 

size and name of the parts created (Siemon, 2003). Additionally, partitioning is the ability to 

make generalisations about how fractions might be recreated from a single whole and renamed 

(e.g., increasing the number of parts by a certain factor means the same factor increases the 

required number of parts; Siemon et al., 2012). On this basis, it is the foundation to the related 

constructs of division and multiplication, ratio, rate, and proportional reasoning (Confrey et al., 

2009; Siemon, 2003). 

In the context of early childhood, children typically experience this concept through fair 

sharing (such as creating equal shares of cakes, pizzas, groups of lollies, marbles, etc.), where 

they start to develop an understanding of the relationship between the number of shares and the 

size of the share (Lamon, 1996; Mitchelmore & White, 1995; Siemon, 2013). That is, they start 

to experience and appreciate the idea that when they increase the number of shares of a collection 

or object, each share becomes smaller. 

Holt et al., (2012) describe three essential criteria that children must coordinate 

successively in the process of partitioning.  

1) Create the correct number of groups or parts,   

2) Generate equal-size groups or parts, and 

3) Exhaust the collection or whole (p. 484).  

Multiplicative partitioning, also referred to as splitting by some researchers (e.g., Confrey 

et al., 2014b), is the ability to see or consider the creation of the parts within a whole. For 

example, partitioning an area model into fifths involves seeing five equal parts embedded within 
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the whole, and then disembedding the part form the whole in the fair sharing process to identify 

the unit (Bruce, 2013; Hackenburg & Lee, 2012), as illustrated in Figure 2.1. 

Figure 2.1 

An Interpretation of Multiplicative Partitioning (Adapted from Bruce, 2013) 

          

    Whole  Fifths are created 

simultaneously  
 One-fifth identified as the 

unit fraction 

 

Several researchers suggest that multiplicative partitioning provides a foundation for the 

development of children’s understanding because it is derived from the appreciation of division 

and reassembly of division (i.e., multiplication), as opposed to whole number knowledge and 

counting (Confrey, 1994/2014b; Empson et al., 2006; Kieren, 1988, 1995; Mack, 2001; Siemon, 

2003). For example, the repeated act of halving is considered as a critical entry point for children 

to explore the multiplicative foundations of partitioning, because it is an intuitive process very 

young children are capable of (Siemon, 2013; Confrey, 2012). It introduces children into the 

notion of fraction families, that is, repeated halving creates all fractions in the halving family, 

(halves, quarters, eighths, etc); repeated thirding creates all of the fractions in the third family, 

(thirds, ninths, etc). Bruce (2013) describes further that this initial understanding allows for 

children to explore composite units, such as partitioning by a four split and then a successive 

three split to create twelfths, as illustrated in Figure 2.2. This understanding is critical for 

understanding the multiplicative foundations of fractions more generally (Bruce, 2013; Siemon, 

2013).  
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Figure 2.2 

An Example of Composite Units Created from Partitioning (Adapted from Bruce, 2013)  

 

 

 

 

 An examination of teaching approaches in relation to partitioning is discussed later in this 

thesis. 

2.2.1.2 Unitising 

Lamon (2006) described unitising as the ‘cognitive assignment of a unit of measurement 

to a given quantity, referring to the “size chunk” one constructs in terms of which to think about a 

given commodity’ (p. 79). That is, it is an understanding that the parts created from the act of 

partitioning can be named as a quantity or unit, depending on how the whole has been 

partitioned. This definition suggests that quantity is described in two parts—the number or ‘how 

many’ parts are identified and the unit of measure or ‘how much’ each part is worth. Unitising is 

essential in the development of place value, multiplicative thinking, and fraction understanding 

(Steffe & Olive, 2010) because it allows us to consider a whole as a composition of multiple 

units. For example, a carton of 12 eggs could be thought of as one unit of 12 eggs, two units of 

six eggs (six eggs being the unit of half the set), four eggs as a unit of one-third of 12 and so on. 

Confrey and Smith (1995) use the term reinitialising to name this concept, where they describe it 

as a process of working with ‘unit of units’, such as the egg example. 

Several researchers state that young children’s early understandings and experiences of 

fair sharing a whole with a focus on creating different units appears to be an effective way to 

understand the multiplicative foundations of fractions (Confrey & Smith, 1995; Confrey et al., 
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2014a; Lamon, 2006; Mack, 2001). Lamon (2006) also suggests that children’s flexibility in 

unitising or reinitialising through exploring partitioning has not been emphasised as a basis for 

formal fraction instruction, potentially contributing to the difficulty children exhibit when 

learning this topic. 

2.2.1.3 Quantitative Equivalence 

Quantitative equivalence necessitates that children recognise that two or more different 

fraction terms can represent the same quantity, thus belonging to an equivalent set (Wong & 

Evans, 2007). For example, the quantitative equivalence set of fractions for 
3

4
 can be represented 

symbolically as 
6

8
, 

9

12
, … 

30

40
 and so on. Pedersen and Bjerre (2021) propose two conceptions of 

quantitative equivalence that are required to fully understand this concept: proportional 

equivalence and unit equivalence. The first is grounded in proportionally equal relationships 

between fractions, whereby children explore how different wholes, such as half an apple and half 

a bag of marbles, represent the same fractional quantity in relation to their respective whole. Unit 

equivalence is concerned with distinguishing equivalent fractions within the same whole. That 

means, recognising 2-quarters of an apple is equivalent to 1-half of the same apple, or a ratio of 8 

flowers and 4 vases is equivalent to 12 flowers and 6 vases. The distinction between these two 

forms of equivalence have not necessarily been articulated widely in the present literature; 

however, they are both important constructs to develop as they lead to conceptual (multiplicative) 

understandings of rational number more broadly (Brousseau et al., 2004; Lamon, 2012; Pedersen 

& Bjerre, 2021). 

An understanding of quantitative equivalence is necessary for children to develop as it 

supports an appreciation of the density of fractions, which is an understanding that fractions can 

be represented infinitely and can have an infinite number of successors (unlike whole numbers). 
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Moreover, quantitative equivalence is required for operating with fractions, such as finding the 

lowest common denominator when adding or subtracting; however, it is also required to work 

flexibly with ratios and proportion. 

In summary, partitioning, unitising, and quantitative equivalence are the three 

underpinning concepts required to develop a sound understanding of fractions. However, there 

are various ways fractions can be used to represent different meanings of quantity, which means 

that the three concepts interact with each meaning in different ways. The common meanings of 

fractions and how the concepts are related to each will now be explored, including a discussion 

on what is known about young children’s experiences and capabilities of each meaning. 

2.2.2 The Multiple Meanings of Fractions 

Fractions are a subset of rational numbers (i.e., of the form  
𝑝

𝑞
  , where p and q are integers 

and q ≠ 0). Kieren (1976) was one of the first researchers to articulate the different meanings of 

rational numbers, identifying that fractions are not a single construct but, rather, a set of 

interconnected sub-constructs, conveying varying meanings (Charalambous & Pitta-Pantazi, 

2007). Kieren (1976) initially proposed seven constructs of fractions, which were intended to 

describe what rational number conceptual understanding might involve. These initial constructs 

were identified as decimal, equivalence, ratio, operator, quotient, measure, and procedural 

understanding (in the form of fraction algorithms). This initial model was later refined to a 

framework that described five fraction meanings and their relationship to the three underpinning 

concepts described above. The meanings were identified as part-whole, measure, quotient, 

operator, and ratio (Kieren, 1993). Later, the model was further redeveloped so that the part-

whole meaning of fractions was an embedded component of each of the four other meanings 

(measure, quotient, operator, and ratio), as illustrated in Figure 2.3. 
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Figure 2.3 

An Interpretation of Kieren’s (1993) Fraction Framework 

 

The connection between each of the fraction meanings and the three concepts of 

partitioning, unitising, and quantitative equivalence are indicated by the corresponding line 

segments. For example, the measurement and quotient meanings are underpinned by all three 

concepts. The ratio meaning is developed with the concepts of quantitative equivalence and 

unitising, while an understanding of the operator meaning requires conceptual knowledge of 

partitioning and quantitative equivalence. The rationale of the part-whole interpretation being an 

influential component of the four remaining meanings of fractions is said to form the basis for 

identifying the relationship of all parts to their whole(s) in the context of each meaning 

(Charalambous & Pitta-Pantazi, 2007). 

An important component to developing the different meanings of fractions is that they 

should be explored and understood in both continuous and discrete contexts (Confrey, 2012; 

Lamon, 1999). That is, fraction models can be used to describe numbers that indicate a count or 

mass, such as a group of children (discrete) or a container of water (continuous; Bloom & Wynn, 

1997; Rapp et al., 2015). The same model can, however, be used in both contexts, such as 
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distinguishing 3-quarters of a plate of sandwiches as a discrete collection of sandwiches, as 

opposed to 3-quarters of a single sandwich as a continuous model. Understanding and working 

with both discrete and continuous models across all fraction meanings is an important landmark 

in early fraction understanding because these ideas require different cognitive demands (Confrey 

& Maloney, 2010). The demands include recognising that a continuous model is the formation of 

multiple, contiguous parts, and the discrete model involves the need to visualise finite parts 

within one set. 

The identified meanings of fractions in this model are considered to have ‘stood the test 

of time’ in the explication of rational number meanings (Pitkethly & Hunting, 1996), specifically 

the importance of the concepts of partitioning, unitising, and quantitative equivalence which have 

been supported extensively in other works (e.g., Behr et al., 1981; Behr et al., 1984; Confrey & 

Maloney, 2010; Hunting, 1983; Lamon, 2012; Pothier & Sawada, 1990; Siemon, 2003). Each of 

the fraction meanings and relevant literature exploring conceptual and pedagogical perspectives 

in the teaching and learning of these meanings will now be discussed. 

2.2.2.1 Fraction as Part-Whole 

Fraction as part-whole is defined by the following essential components: the whole, 

which is decomposed into equal parts identifying a unit (such as 
1

4
), and the complementary part 

that, when reconstructed with a unit, completes the whole (i.e., 
3

4 
). The part-whole meaning of 

fractions is a useful introduction to the idea that a whole quantity is partitioned into equal-sized 

parts such as partitioning a sandwich in half (continuous whole) or the class into quarters 

(discrete whole) and that a part has a direct relationship to the whole and its complementary part 

(Baturo & Cooper, 1999). This meaning it is one of the most common used in introducing and 

teaching fractions because children’s prior experiences of fractions are derived from fair sharing, 
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which is the creation of parts from a whole (Confrey et al., 2014b; Getenet & Callingham, 2017; 

Pitkethly & Hunting, 1996; Middleton et al., 2015; Siemon et al., 2015). 

2.2.2.2 Conceptual and Pedagogical Issues 

While important to building fraction knowledge across all meanings of fractions, Lamon (2001) 

describes that focusing primarily on the part-whole meaning is undesirable, as it provides a 

narrow pathway to understanding of the structure and breadth of rational numbers. There seems 

to be an implicit assumption that this is the easiest and most important meaning for learning 

fractions because of its prevalence in teachers’ preferred methods of teaching this area of 

mathematics (Gould, 2013; Stevens et al., 2020; Wilkie & Roche, 2022; Zhang et al., 2013). 

However, according to Mamede et al. (2005), there is no supporting evidence for this assumption, 

and it is strongly refuted by some researchers (see Confrey et al., 2014b; Nunes & Bryant, 2007; 

Lamon, 2007). In their large-scale work, Behr et al. (1983) declare that the part-whole meaning 

of rational numbers, along with the process of partitioning, to be fundamental in developing an 

understanding of all fraction meanings. Other researchers (see Confrey et al., 2014a; Mack, 2001; 

Streefland, 1993b) reiterate that teaching practices must transcend this introductory meaning of 

fractions to develop a true understanding of the multiplicative nature of fractions. Despite the 

wealth of research undertaken in the development and construction of fractions, it seems this 

message has been lost as teaching practices continue to rely almost exclusively on the use of part-

whole situations (Behr et al., 1992; Clarke et al., 2006; Gould, 2005; Webster, 2020). This 

reliance on the part-whole meaning is said to contribute to ‘difficulties in working with fractions 

operations and even algebraic reasoning’ (Norton & Hackenberg, 2010, p. 343). 

The reason for the part-whole meaning being described as the least valuable meaning, is 

primarily due to how this meaning is often explored. For example, a common approach to 

teaching the part-whole idea emphasises taking a ‘double count’ approach (Gould, 2011). That is, 
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too often, children are taught to count the number of shaded parts (usually of a regular 2D shape) 

and record as the numerator. They are then instructed to count the total number of parts and 

record the count as the denominator. This approach treats each component of the fraction as a 

cardinal quantity rather than viewing the symbol as a representation of the relational components 

of a quantity. While the part-whole meaning requires parts to be partitioned equally, equality 

refers to the development of the quantitative equivalence concept. Therefore, a part may consist 

of more than one piece of the whole (Lamon, 2012) such as 2-quarters are equal to 1-half, one 

and a half is equal to 3-halves and so forth. It is these cognitively demanding ideas supporting an 

understanding of fractions as part-whole, which should be the focus rather than the double count 

strategy too often embedded into early instruction (Clarke et al., 2008; Lamon, 2012; Reeder & 

Utley, 2017; Siebert & Gaskin, 2006). 

This difficulty relating to the way the part-whole meaning is often introduced contributes 

to what is described as whole number bias (WNB; Braithwaite & Siegler, 2018; Ni & Zhou, 

2005), which is the tendency to focus on or consider the numerators and denominators as 

independent, whole number quantities. WNB is often evident in such contexts where children 

might state 
2

5
 is less than 

3

9
 because the individual digits are ‘smaller’ as cardinal numbers in the 

first fraction, which seems to be derived from their part-whole experiences that promote a 

counting approach. What the literature suggest is that the part-whole meaning is not an 

appropriate focus or at least starting point for young children in their initial development of 

fractions, despite its prevalence in current curricula foci and subsequent pedagogical approaches 

to teaching in the early years of primary schooling. 
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2.2.2.3 Fraction as Measure 

The measurement meaning of fractions considers fractions as numbers, indicating 

countable, multiplicative units of measurement; therefore, this meaning focuses on developing an 

appreciation of quantitative magnitude. It requires different thinking to the part-whole meaning 

because it explores the idea that an infinite number of smaller units can be created by subdividing 

the current units used to measure a nominated quantity, thus, evoking a ‘multiplicative 

comparison in which the measuring unit is imagined apart from the thing measured’ (Thompson 

& Saldanha, 2003, p. 16). 

The measurement meaning requires two interrelated ideas. The first is that fractions are 

considered a number and therefore convey the quantitative magnitude of how big the fractional 

number is in addition to a measure assigned to an interval (Charalambous & Pitta-Pantazi, 2007; 

Thompson & Saldanha, 2003). For example, the measurement meaning not only requires an 

understanding of unit fraction iteration (i.e., 
1

𝑛
 as a quantity measure or amount that is iterated m 

times) but also an understanding of 
𝑚

𝑛
 as a number or quantity in its own right, where improper 

fractions (i.e., m > n) are explored, such as 10-thirds is the same as 3 and 1-third (Simon et al., 

2018; Tzur, 1999). Thompson and Saldanha (2003) explain that coming to terms with these two 

ideas demonstrates a conceptual leap in measurement understanding, which is the ‘realisation that 

the magnitude of a quantity (its “amount”) as determined in relation to a unit does not change 

even with a substitution of unit’ (p. 17). In other words, changing the unit of measure of a pizza, 

for example, to 2-halves rather than 4-quarters does not change the pizza’s absolute magnitude. 

The measure meaning is underpinned by all three concepts of partitioning, unitising, and 

quantitative equivalence as the notion of infinite quantities existing between any two numbers 

requires the ability to partition and unitise such quantities, recognising the relationships and 
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equivalent measures that exist between them (Hannula, 2003; Lamon, 1999). The fraction as a 

measure meaning is considered necessary to achieve proficiency in the operations of fractions 

and for thinking about fractions as a size or magnitude relation (Brousseau et al., 2004; 

Charalambous & Pitta-Pantazi, 2007; Lamon, 1999; Hackenberg et al., 2016; Stafylidou & 

Vosniadou, 2004). 

2.2.2.4 Conceptual and Pedagogical Issues 

The complexity of the fraction as a measure meaning is said to be underestimated by 

many teachers (Baturo & Cooper, 1999; Lamon, 2007; Payne, 1976; Wilkins & Norton, 2018), 

who may be unaware of the different types of misconceptions children possess when working 

with this meaning. Common difficulties, as identified by Mitchell and Horne (2011), include 

limited part-whole knowledge in the context of fraction as a measure (i.e., the inability to 

recognise fractional numbers between whole numbers such as three and a half is between three 

and four); incorrectly calculating a decimal fraction, for example, assuming that 1 
2

3
 = 1.23 

(indicative of the WNB); and counting the zero point on a number line as a unit fraction (e.g., 

when counting by fourths, referring to zero as the first count of 1-quarter). While it is important 

to conceptualise a fraction as a measure (i.e., as a quantifiable unit), counting iterations is 

essentially additive (Gould, 2011), which is not necessarily recognised when exploring these 

ideas and perpetuates the double count problem discussed in the previous section. 

Further, the multiplicative aspects of this meaning can be often reduced to a repeated 

addition context, which hides the change of unit, treating it as additive counts of iterating a unit, 

as described above (Davydov & Tsvetkovich, 1991). As Bobos-Kristof (2015) explains, repeated 

addition is misleading because it reduces multiplicative relationship in which quantity is 

represented. An example of this is where children may focus on how many unit fractions or parts 
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there are (such as 3-quarters is three ‘parts’) rather than thinking about how much 3-quarters 

represents as a quantity in relation to the whole. 

There is a close connection between the part-whole and measure meaning, where the part 

and the referent unit are separate entities. The fraction quantity or measure is constructed from 

the relationship between the part to be measured and the identified whole (Wantanabe, 2002). 

Conversely, the part-whole interpretation has the parts embedded within the whole; therefore, 

when using area or number line models for fraction as a measure, a clear understanding of the 

referent unit is required (Ball, 1993; Kieren, 1980). However, Clarke (2011) found limited time is 

spent in Australian schools exploring the measurement interpretation (specifical contexts of 
𝑚

𝑛
 

where m > n), likely due to perpetuating the part-whole and/or the additive limitations described 

above. 

2.2.2.5 Fraction as Quotient 

The fraction as quotient meaning considers a quantity as a ÷ b (Behr et al., 1983). 

Building on the early sharing experiences likely experienced early in a child’s life, the fraction as 

quotient meaning results in equal shares of a quantity representing both the division operation 

and the amount each person receives (Mamede & Oliveira, 2011). For example, in sharing three 

chocolate bars between four people, 
3

4
 is interpreted as the quotient of three divided by four and 

the resulting fair share. The size of the fraction in this meaning is limitless, as ‘the numerator can 

be smaller, equal to or bigger than the denominator, and subsequently, the quantity that results 

from the fair-sharing activity can be less than, equal to or more than the unit’ (Charalambous & 

Pitta-Pantazi, 2006, p. 299). This meaning requires an understanding of the partitioning and 

unitising concepts as the parts obtained by the fair sharing activity need to be identified and 

established as well as the numerical outcome obtained as a result (Kieren, 1999). That is, children 
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need to develop the understand that sharing eight cookies between four people (partitioning) 

results in 8-quarters ( 
8 

4
 ) which signifies unitising, and that this share is quantitatively equivalent 

to or a or two cookies per person.  

2.2.2.6 Conceptual and Pedagogical Issues 

Children intuitively explore fair sharing situations early on in their mathematical 

development; however, fraction as quotient is said to be the forgotten meaning of fraction 

instruction (Clarke, 2006). The underrepresentation of the meaning is not due to the lack of 

research on fractions as a quotient, particularly for older primary school children (see Empson, 

2001; Gould et al., 2006; Siemon, 2003); rather, the limited impact research regarding fraction as 

quotient has had on classroom practice (Clarke, 2006). However, ‘sharing’ as an idea of division 

and whole number partitioning has been part of the Australian Curriculum: Mathematics 

(Australian Curriculum Assessment and Reporting Authority [ACARA] 2018), in Year 1 since 

2010 indicating perhaps that teachers are also not recognising how this idea connects with this 

fraction meaning. Further, given that vast majority of research into this meaning of fraction 

involves children in the upper primary years of school and beyond, this suggests that teachers do 

not consider it appropriate or relevant for young children. 

Including fraction as quotient ideas early in children’s schooling experiences is supported 

by Mamede et al. (2005), who explored 6 – 7-year-old children’s equivalence and ordering ideas 

within fraction problems that were either part-whole or quotient focused, exemplified in Table 

2.1. 
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Table 2.1 

Part-Whole and Quotient Problem Pair for Equivalence Example 

Conceptual focus Fraction 

meaning 

Problem 

Equivalence Part-Whole Bill and Ann each have a bar of chocolate of the same 

size; Bill breaks his bar into two equal parts and eats 1 

of them; Ann breaks hers into four equal parts and eats 

2 of them. Does Bill eat more, the same, or less than 

Ann? 

Quotient Group A, formed by two children, have to share 1 bar 

of chocolate fairly; group B, comprising of 4 children, 

have to share two bars of chocolate fairly. Do the 

children in group A eat the same, more, or less than 

the children in group B? 

 

Mamede et al. (2005) found that children had greater success in the fraction as quotient 

context than the fraction as part-whole, suggesting that early partitioning experiences (i.e., fair 

sharing) supported their understanding in this meaning. The way the part-whole problem is 

written also suggests that children may rely on a counting strategy to solve as discussed above, 

which would likely result in an incorrect response. An additional study by Mamede (2008) also 

revealed that during a teaching experiment with 6 – 7-year-old children, those who were exposed 

to part-whole problems were only able to label simple, common fractions, while those who were 

exposed to partitioned quantities in fraction as quotient contexts were able to order, identify 

equivalence and correctly label a variety of common fractions. For example, they were able to 

recognise that 
1

2
 was the quotient of sharing one chocolate bar between two people, therefore 

recognising that  
1

3
 means the parts are smaller because the ‘one bar’ is being shared between 

more (three) people. Similarly, the children were able to recognise that two children sharing one 

chocolate bar was equivalent to four children sharing two chocolate bars. Moreover, the findings 
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from this study suggested the children’s ability to order fractions successfully in the fraction as 

quotient problems were based on their ability to unitise the quantities and determine equivalence 

between these shares. These examples demonstrate that the fraction as a quotient meaning is 

appropriate and accessible by young children. However, the fraction as quotient meaning is only 

implicit in the early years of the Australian Curriculum (version 8.4), in the form of sharing a 

collection of objects in two equal groups for Year 1 and to recognise that a group of objects can 

be shared into various equal groups for Year 2. 

Mamede et al.’s (2005) findings support the idea that children develop informal 

knowledge of the logic of division from everyday life without instruction in school. This suggests 

knowledge and awareness of fraction as quotient and the ideas it represents in terms of sharing 

and connecting to how the quantity is represented and named need to be better developed from 

the beginning of primary school. 

2.2.2.7 Fraction as Operator 

Fraction as an operator can be thought of as a function that transforms another quantity, 

such as identifying 
3

4
 of the class of 20 children, or increasing the quantity of a recipe by half, as 

examples. Lamon (1999) describes several common contexts in which the fraction as an operator 

meaning is explored: (a) transformations that lengthen or shorten line segments (b) the increase 

or decrease the number of elements in discrete sets and (c) the proportional transformation (i.e., 

scaling) of geometric figures. For example, a geometric figure could be enlarged 
𝑝

𝑞
 times, or as 

you could have 
𝑝

𝑞
 times-as-many objects (Behr et al., 1983; Confrey, 2008). This type of thinking 

requires an understanding and application of multiplication and division ideas. For example, to 

find  
3

4
 of 12, the following operations are possible: divide 12 by four to obtain the unit fraction of 
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the set then multiply that quantity by three to determine the quantity of the three units (quarters), 

or multiply 12 by three, then divide by four. 

2.2.2.8 Conceptual and Pedagogical Issues 

Several researchers indicate that fraction as an operator is not a common interpretation 

taught in primary school (Bruce et al., 2014; Usiskin, 2007). Reducing the importance and 

experience children have of fractions as operator is problematic because it impedes the 

understanding required for the algebraic application of fractions, which is based on multiplicative 

relations. Not exploring this meaning presents children with significant and avoidable difficulties 

as they continue to pursue mathematics throughout their schooling (Bruce et al., 2014). For 

example, in the context of finding 1-third of six, Hunting et al. (1991) state: 

A fraction such as one-third when viewed as an operator does not destroy the number six 

and produce two as a result: it operates on six, leaving six unchanged, to produce two, 

which co-exist with and can be compared with the six from which the two were derived. 

(p. 77) 

However, this type of understanding about the fraction as an operator meaning is often 

replaced with applying procedural operations on rational numbers (such as multiplying a quantity 

by the numerator and diving by the denominator). For this reason, it is not explored in the early 

years which leads to a lack of understanding about how this meaning is interpreted and how 

rational numbers work more generally (Carraher, 1996; Hunting et al., 1996). As Zhang (2016) 

suggests, this meaning is more complex than perhaps other fraction meanings because it requires 

an understanding of part-whole comparisons of the quantity being operated on, a fraction as 

quotient understanding for how the operation will enlarge or shrink the quantity in question, and 

fraction as a measure understanding to make sense of the quantity generated in relation to the 

initial whole. 
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There is very little literature on young children’s capabilities with fraction as an operator 

problems. However, Empson (1999) found that Year 1 children can successfully operate on a 

range of quantities, such as calculating 1-quarter of 12 cupcakes or demonstrating an 

understanding of how to calculate and represent 
2

 3 
  of a packet of 15 pencils. Although this 

evidence suggests that children in the early years of school are capable of engaging with this 

meaning of fraction, it does not appear in the Australian Curriculum explicitly until Year 6, again 

suggesting that there is a disconnection between children’s capabilities and their opportunity to 

develop an extended range of fraction ideas in the early years of primary school. 

2.2.2.9 Fraction as Ratio 

Fraction as a ratio is the comparison of two quantities (Carraher, 1996), such as number 

of boys in relation to girls in a class, or the quantity of water in relation to rice required when 

cooking. The fraction as ratio meaning is often considered in the same way as a rate but there is a 

distinction between the two. Ratio is the comparative index between two of the same quantities 

(such as a mixture of two liquid measures; two groups of people) and rate is the comparison 

between two different quantities—like time and money as an example (Charalambos & Pitta-

Pantazi, 2007; Lamon, 1999). This distinction is important as the ratio meaning of fractions 

requires an understanding of relative amount or how the invariant property applies. That is, while 

the quantities may change, the relationship between them remains the same, which connects to 

the concept of quantitative equivalence. For example, a juice and water mixture may require 1-

third of a cup of juice to 2-thirds of a cup of water. To double this mixture means both quantities 

double (resulting in 2-thirds of a cup of juice to 1-and-a-third cups of water), thus preserving the 

ratio between the two quantities regardless of the absolute quantity of liquid. On the other hand, 

rates do not necessarily have an invariant relationship between the two quantities or units of the 
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fraction. An example of this is a monetary investment, where an exponential increase in 

investment can result from a recurring deposit of the same amount over time due to compound 

interest. 

2.2.2.10 Conceptual and Pedagogical Issues 

Fraction as a ratio is not explicitly taught until Year 7 in Australia (ACARA, n.d), yet 

young children encounter this idea early in their play experiences. An example of young 

children’s engagement is in the sandpit, mixing and maintaining a consistent ratio of sand and 

water for the perfect sandcastle mixture, therefore drawing on the ratio meaning of fractions. 

A number of studies support the perspective that young children can engage with fraction 

as ratio ideas in non-symbolic contexts. For example, Spinillo and Bryant (1991) conducted an 

experiment where 5 – 7-year-old children were asked to compare a model figure, part of which 

was black and part of which was white, to two other figures, one of which had the same ratio of 

black to white colouring (see Figure 2.4). The children were asked to determine which of the two 

figures had the same ratio of colour, as represented in the model. In the experiment, the fraction 

symbols seen in Figure 2.4 were not presented in the stimulus; they are presented here for ease of 

interpretation by the reader. 

Figure 2.4 

Images Used by Spinillo and Bryant (1991) 
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Note. From ‘Children’s proportional judgments: The importance of ‘half’, by Spinillo, A. G. & 

Bryant, P. (1991). Child Development, 62(3), 427–440. Reprinted with permission. 

In Spinillo and Bryant’s (1991) study, children aged 6 – 7 years successfully responded 

beyond chance levels. This revealed the importance of the ‘half’ boundary or proportional 

benchmark that children relied on in their non-symbolic proportional reasoning, even for multiple 

halving contexts in the 
6

8
 example above, where children’s responses revealed they were visually 

benchmarking a half of a half (1-quarter) to determine the correct proportion. That study 

concluded that the 6 – 7-year-old children treated these problem contexts as spatial ratios based 

on their part-part ‘benchmark’ of half in each object. It is important to note that the children in 

that study had no understanding of symbolic notation relating to fractions, thus these findings 

suggest a strong connection between the children’s conception of half and their proportional 

judgement. 

Similar results have been obtained by other researchers, exemplifying children’s ability to 

work successfully work with non-symbolic ratio and proportional contexts (see Goswami, 1989; 

Huttenlocher et al., 1999; Mix et al., 1999; Singer-Freeman & Goswami, 2001; Schlottmann, 

2001). For example, Singer-Freeman and Goswami (2001) found children as young as 4 years of 

age were able to identify equivalent spatial ratios (i.e., 
2

4
 of a pizza versus 

4

8
 of a pizza, which 

refers to equivalence) and although less frequently, these children could also recognise 
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proportional equivalence (i.e., half a box of chocolates is proportionally equivalent to half a 

pizza). This suggests that young children begin to develop emerging understandings of ratio and 

proportion long before working with numerical and symbolic representations of ratio (Carraher & 

Schliemann, 1991). Also revealed by these studies is that the fraction as ratio ideas not only 

emerge as a perceptual and spatial interpretation of the context but that this developing 

knowledge is not dependant on children’s counting, symbolic understanding, or arithmetic 

knowledge (Carraher & Schliemann, 1991; Hunting et al., 1996; Pepper, 1991). The issue 

regarding perceptual and spatial interpretations in the development of fraction as ratio will be 

discussed later in this chapter; however, evidence suggests that this type of fraction meaning is 

accessed through young children’s spatial reasoning abilities. 

2.2.3 Summary of Research on Fraction Meanings 

This section has provided insights into how the three concepts of partitioning, unitising 

and quantitative equivalence are connected to each of the fraction meanings. While Kieren (1988, 

1993) and the researchers of the Rational Number Project (Behr et al., 1992, 1993; Lesh et al., 

1987) have provided extensive insights into the part-whole, measure, quotient, operator, and ratio 

meanings of fractions in middle and upper primary schooling, other researchers have provided 

evidence that suggest young children can engage successfully with all of the meanings. 

Specifically, the literature suggests that young children are capable of engaging in each of 

the meanings of fractions but exhibit difficulties that appear to be perpetuated by over exposure 

to the part-whole meaning of fractions. The studies that explored young children’s capabilities 

demonstrated that the children could engage in non-symbolic, spatial contexts to explore and 

represent the various fraction meanings. However, there is limited literature exploring young 

children’s understandings of some of the various meanings of fractions (such as operator and 
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ratio), and prior studies are primarily experimental rather than interventionist in design, meaning 

what is known about children’s potential for developing such ideas is unclear. 

To explore how these studies may inform an intervention research design, an examination 

of theoretical perspectives of how rational number knowledge develops more broadly will now be 

presented. This discussion examines literature from different disciplines, such as mathematics 

education, psychology, and neuroscience, to understand from a range of viewpoints how and 

when young children typically develop fraction ideas and how appropriate and realistic it is to 

expose young children to an extended range of fraction meanings. 

2.3 Theoretical Perspectives on Rational Number Development 

In response to the literature examined above on the complexities of each of the meanings 

of fractions and what is currently known about young children’s engagement with each, a cross-

disciplinary examination of theories of rational number development is discussed in this section 

to interpret more broadly the development of fraction knowledge. Vamvakoussi et al., (2018) 

describe the need for dialogue between the various discipline areas in the following statement: 

Numerical cognition is a research area that appeals to mathematics education researchers, 

to cognitive-developmental psychologists and to neuroscientists. However, the 

researchers coming from these different fields approach numerical cognition in different 

ways in terms of theoretical perspectives, questions asked, methodologies used, and most 

importantly, of end goals (Berch, 2016). Thus, there is great need for dialogue between 

psychological and educational research, particularly when it comes to implications for 

instruction. (p. 84) 

Children’s fraction understanding is one the most researched area of mathematics, yet the 

difficulties children experience across all age groups with this topic appear to be largely 
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unimproved over this time. This section explores the foundations of early rational number 

development through several theoretical perspectives across the various disciplines to determine 

the implications for instruction relevant to this study. 

2.3.1 An Integrated Theory of Number Development 

Siegler et al. (2011) proposed an integrated theory of numerical development (ITND), 

whereby children’s numerical development is based on understandings of real numbers, 

‘including learning the functions that connect the increasingly broad and varied set of numbers to 

their magnitudes’ (p. 274). The ITND asserts that learning mathematics entails the gradual 

broadening of the set of numbers that can be represented—both whole and fractional—within a 

single framework (Siegler et al., 2013). From this perspective, learning fractions requires the 

simultaneous reconceptualisation of quantity and number (Geary, 2006; Leslie et al., 2008; 

Siegler et al., 2013). This theory is founded on four successive trends, that develop from infancy 

until adulthood: 

• representing non-symbolic numerical magnitudes increasingly precisely 

• linking non-symbolic and symbolic representations of small whole numbers 

• extending the range of numbers whose magnitudes are accurately represented to larger 

whole numbers 

• representing accurately the magnitudes of rational numbers, including fractions, 

decimals, percentages, and negatives (Siegler & Lortie-Forgues, 2014, p. 13). 

2.3.1.1 Representing Non-Symbolic Numerical Magnitudes Increasingly Precisely 

Siegler and Lortie-Forgues (2014) describe that children as young as 6 months of age 

possess an awareness and sensitivity to non-symbolic ratios. Figure 2.5 presents the approximate 
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development of this aspect of the ITND. The figure describes the typical age ranges that children 

develop a sensitivity to the following ratios, presented as dot figures. 

Figure 2.5 

Proposed Development of Non-Symbolic Numerical Magnitudes from Infancy to Adulthood 

 

Note. From ‘An integrative theory of numerical development,’ by Siegler, R. S., & Lortie‐

Forgues, H. (2014), Child Development Perspectives 8(3), 144-150. Copyright Robert Siegler 

and Hugues Lortie‐Forgues. Reprinted with permission.   

While the ability to discriminate non-symbolic numerical magnitudes, such as those in 

Figure 2.5 may appear to be a trivial or irrelevant skill in terms of children’s global cognitive and 

physical development, the literature suggests that individual differences in this ability at 6 months 

are related to mathematical achievement at 3 years of age, even after statistically controlling for 

IQ (Mazzocco et al., 2011; Siegler & Lortie-Forgues, 2014; Starr & Brannon, 2015). 

2.3.1.2 Linking Non-Symbolic and Symbolic Representations of Small Whole Numbers 

Children from the ages of 3 – 5 years will also start to represent and identify small whole 

number magnitudes to 10 through perceptual awareness—such as subitising—and then, from 
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approximately 5 – 7 years, extend this understanding of representing and ordering whole numbers 

symbolically to 100, as represented in Figure 2.6. 

Figure 2.6 

Children’s Proposed Conceptions of Numbers to 100 Between Three and Five Years of Age 

 

Note. From ‘An integrative theory of numerical development,’ by Siegler, R. S., & Lortie‐

Forgues, H. (2014), Child Development Perspectives 8(3), 144-150. Copyright Robert Siegler 

and Hugues Lortie‐Forgues. Reprinted with permission.   

2.3.1.3 Extending the Range of Numbers Whose Magnitudes are Accurately 

Represented to Larger Whole Numbers 

As children acquire the understanding of the order and magnitude of whole numbers to 

100 by the age of approximately 7 years of age, the ITND suggests that children continue to 

extend their whole number understandings to larger numbers to 1,000 and beyond, while at the 

same time developing an appreciation for quantities smaller than one, as illustrated in Figure 2.7. 
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Figure 2.7 

Children’s Proposed Conceptions of Whole Number and Fractions to Adulthood 

 

Note. From ‘An integrative theory of numerical development,’ by Siegler, R. S., & Lortie‐

Forgues, H. (2014), Child Development Perspectives 8(3), 144-150. Copyright Robert Siegler 

and Hugues Lortie‐Forgues. Reprinted with permission.   

The development of fraction magnitude is suggested to develop from approximately 8 

years of age, where children start to represent and connect an understanding of the symbolic 

notation of proper fractions (those between 0 and 1), extending to fractions 0 to n at 

approximately 11 years and beyond, as represented in Figure 2.8. 

Figure 2.8 

Proposed Development of Fraction Magnitude Understanding 
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Note. From ‘An integrative theory of numerical development,’ by Siegler, R. S., & Lortie‐

Forgues, H. (2014), Child Development Perspectives 8(3), 144-150. Copyright Robert Siegler 

and Hugues Lortie‐Forgues. Reprinted with permission.   

2.3.1.4 Representing Accurately the Magnitudes of Rational Numbers 

Finally, representing accurately the magnitudes of rational numbers, including fractions, 

decimals, percentages, and negative numbers (Siegler & Lortie-Forgues, 2014, p. 13) is said to 

develop from approximately 11 years of age though to adulthood. This development is 

represented in Figure 2.9. 

Figure 2.9 

Children’s Proposed Conceptions of Rational Numbers to Adulthood 

 

Note. From ‘An integrative theory of numerical development,’ by Siegler, R. S., & Lortie‐

Forgues, H. (2014), Child Development Perspectives 8(3), 144-150. Copyright Robert Siegler 

and Hugues Lortie‐Forgues. Reprinted with permission.   

The ITND suggests that while very young children can reliably discriminate between non-

symbolic ratios form infancy, it is whole number knowledge that lays the foundation for fraction 

ideas to be conceptualised, from approximately 8 years of age. Research examining how this 

theory informs practice will now be discussed. 



45 

2.3.1.5 Implications for Teaching and Learning 

The ITND recognises fractions as an inherently important part of numerical development 

and excluding or delaying them until middle and upper primary schooling is described as 

inadequate and unnecessary (Siegler et al., 2013). According to several studies (see Jordan et al., 

2017; Siegler, 2016; Wang & Siegler, 2023), there is growing evidence that understanding 

magnitude is key to mathematics learning in all areas of the discipline. Siegler et al. (2011) 

justify their position further, 

If magnitudes are central to understanding fractions as well as whole numbers, then 

instruction that emphasises magnitude understanding is more likely to succeed than 

instruction that does not emphasise magnitude understanding (p. 293). 

Further, the representation of magnitudes for whole numbers (e.g., Booth & Siegler, 2006, 

2008; Halberda et al., 2008; Holloway & Ansari, 2008; Jordan et al., 2013; Sasanguie et al., 

2013) and fractions (Bailey et al., 2012; Siegler & Pyke, 2013; Siegler et al., 2011, 2012) both 

predict overall mathematics achievement, providing a significant reason for instruction to be 

influenced by this theory of learning, specifically in the early years of education. 

An essential part of this theory is that children learn and reason with many whole number 

properties common to rational numbers, such as they are countable, can be represented as a 

symbol, and possess commutativity for addition and multiplication. However, other whole 

number properties are not generalisable for all rational numbers. For example, fractions do not 

possess a unique successor like whole numbers do, because fractions can be represented by an 

infinite number of equivalent fractions. Moreover, multiplication does not always make larger, 

and division does not always make smaller when operating with fractions—unlike operating with 

whole numbers. Thus, learning when and how these properties apply is foundational to this 

theory (Keijzer & Terwel, 2002; Moss & Case, 1999). 
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In terms of applying this theory to a pedagogical approach, it appears this theory is largely 

dependent on the measurement meaning of fractions, because of the reference to representing and 

ordering whole number and fraction magnitudes using number lines. There is also the 

consideration of the spatial reasoning influence in this theoretical perspective, as it assumes that 

numerical magnitudes—both whole number and fractions—develop along a mental number line. 

This is typically described as a horizontally orientated line that one imagines smaller numbers to 

the left of and larger numbers to the right (Siegler & Braithwaite, 2017; Siegler & Opfer, 2003; 

Siegler et al., 2009). This suggest that there is an implicit link between spatial reasoning and 

early number development in terms of how numbers are proportionally considered in relation to 

one another. 

2.3.2 The Ratio Processing System 

The ratio processing system (RPS) suggests our cognitive architectures allow us to 

perceive quantity in non-symbolic ratios (Lewis et al., 2016; Matthews & Ziols, 2019). In other 

words, this theory suggests that from infancy, we are intuitively drawn to ratios that are presented 

in pictorial or concrete form. This theory relates to the proto-quantitative schemas explored by 

Singer and Resnick (1992) in the fraction as ratio meaning discussed above. Matthews and Ziols 

(2019) explain this perspective: 

We take the position that leveraging these proto-numerical intuitions to formalize a 

‘sense’ or ‘feel’ for proportion may provide an alternate route to building rational number 

concepts (see also Abrahamson, 2012; Matthews & Ellis, 2018). This account is quite 

different from approaches positing that rational number concepts most naturally emerge 

from processes such as equipartitioning or learning to coordinate units (e.g., Hackenberg, 

2007; Olive & Lobato, 2008; Pothier & Sawada, 1983; Steffe, 2001), (p. 215). 
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RPS theorists argue that children have cognitive architectures that support spatial ratio 

concepts from an early age and leveraging this perceptual sensitivity to non-symbolic ratio 

magnitudes can enable more flexible understandings of the different meanings of fractions 

(Lewis et al., 2016). For example, researchers have found children as young as 6-months of age 

are able to process the difference between non-symbolic ratios, which was also acknowledged in 

the theory previously discussed (se Cordes & Brannon, 2009; McCrink & Wynn, 2007; Siegler & 

Braithwaite, 2017). Other perspectives from the neuroscience field have supported the notion that 

magnitude coding—mapping number quantity to space (such as the mental number line)—is 

accessible by infants as young as 5-months old. For example, De Hevia and Spelke (2010) found 

children noticed discrepancies in ascending and descending line lengths when a predictable 

pattern of halving or doubling was not followed. Other studies have also yielded evidence for 

cross-dimensional transfer (e.g., from 2D map representation to a 3D physical context, which 

requires and appreciation of spatial proportion and ratio), suggesting that magnitude information 

regarding various dimensions is coded in one schema (De Hevia & Spelke, 2010; Möhring et al., 

2014; Lourenco & Longo, 2009). This theory was evident in the way young children can engage 

with the various meanings of fractions (i.e., often through perceptual, spatial, non-symbolic 

contexts) described in the previous section, and the implications for teaching and learning will 

now be discussed. 

2.3.2.1 Implications for Teaching and Learning 

Foregrounding the RPS as an approach, focuses on perceptual abilities that enhance and 

allow for the exploration of fraction magnitudes (e.g., estimating and ordering fractions). This 

was evidenced by Spinillo and Bryant’s (1991) study examining children’s understanding of 

colour ratios (described in Section 2.2.2.5.1). Therefore, unlike the ITND, where the assumption 

is magnitude understanding of fractions develops from their whole number knowledge (despite 
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early ratio discrimination), the RPS approach suggests engagement with, and accessibility to, 

whole numbers and fractions are on an equal footing (Matthews & Chesney, 2015). Although not 

evidenced in contemporary school curricula, the literature suggests young children’s cognitive 

architecture is compatible with the development of non-symbolic, fraction as ratio meanings, as 

described by Singer-Freeman and Goswami’s (2001) study of equivalent fraction analogies (half 

a pizza is proportionally equivalent to half a box of chocolates; see also Boyer & Levine, 2012; 

Duffy et al., 2005; Huttenlocher et al., 1999). 

Based on the body of work underpinning the RPS, Matthews and Ziols (2019) suggest 

that this perceptually based intuition, for non-symbolic ratio and proportion magnitudes, should 

inform existing theory and help provide a basis for the design of more effective instruction for the 

development of rational number concepts. However, what is evident from the literature regarding 

the RPS is that studies seldom investigate this theoretical perspective from a classroom, 

intervention perspective in the early years of schooling. That is, the integration of the perceptual 

and spatial aspects of the non-symbolic fractional contexts are tested in assessment and 

experiment-based contexts and linked to participants’ understanding of symbolic fractions and 

ratios, rather than developed in a real-world classroom environment during the teaching of 

fractions.  

2.3.3 The Reorganisation Hypothesis 

The early development of fraction understanding has been theorised by Olive (1999), 

Steffe (2001) and Steffe and Olive (2010) and labelled the reorganisation hypothesis. This theory 

has many similarities to the ITND, however it suggests that children’s whole number knowledge 

serves as the foundation of and springboard for fraction knowledge (Biddlecomb, 2002; Norton 

& Hackenberg, 2010; Olive, 1999; Steffe, 2001; Steffe & Olive, 2010). Specifically, they suggest 

that children’s integer counting schemes are reorganised to accommodate their fraction schemes, 
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which are based on the unit fraction (Steffe, 2001). Steffe and Olive (2010) explain that ‘a new 

scheme is constructed by using another scheme in a novel way, the new scheme can be regarded 

as a reorganisation of the prior scheme’ (p. 1). Thus, a new scheme is developed and 

implemented when a child can use their existing knowledge and understanding to solve problems 

more efficiently and effectively.  

This theory for fraction development states that children’s initial partitioning, 

measurement and part-whole fraction schemes are based largely on children’s knowledge of 

existing whole number concepts and operations. This includes, the cardinal and ordinal 

principles, and whole number operations such as addition (Norton & Hackenberg, 2010). As they 

accommodate the unit fraction, they iterate this unit to recreate the whole (e.g., 
3

7
 is 3 iterations of 

1

7
 ).  

More recently, Tzur (2019) moved this reorganisation theory forward by describing the 

reorganisation of fractions as multiplicative relations. This perspective is grounded in the 

development of hypothetical learning trajectories from multiple studies (Simon & Dougherty, 

2014; Norton & Boyce, 2013; Saenz-Ludlow, 1994) describing a progression of reorganisation of 

the iteration, measurement-based fraction schemes (Tzur, 2019).  

2.3.3.1 Implications for Teaching and Learning 

The reorganisation hypothesis suggests children’s part-whole and measurement fraction 

schemas are developed from a reorganisation of their whole number development. The basis of 

this approach is an interpretation of partitioning, where the foundation is 0. That is, the unit 

fraction is determined as a single part of the whole and iterated to re-assemble the whole. There is 

agreement that the importance of establishing unit fraction understanding is critical for 

understanding fraction magnitude more broadly, however, the idea of the unit fraction as the 
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unifying component between fractions and whole numbers is problematic. That is, while this 

hypothesis intends to describe multiplicative relationships, the process of iteration lends itself to 

repeated addition within measurement meaning, rather than exploring multiplicative structures 

(e.g., the generation of composite units) (Corley, 2013). Further, several researchers are sceptical 

about the problems that arise from such an emphasis on additive approaches (Lamon, 2001; 

Saenz-Ludlow, 1994; Streefland, 1991). Moreover, given the different interpretations and 

meanings of fractions, reliance on any single meaning is suggested as ineffective (Bruce et al., 

2013; Lamon, 2012). Instead, other researchers (see Bruce et al, 2013; Confrey et al., 2014; 

Empson, 1999; Siemon, 2013) argue that a more appropriate emphasis should be the exploration 

of children’s multiplicative partitioning schemas within multiple meanings of fractions, including 

ratio and operation, as this allows a greater development of partitive and iterative fraction ideas to 

develop concurrently. 

2.3.4 The Splitting Conjecture 

The splitting conjecture as a theoretical perspective to the development of fractions based 

on partitioning has been defined and explored by many researchers (see Confrey, 1994; Empson 

et al., 2006; Norton & Wilkins, 2012; Steffe, 2004). An examination of these perspective reveals 

that researchers have theorised this conjecture from one of two sperate, but related definitions, 

one driven by Confrey (1994) and one driven by Steffe (2004). Steffe’s definition is based on an 

iterating and measurement approach which is derived from children’s counting schemes, 

discussed above as the basis of the reorganisation hypothesis and, to a degree, the ITND. This 

discussion on the splitting conjecture will examine literature associated with Confrey’s (1994) 

perspective, which is based on multiplicative partitioning perspective as summarised by Norton 

and Wilkins (2013): 
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There are at least two independent but connected primitive constructs that lead to a robust 

understanding of numeration: one is counting, and the other is splitting. Splitting has its 

roots in activities like sharing, magnifying, shrinking, copying, and reproducing and is the 

primitive that leads to the development of multiplication, division, and ratio. There are 

fundamental, early, and essential ties between ratio and two-dimensional space that make 

a set-based approach to splitting inadequate, and necessitate careful ties to area, slope, 

rate, and similarity. (pp. 255–256) 

Unlike Steffe’s perspective of splitting (partitioning), Confrey’s perspective considers 

splitting as multiplicative because the origin of the splitting context is ‘1’. That is, to determine a 

unit fraction, the whole is considered as the starting point for n-splits to be applied as repeated 

multiplication, as all parts created simultaneously (Confrey & Harel, 1994). As described above, 

in contrast, Steffe’s (2010) perspective of splitting has an origin of ‘0’, whereby a unit fraction is 

created from the whole and iterated to recreate the whole, emphasising repeated addition.  

Critics of Confrey’s (1994) interpretation of splitting state that this approach provides a 

didactical obstacle to learning fractions, which should be avoided (see Cortina et al., 2014; Tzur, 

2007). That is, unlike epistemological obstacles (also described as cognitive conflict; Tall & 

Vinner, 1981) which unavoidably arise when the development of one mathematical idea 

interferes with the development of another (e.g., whole numbers and fractions); didactical 

obstacles are related to the materials, representations and procedures children are exposed to that 

enforce limited understandings or misconceptions of the new idea and should be avoided. Cortina 

et al. (2014) suggests that the splitting conjecture promotes such didactical obstacles because they 

believe it does not enable the reassembly of parts; it emphasises the part-whole meaning of 

fractions by considering the splits as separate parts to the whole and does not support fraction as 

ratio understanding. With regard to the last point, it appears they misinterpret the many-to-one 
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idea as a foundation to the fraction as ratio meaning, by confusing this with the part-whole 

meaning. Their response to a splitting conjecture appears to be based on the ‘reinvention’ 

(Gravemeijer, 1994) of measurement, via iteration of fractions, rather than an appreciation of the 

unit fraction as a result of splitting.  

In contrast to the view that rational number reasoning is developed upon a reorganisation 

of children’s whole number counting schemas (e.g., Cortina et al., 2014; Steffe, 2004; Tzur, 

2019) or as the basis of whole number magnitude (e.g., Siegler et al., 2011), the rationale for the 

splitting conjecture is based on the foundation of children dividing and reassembling quantities, 

which is the foundation to multiplicative thinking. The greatest disparity to this theory and the 

previous is that it assumes that ‘splitting contrasts strongly with counting, the action on which a 

number system is most often built’ (Confrey & Smith, 1995, p. 70).  

2.3.4.1 Implications for Teaching and Learning 

To explore the splitting conjecture in more detail, Confrey’s work is examined more 

widely. Confrey et al. (2014b) developed a theoretical framework for rational number reasoning 

based on an extensive synthesis of over 500 studies. Seven conceptual sub-areas were identified 

for all rational number knowledge: (i) equipartitioning/splitting; (ii) multiplication and division; 

(iii) fractions; (iv) ratio and proportion; (v) length, area, and volume; (vi) similarity and scaling; 

and (vii) decimals and percentages (Confrey, 2008; Confrey et al., 2014a). After identifying the 

conceptual sub-areas from the corpus of research examined, a series of learning trajectories for 

each subgroup were proposed. The equipartitioning learning trajectory was empirically examined 

from a three-year longitudinal study for children Years 3-5 (see Confrey 2012; Confrey & 

Maloney 2010), however much of this framework is a conjectured map of the connections and 

sequences of ideas children may develop throughout primary school. These learning trajectories 

are presented in Figure 2.10.   



53 

Figure 2.10 

Rational Number Reasoning Learning Trajectories (Confrey et al., 2014b). 

 

 

[Image removed due to copyright restrictions]. 

 

 

Note. From ‘Equipartitioning, a foundation for Rational Number Reasoning’ (p. 69), in Learning 

over time: Learning trajectories in mathematics education, by A.P. Maloney, J. Confrey and K. 

H. Nguyen (Eds.), 2014, Information Age Publishing. Copyright 2014, by Information Age 

Publishing.  

The learning trajectories shown in Figure 2.10 highlight the connections and possible 

pathways that children are conjectured to move through in the development of rational number 

ideas and concepts. However, it is worth noting that Confrey (2012) states, that this framework 

would be better represented as a cylinder, emphasising the connectedness between the ideas 

within the various rational number domains. 

Confrey and colleagues (2014b) developed the learning trajectories for rational number 

reasoning, which are described as a framework for understanding rational number (Confrey et al., 

2010; Sztajn et al., 2012). The foundation of this approach is that equipartitioning as their 

definition of splitting (also considered multiplicative partitioning; referred to as partitioning in 

this thesis) is viewed as the gateway to developing multiplication, division, ratio, and rate ideas in 

the domain of rational number reasoning (and fractions specifically). This view suggests that 

these domains cannot be separated into compartments that are both studied and taught in isolation 

(i.e., fractions versus whole numbers or fraction meanings viewed and taught as independent 
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domains; Confrey, 1994). The basis of the rational number framework is that all of the learning 

trajectories are derived from the central, Equi-Partitioning Learning Trajectory (EPLT; Confrey 

et al., 2014b; Confrey & Maloney, 2010) that is developed on the basis of the fair share idea.  

What is unique to this theory for rational numbers is the interconnectedness represented 

within and between the individual learning trajectories. As highlighted in Figure 2.10, this series 

of rational number ideas within the learning trajectories depict the typical ordered pathways of 

understanding children develop, rather than just accumulating knowledge as discrete topics. The 

framework represents a progression of learning that develops in the complexity of ideas over the 

primary years of schooling.  

Another important element from this research is how the five typically meanings of 

fractions (fraction as part-whole, measure, operator, quotient, and ratio), first identified by Kieren 

(1976) and elaborated on by Behr et al. (1983), is simplified into three meanings. The three 

meanings are fractions as a relation (ratio and rate), fraction as an operator and fraction as a 

measure and are intended to be taught in relation to one another. Figure 2.11 has been adapted to 

show the how the three meanings of fractions are represented in this framework.  

 

 

 

Figure 2.11 

Map of Rational Number Concepts Grouped in the Three Meanings of Fractions (Confrey et al., 

2014b) 
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[Image removed due to copyright restrictions]. 

 

 

 Note. From ‘Equipartitioning, a foundation for Rational Number Reasoning’ (p. 69), in Learning 

over time: Learning trajectories in mathematics education, by A.P. Maloney, J. Confrey and K. 

H. Nguyen (Eds.), 2014, Information Age Publishing. Copyright 2014, by Information Age 

Publishing.  

Confrey and Maloney (2010) simplify the definitions of each of the three meanings of 

fractions, with reference to the foundational ideas presented in Figure 2.11 above: 

• 
𝒂

𝒃
 as a Relation: Ratio, through two-dimensional ‘many-to-one’ numerical 

relationships, ratios unit and unit ratios. For example, many-to-one is an indication of 

ratio units, whereby children may identify there needs to be the same number of 

flowers (many) for each vase (one). A unit ratio is the understanding that 12 flowers 

and three vases versus 15 flowers and five vases still results in the unit ratio of three 

flowers for each vase (proto-ratio). 

• 
𝒂

𝒃
 as an Operator: Through the act of fair sharing, and naming ‘1-nth-of...’ and 

‘n (times) as many’ the referent unit resulting from equipartitioning (p. 973). Fraction 

as an operator from this perspective also includes the fraction as quotient meaning 

identified above, because of the focus on partitive division and recursive 

multiplication in sharing n objects between m people. 

• 
𝒂

𝒃
 as a Measure: This fraction meaning starts with the ideas that many (objects) can be 

named as one meaning that any object (number) can be measured by an infinite 
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number of parts (fractions), derived from fair sharing. That is, if I were sharing 12 

flowers between three vases, four flowers are the size of each fair share created from 

the collection of flowers. If I were to share a cake, I could cut it into any number of 

equal parts that represent a measure of that cake, whereby the relative size of the cake 

remains unchanged. 

In their research on rational number reasoning, Confrey et al. (2014b) identify a range of 

cognitive behaviours that are essential for interpreting the children’s interaction between the 

various ideas within each of the fraction meanings (see Table 2.2). 

Table 2.2 

Summary of Cognitive Behaviours (Paraphrased from Confrey, 2012, p. 159) 

Strategies are selected and employed by the child to solve problems and are typically seen at 

the lower levels. The strategy is merely employed as a means to try to solve the task (e.g., 

dealing a set of objects one by one to share the collection; staking/ matching groups of 

objects initially to check for equality). 

Mathematical reasoning practices are used to explain strategies and solutions. These include 

naming and justifying as well as providing ‘proof’ such as physically stacking shares of coins 

to establish equality of each share. 

Emergent properties and relations of the mathematical ideas of focus act as ‘localised’ 

generalisations and guide future strategy choice as the student coordinates strategies and 

reasoning practices. The emergent properties and relations cognitive behaviour suggest the 

child is anticipating solutions and proposing regularities in approaches (i.e., if more people 

share, then each share is smaller). 

Systematic tendencies towards certain errors or alternative conceptions, such as cutting a 

circle horizontally rather than with radial cuts to create fair shares, and they need to be 

addressed with the child. 
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Generalisations of increasing power slowly emerge as the understanding of the three cases 

for partitioning merge: 

• Case A: sharing a collection of m/n objects fairly where m and n are natural numbers 

• Case B: sharing a single whole among n children 

• Case C: Sharing multiple wholes m among n children where n is not a factor of m 

(includes proper and improper fractions). 

 

With reference to the ideas explored in the early years of this framework, Confrey (2012) 

states that strategies are an important element of understanding how young children come to 

understand how fractions are created and operated on. For example,  

…folding a piece of paper is different from cutting or marking it, and the different types 

of activities produce different insights …with cutting it is not uncommon to witness 

children using the congruence of the parts by stacking one piece on top of the other. When 

folding, congruence is built directly into the activity through symmetries, but the result of 

the action is hidden until the paper is unfolded, providing opportunities to examine one’s 

predictions. (Confrey, 2012, p. 167) 

This description of the strategies such as folding, visualising, predicting, and examining 

the geometric and measurement properties of a simple piece of paper are clearly connected to 

spatial rather than symbolic or numerical understandings in the early years, which is not 

acknowledged explicitly in the present or previous theoretical perspectives.  

Also noteworthy is that the description of the ideas in Figure 2.11 related to 

approximately the first three years of schooling suggests, if only implicitly, the spatialised 

contexts in which children might engage with during the exploration of these ideas, reflected in 

such ideas as scaling, geometric symmetries, length, and area as examples. For example, in the 

region where Year 1 and 2 children would be exploring the idea of partitioning a single whole, it 



58 

is also connected to spatial-based ideas such as geometric symmetries, conservation of the whole, 

conservation of length, area and scaling, to name a few. This suggests that children need to have 

experiences that promote their spatial reasoning capabilities to effectively develop their early 

understanding of an extended range of fraction meanings.  

Bruce et al.’s (2015a) research, resulting in the Fractions Learning Pathways curriculum 

tool for Ontario is an example of how a splitting approach can be effectively used as a basis to 

explore and develop fraction understanding, This research-informed work was inspired by 

Confrey’s splitting perspective and provides a suite of field-tested tasks that guide teachers in the 

teaching and learning of fractions from approximately Year 1 - 10 and includes some of these 

more ‘spatial’ ideas within the suggested fraction activities. Significant gains in children’s 

learning of fractions have been reported in the middle and upper primary years from this 

research. However, the limited literature relating to the early ideas and fraction meanings 

articulated in Confrey et al.’s (2014b) framework above, has not explicitly addressed the 

connection to spatial reasoning, meaning there is great potential to explore this avenue in the 

early years.  

2.3.5 Discussion of Theoretical Perspectives 

Two key issues have emerged from the analysis of the theoretical perspectives discussed 

on the development of rational number knowledge. The first is that there are multiple meanings 

of fractions that children need to develop and understanding of in relation to each other to 

mitigate the misconceptions and difficulties they present in later schooling in this area of 

mathematics. The second is that the way in which young children engage with a range of early 

fraction ideas suggests that spatial reasoning is an implicit yet seemingly underutilised cognitive 

ability in the development of this area of mathematics. 
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With regard to the first issue, Thompson and Saldanha (2003) take a strong position in 

describing how Kieren and the Rational Number Project’s work has been largely interpreted and 

implemented: 

Our feeling is that their attempt to map systems of complementary meanings into the 

formal mathematical system of rational numbers will necessarily be unsatisfactory in 

regard to designing instruction for an integrative understanding of fractions…A variety of 

sources suggest it is through the development of a web of meanings that entails 

conceptualisations of measurement, multiplication, division, and fractions. We emphasize 

conceptualisations of measurement, multiplication, division, and fractions. This is not the 

same as measuring, multiplying, and dividing. The latter are activities. The former are 

images of what one makes through doing them. (pp. 14–15) 

This point speaks to the present research, in that while Kieren and Behr et al.’s extensive 

body of work is being not criticised, it does not currently serve the purpose of integrating such 

meanings within the broader theoretical domain of rational number in the early years. That is, 

identifying and working with the various meanings of fractions is not sufficient based on 

connecting the three concepts of partitioning, unitising, and quantitative equivalence, as there 

needs to be a connection between the bigger mathematical ideas of measurement, multiplication, 

and division in addition to fractions. It seems that Confrey et al.’s (2014b) framework for rational 

number reasoning appreciates this complexity of rational number theory that has both theoretical 

and pedagogical rigour, because it is founded on the premise that division and multiplication are 

developed from multiplicative partitioning contexts and coordinated with, not derived from, 

counting, addition and subtraction (Confrey, 2008). This premise is supported by the literature 

that early proportional awareness of non-symbolic ratios is inherently intertwined within 

children’s mathematical development from infancy—which is acknowledge in the ITND, even 
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though counting and whole number knowledge was deemed the basis of fraction understanding. 

Although the literature describing young children’s proportional and non-symbolic capabilities 

with fraction context largely comprises experimental or assessment-based studies, it does suggest 

there is a gap in how these early perceptual abilities can be harnessed to promote young 

children’s understanding of the fraction meanings. 

This leads to the second issue identified from this theoretical review, in that the role of 

spatial reasoning explicitly is missing from the discussion about young children’s engagement 

with various fraction meanings and their underpinning ideas—regardless of the foundation in 

which the theory resides. For example, the prevalence of perceptual and spatial skills to perceive 

spatial ratios and magnitudes is evident across the differing theories as identified above. The 

early sensitivity to non-symbolic ratios and Confrey’s description of folding and cutting when 

children are exploring partitioning also suggest this engagement relates to the development of 

mental images of quantity and magnitude, created through engaging in different spatial reasoning 

constructs. For example, young children’s ability to distinguish between proportional and a 

distribution situation, such as in Spinillo and Bryant’s (1991) study, draws on spatial aspects of 

geometry, measurement (length, area, etc.) as well as proportion (half). These ideas are also 

represented in Confrey et al.’s (2014b) learning trajectories—yet the spatial reasoning foundation 

is not explicit in the theoretical discussion of children’s fraction capabilities. 

Given this context, it seems critical to explore these early understandings and how spatial 

reasoning may affect children’s development of fraction meanings and the associated concepts. 

Based on this rationale, spatial reasoning and its relationship to fraction development will now be 

discussed. 
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2.4 Spatial Reasoning and its Influence: Rational Number Reasoning 

Before exploring the role spatial reasoning may play in developing early fraction concepts 

and ideas, it is helpful to define what is meant by the term. There are many interpretations of 

what spatial reasoning is, depending on the theoretical and disciplinary orientation of the 

definition (Bruce et al., 2015b). 

2.4.1 Defining Spatial Reasoning 

Battista (2007) explains that spatial reasoning ‘is the ability to “see” [in one’s mind], 

inspect, and reflect on spatial objects, images, relationships, and transformations’ (p. 843). The 

Ontario Ministry of Education (2014) elaborates on this definition to provide contexts and 

situations relevant to children that help define this ability:  

[Spatial reasoning] involves understanding relationships within and between spatial 

structures and, through a wide variety of possible representations…When a child rotates a 

rectangular prism to fit into the castle she is building she is employing spatial reasoning, 

as is the student who uses a diagram of a rectangle to prove that the formula for finding 

the area of a triangle is ½b*h. Spatial reasoning vitally informs our ability to investigate 

and solve problems, especially non-routine or novel problems, in mathematics’. (p. 3) 

Spatial reasoning is, therefore, an overarching term for spatial concepts, processes, and 

tools that learners engage with when processing a range of information, problem contexts and 

data sources and includes a range of spatial skills (Lowrie et al., 2021; National Research Council 

[NRC], 2006). Whiteley et al., (2015) describe spatial reasoning in the form of Tahta’s (1989) 

‘powers’ involved with working with space. These powers are: 

• Imagining—also described as the process of ‘seeing’ what is said or presented. 
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• Constructing—the process of conceptualising and seeing what is drawn and saying or 

communicating what is seen. 

• Figuring—which involves drawing what is seen. 

Whiteley et al., (2015) offers an extension to Tahta’s framework to further refine our 

understanding of spatial reasoning and the processes and skills that constitute such learning. 

Although described as preliminary, the following list of verbs offers a characterisation of what 

spatial reasoning may entail in mathematics education: locating, orienting, decomposing, 

recomposing, shifting dimensions, balancing, diagramming, symmetrising, navigating, 

transforming, comparing, scaling, sensing, and visualising. 

In a similar vein to Tahta’s (1989) initial three ‘powers’, the NRC (2006) synthesised 

three core elements that describe spatial reasoning. This framework was developed from a 

synthesis of research from a wide range of disciplines, such as astronomy, education, geography, 

the geosciences, and psychology (NRC, 2006) and is recreated in Figure 2.12. 

Figure 2.12 

An Interpretation of the NRC’s Spatial Reasoning Framework 
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The three elements within the framework are concepts of space, tools of representation 

and processes of reasoning. Concepts of space provide the conceptual and analytical framework 

within which data can be integrated, related, and structured into a whole (NRC, 2006). This 

element relates to space in time, object/field, and orientation or place ideas. It involves 

identifying the space relative to an object, its container, boundary, shape, and texture. This 

element includes an awareness of the spatial relations, including static spatial relations such as 

location (distance, direction, distribution) and connection, and dynamic spatial relations like 

motion, flow, force, intersection, and collision. Tools of representations are considered internal 

and cognitive, or external and graphic, linguistic gestural and provide the forms within which 

structured information can be stored, analysed, comprehended, and communicated to others 

(NRC, 2006). Representations are important to all areas of mathematics, so to have a framework 

that helps to articulate the internal and external components in relation to fractions from a spatial 

perspective is most useful. Representations will be expanded on later in this chapter due to their 

importance to the teaching and learning of mathematics. Processes of reasoning is described as 

the capacity to recognise and perform mental manipulations of visual stimuli; the ability to 

transform spatial forms of information (representations) into other visual arrangements; an 

awareness of the structural features of spatial information (e.g., identifying an ABC unit structure 

of a pattern) or objects (such as scale, orientation, perspective and proportion); and critical 

thinking to find relationships, reason and hypothesise to solve problems (Arcavi, 2003; Mulligan 

et al., 2018; NRC, 2006).  

It is clear from these descriptions that there is no standard definition, and that spatial 

reasoning is often used interchangeably with spatial thinking, spatial abilities, and visual-spatial 

reasoning. However, Lowrie et al., (2018) suggest that in an instructional context, all three 

elements of the NRC’s (2006) framework are considered and promoted in the effective teaching 
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of spatial thinking. Therefore, this study will consider spatial reasoning as the relationship 

between an appreciation of space, the internal and external representations of this space, and the 

cognitive processes that enable children to reason and justify their thinking.   

2.4.2 Spatial Reasoning and Fractions  

With regard to the aforementioned discussion on spatial reasoning and the insights into 

children’s non-symbolic, perceptual awareness discussed in the theoretical discussion above, one 

key construct emerged as dominant: spatial proportional reasoning. This was identified 

throughout several theoretical perspectives as the way in which young children demonstrate a 

sensitivity to early ratio and non-symbolic equivalent quantities.  

As I examined the literature further in relation to spatial reasoning more broadly, the 

process of mental manipulations in children’s perceptual awareness of partitioning, fair sharing 

and estimating changes in magnitude suggested that spatial visualisation was a relevant construct 

in the development of young children’s rational number reasoning. These spatial constructs and 

their relationship to young children’s development of fraction understanding will now be 

explored. 

2.4.2.1 Spatial Proportional Reasoning and Fractions  

Spatial proportional reasoning is described as the ability to reason about non-symbolic, 

relative quantities (Möhring et al., 2015) and, therefore, is associated with the concept of 

quantitative equivalence. Similar to this construct, spatial scaling is the process of transforming 

non-symbolic quantities while conserving relational properties, and it is therefore an important 

aspect of spatial proportional reasoning (Barth et al., 2009; Boyer & Levine, 2012; McCrink & 

Spelke, 2010). Several researchers have demonstrated that spatial proportional reasoning and 

spatial scaling are closely related cognitive processes (Begolli et al., 2020; Boyer & Levine, 

2012; Möhring et al., 2015). The present study is not concerned with differentiating between 
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spatial scaling and spatial proportional reasoning from a cognitive perspective; therefore, for the 

purposes of this thesis, spatial proportional reasoning will imply both proportional and scaling 

capabilities. 

Spatial proportional reasoning has been examined in relation to young learners’ fraction 

development (Boyer et al., 2008; Boyer & Levine, 2012; Möhring et al., 2015). For example, 

Möhring et al. (2016) found that 8 – 10-year-old children’s formal fraction knowledge was 

influenced by their ability to use spatial scaling to reason in non-numerical, proportional 

reasoning situations. The task used in that study was a cherry juice mixture context, first 

employed by Boyer and Levine (2012). In this task, children were presented with either one or 

two vertical columns partitioned into two parts (see Figure 2.13). The red portion represented the 

cherry juice and the blue portion represented water. Underneath each column was a horizontal 

scale with one cherry to the absolute left, indicating a ‘weak’-tasting mixture, and a bunch of 

cherries to the absolute right, representing a ‘strong’-tasting mixture. No numerical information 

was presented on the horizontal scale or the vertical juice and water column. Children were asked 

to position a peg on the horizontal scale to correspond to how strong or weak they thought the 

represented cherry juice and water mixture would taste, presented in a ‘stacked’ and ‘side-by-

side’ context as presented in Figure 2.13. 
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Figure 2.13 

Cherry Juice Example (Möhring et al., 2016) 

 

Note. Examples of a stacked (left) and a side-by-side (right) presentation of cherry juice (e.g., six 

units) and water (e.g., 24 units) in the proportional reasoning task. From ‘Spatial proportional 

reasoning is associated with formal knowledge about fractions’, Journal of Cognition and 

Development, 17(1), 67–84, by W. Möhring, N. S. Newcombe, S. C. Levine and A. Frick, 2016. 

Copyright 2021 by Taylor & Francis. Reprinted with permission. 

That study revealed that children’s accuracy in judging the proportions were higher in the 

part-whole (stacked condition) as opposed to the part-part condition, hypothesised to be because 

in the stacked condition, it was easier for children to mentally align the proportional amounts to 

the rating scale (Möhring et al., 2016). However, they were not able to determine whether young 

children’s previous fraction understanding impacted their ability to complete these spatial 

proportional reasoning tasks effectively, or whether their spatial proportional reasoning promoted 

their fraction knowledge. Despite these differences, the study suggests that young children are 

much more capable of engaging in these fraction and relation ideas than previously thought, 

which is consistent with Spinillo and Bryant’s (1991) discussion on young children’s early ratio 

understandings (see Section 2.2.5). These findings suggest that those children who demonstrate a 
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better understanding of relative proportion may be able to better visualise fractions in terms of 

spatial analogies, which, in turn, may help them to understand numerical fractions, perhaps 

because they are more able to differentiate plausible and implausible answers (Möhring et al., 

2016). These findings provide further motivation for the present study. 

Spatial proportional reasoning relates closely to the fraction as an operator and fraction as 

a measure meanings because they support the ‘stretcher shrinker’ ideas associated with the 

operator meaning (such as double and half, times-as-many ideas) and the equivalent fraction idea 

underpinning the measurement meaning. However, these fraction ideas are considered to develop 

much later in children’s mathematical development (Huttenlocher et al., 1999; Piaget & Inhelder, 

1967).  

Evidence suggests that children from as young as 3 years of age can intuitively explore 

early fraction concepts such as partitioning, equivalence and unitising in proportional contexts at 

a perceptual level, utilising scaling capabilities (Frick & Newcombe, 2012; Huttenlocher, et al., 

1999; Möhring et al., 2014; Vasilyeva & Huttenlocher, 2004). This context is exemplified by 

Jirout et al.’s (2018) search game (see Figure 2.14). In this study, 3 – 8-year-old children were 

required to locate an object hidden in a physical space (e.g., floor mat) using a simple map that 

indicated a nominated tile was in the top left-hand corner of the search space from the child’s 

perspective, as presented in Figure 2.14. 
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Figure 2.14 

Spatial Scaling Search Game Materials 

 

Note. From ‘Scaling up spatial development: A closer look at children’s scaling ability and its 

relation to number knowledge’, Mind, Brain, and Education, 12(3), 110–119, by J. J. Jirout, C. 

A. Holmes, K. A. Ramsook and N. S. Newcombe, 2018. Copyright 2018 by John Wiley and 

Sons. Reprinted with permission. 

The map was a much simpler, 2D version of the space the object was hidden within, and 

children had to use their partitioning and scaling skills to identify and locate where they thought 

the object was hidden. Although small numbers of children were involved, most children were 

successful, as they were able to understand how the proportions and locations of the 2D 

representation would translate (i.e., increase in scale) in the physical representation. This 

illustrates that through the identification and application of unit size and magnitude (mentally 

partitioning the map to determine where the star may be located in the 3D world), scaling is 

connected to the concepts partitioning and equivalence.  

This skill requires an understanding of how distances in different-sized spaces are related, 

in addition to geometric correspondence (Downs, 1985; Newcombe & Huttenlocher, 2003; 

Möhring et al., 2014). Geometric correspondence is the ability to encode distances with some 

unit of measure, which is indicative of proportional understandings whereby the discrimination of 
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space, time, number, and speed may be required (Brannon et al., 2006; Brannon et al., 2007; 

Möhring et al., 2012; Xu & Spelke, 2000). The learner mentally shrinks or expands spatial 

information (e.g., enlarging or shrinking an image), also described as the activity of ‘zooming in’ 

or ‘zooming out’, which internally transforms the magnitude information (Möhring et al., 2018). 

Evidence provided by Frick and Newcombe (2012) also illustrates children as young as 5 

years old can work with relative distances, using scales of 1:2 and 1:4, in solving location tasks 

using 2D maps and corresponding representations. Further evidence from Frick and Newcombe 

(2012) and Vasilyeva and Huttenlocher (2004) reveal that there is a great deal of development in 

the accuracy of children’s spatial proportional reasoning capability between the ages of 3 – 6 

years. Gilligan et al. (2018) found that children between the ages of 5 – 8 years achieve further 

gains in spatial scaling skills during this period, particularly in the flexibility and accuracy of 

their abilities.  

The evidence from these studies suggests the early years provides an important 

opportunity to develop children’s understanding of fraction ideas utilising this spatial construct. 

This is due to the connection between visualising how different spaces and objects can be 

partitioned without necessarily quantifying the measures; it also enables the child to visually 

compare quantities of the objects and shapes explored, to identify the different size of the parts 

created within the same objects. Further, it enables children to develop an understanding of 

proportional relationships between different objects and spaces, such as a map and its real-world 

space. 

The literature presented in this discussion provides evidence for the links between the 

development of spatial proportional ideas and the proposition that this may positively influence 

children’s development of formal fractional knowledge—specifically fraction as an operator and 

fraction as a measure understandings. It is imperative to note, however, that in each of these 
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examples, while children (especially under the age of 7 years) are demonstrating the ability to 

reason in some proportional contexts, it is not claimed that children of these ages can perform 

proportional computations or have a sophisticated multiplicative understanding required for 

proportional reasoning (He et al., 2018; Frick & Newcombe, 2012). However, this literature 

indicates that during the period of cognitive development between 5 – 8 years of age, an 

alternative approach to teaching fractions that encompasses spatial proportional reasoning may 

positively affect young children’s understanding of early fraction concepts. 

 

2.4.2.2 Spatial Visualisation and Fractions 

Spatial visualisation is considered one of the most complex categories to define under the 

umbrella of spatial reasoning. The difficulty lies in the fact that the term is defined in many ways. 

Linn and Peterson (1985) define spatial visualisation as a multi-step manipulation of objects. 

Many mental rotations and transformations may occur while the participant keeps a mental record 

of each application and its impact on the original image at hand. As a theoretically correlated 

construct of spatial visualisation (Linn & Petersen, 1985; Maeda & Yoon, 2013), mental rotation 

is the ability to imagine how an object would look if it were rotated; that is, to mentally turn a 2D 

or 3D object (Frick et al., 2013). However, some researchers (e.g., Hawes et al., 2019; Lowrie & 

Logan, 2023) acknowledge that spatial visualisation is a complex construct to define and separate 

from other constructs, such as mental rotation and mental transformation. As described above, the 

present study is not concerned with differentiating between what constitutes the nuances between 

closely related spatial constructs; therefore, for the purposes of this thesis, the term ‘spatial 

visualisation’ will imply mental rotation and mental transformation, unless otherwise noted. 

A common example of spatial visualisation is imagining folding a piece of paper several 

times, whereby the process of each transformation needs to be remembered as well as visualising 
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the outcome of each fold on the paper. This has important links with early years fraction 

instruction as paper folding is a common task that is introduced to help children develop ideas 

about equality and partitioning a whole. Other definitions of spatial visualisation include 

describing creation of a mental image and naming the visual and or spatial information of the 

object in one’s mind, in addition to performing several ‘imagistic transformations’ or 

manipulating the object mentally in some way, without regard for the speed of the solution 

(Carroll, 1993; Höffler, 2010; Lohman, 1988; McGee, 1979; Sorby, 1999). Lowrie et al., (2016) 

provide a succinct definition which described spatial visualisation as the ability or skill drawn 

upon to mentally transform or manipulate spatial properties of an object/image.  

Mix et al. (2016) found that spatial visualisation competency is a strong predictor of 

general mathematical performance across multiple grade levels. Lamon (2001) contends that 

spatial visualisation and the concepts of partitioning, unitising and quantitative equivalence form 

a symbiotic relationship. That is, there is a close relationship between the ability to visualise or 

predict the outcome of each concept, in that they each are considered to rely on the generation 

and manipulation of mental imagery in some way. For example, children need to visualise the 

decrease and increase in the size of parts when considering how many shares are created. They 

need a visual awareness of the how parts can be renamed to identify equivalent fractions. This 

relationship is exemplified in the following task cited by Lamon (2012; see Figure 2.15), which 

can be used to explore both fraction as a measure and fraction as an operator meanings in the 

early years of primary school. 



72 

Figure 2.15 

The Stimulus for Problem: Where Can You See 
1

8
? 

 

Note. From Teaching fractions and ratios for understanding, by S. J. Lamon, 2012. Copyright 

2012 by Routledge. Reprinted with permission. 

In this task, a child is invited to use spatial visualisation to perform mental manipulations 

of the visual stimuli to imagine other arrangements of the parts to determine different fractions. 

Here, the child may mentally partition (by repeated acts of halving), to describe and reason where 

they can see different fraction quantities—such as double and half, times-as-many from the 

operator meaning, and explore different unit fractions and their equivalencies from the fraction as 

a measure meaning. Explicitly emphasising the use of spatial visualisation when partitioning a 

whole such as the one in Figure 2.14 can also help young children discover and conceptualise the 

idea that the magnitude of each identified part (unit) is reduced as the number of parts increases 

(Kieren, 1993; Siemon, 2003), because, much like the paper folding example described above, 

they are visualising the outcome of repeated partitioning and how this reduces the size of each 

part. 
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In terms of literature concerning a pedagogical emphasis on spatial visualisation, Bruce et 

al. (2015) developed and assessed the efficacy of a ‘spatialised’ curriculum in Years 1 to 3, 

focusing on static and dynamic symmetry, geometric congruence, and transformations, including 

mental rotation, which are all components of spatial visualisation. Although this program did not 

have an explicit number or fraction focus per se, the program did allow children to focus on the 

unit structures and part-part relationships through the various geometric contexts, evoking and 

developing children’s mental manipulations and imagination skills (Bruce et al., 2015b). For 

example, children were scaffolded to imagine dynamic movement of shapes and object through 

visualising symmetrical parts—which could connect to children’s understanding about part-

whole and halving ideas. In addition, this program revealed significant growth in children’s 

spatial language, geometric reasoning and mental rotation abilities and substantially affected 

children’s numerical comparison skills (Bruce & Hawes, 2015). These findings suggest that the 

development of mental manipulation skills through visualising different geometric (and, 

therefore, spatial) contexts may also have substantial benefits for partitioning and unitising (such 

as disembedding, manipulating and transforming objects mentally). This suggests that spatial 

visualisation may provide a cognitive pathway for the development of early fraction ideas, which 

is worthy of further exploration as a pedagogical approach to this area of mathematics. 

2.5 Representations, Spatial Reasoning and Fraction Development 

Representations are fundamental to the teaching and learning of mathematics as they 

support problem-solving, conjecturing and the communication of ideas and concepts (Goldin & 

Janvier, 1998). Further, as described in Section 2.4, tools of representation (NRC, 2006) are a key 

element in the spatial reasoning framework used to define and describe how different spatial 

constructs are enacted and utilised in learning. Therefore, a review of the role of representations 



74 

in relation to fractions and spatial reasoning is required to understand how these may influence 

understanding in the early years. Goldin and Shteingold’s (2001) extensive work states that 

representations are typically categorised into two forms: internal and external. These forms of 

representations will now be explored. 

2.5.1 Internal Representations 

Internal representations are the creation and description of the psychological 

mathematical systems of individuals (Goldin & Shteingold, 2001); also considered as 

idiosyncratic, ideas, constructs and images that are created, held, and manipulated in one’s mind 

(Lowrie, 2010; Kosslyn, 1988; Presmeg, 1986/2006). They are the essentially the networks or 

architectures of our thoughts and mental images that we create from our experiences, which we 

remember and use as a basis of knowledge. 

Goldin (1998) describes these in the form of systems: 

• verbal/syntactical representations, which described the way a learner processes 

language and understands this internally to communicate with externally, such as 

knowing ‘half’ as a quantity within different contexts 

• imagistic or mental images that include visual and spatial cognitive configurations, 

such as imagining what a quantity may look like or imagining the process of 

partitioning and objects in one’s mind 

• formal notational representations, such as performing mental arithmetic operations 

• strategic and heuristic processes that involve students mentally organising a problem 

and mapping the process for problem-solving. 

Importantly, Goldin and Shteingold (2001) note that while internal representations can be 

theorised in such a way, we cannot, of course, view any person’s internal representations directly. 
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Instead, they act as ‘abstractions of mathematical ideas or cognitive schemata that are developed 

by a learner through experience’ (Pape & Tchoshanov, 2001, p. 119) that are not always 

intuitively evoked by children but are developed and built up over time through their 

mathematical experiences (Goldin, 1998). Thus, each child forms their internal representational 

system, which we can only make inferences about based on their interaction and discourse 

associated with their external representations. Regarding internal representations and fractions, 

the most relevant to the present study seems to be a connection between the spatial processes 

associated with spatial visualisation and spatial proportional reasoning, in the way children are 

imagining, manipulating, and organising objects in their mind, and how verbal/syntactical 

representations may contribute to revealing or indicating these transformations. The relationship 

between spatial reasoning and internal representations suggests that Goldin’s (1998) systems 

connect to the NRC’s (2006) element of concepts of space in regard to helping children visualise 

the size of an object, the size of its parts, how an object is partitioned or arranged (manipulated) 

and how the child names or ‘labels’ the parts. 

2.5.2 External Representations 

External representations help communicate and understand mathematical information, 

ideas, and concepts (Janvier et al., 1993). With regard to a focus on spatial reasoning, examining 

the way children use and engage with a range of external representations helps to interpret how 

they are building mental models of such ideas. Lesh et al. (1987) offer a model to explain the role 

of external representations in mathematical development and their connection to various concepts 

and problem-solving, called the ‘translation model’. This model is a reconceptualisation of 

Bruner’s (1966) Concrete–Representation–Abstract model and has been a focus in many of the 

large-scale research projects pertaining to children’s development of fraction concepts (e.g., the 

Rational Number Project: Behr et al., 1981; Cramer et al., 1997). This model has five modes of 
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representations (in no particular order): 1) spoken symbols, 2) real-world contexts, 3) concrete 

materials (manipulatives), 4) pictorial representations and 5) written symbols. As shown in 

Figure 2.16, the intention of the model is that children develop their understanding within each of 

the five modes and the ability to move between the modes when representing a mathematical 

concept or idea (Lesh et al., 2003). 

Figure 2.16 

The Translation Model of External Representations 

 

Note. Diagrammatic representation of the translation model. Adapted from ‘Representations and 

translations among representation in mathematics learning and problem-solving’, by R. Lesh, T. 

Post and M. Behr, in Problems of representation in the teaching and learning of mathematics, 

pp. 33–40, by C. Janvier (Ed.), 1987, Lawrence Erlbaum. 
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Given the widespread recognition of this model in mathematics education, it has been 

chosen to explore literature concerning fractions understanding. Each of these modes of external 

representations will be considered. 

2.5.2.1 Spoken Symbols 

Language use in mathematics as an external representation is not merely the process of 

matching a word to an indicated object (Kieren, 1999). Instead, the use of language, considered 

as spoken symbols, is an integration between the child’s thoughts and actions as observed as 

constructive processes (such as partitioning/splitting, unitising, and re-unitising) in children’s 

fraction understanding (Behr et al., 1992; Kieren, 1976, 1999; Steffe, 1998). That is, spoken 

symbols are used to describe fractional knowledge at a range of different levels of sophistication, 

allowing teachers and researchers to understand better and consider the relationship between 

children’s use of fraction related language and their internal representations of the concepts at 

hand (Kieren, 1999). An example of this might be when a child describes receiving a smaller half 

of a chocolate bar than their friend; this use of language indicates the child is using the word 

‘half’ to indicate a piece, or it may be that they are expecting it be equal and disputing it as a fair 

share. 

Several studies have examined the relationship between the role of language and fraction 

performance (see Chow et al., 2016; Hansen et al., 2015; Seethaler et al., 2011; Vukovic et al., 

2014); however, all used various measures to determine the relationship between their use of 

language and fraction performance, and they classified fraction performance in varying ways. For 

example, comparing fraction competency to whole number knowledge (e.g., Seethaler et al., 

2011), performance of fraction procedures and concepts (e.g., Chow et al., 2016; Hansen et al., 

2015) or numerical competency more broadly. The results are mixed as to the relationship 

between language (such as expressive vocabulary) and fraction performance; therefore, 
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conclusions are hard to draw in terms of the relevance these studies provide for early years 

children. 

According to Ball (1993), it is the role of the educator/researcher to interpret and 

understand the role spoken symbols/words/language play in the context of each learning 

opportunity. What this means for fraction instruction in the early years is that when children are 

engaging and participating in the act of partitioning, for example, educators are identifying and 

accurately interpreting the child’s use of language to determine how they are conceptualising fair 

shares, in that context – whether that be folding paper or dealing out counters.  

In the context of the present study, spoken symbols and language relate to the way in 

which children name the quantities they are exploring. For example, referring to the flowers and 

vases example in section 2.3.4, depending on how the child is describing and naming the share or 

relationship indicates a different fraction meaning, illustrated by an individual idea (such as 

many-to-one, 1-nth-of... or many-as-one as an example). The development of fraction language in 

the context of this study is, therefore, an important characteristic to identifying how children are 

conceiving such ideas between whole and fractional quantities. That is, they way children 

describe the quantities—in which the differences in their explanations may be very subtle—are 

key to identifying which meaning of fraction they may be developing. Moreover, given the 

spatial nature of the ideas and context that will be explored through these three meanings of 

fractions, the children’s use of language in terms of the changes and manipulations they are 

physically and or mentally making to objects will be important to identifying the strategies for 

how they are partitioning, unitising, or considering quantitative equivalence as examples. 

2.5.2.2 Real-World Contexts 

Real-world situations refer to exploring a mathematical concept in a familiar context for 

the child, or at least a plausible situation (Lesh, 1987). It assumes that children can use their 
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informal understandings in a learning context and successfully build on this knowledge when 

then concepts are presented in a real-life context (Brown, 2019; Leinhardt, 1988). In the early 

years, this involves using authentic contexts where fair sharing is embedded, such as distributing 

a fair share of craft materials per child or taking turns on the swing for an equal amount of time. 

Baroody and Hume (1991) argue that instruction should involve purposeful learning that links 

different forms of representation (both internal and external) to the various concepts and 

meanings of fractions. Utilising real-world contexts and connecting to other forms of 

representation appropriate to the age and informal knowledge of the children is said to mitigate 

some of the difficulties many learners experience with fractions (Baroody, 1989; Clements & Del 

Campo, 1987). A widely acknowledged theoretical framework that explores the notion of real-

world contexts is Freudenthal’s Realistic Mathematics Education (Streefland, 1993a). This is a 

domain-specific theory for mathematics education introduced as a response to traditional 

curricula approaches that perpetuate closed, isolated learning contexts to the notion that 

mathematics is considered as an activity of mathematisation. That is, learners use mathematics to 

organise and solve real-world contexts while reinventing and mathematising new understandings 

as they participate in the real-world context (Freudenthal, 1973; van den Heuvel-Panhuizen & 

Drijvers, 2020).  

Examples of real-world contexts can include children connecting fraction ideas to their 

explorations of sand and water mixes during play or determining how to use fraction and 

proportional understanding to use a map and find different landmarks within a physical space. 

These real-world fraction and proportional contexts are deeply connected to children’s typical 

play and early educational experiences, which draw on spatial reasoning skills and abilities as 

described above. The connection between fractions and spatial reasoning in the early years is 

often facilitated by the real-world contexts with which children intuitively engage; however, it is 
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imperative that teachers and educators are aware of where early fraction ideas are implicit within 

a context. Ensuring that children have opportunities to build on their fair sharing and distribution 

ideas that they develop through play, cooking, craft making and sandpit play, as described in 

previous examples in this chapter, highlight how fractions are an important mathematical concept 

embedded in young children’s worlds. 

2.5.2.3 Concrete Manipulatives 

Concrete or physical manipulatives are synonymous with early childhood education. 

From the influence of seminal works such as Montessori (1912), Piaget (1964) and Bruner 

(1973), objects and manipulatives have been touted as instructional tools that can provide 

opportunities for children to learn abstract concepts (Beilstein, 2019). For example, for the 

development of fraction understanding, concrete materials typically include paper-based models 

(both circular and rectangular), Cuisenaire rods, fraction tiles, pattern blocks or geometric shapes, 

plasticine and coloured counters that allow children to develop and represent their fractions ideas 

(Ojose & Sexton, 2009). 

There are mixed results in the literature on the use of concrete materials to support the 

development of fraction ideas in primary school. Some studies revealed that children who 

engaged with manipulatives during fraction instruction had better retention or transfer in the post-

measure of the intervention. For example, in fraction as a measure problems, Cramer and Wyberg 

(2009) found that a static fraction bar chart did not support Year 4 and 5 children to estimate the 

changes in quantity when fractions were added or subtracted, but it did support children’s 

understanding of the magnitude of unit fractions when comparing denominators (see Cramer & 

Wyberg, 2009). Similarly, they found that children who had trouble manipulating pattern blocks 

when ordering fractional parts also demonstrated difficulty in ‘the construction of mental images 

for fractions’ (p. 255). However, the authors questioned how well the teachers implemented these 
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models across the study, suggesting more research on these models for teaching and learning 

fractions is warranted. These findings suggest that the teacher needs to have a clear understanding 

of and intention for how the model is to be used and interpreted, otherwise concrete materials 

may not be entirely useful. 

The common theme underpinning contemporary theoretical perspectives for teaching 

fractions is that effective instruction includes exposing children to the different meanings of 

fractions for conceptual development. However, research indicates that the key difficulties young 

children exhibit in developing early fraction ideas are concerned with making the connections 

between the different meanings of fractions and the concrete representations in which they are 

explored (Bobis & Way, 2018; Way et al., 2015). For example, when a typical representation of 

fractions, such as a circular model, is presented, the child needs to move beyond the perceptual 

attributes (such as colour and shape) to recognise what relationship the parts are representing in 

relation to the whole and so on. Ball (1993) argues that no concrete material and representation is 

a panacea and that although concrete materials and models are fundamental to mathematics itself 

(Mainali, 2021), they must be fit for purpose in their intention, relationship to the concepts and 

mathematical ideas and how they are perceived by children (Baroody, 1989). 

Although there is much debate about the types and prevalence of concrete materials for 

teaching mathematics generally, the literature on concrete materials and fractions suggests it does 

not matter what concrete material is employed; what matters is that children develop meaning 

and a purpose for what they are learning with the assistance of the chosen material (McNeil & 

Uttal, 2009; Sarama & Clements, 2009). Moreover, in the present study, this means that the 

models and materials I select for the study’s intervention must enable the children to develop a 

meaningful and conceptual understanding of the intended mathematical ideas. 
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2.5.2.4 Pictorial Representations 

Pictorial representations (i.e., drawings, graphs, and diagrams) are described by Woleck 

(2001) as placeholders for thoughts, which can enable children to work on one part of a problem 

mentally, without experiencing cognitive overload (Anderson-Pence et al., 2014). They can be 

provided to children as visual aids and scaffolds or can be the result of children representing a 

problem, serving as a metaphor for mathematical understandings (Woleck, 2001). This reiterates 

the spatial reasoning component of pictorial representations described by Arcavi (2003), as his 

definition of mathematical visualisation entails the ability to create, utilise, interpret, and reflect 

on images both presented on paper and in the mind. This suggests that there is a deep relationship 

between how pictorial representations influence and are influenced by children’s internal 

representations of mathematical ideas (Anderson-Pence et al., 2014; Tall & Vinner, 1981). For 

example, MacDonald (2013) found that when young children were asked to communicate their 

understanding of measurement, (specifically time and mass) through pictorial representations, the 

images provided a powerful tool for accessing how children created and communicated their 

understandings. That study also revealed that the pictures were not just representations of 

procedures by which children record their knowledge about a concept; the pictures revealed the 

processes through which understandings might be constructed, reconsidered, and applied in new 

ways throughout various contexts (MacDonald, 2013). These findings suggest that pictorial 

representation by young children connect to their real-life contexts in which they explore 

mathematical idea and is an important way for them to represent their mathematical ideas. 

One of the most common difficulties children have with pictorial representations and 

developing fraction understanding is creating inappropriate or ineffective representations of the 

problem. For example, Misquitta (2011) found that the most common pictorial representations 

children in the early years of schooling use is the fraction circle, which emphasises the part-
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whole idea. This limited representation of fraction means children are not supported to think of 

fractions greater than one, which has negative implications for develop rational number ideas 

more broadly (Behr et al., 1983; Misquitta, 2011). 

A second issue with the use of pictorial representation is a lack of understanding about the 

images used. For example, Anderson-Pence et al. (2014) explored Year 3 and 4 children’s 

understanding of equivalence using two tasks. The first task required children to compare 

rectangular area models (see Figure 2.17). 

Figure 2.17 

Area Task for Year 3 Children 

 

Note. From ‘Relationships between visual static models and students’ written solutions to 

fraction tasks,’ by Anderson-Pence, K. L., Moyer-Packenham, P. S., Westenskow, A., Shumway, 

J., & Jordan, K. (2014). International Journal for Mathematics Teaching and Learning, 15, 1-18. 

Copyright 2014 by Katie L. Anderson-Pence, Patricia S. Moyer-Packenham, Arla Westenskow, 

Jessica Shumway, Kerry Jordan. Reprinted with permission.  

The second task was a pizza problem that required children to draw a pictorial model to 

prove ‘who ate more’ (see Figure. 2.18). 
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Figure 2.18 

Instructions for Pizza Tasks 

 

Note. From ‘Relationships between visual static models and students’ written solutions to 

fraction tasks,’ by Anderson-Pence, K. L., Moyer-Packenham, P. S., Westenskow, A., Shumway, 

J., & Jordan, K. (2014). International Journal for Mathematics Teaching and Learning, 15, 1-18. 

Copyright 2014 by Katie L. Anderson-Pence, Patricia S. Moyer-Packenham, Arla Westenskow, 

Jessica Shumway, Kerry Jordan. Reprinted with permission.  

Anderson-Pence et al.’s (2014) findings revealed that children exhibited difficulties when 

interpreting pictorial representations, such as whole number interference, and a limited 

understanding of fractions (Anderson-Pence et al., 2014). That is, they counted the number of 

squares coloured rather than considering the squares as a proportion of the whole (e.g., they 

might say ‘12’ rather than ‘3-quarters’). They also assumed that the two pizzas in the second task 

were the same size, meaning they were generally unable to provide accurate representations of 

the solutions. This means children need to be exposed to a rage of pictorial representations that 

enable them to build connections between the fraction symbols and meanings. 
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That study was conducted using multimodal forms of pictorial representations, including 

virtual, physical, and static forms. Thus, the results even though the children had opportunities to 

manipulate and explore the different forms of pictorial representations of fractions, there was a 

large gap between the children’s ability to generate and use the pictorial representations 

effectively to solve fraction problems. For children in the early years of schooling, this is an 

important point as it is unlikely that children will have experiences with the extended range of 

fraction ideas explored in the study; therefore, they will likely have limited understandings of 

how they can accurately represent such context. Enabling children to develop a connection 

between concrete models and their own representations is key to enabling children’s development 

of the three meanings of fractions. 

Pictorial representations are well embedded within early childhood mathematics, and the 

area of fractions is no exception, yet we cannot assume that the graphics we present to children or 

that they create are interpreted as intended. As Lowrie (2012) and others have established (see 

Lowrie & Logan, 2007; Diezmann & Lowrie, 2008; Lowrie & Diezmann, 2007; Logan & 

Greenlees, 2008), children’s spatial reasoning abilities need to be closely developed within the 

context of creating and interpreting pictorial and graphic representations when solving 

mathematics tasks. For example, spatial ideas such as perspective taking, location and 

orientation, size, and scale of objects within 2D representations need to be explicitly considered 

and understood when interpreting the fraction problem represented. An example of such a task is 

Möhring et al.’s (2016) cherry juice task, previously depicted in Figure 2.13. Here, consideration 

of the relative size of each of the regions needs to be considered in relation to their mixtures to 

determine, proportionally, which is sweeter. Teachers need to carefully help children determine 

what the image represents so that children can make sense of the underlying concepts (in this 
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case, relating to fractions) and understand how and why pictorial representations may or may not 

be appropriate across different contexts. 

2.5.2.5 Written Symbols 

Written symbols are an essential component to communicating mathematical ideas and 

relationships, and fractions are no exception. Young children begin experimenting with written 

symbols through creating idiosyncratic marks and informal notations that are used to 

communicate young children’s thinking about mathematical meanings (Worthington & 

Carruthers, 2003); for example, making marks to represent a quantity, or attempting to draw a 2D 

representation of a place or space like their house. 

There is an emphasis in early mathematics teaching on children representing formal, 

numerical symbols for whole numbers, namely in matching names and numerals to collections 

and the early development of counting (Baroody, 2001; Munn, 1998). Nevertheless, many 

researchers have stated the emphasis on whole number notation can interfere with children’s 

conceptualisation of fractions, which feeds into the part-whole view and promotes the WNB, and 

double counting phenomenon discussed earlier in this chapter (Gould, 2011; Mix et al., 1999; Ni 

& Zhou, 2005; Saenz-Ludlow, 1994; Sophian et al., 1997). Regarding fraction symbols and their 

introduction, Kieren, cited in Huinker (2002) states that premature experiences with formal 

symbols and their procedures (e.g., algorithms) may lead to symbolic knowledge that is not based 

on a deep conceptual understanding, or connected to the real world. Without deep conceptual and 

pedagogical understanding, the emphasis on written symbols can often come at the expense of 

using concrete and or pictorial models, which Bruce et al. (2013) state, ‘has the potential to 

impede students in developing fluency across the different representations of fractions’ (p. 22). 

However, Brizuela (2006) extends Empson’s (1999) ideas that the use of written symbols 

performs a transformative function between the development of conceptual understanding of 
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fractions and various representations (such as concrete models, pictorial representations, etc.) in 

which young children typically engage. In Brizuela’s (2006) study, 5 – 6-year-old children 

exhibited fraction ideas through written symbols (called notations to infer both formal and 

informal written symbols) in conjunction with other tools of representations such as pictorial and 

concrete materials. Children were interviewed after receiving a traditional mathematics 

curriculum that was guided by textbook instruction. This instruction included some formal 

symbolic notation of common fractions (for 6-year-old children only). The clinical interviews 

were conducted one on one, where children were asked a series of questions and to represent their 

answers (such as what they knew about half, how they would represent their age, how they would 

represent a fair share outcome). Although the majority of the children in that study did not use 

formal, symbolic notations within their fraction work, the way in which they recorded fractions 

revealed that children utilise and engage with informal written notations to conceptualise fraction 

magnitude idea, such as that represented in Figure 2.19.  

Figure 2.19 

Zachary’s Representation of His Age: 6 and - Half 

  

Note. From “Young Children's Notations For Fractions,” by Brizuela, B. M, 2006, Educational 

Studies in Mathematics, 62, 281–305. Copyright 2006 by Springer Science Business Media, Inc. 

Reprinted with permission.  

Zachary’s written description of his age started with a ‘6’ and a line to represent his age of 

6-and-1-half years. When asked what the line meant in terms of his age, he then drew a circle and 
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emphasised the line through the middle as half, to represent this part of his age. Although 

informal, these symbols provide valuable insights into children’s thinking and understanding of 

fraction magnitude. This shows it is important to provide opportunities for recording their ideas 

and understanding of fractions in ways that help them to reveal their understandings. 

Similar findings have also been highlighted in other studies involving children of similar 

ages and their informal written symbols for communicating ideas about fraction quantity and 

magnitude (e.g., Ball, 1993; Empson, 1999; Mack, 1990; Pothier & Sawada, 1983; Saenz-

Ludlow, 1994, 1995). Therefore, encouraging children’s emergent written symbols for 

developing the range of fraction concepts and interpretations ‘provide windows to develop more 

nuanced and complete pictures of their ideas about fractions’ (Brizuela, 2006, p. 301) in which to 

build on. 

The overall learning of fractions cannot be disassociated from the words and numbers 

used to represent them (Mamede et al., 2005). Yet, as many of these children did not have the 

understanding and knowledge to represent fractions symbolically in this study, the introduction 

of formal symbolic notation early in the development of these ideas may be unnecessary. Saenz-

Ludlow (1994) argues that formal symbolic notation should be delayed until students have 

conceptualised fractions as quantities through estimation and experimentation (see also Pearn & 

Stephens, 2007). However, this does not mean informal and idiosyncratic symbols are not an 

important immediate step in the development of formal written symbols. An intermediate step in 

the development of the formal written symbols suggested by Siemon (2013) is to use a 

combination of written words and symbols in the format of, for example, 3 fifths, 2 halves, 3 

sixths, to distinguish between the count (how many parts) and the value or size of the part (how 

much each is worth). This focus on recording early fraction quantities in this way emphasises the 
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distribution of one composite unit over another, which is an important step in developing the 

multiplicative foundations of fractions (Siemon, 2013).  

Given the evidence above that some children can engage with symbolic notations in the 

representations of magnitude for fractions, the literature suggests that the transition to formal 

symbolic notation needs to develop gradually (Boyer & Levine, 2012; Siegler & Lortie-Forgues, 

2014) and be supported by the way in which we use fraction language. This is an important 

consideration for children in the early years because it assists them to think about the fraction as a 

quantity in its own right, helping to establish an understanding of the connection between fraction 

magnitude and symbolic representations. 

2.5.3 Examining Representations Beyond the Translation Model 

Throughout the review of literature pertaining to external representations and young 

children’s mathematics, it became apparent there is a body of work that suggests gesture is an 

external representation that can mediate mathematical meaning in early childhood contexts, 

particularly in relation to learning and communicating spatial information (Alibali et al., 2014; 

Bobis & Way, 2018; Edwards & Robutti, 2014; Elia & Evangelou, 2014). This is not represented 

in Lesh et al.’s (1987) translation model; however, the prevalence of gesture within some of the 

literature on other representational forms (such as the role of language and manipulatives) in the 

present review suggests it is worthy of exploration. 

2.5.3.1 Gesture 

Gesture as an external representation has become more of a focus within mathematics 

education over recent years (Gerofsky, 2014). Alibali (2005) argues that gesture plays a 

significant role in communication and in the cognitive processing of spatial information; thus, a 

gesture is considered a tool and form of representation. The visuospatial nature of gesture makes 

it suitable for capturing spatial information because it brings imagined or abstract spaces and 
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objects into a more concrete form. Further, gestures represent spatial properties and action-based 

characteristics of concepts (Krauss et al., 2000) by assisting speakers to activate mental images 

and maintain these spatial representations in working memory (Alibali, 2005). For example, 

several studies have revealed that people use more gestures when asked to describe an object or 

image when the object or image was no longer visible (such as a shape or a still-life painting 

where the images and objects were not easy to describe verbally (see De Ruiter, 1998; Moresella 

& Krauss, 2004). At the same time, using gestures to express spatial properties can help activate 

related mental representations of the concepts in verbal form, thus linking one internal 

representation to the external form (Krauss et al., 2000). In addition, there is evidence to suggest 

that producing gestures facilitate speakers exploring possible ways of packaging spatial 

information into a ‘verbalisable unit, by exploring alternative ways of creating and organising 

spatial and perceptual information’ (Alibali et al., 2000, p. 595). Thus, gesture can be considered 

a way of supporting learners to better remember concepts and ideas. 

McNeill’s (1992) conception of gesture is a useful way of thinking about this form of 

embodied cognition as a theoretical grounding for this discussion. For McNeill, a gesture is 

understood as hand movements that represent meaning in relation to accompanying speech, 

called gesticulations. Gesticulations (hereafter referred to as ‘gestures’) are categorised by 

McNeill using the following categories: iconic, metaphoric, deictic, and beat. 

A gesture is classified iconic if it bears a close relationship to the content of the 

accompanying speech, such as raising one hand slowly when stating, ‘I walked up the hill’. Here, 

the gesture is closely connected to the movement described in the speech, complementing the 

description to provide a sense of context for the recipient of the communication. In the context of 

fractions, an iconic gesture may be hand movements that represent the sharing or ‘dealing out’ of 
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a set of items one by one (such as sharing 12 lollies between three children), indicating the 

process of partitioning in a fraction as quotient context. 

A metaphoric gesture is similar to an iconic gesture, with the difference being that the 

gesture represents an abstract idea that cannot be physically seen, such as knowledge, language 

itself, the genre of a narrative (McNeill, 1992). Metaphoric gestures are represented in two parts: 

the base, or physical action represented in the gesture, and the referent or concept that is the 

meaning represented by the base. An example of a metaphoric gesture is ‘blowing a kiss’. The 

action of touching one’s lips with one hand and moving them away while pursing one’s lips 

together is the base of the gesture. The referent is the concept of giving love or affection to the 

recipient of the gesture. 

Deictic gestures are typically represented as a pointing movement using the hand’s index 

finger, but can also be used with the head, nose, eyes, or chin, depending on the sociocultural 

context and norms of the situation to point to a particular object or space during speech. 

Finally, beat gestures do not necessarily present a relationship to the content of the 

speech; instead, they may indicate an emphasis on the rhythm and flow of the accompanying 

speech. For example, someone may tap their finger at the same time they state a particular word 

or phrase for emphasise. 

In terms of studies that examine children’s use of gestures when learning fractions, 

Mildenhall (2013) and Takeuchi and Dadkhahfad (2019) found that Grade 6 and Grade 4 

students, respectively, used iconic gestures when communicating their ideas about equivalent 

fractions, which gave insight into the students’ understanding that was not apparent through 

traditional pen-and-paper representations. Beilstein (2019) analysed video recordings of 26 

children from Grades 2 to 5 in a mixture of mainstream and gifted education classes. The children 

were not provided with activities, pictures, or manipulatives with which to work; they were 
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simply questioned on their knowledge of fractions. The findings indicated that 96.2% of children 

gestured a whole object (primarily a circle or rectangle); 92.3% gestured a cutting, chopping and 

or pinching action to represent parts of a whole; 42.3% gestured symbolic notation; and 11.5% 

indicated a number line through gesture, by sweeping their hands along a vertical or horizontal 

plane, and pointing to specific points along that line to describe magnitude. These data illustrate 

that iconic gestures were common across all age groups and classes. While that study did not 

explore the potential influence of a pedagogical emphasis of gesture on children’s fraction 

understanding, it does give insight into the way gesture is utilised as a representation. 

Swart et al. (2014) reconceptualised the role and description of gestures based on 

McNeill’s (1992) taxonomy to enable this form of embodied cognition to be assessed using 

digital tablets during a series of fraction tasks. Their studies produced two categories of gesture. 

First, conceptual gestures, which included metaphoric and iconic gestures. These were typically 

in the form of children drawing a symbol in the air or drew the procedure or algorithm as they 

explained. Second, deictic gestures, which referred to on-screen pointing or swiping across the 

screen. Across Years 3, 4 and 5, students who performed better at partitioning and estimating the 

magnitude of unit and composite fractions used far more conceptual gestures than dietic gestures. 

For example, children demonstrated the process of partitioning by using a slicing action to 

indicate a fractional measure, utilising ‘gesture as simulated actions’ (Hosetter & Alibali, 2008, 

p. 502). This provides some insight into how children might think about the operation of 

partitioning and how they create different quantities, which is an important consideration for 

working with children in the early years as they typically have limited experience with a range of 

extended fraction ideas. 

From a pedagogical perspective, Edwards (2008, 2009) explored the gestures used by 

elementary PSTs when interviewed about how they were first introduced to fractions as children, 
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the difficulties they experienced learning, and how they use fractions in their everyday lives and 

other university classes. They were also asked to solve a range of written fraction problems and 

asked at the conclusion of the interview to explain how they define a fraction and how they 

would introduce this topic to children. 

Using McNeill’s (1992) scheme as a coding tool, Edwards then coded the gestures 

directly connected to talk about fractions, which revealed 40% of gestures identified were 

metaphoric and 35% were iconic. The remaining 25% were a combination of beat and deictic 

gestures that were not explicitly discussed in these studies. Metaphoric gestures were most 

prevalent when the participant described an abstract object or idea (such as the value of a fraction 

in relation to an imagined object) and used their hands to represent the magnitude of the fraction 

concerned. The most prevalent iconic gestures pertained to the concept of partitioning, which saw 

participants using their hands to represent a cutting, sawing, or splitting action. They also 

included drawing algorithms in the air described by Edwards (2008) when participants referred to 

symbolic notation and the processes involved in operating with such algorithms. Surahmi et al. 

(2018) found similar results in the way the types of gesture occurred in a study involving Grade 3 

teachers. However, iconic gestures of drawing algorithms in the air seemed to be more prevalent 

in this context, possibly because of the context of the Indonesian education system, which is 

heavily based on didactical pedagogies (Sembiring, 2008). 

Considered together, these studies suggest that gesture may be a way children explicate 

and communicate various fraction ideas. How young children may engage spontaneously with 

gestures in addition to other concrete or abstract representations such as those above does not 

appear to be researched or investigated explicitly in the early years of primary school. Not 

unexpectedly, all of the studies considered here acknowledge that the affordances and synergies 

between gesture and mathematics need further exploration, something that will be explored in the 
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present study. Although the limited research on gesture and fraction learning has been associated 

with adults or children older than those of interest in the present study, this literature is beneficial 

in understanding how children may use gestures to communicate their understandings about 

fractions. 

2.5.4 Spatial Reasoning and Fractions Summary 

A review of research on the influence various aspects of spatial reasoning has on young 

children’s fraction development revealed clear connections between these two critical areas of 

cognitive development. While spatial reasoning is not a single skill or ability, specific constructs 

can be described that help untangle the complexity of this transdisciplinary way of thinking. 

Literature about young children’s fraction development suggests spatial proportional reasoning 

and spatial visualisation are key spatial constructs associated with the development of internal 

representations of fraction ideas and concepts. 

Further, external representations are an essential component of early mathematical 

experiences. They are connected to spatial reasoning, specifically in how images and materials 

may be perceived from their spatial attributes and used to convey information about relative 

magnitude and quantity. Gesture may act as an intuitive tool for communicating internal 

representations on fraction ideas. There is little research on the efficacy of this form of 

representation for young children during sustained classroom instruction. 

This discussion illustrates the relationship and interaction between internal and external 

representations are often mediated by spatial reasoning constructs for younger children. That is, 

spatial proportional reasoning is often used to describe the quantities in proportional contexts (see 

Frick & Newcombe, 2012; Huttenlocher et al., 1999; Jirout & Newcombe; Möhring et al., 2014; 

Vasilyeva & Huttenlocher, 2004). Additionally, there is research that suggests children’s 

conceptualisation of magnitude can be supported by visualising what the outcome may be when 
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imagined actions are performed on an object (such as engaging in partitioning, unitising, and 

quantitative equivalence) in both two- and three-dimensional spaces (Clements & Battista, 1992; 

Lamon, 1996; Mix & Levine, 2018). This review suggests there is a justification for a more 

explicit focus on the relationship between spatial reasoning constructs and external 

representations that are embedded in the development of early fraction knowledge and how these 

might develop in naturalistic, intervention-based settings. 

2.6 Central Insights Framing This Study 

The present study is concerned with examining how spatial reasoning may assist in young 

children’s development of a range of fraction meanings. Based on the analysis of various 

theoretical and pedagogical perspectives, the following insights have been derived from the 

literature, which will be used in the design of this study. 

First, it appears the underpinning starting point children need to establish to work with an 

extended range of fraction ideas is an understanding that a continuous object or set can be divided 

into equal parts or fair shares. That is, Confrey’s (1994) perspective on splitting suggests that a 

partitioning approach offers a multiplicative foundation to exploring early fraction concepts 

(highlighted by their Equipartitioning learning trajectory within their rational number 

framework). This framework emphasises and illustrates how the partitioning approach involves 

the exploration of fraction as ratio, fraction as an operator, and fraction as a measure meanings 

simultaneously, which suggests it supports children to establish an understanding of fractions 

more authentically than a traditional approach offers.   

Second, children need to develop strategies that help them to identify and name quantities 

from different perspectives. That is, for children to develop flexible ideas about fractions, they 

need to view quantities from different perspectives (e.g., if six lollies are half of the bag, one fair 
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share of the set is six, two shares make a whole, for each person there are six lollies). This draws 

on children’s visualisation processes for considering the relationship between the quantities 

generated and the whole. Visualising the outcome of creating different shares within the same 

whole by exploring spatial proportions of like wholes is foundational to this insight and for the 

development of a sense of magnitude of various quantities. 

Third, it appears that several theoretical perspectives (e.g., Confrey, 2008; Matthews& 

Ziols, 2019; Möhring et al., 2016; Siegler et al., 2011) suggest that young children are sensitive 

to spatial ratios, visually comparing parts and regions and predicting the outcome of creating 

equal shares in both continuous and discrete contexts. This suggest that early proportional and 

fraction as a relation ideas are accessibly to children through spatial reasoning contexts.  

Fourth, the review of representations and early fraction contexts suggested that children 

perform acts of partitioning, by doubling and halving and redistributing various materials in a 

concrete form during their play activities. Therefore, mentally manipulating continuous wholes 

such as splitting, reassembling, and doubling and halving simple ratio units to identify these 

relationships as examples suggests that suggest they could be promoted by spatial visualisation 

and spatial proportional reasoning abilities to make connections between a wide range of early 

rational number ideas. 

To conclude, this review has explored the debate about the development of fractions in 

relation to whole number ideas from a range of theoretical perspectives. The present study takes 

the perspective of Confrey et al. (2014b) in that partitioning and early fraction ideas develop 

separately or in parallel to children’s whole number and counting abilities because of the 

hypothesised role spatial reasoning plays in this development. Moreover, using an approach 

based on Confrey’s framework is hypothesised to mitigate a counting and part-whole 

overreliance in children’s early fraction experiences that is frequently reported in the literature. 
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Based on this perspective, the present study suggests that children may develop early 

multiplicative relations of numerical quantity that involve both fraction and whole number 

relations, if provided with the opportunity to do so. 

These four central insights derived from the literature enabled two research questions to 

be developed. 

2.6.1 Research Questions 

Research Question One: To what extent and in what ways can young children 

demonstrate an understanding of an extended range of fraction ideas experienced through 

a spatial reasoning approach? 

Research Question Two: To what extent, if any, does this approach to fractions impact 

young children’s understanding of whole number? 

2.7 Chapter Summary 

This chapter has identified the prominent theories of fraction knowledge that have 

underpinned educational research over the past 50 years. The review applied a transdisciplinary 

lens that revealed other cognitive factors such as spatial reasoning and different forms of 

representations are influential in the engagement with the development of the concepts 

(partitioning, unitising, and equivalence) and the various meanings of fractions (part-whole, 

measure, quotient, operator, and ratio) for young children. 

This study describes several theoretical foundations of how fractions are conceptualised, 

which typically form two main pedagogical approaches: the measurement, and partitioning 

(splitting) perspectives. The measurement perspective (supported by Steffe & Olive [2010], 

Siegler et al. [2014] and Tzur [2019]) focuses on a measurement (as discrete counts) 

interpretation for fractions, which, as described above, can limit the opportunities for children to 
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understand the complexity of this area of mathematics (Clarke, 2011; Lamon, 2007). Conversely, 

the partitioning approach is founded on multiplication and division structures needed to 

conceptualise operator, number, and ratio meanings (Bruce et al., 2014; Confrey & Maloney, 

2015). Also evident is that an understanding of partitioning is dependent on the development of 

multiplicative foundations of rational numbers, not counting or whole number contexts (Bruce et 

al., 2014; Confrey, 2008; Pepper, 1991). Confrey et al.’s (2014b) rational number framework 

provides a basis for which an intervention can be developed and explored with young children. 

However, the evidence of children engaging with various meaning of fractions suggests young 

children do so through the explicit use of spatial reasoning skills and strategies. 

Synthesised from the literature on spatial reasoning and its relationship to fractions, an 

initial conjecture for the present study was that specific spatial constructs of spatial proportional 

reasoning and spatial visualisation are beneficial for children to engage with when learning early 

rational number ideas. Further, young children’s capabilities with early rational number ideas 

have been examined and found to be associated with spatial reasoning contracts, as evidenced in 

a number of experimental studies. However, the connection between how spatial reasoning may 

be promoted in a pedagogical sense within early primary school has not yet been fully explored. 

Moreover, the outcomes for children’s representations and understanding of early fraction ideas 

is also under-researched, suggesting that a spatial reasoning approach in the context of a 

classroom-based fraction intervention is a novel approach that may mitigate many of the 

difficulties children face in the development of rational number reasoning. Importantly, this 

review has revealed that spatial reasoning provides a vehicle for exploring such ideas and 

concepts. 
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Chapter 3: Methodological Considerations 

3.1 Chapter Overview 

This chapter begins by describing the theoretical perspectives that guided this study 

(section 3.2) and how it informed the choice of Design Based Research as the guiding 

methodology (section 3.3). The three overarching phases of the study are described in section 3.4. 

Section 3.5 describes the demographics of the participating classes and the characteristics of each 

school. Data sources are described and justified in section 3.6. Section 3.7 describes the data 

analysis processes, and a discussion on trustworthiness follows in section 3.8. Ethical 

considerations are addressed in section 3.9, and section 3.10 summarises and concludes the 

chapter. 

3.2 Theoretical Perspectives 

As presented in Chapter Two, a range of theoretical perspectives describe how children 

may construct fraction meanings. These perspectives describe how and when children engage in 

different fraction ideas and how spatial reasoning may support this learning. Based on this 

review, an interpretivist paradigm underpins the present study, as the foundation to this 

worldview is to understand the subjective world of human experience (Smith, 1992; Kivunja & 

Kuyini, 2017). That is, emphasis is placed on making meaningful conjectures about children’s 

fraction development through examining how they experience novel learning approaches, with 

the recognition that the social world cannot be understood from any one individual perspective; 

rather, there needs to be a search for patterns in behaviour that can be observed within similar 

circumstances (Guba, 1981; Lincoln & Guba, 1985). 
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There is an assumption that the research problem and context being studied has multiple 

realities, which is reflected in the various theoretical perspectives presented in the literature 

review. These realities are explored, redefined, and contextualised through the experiences 

between the researcher and participants (Kivunja & Kuyini, 2017). 

An interpretivist paradigm does not provide the researcher with descriptions of what to 

see; instead, this theoretical lens ‘merely suggests directions along which to look’ (Blumer, 1954, 

p. 7). Building on the transdisciplinary perspectives, the case was made for examining how 

children may develop an understanding of various fraction meanings within typical classroom 

environments through an approach they would otherwise not experience in typical instruction. 

Specifically, this research was concerned with: 

1. examining the extent to which young children can develop fraction as operator, 

fraction as a measure, and fraction as a relation ideas through a spatial reasoning 

approach 

2. analysing how young children engage in spatial reasoning and representations while 

exploring these fraction ideas 

3. exploring and refining a local instruction theory about the learning of fractions in the 

early years. 

As an inquirer, my role as the researcher is to elucidate the meaning-making process of 

the participants of this study by interpreting, analysing, and hypothesising how children engage 

in the learning environment (Shwandt, 1998) and to make sense of this for both theoretical and 

practical contributions to the field of education. 

3.2.1 Epistemology 

Young children construct and develop their understanding of early fraction ideas based on 

their prior knowledge and experiences within formal, informal, and social learning environments. 
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A blended theoretical perspective between the constructivist (Piaget, 1936; von Glasersfeld & 

Steffe, 1991) and sociocultural (Vygotsky, 1978) approaches to learning are the orienting theories 

that underpin this project (Prediger et al., 2015). 

Constructivism is a theoretical perspective that suggests knowledge stems directly from 

the child, constructed and developed as the learner experiences the world. The sociocultural 

theory acknowledges such intrinsic development; however, it situates the construction of 

knowledge as a social and cultural practice, whereby the interactions with others deeply influence 

the child’s potential for learning. There is consensus that these two perspectives are 

complementary because they are essentially rooted in the ‘activity of attempting to understand 

what might be going on in a range of specific teaching and learning situations’ (Cobb & Yakel, 

1996, p. 175). Moreover, the complementary perspective provides a lens through which 

individual children’s mathematical activity, the classroom environment and the broader 

pedagogical practices are considered to provide a comprehensive characterisation of the learning 

phenomena. 

The reason for taking a complementary stance is because the tensions between these 

perspectives are endemic to the act of teaching itself rather than confined to theoretical 

contribution (Cobb, 1994). In other words, the integration of both learning theories allowed for a 

focus on the most critical aspects of this research, which is not that the children will produce 

correct solutions to problems involving fraction ideas in a controlled or artificially created social 

environment. Instead, it is concerned with whether children can produce insightful, meaningful, 

and flexible solutions when working with an extended range of fraction ideas through a spatial 

reasoning approach. Determining such behaviours and understanding involves examining both 

the individual’s pathway to success and the effects of social context. 
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In this project, constructivist and sociocultural perspectives help to understand how 

learners access their prior knowledge experiences to create new ideas and understandings about 

whole number and fraction ideas. These understandings are scaffolded by using specific spatial 

reasoning strategies, which will be influenced by the learner’s schemas and their collaborative 

experiences within the social environment. However, there are also no ‘correct’ or ‘incorrect’ 

theories about knowledge construction; rather, there are theories that seek to explain phenomena 

of interest (Walsham, 1995). Given the need to understand and reconcile the theoretical 

viewpoints about children’s spatial reasoning and rational number development from the fields of 

psychology, neuroscience, and mathematics education, as described in Chapter Two, a 

complementary interpretivist stance allows me to explain children’s individualistic mathematical 

behaviours while considering the mathematical development as it occurs in the social context of 

the classroom (Cobb & Yakel, 1996; Gravemeijer, 1998). 

3.3 Design-Based Research 

Design Based Research (DBR) is a methodology important to the mathematics education 

research community because there is a dual focus on (a) designing innovative forms of 

instruction to explore children’s processes of learning and (b) refining local instruction theories 

for wider application and refinement (Confrey & Lachance, 2000; Prediger et al., 2015). 

DBR seeks to explain the underlying meanings within the learning environment, 

consistent with the interpretivist assumption that multiple realities exist and are time and context 

dependent (De Villiers, 2005). Further, DBR supports the adoption of a complementary 

constructivist–sociocultural foundation because cognitive and conceptual development actions 

are fundamentally inseparable from the relations and social relationships between the researcher, 

participants, and the environment of the inquiry (Goldkuhl, 2012; Orlikowski & Baroudi, 1991). 
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Prediger et al. (2015) emphasise that DBR does not stipulate a strict set of methods, 

resulting in great variation in how DBR studies are designed and implemented. However, they 

describe five common characteristics that are a reference point for DBR researchers. These 

characteristics insist that a DBR study be: 

• interventionist 

• theory generative 

• prospective and reflective 

• iterative 

• ecologically valid and practice oriented (Prediger et al., 2015, p. 879). 

The interventionist notion of DBR provides an innovative context for learning that 

children would not otherwise experience in their typical instruction. The theory generative aspect 

of DBR is concerned with focusing on the processes of learning in these innovative contexts and 

generating a local instruction theory based on examining where the innovation takes children’s 

thinking, what supports this thinking, and what this means more broadly for their subsequent 

learning. The connection between examining children’s thinking and generating theory requires 

designing materials that provide the prospect for generating new insights into children’s thinking 

and reflectively analysing children’s engagement for redevelopment of the materials and revision 

of theoretical position. The connection between design, implementation and analysis requires an 

iterative approach where the intervention is examined and refined in various contexts, such as 

multiple classroom environments. Finally, the ecologically valid and practice-orientated 

foundations mean the findings and contributions of the research must be transferable into other 

contexts and inform instructional, research and design practice (Anderson & Shattuck, 2012; 
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Barab & Squire, 2004; Brown, 1992). The next section describes the research design of the 

present study, which reflects these central tenants of DBR. 

3.4 Research Design 

As stated in Chapter Two, the research questions guiding this study are: 

Research Question One: To what extent and in what ways can young children demonstrate an 

understanding of an extended range of fraction ideas experienced through a spatial reasoning 

approach? 

Research Question Two: To what extent, if any, does this approach to fractions impact young 

children’s understanding of whole number? 

These research questions are examined through exploring and refining a local instruction 

theory (Gravemeijer & Van Eerde, 2009) for fractions and spatial reasoning. Local instruction 

theories are informed frameworks for guiding the teaching and learning of a specific area of 

mathematics. They are considered similar to the notion of learning trajectories, in that they 

represent the learning processes that evolve in the development of a specific topic, and theories 

about the means of supporting such learning (Cobb et al., 2003; Gravemeijer, 1998; Prediger et 

al., 2015). However, as a reflexive tenant of DBR, the construction and exploration of local 

instruction theories serve as a basis for developing a domain specific theory, which serve as more 

global generalisations of multiple local instruction theories (Gravemejoer, 1998). In turn, the 

development of domain specific theories informs the exploration of additional local instruction 

theories as part of the DBR reflexive process (Gravemeijer, 1998).  

The present study considers Confrey’s et al.’s (2014b) learning trajectories for rational 

number reasoning framework as a domain specific theory for rational number reasoning. This 

view is on the basis that the framework is a connected network of multiple learning trajectories or 
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local instruction theories, that provides the foundation for proposing an innovative local 

instruction theory for the three meanings of fractions specifically in the early years, that explicitly 

explores how spatial reasoning supports such learning.  

Further to this point, the connection between the ideas presented in Confrey et al. (2014b) 

framework relating to the early years have not been explored extensively, or in relation to spatial 

reasoning. In addition, the construction and refinement of a local instruction theory is not merely 

the adoption of current educational goals or ideals; it involves the problematisation of the topic to 

develop a paradigm case (also referred to as a ‘humble theory’; Prediger et al., 2015, p. 885) to 

inform practitioners and researchers (Gravemeijer & Prediger, 2019; Prediger et al., 2015). In the 

present study, the selection of specific ideas within each of the three meanings of fractions was 

problematised in light of transdisciplinary research on children’s potential to construct this 

knowledge and the role of spatial reasoning was conjectured to play in this development.  

Local instruction theories are composed of three parts: 1) a series of learning goals that 

are conjectured on the basis of literature 2) a series of planned instruction activities and 3) 

rationale and evidence for how the activities support learning in a classroom setting 

(Gravemeijer, 2004). Regarding the description of learning goals, I have chosen to name these as 

key indicators. Given the innovative approach this study is taking, the fraction ideas and spatial 

reasoning emphasis is likely to be unfamiliar to the children. Therefore, I expect that the children 

will develop and demonstrate indications of these goals, but they may not fully establish each 

goal in the given timeframe.  

To explore the conjectured local instruction theory, this DBR study comprised three 

overarching phases: 1) the preparation phase, 2) the teaching experiment and 3) retrospective 

analysis (see Figure 3.1). 
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Figure 3.1 

Representation of the Present Study 

 

Each phase is now explained in the following sections. 

3.4.1 Phase One: Preparation 

The preparation phase consisted of four main components: 

• construction of a conjectured local instruction theory proposed on the basis of the 

literature review 

• development of a range of tasks to promote each key indicator in the local instruction 

theory 

• trialling the suitability of the tasks for inclusion in the intervention program and 

examining the range of children’s responses and strategies generated by the tasks 

• revision of the key indicators of the local instruction theory and sequencing of the 

intervention program as a result of this trial. 
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The local instruction theory was proposed by examining what is known about young 

children’s fraction competencies and making conjectures about how spatial reasoning may 

support this learning. Given that ‘design-based research places much value on the input of 

practitioners and researchers working in, or investigating, the problem area’ (Herrington et al., 

2007, p. 5), this preparation period was not undertaken in isolation. Several stakeholders were 

consulted during this phase of constructing the conjectured local instruction theory. The 

collaborative process involved discussing my understanding of how children develop various 

fraction ideas based on the literature with my PhD supervisors. In addition, five Foundation (first 

year of school in Australia) to Year 2 classroom teachers who had expressed interest in 

participating in this study discussed their approaches to teaching fractions. This process enabled 

me to ensure I was developing innovative tasks and activities for the children that they would not 

have experienced otherwise, in consideration against the literature. 

In Chapter Two (section 2.6), four central insights were derived from the review of the 

literature and used as a basis to develop the series of key indicators. The first insight was that the 

overarching problem children exhibit in the working with fraction is that they are not provided 

with opportunities to adequately develop the foundations of partitioning—that is, creating equal 

shares—in both continuous and discrete contexts. The idea of a fair share is a critical starting 

point for the development of fraction understanding; however, in the early years, the literature 

suggests fair sharing and equal parts of discrete and continuous collections develop from 

children’s spatial awareness of the materials and models used. That is, children need to visually 

compare, manipulate, and then visualise this operation establish the idea of equality and fair 

sharing. Based on these insights, the first two key indicators were proposed (see Table 3.1). 
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Table 3.1 

Conjectured Key Indicators One and Two of the Local Instruction Theory 

 

Key Indicators  

Characteristics of tasks Supporting 

Literature Proposed Fraction Foci Proposed Spatial 

Reasoning Foci 

Establishing equal 

parts of collections 

of discrete items 

Fraction as an Operator: 

Fair share 

Doubling and halving 

Partitive division/ 

recursive multiplication 

 

Fraction as a Measure: 

Many-as-one 

Visual perception of 

equal groups (drawing on 

subitising). Recognising 

relationship between 

creating shares and 

recreating the whole 

from its parts. 

Confrey et al. 

(2014b); 

Matthews and 

Ziols (2019); 

NRC (2006) 

Establishing equal 

parts of continuous 

items 

Fraction as an Operator: 

Fair share 

Doubling/halving 

Partitive division/ 

recursive multiplication 

Equi-partitioning a single 

whole 

Geometric symmetries 

Similarity 

 

Fraction as a Measure: 

Many-as-one 

 

A focus on concepts of 

space for geometric 

parts—shape, orientation, 

symmetry in continuous 

wholes. Visualising the 

relationship between the 

shape and size of parts 

created in relation to the 

whole. 

Bruce et al. 

(2015); Confrey 

et al. (2014b); 

Möhring et al. 

(2015) 

 

The second insight into children’s potential to work with an extended range of fraction 

ideas was that children needed to explore how a range of fair shares can be created in relation to 

their whole and how this process develops. That is, they need to visually compare different parts 

and how they are created with regard to the identified whole and explore naming the quantities in 

different ways that reflect the three meanings of fractions. Based on this, the next two key 

indicators were developed (see Table 3.2). 
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Table 3.2 

Conjectured Key Indicators Three and Four of the Local Instruction Theory 

 

Key indicators  

Characteristics of tasks Supporting 

Literature 

 

Proposed Fraction 

Foci 

Proposed Spatial 

Reasoning Foci 

Reinitialising the 

unit 

Fraction as a 

Measure: 

Unit and composite 

fraction 

Equivalent fractions 

 

Fraction as an 

Operator: 

Doubling and halving 

Times-as-many 

1-nth-of... … 

Visualising measures 

between parts and wholes, 

composite and unit 

fractions, equivalent 

units. Visualising 

magnitude relations 

between parts the 

distribution of parts. 

Confrey et al. 

(2014b); Bruce et 

al. (2013); Clements 

and Sarama (2014; 

2017/2019); 

Confrey and Smith 

(1995); Siemon et 

al. (2017) 

Splitting as a mental 

act 

Fraction as an 

Operator: 

Partitive division/ 

recursive 

multiplication 

Times-as-many 

1-nth-of...… 

 

Fraction as a 

Relation: 

Many-to-one 

Distribution 

Visualising the 

relationship of partitive 

division/recursive 

multiplication, times as 

many. 

Stretching/shrinking 

geometric wholes. 

Behr et al. (1983); 

Confrey et al. 

(2014b); Lamon 

(1999) 

 

Finally, for children to develop an extended range of fraction ideas, it was determined that 

they needed to understand the relationships between fraction and ratios by developing ideas about 

unit and proportional equivalence. Although it is not expected that young children will be 

multiplicatively fluent in their understandings, the final key indicator is designed to promote 
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these early relationships so that children move beyond the part-whole understanding and consider 

fractions more broadly. The final key indicator is detailed in Table 3.3. 

Table 3.3 

Conjectured Key Indicator Five for the Local Instruction Theory 

Key Indicator  Characteristics of tasks Supporting 

Literature Proposed Fraction 

Foci 

Proposed Spatial 

Reasoning Foci 

Connecting 

multiplicative relations 

Fraction as an 

Operator: 

Partitive division/ 

recursive 

multiplication 

Times-as-many 

 

Fraction as a 

Measure: 

Part-whole fractions 

Equivalent fractions 

 

Fraction as a 

Relation: 

Distribution 

Proto-ratio  

Scaling and 

proportional reasoning 

to determine 

equivalent units and 

proportions. Visual 

awareness of the 

relationship between 

part-part and part-

whole quantities 

Bruce et al. (2015); 

Confrey et al. 

(2014b); Möhring et 

al. (2015); Noelting 

(1980); Siemon et 

al. (2017) 

 

Twenty-two tasks were constructed to develop each of the key indicators and trialled with 

a participating Year 2 class to confirm the suitability of the tasks for each key indicator and to 

confirm the appropriateness of the local instruction theory. The pilot was conducted with a small 

group of children at a time, to examine the suitability of the tasks for inclusion in the intervention 

program and to examine a range of children’s responses to determine what types of mathematical 

thinking they elicited. The results from this trial enabled the refinement of the key indicators for 

the local instruction theory and confirmation of the sequence of the tasks in the intervention for 
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the teaching experiment phase. The results from the trial are detailed in Chapter Four. The 

participants, data sources and analysis techniques are described later in this chapter (Sections 

3.5–3.7). 

3.4.2 Phase Two: Teaching Experiment 

The purpose of this phase was to implement the confirmed intervention program sequence 

from Phase One with two early years classes and examine the overall coherence and authenticity 

of the local instruction theory. The structure of the two teaching experiments were as follows. 

First, I explored the context of each class by observing the children in a series of mathematics 

lessons taught by the classroom teacher before the intervention began. This process enabled me to 

identify and analyse children’s individualistic mathematical behaviours while considering the 

social context of children’s typical ways of thinking and working mathematically (Cobb & Yakel, 

1996) to ensure my pedagogical approach would be appropriate and accessible. 

The second element of the teaching experiment phase was to collect pre- and post-

assessment data through conducting one-on-one task-based interviews (TBIs) which helped 

determine what, if any, shifts in children’s thinking could be attributed to the intervention 

program.  

Third, the teaching experiment involved fully implementing the intervention program 

with each participating class. The findings from Class B were analysed, and this informed the 

redesign and modifications of the intervention program and local instruction theory for Class C. 

The analysis of each class within this phase are presented in Chapters Five (Class B) and Six 

(Class C). The participants, data sources and analysis techniques used in this phase are described 

later in this chapter (sections 3.5–3.7). 
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3.4.3 Phase Three: Retrospective Analysis 

The third phase of DBR is a retrospective analysis where the outcomes of the study are 

considered to determine both practical and theoretical contributions. The intention of the 

retrospective analysis phase for authentic DBR should move ‘beyond assessing a method, 

learning situation or tool and seek to recast the problem at the heart of the intervention…[to] 

provide the types of epistemic shifting needed for real and sustained change in mathematics 

education’ (Fowler & Leonard, 2022, p. 17). In the present study, the confirmed local instruction 

theory provided a basis for highlighting the new theoretical contributions determined from this 

study about young children’s development of whole number and fraction ideas. The retrospective 

analysis phase is the basis for Chapters Seven and Eight. 

3.5 Participants and School Contexts 

This section discusses the study participants and role of the researchers. 

3.5.1 Children and Classroom Teachers 

This study involved three classes from three separate public schools in regional South 

Australia. A convenient sampling method was used, whereby a group of participants who 

volunteer for a study are selected based on their accessibility to the researcher (Fraenkel et al., 

2012). Convenience sampling assumes the participants are non-randomly selected based on their 

ability to meet applicable criteria, such as target age, accessibility or geographical proximity to 

the researcher, and willingness to participate (Etikan et al., 2016). The limitation of bias can often 

present in this sampling method due to the conditions in which participants are recruited (Leiner, 

2014). To minimise bias, all South Australian Department for Education primary schools within a 

50 km radius of my residence were contacted and invited to participate. Five classroom teachers 

responded to the invitation; however, only three met the criteria regarding the target age group 
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for this study. The participants of this study consisted of 70 children in Years 1 and 2 of primary 

school and three classroom teachers. Table 3.4 summarises the characteristics of each school and 

participating class and the role each participant played in the study. 

Table 3.4 

Summary of Participants’ Roles and School Contexts 

Class Preparation 

phase: Class A 

(2019) 

Teaching 

experiment: Class B 

(2019) 

Teaching 

experiment: Class C 

(2020) 

School 

demographic 

Foundation to Year 7 

585 children 

32 Full-Time 

Equivalent (FTE) 

teachers 

ICSEA score: 998 

Foundation to Year 7 

588 children 

33 FTE teachers 

ICSEA score: 974  

Foundation to Year 7 

345 children 

21 FTE teachers 

ICSEA score: 948 

Year level Year 2 Year 1–2 Composite  Year 2 

No. of 

participants 

26 children 

13 boys and 13 girls 

Mean age: 7 years, 3 

months 

23 children 

16 boys and 7 girls 

Mean age: 6 years, 11 

months 

21 children 

11 boys and 10 girls 

Mean age: 7 years, 2 

months 

Purpose of 

involvement 

Phase One, 

Preparation: Trialling 

tasks and materials 

Phase Two, Teaching 

Experiment: Main 

study 

Phase Two, Teaching 

Experiment: Main 

study 

Classroom 

teacher role 

Consultation for 

intervention task 

design and sequence 

Acted as an additional 

researcher/advisors of 

task sequence  

Acted as an additional 

researcher/advisors of 

task sequence 

Note. ICSEA = Index of Community Socio-Educational Advantage. 

In Australia, each school has an Index of Community Socio-Educational Advantage 

(ICSEA) score, which indicates a school’s educational advantage based on the children’s socio-

economic background. The median ICSEA score is set at 1,000 with a standard deviation of 100, 

meaning each of the schools in this study are statistically similar to the median school score of 

socio-economic advantage and, therefore, demographically similar in educational advantage to 

each other. 
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3.5.2 Role of the Researchers 

A fundamental role of DBR is the collaborative nature of the research. This methodology 

involves not just the consultation with a range of stakeholders to help inform the design of the 

study, but it values the contributions the participating teachers make to the data collection and 

early analysis. The following section with describe my role and the participating teacher’s roles 

as researchers in this study.  

3.5.2.1 Teacher–Researcher 

My role for this study was twofold, as I acted as the classroom teacher throughout each 

iteration of the teaching experiment and the primary researcher. These roles were an intentional 

component of the research design to ensure consistency in how the intervention program was 

taught and how the assessment was implemented for data collection. Taking on the roles of both 

primary researcher and classroom teacher helped to ensure that the forms of knowledge (i.e., 

content knowledge of fractions and spatial reasoning, pedagogical knowledge for teaching 

mathematics; Hill et al., 2005) were intentionally the same for each class, while acknowledging 

the flexibility and adaptability DBR affords in the implementation of an intervention. Previous 

educational studies have implemented this approach as a measure of trustworthiness for the 

research (see Carraher et al., 2006; Miller, 2014; Spencer, 2017). 

3.5.2.2 Classroom Teachers 

The participating classroom teachers were a vital part of developing and implementing the 

intervention throughout Phases One and Two. In Phase One, the five teachers who responded to 

the invitation to participate in this study shared their mathematical teaching experiences. I was 

able to gain insights into how the teachers design and teach their mathematics programs, 

specifically for whole number and fractions, and the teachers’ understanding of spatial reasoning. 
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I was able to use these insights to compare against current literature to determine how the 

intervention materials could be constructed and implemented. 

The participating classroom teachers for Classes B and C acted as co-researchers within 

the intervention. As Martens et al. (2019) suggest, ‘DBR is a collaboration of researchers and 

educational practitioners whereby they develop answers to educational problems and advance 

theoretical understanding’ (p. 1204). The classroom teachers in the present study provided their 

interpretations, reflections, and observations of children’s mathematical behaviour throughout the 

intervention, which was a source of triangulation for the validity of the findings. The perspectives 

were compared to my own notes, observations, and theoretical perspectives in addition to the 

children’s work samples. The teachers as co-researchers brought their expertise and experiences 

to the design (Fischer, 2003), which helped to minimise bias as this relationship shifts 

researchers’ focus toward practical design questions, and teachers focus towards a more 

theoretical perspective on the problem (Kelly, 2006). 

3.6 Data Sources 

DBR provides the flexibility for various data sources and instruments to be employed. 

Rather than providing a rigid set of methods, DBR tools and strategies were selected in response 

to the study’s purpose and contexts (Design-Based Research Collective, 2003). In this study, the 

teaching materials for the intervention and the assessment items for a pre- and post-intervention 

assessment were the data tools designed for this study. In addition, classroom observations, 

reflective journals and children’s work samples were collected as data sources. Each source is 

now described and justified. 
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3.6.1 Phase One: Preparation 

The local instruction theory was informed by Confrey et al.’s (2014b) rational number 

reasoning learning trajectories. Used as a domain-specific theory informing the design of this 

intervention program, the fraction as relation, fraction as an operator, and fraction as a measure 

meanings are explored and developed simultaneously. Figure 3.2 represents the underpinning 

ideas chosen for the purposes of this study for each meaning of fractions (indicated by the 

inclusion of a red dot) that guided the design of the teaching materials for the intervention 

program. 

Figure 3.2 

Underpinning Ideas (Red dots) For the Intervention (Adapted from Confrey et al., 2014b) 

 

  

 

[Image removed due to copyright restrictions].  

 

 

Note. Map of rational number reasoning concepts, adapted from ‘Equipartitioning, a foundation 

for Rational Number Reasoning’ (p. 69), In Learning over time: Learning trajectories in 

mathematics education, by A.P. Maloney, J. Confrey and K. H. Nguyen (Eds.), 2014, 

Information Age Publishing. Copyright 2014 by Information Age Publishing.  

The selected ideas in Figure 3.2 span approximately the K–3-year levels. It is reasonable 

to expect children to work above and below any mathematical topic at any given year level (Goss 

et al., 2015). Therefore, selecting a wide range of the fraction ideas proposed within this 
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framework helps to accommodate for this variation in capabilities. Table 3.5 defines each 

underpinning idea within each fraction meaning explored in this intervention. 

Table 3.5 

Definitions of Fraction Meanings and Underpinning Ideas  

Fraction 

meaning 

Underpinning 

idea 

Description and example contextualised for early childhood 

Fraction 

as 

Relation 

Many-to-one Many-to-one correspondence is the understanding of part-part 

relations (n:1). (Confrey & Smith, 1995). 

‘Many’ = counterpart objects, ‘One’ = target object. 

For example: Three flowers for each vase (Sophian & Madrid, 

2003). 

To make a juice mixture, there is a relationship between the 

water and juice quantities, which may not be equal, but 

preserved when replicated. 

Distribution Coordinating units to represent consistent part-part relations, 

with multiple target objects. 

For example: Three children each receive two apples. In 

continuous contexts, recognising which part represents more 

than/less than half. For example, a container with juice and 

water may have more/less water than juice; the water may be 

more/less than half of the container capacity. Distribution of 

parts are proportionally the same (connecting to equivalent 

fraction idea).  

Proto-ratio Coordinating two numerical sets additively, typically through 

building up and building down strategies (Hino & Kato 2019). 

Building up: If there are 6 lollies in one packet, how many 

lollies in 3 packets? 

Building down: If there are 18 lollies in three packets, how 

many lollies are sold in one packet? Continuous example: 4 

equal parts water, 2 equal parts juice Comparing the relationship 

such as 3-quarters water, 1-quarter juice produces a weaker mix 

than 3-quarters juice to 1-quarter water. 

Similarly, responses such as: ‘3 out of every 12 is the same as 1 

out of every 4’ are examples of the proto-ratio idea (Confrey & 

Maloney, 2015, p. 925). 

Fair Shares The creation of equal size shares (of discrete collections or 

continuous wholes) where the shares created exhaust the whole. 
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Fraction 

as 

Operator 

Naming fair shares of collections, including counting and 

relational naming (naming one share in relation to the whole 

collection or single whole). 

For example: 12 objects shared among 3 children, a share is 4 

objects (per child). Relationally, each child receives 
1

3
 of the 

collection (Confrey & Maloney, 2015, p. 924) 

Doubling and 

Halving 

Derived from splitting (2-split) which is founded on repeated 

halving (splits of splits). Perceptually recognising similarity 

(Confrey & Smith, 1995). Conceptualising the size of the 

share(s) as twice as big for doubling, or two times as small/half 

as big for halving (Confrey & Maloney, 2015). 

Partitive 

Division/ 

Recursive 

Multiplication 

Partitive division: Connects to the process of fair sharing by 

starting with the dividend, then distributing one unit in each set 

and repeating this process until no more distributions can be 

shared fairly. 

For example: 20 stickers shared between 4 children (Confrey & 

Scarano, 1995). For young children, partitive division often 

involves trial and error in creating fair shares, rather than 

problems that involve multiplicative reasoning (Hackenberg & 

Tillema, 2009). 

Recursive multiplication: The reversal of equipartitioning is 

reassembly or recursive multiplication (not counting; Confrey, 

2012). 

For example: The introduction to division and multiplication are 

viewed as inverse operations to establish a recursive rather than 

iterative foundation for multiplication (i.e., times as many; 

Confrey et al., 2014b). Involves splitting and reassembly of 

continuous models and discrete sets. 

Equi-

partitioning a 

single whole 

Geometrical reasoning in which symmetries and congruence are 

utilised to develop equal parts of (primarily) rectangles and 

circles. 

1-nth-of... The relationship between ‘1-nth-of...’ in naming fair shares and 

identifying the referent units (greater or less than 1) for the fair 

shares resulting from equipartitioning (Confrey & Maloney, 

2010, p. 973). 

For example: 12 objects shared among three children, a fair 

share is four objects (per child). 1-third of 12 is four; 1-and-1-

half shares is 6 (Confrey & Maloney, 2015). 

Times-as-

many 

Related to reassembly (recursive multiplication). The ability to 

name the original collection multiplicatively in relation to a 
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single fair share using ‘times as many’, or ‘times as much’ 

(Confrey & Maloney, 2015, p. 924). 

For example: ‘How many times as large as one share is the 

whole collection? (reassembly)…the whole collection is 3 times 

as much as one share’ (Confrey & Maloney, 2015, p. 922). 

Geometric 

Symmetries 

Geometric symmetries relate to fair share and equal parts/ 

groups. ‘When folding, congruence is built directly into the 

activity through symmetries, but the result of the action is 

hidden until the paper is unfolded, providing opportunities to 

examine one’s predictions’ (Confrey, 2012, p. 167). 

Similarity Related to splitting through identifying similarities between the 

properties of equal shares and non-symbolic proportional 

relationships (continuous parts and sets). 

Scaling Related to times as many. ‘There is only one salient dimension 

here, namely, objects. The splitting operation in this instance 

establishes the foundation of the ideas of a scalar (a 

dimensionless number possessing only magnitude) and a scaling 

factor’ (Confrey, 2012, p. 162). 

Fraction 

as 

Measure 

Measure Directly related to fair share, in that when fair shares are 

created, these shares represent a quantity that can be used as a 

measure in comparison to the whole. 

Many-as-one Many-as-one is a group of m objects, where the quotient 

represents the extensive quantity that one sharer receives 

(Confrey, 2012) 

For example: If I share 12 lollies with my friend, we each get 6 

lollies, six is a fair share. 

Composite 

Units 
Derived from splitting, a composite unit is a unit of units. E.g., 

3

4
 

is a composite unit of three, 
1

4
 units as a result of a from a three 

split, 1 
1

2
 is a composite of two 

3

4
 units derived from halving; 

related to recursive multiplication. 

Unit Fractions Unit fraction involves identifying and naming a single share of 

n fair shares as ‘1-nth-of... 1’ (Confrey & Maloney, 2015). 

Part-Whole 

Fractions 

The conceptualisation of the relationship between measure, 

many-as-one, composite units, and unit fractions for 1. 

For example: An apple is cut into y equal parts and x of these 

parts are eaten (Tsay & Hauk, 2009).  

Equivalent 

Fractions 

The equivalence of two fractional parts 
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For example: 
2

4
 = 

1

2
 (Confrey & Maloney, 2015). Explored non-

symbolically via geometric models and discrete sets in this 

study. 

 

In addition, the local instruction theory is developed on the conjecture that a spatial 

reasoning approach is critical for children to make sense of the various ideas and meanings of 

fractions identified above. Specifically, spatial visualisation and spatial proportional reasoning 

were identified in Chapter Two as spatial constructs that are highly desirable for promoting this 

novel approach. Table 3.6 describes each of these spatial constructs based on the literature 

review, contextualising these in relation to the fraction ideas identified above. 

Table 3.6 

Spatial Reasoning Constructs and Their Relationship to Rational Number Reasoning 

Spatial 

reasoning 

construct 

Definition of spatial construct and relationship to rational number reasoning 

Spatial 

Visualisation 

Spatial visualisation is the ability or skill drawn upon to imagine multi-step 

spatial transformations within objects or sets of objects (Frick, 2019; Lowrie 

et al., 2021; Linn & Petersen, 1985; Sorby, 1999). 

The intent of this spatial construct for this study is to develop children’s 

visualisation capabilities in relation to partitioning, unitising and 

equivalence concepts in a range of discrete and continuous contexts. For 

example, children will be encouraged to visualise the size and shape 

(geometric symmetries and similarities) and arrangements (composite units, 

part-whole, many-to-one or many-as-one) of a fair share by mentally 

manipulating and transforming objects or sets of objects. 

In addition, the process of creating a fair share (e.g., visualising partitive 

division/recursive multiplication, doubling/halving) of one quantity can be 

visualised and compared to another related quantity (fraction equivalence, 

part-whole) or unrelated quantities (measure) as examples. 

Spatial visualisation can also enable children to visualise and mentally 

manipulate the increase/decrease in fair shares or units for distribution (or 

redistribution) and proto-ratio ideas. 
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As described in Chapter Two, mental rotation is referred to as a subset of 

spatial visualisation and is the ability to imagine how an object would look 

if it were rotated on an axis; that is, to mentally turn a 2D or 3D object 

(Frick et al., 2013). 

Mental rotation can enable children to visualise how different parts are 

related to each other, by rotating parts to explore their size and geometric 

attributes when considering fraction magnitude. 

Spatial 

Proportional 

Reasoning 

Spatial proportional reasoning is the non-symbolic, visual recognition that 

shape, object, and arrangements of different wholes can have the same value 

and therefore are equivalent. 

This can be an awareness of doubling and halving, times as many, 

distribution, and proto-ratio ideas in the development of fraction 

magnitude. 

Spatial proportional reasoning includes scaling, which refers to the ability to 

compare different-sized spaces (Frick & Möhring, 2016); the ability to 

relate distances in one space to distances in another space (Frick & 

Newcombe, 2012). Spatial scaling and proportional scaling recruit 

overlapping cognitive processes (Möhring et al., 2018); therefore, spatial 

proportional reasoning for the purposes of this thesis includes the ideas of 

both spatial scaling and non-symbolic proportional reasoning. 

At this age, it is the perceptual awareness of this relationship rather than 

necessarily quantitative measures. For example, transforming one space in 

size to match the other (Frick & Newcombe, 2012), such as ‘mentally 

shrink[ing] or expand[ing] spatial information in the sense of zooming in or 

out (of the map) …internally transforming magnitude information’ 

(Möhring et al., 2018, p. 58). 

Thus, geometric symmetries and similarity of spaces, objects and 

arrangements are key connections in the development of fraction 

understanding. 

 

The tasks were based on the context of two picture storybooks: The Doorbell Rang by Pat 

Hutchins (1989) and Knock, Knock Dinosaur! by Caryl Hart (2017). Research indicates that 

picture storybooks can be a powerful tool for learning mathematics, particularly with younger 

children (Marston, 2010). Picture storybooks can engage children in unfamiliar and familiar 

mathematical ideas, enabling mathematical thinking and curiosity to explore more formal levels 

of understanding (Van Den Heuvel-Panhuizen et al., 2009). The Doorbell Rang (Hutchins, 1989) 
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was chosen as it provides a context to engage children in the ideas of fair sharing/partitioning and 

distribution (see Figure 3.3). 

Figure 3.3 

The Doorbell Rang Excerpt (Hutchins, 1989) 

 

Note: Example of text from The Doorbell Rang. Reprinted with permission.  

During the story, the children need to share 12 cookies fairly, but as more people arrive to 

the house, the children must work out how to redistribute the cookies among the changing 

number of people. 

Knock, Knock Dinosaur! (Hart, 2017) is a story about a boy receiving a delivery of toy 

dinosaurs that are actually life size. This introduces a context to explore the ideas of ratio and 

proportion (see Figure 3.4). 
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Figure 3.4 

Knock, Knock Dinosaur! Excerpt 

 

Note. Example of text from Knock! Knock! Dinosaur. Reprinted with permission. 

The tasks for the intervention were designed based on one of the picture story books. An 

example of the tasks is illustrated in Table 3.7. The full suite of tasks designed for the 

perpetration phase pilot is in Appendix A. 
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Table 3.7 

Pilot Task Example 

Pilot Task 1: Sharing Cookies 

 

Fraction Foci Spatial Reasoning 

Foci 

Children trialling the task 

Class A 

Fraction as Operator Fraction as Measure Construct Group 1 Group 2* 

 

Fair Share 

 

Partitive division/ 

recursive multiplication  

 

Many-as-one 

 

 

 

Spatial Visualisation 

 

 

Child 1 

Child 2 

Child 3 

Child 4 

Child 5 

 

Child 6 

Child 7 

Child 8 

Child 9 

 

*Child 23 & Child 25 (introduced 

later in the pilot for gesture 

observations—see Chapter Four) 

Relationship between fraction ideas and spatial constructs: 

Visualising partitive division/recursive multiplication between parts/ shares and whole. Conceiving the change in size of share as more shares are required. 

Visualising shares involving mixed numbers. 

 

Task: 

Introduce the picture book—The Doorbell Rang by Pat Hutchins. Ask the children to describe what is happening in the story. 

Each child receives a ‘story board’ that shows how many children were at the table at each part of the story. The children are asked to model/ draw how 

each group of cookies would be shared in each of the boxes. 

Story board (A3 size): 

 

Children are provided with paper circles (as cookies) and plastic counters if they choose to use them. 

Children are asked to name how they might describe the different shares of cookies. 

12 cookies, 2 

children 

 

12 cookies 4 

children 

 

12 cookies 6 

children 

 

8 cookies 12 

children 
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3.6.1.1 Work Samples 

Representations are a critical element of learning mathematics (Bobis & Way, 2018); 

therefore, children’s work samples were collected during this study. The work samples provide 

insights into children’s mathematical thinking (Cartwright, 2019), which were analysed in 

addition to the researchers’ observation notes to make assumptions about how children 

understand the various fraction ideas. From a Vygotskian perspective, interpreting children’s 

work samples is a critical element for understanding young children’s concept development 

(Woleck, 2001), particularly the act of ‘drawing-telling’ (Wright, 2007) where children create 

and share meaning in verbal and non-verbal modes (MacDonald & Lowrie, 2011). An A3 blank 

workbook was provided for each child in this study, where they could record their problem-

solving strategies and represent their understandings for each task. 

3.6.1.2 Field Notes 

During each small group session with the children in Class A, I took extensive field notes 

on my observations on how children engaged with the tasks. This included capturing the 

children’s descriptions they provided during the tasks, observations on how children manipulated 

various concrete models or how they constructed pictorial and diagrammatic representations, and 

any associated gestures they used throughout the tasks. Field notes enabled me to determine the 

suitability of the tasks as well as identify specific forms of mathematical thinking that the tasks 

promoted.  

3.6.2 Phase Two: Teaching Experiment 

The teaching experiment conducted with Classes A and B used the data sources of pre-

intervention classroom observations, pre- and post-TBIs, lesson plans from the intervention 

program, field notes and children’s work samples. Each of these is described and justified below. 
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3.6.2.1 Pre-Intervention Classroom Observations 

An interpretivist perspective requires an understanding of the classroom context in which 

the intervention is explored to determine if and how the parallel approach was successful. The 

participating teachers for Classes B and C of the teaching experiment were observed teaching 

mathematics in their classrooms prior to the intervention commencing. The observations took 

place in the scheduled mathematics lessons of each class. I observed three lessons per class on the 

mathematics topic the teacher had programmed. It was a participation requirement that children 

had received no instruction on fractions within the same school year prior to the intervention. 

This condition for participating was to mitigate confusion between the intervention program and 

what the children may have experienced as part of their typical fraction program, given that the 

intervention was novel in design. The pre-intervention classroom observation enabled me to 

understand the social context of the classroom. 

3.6.2.2 Pre- and Post-Assessment: Task-Based Interviews 

A one-on-one, TBI was developed as a pre- and post-intervention assessment in this study 

to determine the changes in children’s understanding that could be attributed to the intervention. 

TBIs are typically used in mathematics education to enable judgements about a child’s existing 

mathematical understanding, growth or changes in knowledge, and their use of representations 

and ways of reasoning (Goldin, 1997; Maher & Sigley, 2020). TBIs can be structured, semi-

structured or open, depending on the purpose of the research. As this study was interventionalist 

in nature, the TBI was semi-structured. I provided the verbal instructions for each task, 

prompting and questioning the children to uncover the reasons for their responses and 

representations. The children did not receive feedback on their results. 

The TBI for this study consisted of 24 items. The assessment was organised in three sets: 

Set One assessed aspects of children’s whole number knowledge, such as subitising and part-
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part-whole number knowledge; Set Two assessed children’s place value understandings; and Set 

Three assessed children’s fraction understanding and spatial reasoning capabilities. 

The first nine items, divided into two sets, Set One: Trusting the Count and Set Two: 

Place Value, were derived from the Assessment for Common Misunderstandings (AfCM) 

resources from the Department of Education Victoria (Siemon, 2006). The whole number items 

were included for two reasons: (1) to determine children’s typical whole number knowledge to 

use as a benchmark of their mathematical understandings, and (2) to determine if the inclusion of 

a spatial reasoning approach to learning fractions had any impact on the children’s whole number 

knowledge. 

Set Three: Fractions and Spatial Reasoning comprised of items 10 to 24. These items 

were designed to assess children’s knowledge of and ability to reason with fraction as a measure, 

fraction as an operator, and fraction as a relation meanings (Confrey et al., 2014b). Similarly, the 

spatial constructs of spatial proportional reasoning and spatial visualisation were also assessed in 

a range of items throughout the assessment. These were the primary spatial constructs 

underpinning the intervention, determined from the literature review. Examples of the TBI items 

are presented in Table 3.8. The full TBI is located in Appendix B. 
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Table 3.8 

Pre- and Post-Assessment Items for the Task-Based Interview 

Set One: Trusting the Count 

Item Focus Materials/Stimulus for each Task 

 

Source and Description 

1: 

Subitising 

collections 

Part-part-whole 

knowledge 

 

 

Cards 1–6 (common dot die arrangement) 

E.g., 

  
Cards 7–10 (ordered arrangements) 

E.g., 

  
 

Cards 7–19 (ten frames ordered and random) 

E.g., 

  
 

Hold the Subitising Cards out of 

the view of the child. Show each 

card in order for approximately 2 

seconds. After each card, ask, 

‘How many dots were on that 

card? … How did you work that 

out’ (Siemon, 2006) 

 

2: Hidden 

counters 

task  

Part-part-whole 

knowledge 

Nine counters 

Calico bag 

(Example of resources provided) 

     

Place five counters and bag in 

front of child, rattle to 

demonstrate that there are 

counters in the bag. Place four 

counters in front of child. 

‘There are four counters here and 

five more in this bag. How many 

counters altogether? How did you 

work that out?’ (Siemon, 2006) 

 

Set Two: Place Value 
Item Focus Materials/ Stimulus for each Task Source and Description 

 

5: 26 

counters 

Place value 

parts, 

Composite, 

countable units 

26 counters plastic counters 

(Example image of resource provided) 

 

 

Tip out counters and say, ‘Please 

count these and write down how 

many’. 

Circle the ‘6’ in ‘26’ and ask, 

‘Does this have anything to do 

with how many counters you have 

there?’ 

Circle the ‘2’ in ‘26’ and repeat 

the question. Ask the child to 

explain their thinking if not 

obvious. (Siemon, 2006) 

 

6: Place-

value 

Bundles  

Place value 

parts 

Composite, 

countable units 

13 bundles of 10 pop sticks and 16 single sticks 

(Example image of physical resources provided) 

 

 
 

Place bundles and single sticks in 

front of the student, point to 

bundles and say, ‘Do you know 

how many straws are in this 

bundle?’ Suggest counting, if 

necessary, then say, ‘Please show 

me how you would make 34’. If 

child asks or moves to unbundle a 

10, point to the bundles of 10 and 

say, ‘Before you do that, is there 

any way you could use these to 

make 34?’ (Siemon, 2006) 
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Set Three: Fractions and Spatial Reasoning  
Item Focus Materials/ Stimulus for each Task Source and Description 

10: 

Folding 

Fractions  

Fair share 

Doubling/ 

halving 

Unit fractions 

 

Spatial 

visualisation  

Image of a square: 
 

 

Child is shown the image of a 

square. ‘How many ways can you 

imagine folding a square in half? 

Can you describe what you think 

it would look like if you folded it 

in half, then in half again? What 

is each part called?’ (University 

of Cambridge, 1997-2023) 

 

11: What 

fraction is 

green? 

Composite units 

Unit fractions 

Distribution 

(two parts white 

to three parts 

green) 

 

Spatial 

proportional 

reasoning 

 

Image of rectangle: 
 

   

Child is shown the rectangle and 

asked, ‘What fraction of this 

rectangle is shaded green? How 

did you work that out?’ (Created 

by researcher) 

23: Plant 

growth rate 

Distribution 

Proto-ratio 

Doubling and 

halving 

 

Spatial 

Proportional 

Reasoning  

Image provided of the plants as a distractor: 

 

 
Plant A                                   Plant B 

 

Comparing rate of growth. 

‘If plant A grows 5 cm in half a 

year, and plant B grows 8 cm in a 

whole year, which is growing 

faster? How do you know?’ 

(Adapted from Dole et al., 2012) 
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The children were provided with a booklet where they could record their answers to each 

question. The TBI took approximately 25 minutes per child, and I recorded (via pen and paper) 

all interactions (in line with ethics provisions). For example, if a child used materials to solve a 

question, I recorded which materials, how they used these materials, any associated gestures they 

used, and documented their explanations. 

3.6.2.3 Lesson Plans 

As described in the preparation phase, the tasks were analysed and organised into a 

coherent sequence of lessons for the intervention. Each daily lesson was structured using the 

Launch–Explore–Summarise cycle (Sullivan et al., 2015). This three-phase model provides a 

structure for teaching and learning mathematics in the early years of schooling, particularly for 

introducing complex tasks (Sullivan et al., 2015). The Launch phase involves sparking children’s 

curiosity about the topic by providing some targeted questions or a provocation—such as the 

picture books described above. This phase introduces the underpinning ideas and problems 

without the teacher ‘telling’ the children how they will solve them. The Explore phase allows 

children to work individually and collaboratively on complex problems, developing strategies 

and sharing ideas. Finally, the Summarise phase is where intentional teaching occurs as children 

reflect on their thinking and working and use this as a basis for further exploration and problem 

posing. Intentional teaching is an underpinning principle of early childhood pedagogy and, 

therefore, a critical component of each lesson’s summarise phase. It is a deliberate and purposeful 

opportunity to extend children’s thinking about fractions and deepen their understanding of these 

ideas and strategies (Department of Education, Employment and Workplace Relations 

[DEEWR], 2009). 

Each lesson (which included several related activities throughout the Launch, Explore, 

and Summarise phases) ran for approximately 60 minutes and was delivered over 13 consecutive 
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school days. The complete intervention program describing each lesson is in Appendix C. Each 

lesson plan identified the fraction ideas of focus within the nominated fraction meanings. For 

example, in Lesson 1, the activities were designed to target several fraction as an operator and 

fraction as a measure ideas. Similarly, the spatial reasoning construct is described in terms of how 

it is intended to support the learners in each lesson (see Table 3.9). 

Table 3.9 

Intervention Program Lesson Plan Examples 

Lesson 1: Sharing Cookies 
Fraction Foci Spatial Reasoning Foci Relationship between fraction ideas and spatial constructs 

Fraction as Operator 

Fair shares 

Doubling/ Halving 

Partitive division 

1-nth-of...… 

Fraction as Measure 

Many-as-one 

 

Spatial Visualisation 

 

Visualising partitive division/recursive multiplication between 

parts/shares and whole. Conceiving the change in size of share 

as more shares are required. 

Visualising shares involving mixed numbers. 

 

Launch 

Questions and provocations for the children: When you hear the word half, what do you think of? (close your eyes and imagine). If 

I asked you to imagine what this strip of paper (20 cm x 10 cm) would look like if it was folded in half, what do you see? What do 

you imagine? How do you know you have folded it in half? 

When you hear quarter, what do you see in your mind? 

Draw the pictures you see in your mind about half and quarter or anything you know about fractions (the children are given 

individual whiteboards to work on) 

 

After children explore these questions and representations, they will share with each other in small groups. 

 

Explore 

Picture book: The Doorbell Rang by Pat Hutchins. Ask the children to discuss and describe what is happening in the story. 

 

Each child receives a ‘story board’ that shows how many children were at the table at each part of the story. The children are 

asked to model/draw how each group of cookies would be shared in each of the boxes. 

 

Example of A3 story board 

 

 

 

 

 

 

 

Children are provided with paper circles (as cookies) and plastic counters if they choose to use them. 

Children are asked to name how they might describe the different shares of cookies. 

 

12 cookies, 2 children 

 

12 cookies 4 children 

 

12 cookies 6 children 

 

8 cookies 12 children 
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Summarise 

Discuss how the children problem solved; specifically, 8 cookies between 12 children (a complex problem not explored in the 

picture book) 

 

*Intentional Teaching: How much of the whole set of cookies (12) does one of these eight children have? What patterns do you 

notice about the shares created? 

What happened to the number of cookies each person receives when there are more children to share the cookies with? 

What did you notice about each person’s share? What does this have to do with fractions? (naming/ partitive division, 1-nth-

of...… for fractional parts) 

 

 

Lesson 10: Dinosaurs (Part 3) 
Fraction Foci Spatial Reasoning Foci Relationship between fraction ideas and spatial constructs 
Fraction as Operator 

Doubling and halving 

1-nth-of... … 

Times as many 

Similarity 

Scaling 

 

Fraction as Measure 

Composite units 

Unit fractions 

Part-whole fractions 

 

Spatial Visualisation 

 

Spatial Proportional 

Reasoning 

 

Estimating fractional lengths of paths on carpet maps. Paths are not 

straight, so children need to engage in spatial visualisation and 

mental rotation to compare the length of multiple paths and use 

spatial proportional reasoning to estimate measures within a single 

pathway/region. 

 

Creating scaled representations of fractional paths, naming and 

describing the distributions of the measures: half of …path is greater 

than half of (another) path. 

Launch 

Task: Cuisenaire Fractions. To engage children in spatial proportional reasoning for comparing fractional parts. 

 
Children are provided with sets of Cuisenaire rods and cards with a range of questions, such as: 

If this is one (orange, dark green, etc.)—which rod is half? 

If this is 2-thirds (dark green), what is one whole? 

What is three times light green? 

What is four red the same as? What is the relationship? 

 

Explore 

Revisit picture book Knock, Knock Dinosaur! by Caryl Hart. 

 

*Preceding this lesson: The dinosaurs have escaped the boy’s house! They’ve decided to 

explore the neighbourhood—here is the map. 

The postman said they saw a T-Rex halfway between the boy’s house, and the zoo. Where 

could it be? A delivery driver said she saw a dinosaur halfway between the central fountain 

and the duck pond—where would that be? (museum). A pilot saw another dinosaur 2-thirds 

of the way along the road in front of the café, heading toward the food market…where 

would this dinosaur be? 

 

Children were provided with large carpet maps of different ‘towns and a set of clues describing where several dinosaurs were 

seen, unique to each map. The children used small plastic dinosaurs and sticky notes to place on the mats and solve each clue. 

Task: Children represent parts of their carpet map explored in the previous two lessons, which show where each dinosaur was 

located. They need to draw the points of interest (e.g., the runway of the airport), draw the position of the dinosaur and then write 
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in words their explanation (e.g., ‘dinosaur spotted 1-quarter of the way along the runway’). Examples of carpet maps are included 

below. 

 

             
 

Children can draw a map (or part thereof) of another’s groups town, again describing the position of the dinosaur using times as 

many, double/half and unit or composite unit fraction terms or phrases and gestures that suggest these. 

 

Summarise 

*Intentional Teaching: What is the same about the carpet map (zoo/airport/farm, etc.) and your map? (same proportions/fraction, 

different scale, etc). 

What is different? (absolute size). 

 

Gallery walk: Check out the other group’s positions of their dinosaurs. Do you agree on their position based on their task cards? 

Is there a different position the dinosaur could have been standing? (i.e., one-third of the runway depends on which end of the 

runway is considered the ‘start’). 

What was hard about this task? What strategies did your team use to work out the position of your dinosaurs? 

 

 

Crucial to the design of this study, the intervention program replaced the classroom 

teacher’s mathematics program the children would have otherwise experienced. That is, the 

participating children in Classes B and C did not receive any additional mathematics lessons 

during the intervention period. This condition was to enable the findings of the study to be 

directly attributed to the intervention. 

3.6.2.4 Field Notes: Teacher and Researcher Reflective Journals 

Each of the participating classroom teachers of Classes B and C acted as additional 

researchers for the study. As part of this role, the classroom teachers and I kept separate reflective 

journals to document our observations throughout each lesson. The purpose of documenting our 
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observations was to provide thick descriptions (Creswell, 2003) of the context, to capture 

children’s use of language, how they engaged in various tasks and used the provided materials 

and compare our insights and interpret how they were developing their understanding throughout 

the intervention (Creswell, 2013). The field notes also provided a form of triangulation, discussed 

later in this chapter. 

Before the intervention, I met with each participating teacher to discuss the nature of the 

observations. The observations included making notes on children’s use of materials, specifically 

focusing on documenting how they constructed their representations and what, if any, gestures 

accompanied their discussions or engagement during whole class, individual and small group 

contexts. Classroom teachers were encouraged to ask clarifying questions of the children, if 

needed, during the observation and record the interaction to contextualise the learning situation. 

3.6.2.5 Work Samples 

As discussed in the data sources relevant to Phase One (Section 3.5.1), the teaching 

experiments in Phase Two also used work samples as a source of data. An A3 blank workbook 

was provided to each child for this study, where they could record their problem-solving 

strategies and represent their understandings in each lesson. In addition, the children were 

provided with an assessment booklet to record their answers or represent their thinking for the 

pre- and post-intervention TBI items. 

3.7 Data Analysis 

The data analysis process occurred throughout all three phases of this study. Thematic 

analysis was the primary method of analysis used in this study because it is driven by observation 

and interpretation (Scharp & Sanders, 2019). Quantitative analysis techniques were also 

employed. This section describes the data analysis methods in relation to the data sources. 
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3.7.1 Pilot Task Analysis 

The tasks designed for the intervention program were piloted as part of the preparation 

phase with small groups of four to six children at a time (see Appendix A). The intention of 

trialling these tasks with children was to evaluate how a child may engage with the ideas, the 

level of difficulty the task presented and the scaffolding that might help children develop their 

knowledge and understanding. Specifically, Posner et al.’s (1982) framework for describing 

conceptual change informed this analysis. The conditions for conceptual change are intelligibility, 

fruitfulness, and plausibility. To summarise, Treagust and Duit (2008) state: 

An intelligible conception is sensible if it is non-contradictory, and its meaning is 

understood by the student; a plausible conception is considered believable in addition to 

the student knowing what the conception means; and the conception is fruitful if it helps 

the learner solve other problems or suggests new research directions. (p. 299) 

The theory of conceptual change intention is to ‘understand how the components of an 

individual’s conceptual ecology interact and develop and how the conceptual ecology interacts 

with experience’ (Strike & Posner, 1992, pp. 155–156). This assumption implies that the 

framework is used to analyse children’s learning development over a sustained period of time. 

However, for the purposes of this study, the framework is used to analyse the adequacy of the 

tasks and the potential they offer to children for sufficient conceptual change as a result of the 

intervention. Table 3.10 details the conceptual change criteria. 
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Table 3.10 

Criteria of the Conceptual Change Framework 

Condition Description Example of analysis 

Task: Share 12 cookies between eight people 

fairly 

Intelligibility Children understand the context in 

ways that are familiar to them and 

in what context. For example, 

intelligibility requires the learner 

to make sense of the problem and 

indicate possible thought patterns 

and strategies that indicate the 

child understands the context and 

content of the problem—even if 

they cannot solve it at this point. 

 

While many children across the pilot could not 

initially move from partitioning discrete 

collections to continuous in the same context (that 

is, 12 shared between eight results in 1-and-a-half 

cookies each), the children recognised that there 

needed to be equality achieved in the shares 

created for each person, even though they were 

not immediately sure how this could be achieved. 

Fruitfulness Learners abandon their original 

ideas and are now able to solve 

problems that were not previously 

solvable for the learner or helping 

provide new ways of examining a 

situation. 

Children understand sharing/partitioning can 

occur in both discrete and continuous sets 

simultaneously. This component of analysis for 

the tasks and activities also targets the spatial 

reasoning constructs emphasised in the lessons, 

because fruitfulness is about helping the learner 

solve problems they could not previously solve 

before. That is, using spatial visualisation enabled 

many children to consider alternative strategies 

for sharing parts of cookies (not just sets of whole 

cookies). 

 

Plausibility The concept and new ideas must 

coordinate with learners present 

understanding without any 

conflict. Children produce 

predictive understandings that 

support their strategy choice and 

how this will in fact result in a true 

or plausible outcome. 

Children’s ability to estimate, visualise and 

predict the outcome of a problem, such as 

recognising that 12 cookies can be shared equally 

between eight people, and, therefore, fractions can 

be represented as mixed numbers (not just proper 

fractions). 
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The findings from the pilot and how the results informed the creation of the intervention 

program and refinement of the local instruction theory for Phase Two (the teaching experiment) 

are presented in Chapter Four. 

3.7.2 Classroom Observation Analysis 

Hamre and Pianta’s (2007) Components of the Classroom Assessment Scoring System 

(CLASS) framework was used to analyse my classroom observations prior to the Class B and C 

interventions. This empirically supported and theoretically driven framework allowed me to 

analyse the teacher–class interactions in three major domains: emotional supports, classroom 

organisation and instructional supports (Hamre et al., 2009). These three domains are further 

separated into dimensions, with indicators that help synthesise and organise the themes that best 

describe the environment, depicted in Figure 3.5 (Hamre et al., 2009). 

Figure 3.5 

Classroom Assessment Scoring System Framework (Pinta & Hamre, 2009) 
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The intention of this framework is to focus on teacher–children interactions at a 

classroom level, not at the level between the teacher and individual children. Typically, each of 

the domains are rated on a seven-point scale—low (1, 2), moderate (3–5) and high (6, 7)—and 

assessed by pairs of observers during different time points throughout a lesson to establish inter-

rater reliability. This framework was implemented in a modified form, whereby I analysed my 

written observations against these themes to determine the typical emotional, classroom and 

instructional supports employed by the teacher and how this affected the children’s learning 

experiences. Praetorius and Charalambous (2018) state that it is important that an observational 

framework provides a comprehensive picture of the quality of instruction, and thus the elements 

within a specific framework must be carefully considered with regard to the intended study. For 

the present study, the CLASS framework provided the structure required to interpret the typical 

mathematics classroom, which helped inform both pedagogical and organisational aspects of the 

intervention. 

3.7.3 Pre- and Post-Task-Based Interview Analysis 

All pre- and post-TBI assessment items were scored using rubrics to assess children’s 

mathematical competencies and types of reasoning at the beginning and immediately after the 

intervention. Examples of the scoring rubrics for the whole number items (Set One and Two) 

were derived from the Assessment for Common Misunderstandings tools (Siemon, 2006; see 

Table 3.11).  

Table 3.11 

Example of Task-Based Interview Rubric 
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Set One: Trusting the Count Scoring Rubric 

Item No/incorrect response Partially correct response and 

reasoning 

Correct response and 

reasoning 

1: 

Subitising 

collections 

Little/no response (e.g., 

identifies first card of 

each set only), or 

clearly guessing. 

Consistently recognise 

numbers up to five in two 

seconds or less, can 

occasionally recognise some 

numbers larger than five in 

two seconds May recognise 

some teen numbers without 

counting on by ones. 

Consistently recognises 

numbers up to 10 in two 

seconds or less. Recognise all 

teen numbers without 

counting on by ones/ 

demonstrating part-part 

knowledge (conceptual 

subitising). 

2: Hidden 

counters 

Little/no response (e.g., 

identifies first card of 

each set only), or 

clearly guessing. 

Counts the five that can be 

seen and makes some attempt 

to count the hidden collection 

by counting on or counting all 

but unable to complete or 

incorrect. 

Immediately correct on the 

basis that ‘I just know’ use of 

number fact knowledge. 

Set Two: Place Value Scoring Rubric 

Item No/incorrect response Partially correct response and 

reasoning 

Correct response and 

reasoning 

5: Counting 

26 counters 

Little/no response to 

most cards. 

Counts by ones and records 

26 but may not recognise 

significance of ‘2’ and ‘6’ in 

‘26’. 

May say ‘twenty’ in response 

to the role of 2 in 26 and 

identify one ten more. 

Efficiently identifies 26 as 

two tens and six ones. 

6: Place-

value 

Bundles 

Little/no response. 

Counts bundles and 

ones at random. 

Makes 34 using tens and ones, 

but not in a way that suggests 

10 ones is understood as one 

ten. 

Makes and/or records 34 

using bundles (or explaining 

the representation of three 

tens and four ones) efficiently 

and accurately. 

Set Three: Fractions and Spatial Reasoning Scoring Rubric 

Item No/incorrect response Partially correct response and 

reasoning 

Correct response and 

reasoning 

10: Folding 

Fractions 

Unable to respond. 

Incorrect solution for 

forming half (e.g., 

unequal parts created). 

Child could identify at least 

one way the square could be 

partitioned in half. Does not 

discuss the equality of the 

parts (even with prompting). 

The child recognises at least 

four ways the square could be 

partitioned in half. 

Understands the need for 

parts to be equivalent 

11: What 

fraction is 

green? 

Unable to respond. 

Responds with a whole 

number/counts the 

parts (such as one 

Recognises the proportional 

difference in size between the 

green rectangle and white 

rectangles. May use a 

Articulates 3-fifths, reasoning 

that the white parts, although 

separated by the green part, 
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green part, two white 

parts). 

benchmark like half to reason 

between each part. 

have a direct relationship to 

the whole. 

23: Plant 

growth rate 

Unable to respond or 

incorrect answer. 

Indicates awareness of 

different time period and the 

effect this has on determining 

the growth rate, but does not 

apply it to the context of the 

plants  

Recognises that the size of 

the plants needs to be 

considered during the same 

period of time and uses 

doubling/ halving knowledge. 

An answer was scored partially correct if the child demonstrated a procedure or 

understanding that could lead them to a correct answer or reasoning. However, they may have 

made other errors while recording their answers. Alternatively, the item may have multiple 

possible answers, but a child only recognises some of them. An example of a partially correct 

score is for Item 10: Folding Fractions. The children are asked to look at an image of a square 

and visualise how many ways that square could be halved. I anticipated that the children would 

respond in two ways only: either two folds diagonally (see Figure 3.6a) or a vertical and 

horizontal fold (see Figure 3.6b). These were expected as these are likely the most obvious or 

familiar experiences children may have had with folding. 

Figure 3.6 

Expected Answers for Item 10: Folding Fractions 

a) Diagonal partitioning  b) Horizontal and vertical partitioning 

 

 

 

 

The purpose of using a rubric and taking written observations during each question was to 

develop a fine-grained analysis of what skills, understandings, or difficulties each child possessed 

prior to and immediately after the intervention. 
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3.7.3.1 Task-Based Interview Quantitative Analysis 

A two-sample paired sign test (Cohen, 2013) was conducted on the TBI data to determine 

if there were any significant changes in children’s pre- and post-assessment responses. This test 

is typically used to determine the significance of the change (if any) that has occurred between 

pre- and post-measure items. Each child’s response to each item in the post-measure is paired 

with their response to the corresponding pre-measure item (Cohen, 2013). This ensures that the 

difference between the pre- and post-assessment responses can be attributed to the intervention, 

and not to differences between the individuals taking the test (Howell, 2010). 

This test was chosen because it applies to data that are non-parametric, discrete data, such 

as that generated by the TBI, as opposed to the sort of data that is required for other pairwise sign 

tests (such as the Wilcoxon signed-rank test or analysis of variance test [ANOVA], (Cohen, 

2013). 

For this study, three pairwise outcomes were possible for each item on the pre- and post-

TBI: 

• ‘Positive Change’—either a partially correct response paired with a correct response, 

or an incorrect response paired with a partially correct or correct response. 

• ‘Negative Change’—a correct response paired with a partial or incorrect response, or 

a partial response paired with an incorrect response. 

• ‘No Change’—the same response, regardless of whether or not the response was 

correct, partially correct, or incorrect. 

This created nine possible pairwise outcomes for each item, as shown in Table 3.12. 
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Table 3.12 

Possible Change Outcomes for the Task-Based Interviews (TBI) 

Possible Change 

Outcomes 

Post-TBI 

Correct 
Partially 

Correct 
Incorrect 

P
re

-T
B

I 

Correct 
No Change: 

Negative 
Negative Negative 

Partially 

Correct 
Positive 

No Change: 

Negative 
Negative 

Incorrect Positive Positive 
No Change: 

Negative 

 

As the two-sampled paired sign test requires a binomial calculation based on the 

probability of a positive change outcome versus a negative change outcome (Sarty, 2020), a ‘no 

change’ response in this study was regarded as evidence of a negative change, even though this 

may have been the result of a child obtaining correct responses on both pre- and post-tests. 

Considering the context of the intervention program, the age of the children and the pilot 

findings, it was deemed highly unlikely that children would perform in this way. Based on this, 

only three of the nine possible pairwise outcomes were positive, giving a 33% probability of a 

positive change. 

For the purpose of determining overall change, the pairwise outcomes for each item for 

Set One and Set Two were combined. This meant that the total number of responses for each set 

was determined by multiplying the number of children by the number of items in each set. For 

example, in Class B (23 children), for Set One (four items) there were 23 x 4 = 92 possible 

responses. Table 3.13 provides an example of this analysis for Class B, Set One. 
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Table 3.13 

Example of Paired Sample Sign Test: Analysis of Class B, Set One 

TBI set Items Total 

possible 

responses 

Positive 

change 

Negative 

change 

p-value 

Set 1: 

Trusting the 

count 

1, 2, 3, 4 92 40 52 0.016 

Note. TBI = task-based interview. 

For Set Three, the items were grouped by fraction meaning and spatial reasoning 

category. Some items were considered in multiple categories. This can be seen in Table 3.14. 

Table 3.14 

Set Three Item Description 

Category TBI items 

Fraction as a measure Ideas 10, 11, 12, 15, 16, 20 21 22, 24 

Fraction as an operator Ideas 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 

Fraction as a relation Ideas 11, 13, 14, 23 

Spatial Visualisation 10, 12, 15, 16, 17, 18, 20, 21, 22, 24 

Spatial Proportional Reasoning 8, 11, 13, 19, 23 

Note. TBI = task-based interview. 

The results of the pairwise sign test for the TBI sets are described for each class in the 

teaching experiment phase, discussed in Chapters Five and Six. 

3.7.4 Thematic Analysis 

Thematic analysis is an approach described as ‘a search for themes that emerge as being 

important to the description of the phenomenon’ (Fereday & Muir-Cochrane, 2006, p. 82). 

Thematic analysis provides researchers with a method for identifying patterns of meaning within 

the data that the researcher deems to be important concerning the research questions (Braun & 

Clarke, 2006, 2013; Daly et al., 1997). In the present study, all data sources were thematically 
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analysed; that is, the daily field notes from the classroom teachers’ and researcher’s journals, the 

work samples from each lesson, the pre- and post-intervention TBI data (including children’s 

work samples and my observations of their behaviour and discussion) and the pre-intervention 

classroom observations were examined to identify common ideas, patterns and themes that were 

used to interpret how the children developed their understanding throughout the study. 

The data were coded to determine patterns in meaning and behaviour. A code is a short, 

succinct description of a phenomenon a researcher wants to explore or understand. A theme is ‘a 

pattern in the information that at minimum describes and organises the possible observations and 

at maximum interprets aspects of the phenomenon’ (Boyatzis, 1998, p. 161). Themes can be 

represented as subthemes or main themes, depending on their prevalence throughout a corpus of 

data. In addition, themes can provide ‘outcome propositions’ based on the combinations of 

underpinning subthemes generated from the data (Strauss, 1987, p. 10). Codes and themes are 

generated to make inferences about the findings evident within the data. 

Aided by discussions with my PhD supervisors and support from colleagues who had 

extensive thematic analysis experience, the codes and themes were interrogated with multiple 

data sources throughout all phases of the project, which contributed to the credibility of my 

interpretations. As an iterative process of DBR, the codebook was reassessed through each phase 

of the study, and data were recoded as required to ensure rigorous analysis was undertaken 

(DeCuir-Gunby et al., 2011; Fereday & Muir-Cochrane, 2006). 

NVivo Pro 12 (QSR International, 2021) was used to organise the codes and observations 

from the participating classroom teachers and my own reflective journals. The work samples 

from the children were coded separately, using post-it notes and systematic notetaking using the 

codebook. The codebook was developed in a hierarchical format to organise the broad code 

categories and individual code(s). For example, fraction as measure, fraction as an operator and 
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fraction as a relation meanings were organised as broader code categories under rational number 

knowledge. The underpinning fraction ideas for each meaning served as the fine-grain codes 

(DeCuir-Gunby et al., 2011). A small selection of the codebook demonstrating the hierarchical 

format is presented in Figure 3.7. 

Figure 3.7 

Excerpts of Code Hierarchy Generated in NVivo Pro 12 

 

Note. NVivo Pro 12 alphabetically organises code categories and codes. 

Example of code 

categories 

Example of 

codes 
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As the project progressed, additional codes became evident, such as spatial structuring 

(Battista et al., 1998; Mulligan & Mitchelmore, 2009) in Phase Two. In conjunction with a 

review of the literature and discussions with my supervisors and mentors, new codes were 

developed and applied to the codebook. All data (including that collected before these codes were 

identified) were reanalysed with the additional codes. The addition of these codes illustrates 

again the iterative nature of the thematic analysis process, enabled by the DBR methodology. 

Becoming familiar with the data is essential in the thematic analysis process. This 

involves reading and re-reading the data, and in doing so, identifying initial analytic observations 

about the data and potential avenues for exploration (Clarke & Braun, 2013). This process 

involved looking for commonalities between children’s strategy use (such as spatial reasoning) 

and their understanding of fraction ideas (within their explanations, work samples and observed 

behaviours). Identifying these patterns in children’s behaviour provided the basis for discussing 

to what extent and in what ways children developed their understanding of fraction and whole 

number ideas in this study, informing the development of the local instruction theory. 

3.8 Trustworthiness of Findings 

Establishing trustworthiness in interpretivist studies requires the researcher to address 

four main criteria (Anney, 2014; Guba, 1981): credibility, triangulation, transferability, and 

dependability. The researcher can claim trustworthiness of the findings when the study has met 

these four criteria (Trochim, 2006). These are each addressed below. 

3.8.1 Credibility 

Credibility is defined as the confidence placed in the truth of the research findings 

(Anney, 2014). To address the credibility of the interpretation of findings, both the researcher and 

classroom teachers acted as co-researchers in the study by collecting individual field notes to 
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compare insights to each lesson. Peer debriefing (Bitsch, 2005) was used to talk through the notes 

recorded by the researcher and the participating teachers. This strategy helped to establish 

confirmability where ‘establishing that data and interpretations of the findings are not figments of 

the inquirer’s imagination but are clearly derived from the data’ (Tobin & Begley, 2004, p. 392) 

is key. This technique helped to obtain and verify how the researcher was interpreting the 

children’s interactions in each lesson, considering how the teachers perceived the learning and 

children’s development in each lesson. 

3.8.2 Triangulation 

Triangulation is vital for establishing the reliability of findings, also described as the truth 

value concern (Anney, 2014; Guba, 1981). This process involves using multiple and different 

methods, sources, researchers, and theoretical perspectives to obtain corroborating evidence 

(Onwuegbuzie & Leech, 2007).  In addition, triangulation helps the investigator reduce bias and 

cross-examines the integrity of participants’ responses. Triangulation involves using a range of 

research methods (Denzin & Lincoln, 2005; Lincoln & Guba, 1985;). As this project used 

children’s work samples, pre- and post-TBI assessments, observations via research and teacher 

reflective journals, and daily debrief discussions with the classroom teachers, it is considered to 

have employed a suitably wide range of methods. 

Triangulation of the research team allows different perceptions to become part of the 

inquiry and helps strengthen the integrity of the findings (Anney, 2014). In this study, the 

participating classroom teachers also acted as researchers. Moreover, my PhD supervisors and 

other research mentors also examined different data sources and artifacts to interrogate, challenge 

and aid me in refining my interpretations of the context. 

Finally, triangulation was considered from a participant perspective to enhance the data 

quality. Children from three separate school settings in Years 1 and 2 were recruited to determine 



148 

whether the findings were replicated across the same age group, regardless of the school and 

class environments. 

3.8.3 Transferability 

Transferability is addressed through the methodological affordance of DBR, where 

iterative analysis and reanalysis of the data occur. The data are then compared with existing 

literature, and the thick descriptions provided mean the results apply to other educational contexts 

and settings. Although this study had a modest sample size, the detailed account of the 

implementation of the intervention with each class provides findings generalisable to a broader 

population of early year children. The themes and relationships in the data were rigorously and 

interactively compared to literature using a transdisciplinary lens, as discussed in Chapter Two. 

This analysis helped to determine the validity of the theoretical conjectures and determined how 

generalisable the findings are in addressing the educational problem. 

3.8.4 Dependability 

According to Bitsch (2005), dependability refers to ‘the stability of findings over time’ 

(p. 86). Dependability involves participants evaluating the findings and the interpretation and 

recommendations of the study to ensure they are all supported by the data received from the 

study informants (Cohen et al., 2007; Tobin & Begley, 2004). It is essentially auditing the study’s 

analytical methods and procedures and interrogating the findings to ensure they are consistent. 

This process is a crucial feature of thematic analysis, where a codebook acts as an audit trail for 

analysis. The methodology of DBR and the inductive component of thematic analysis insist that 

data is consciously re-examined and recoded for authenticity and consistency. This interrogation 

occurred several times throughout the study, notably when a new code or theme emerged, 

instigating the re-coding of previously analysed data. Consulting with my supervisors and peers 
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during this process meant multiple analyses were conducted on the same pieces of data to verify 

the proposed themes. 

3.9 Ethics Considerations 

This study was granted ethics approval by RMIT (reference number: CHEAN A 21162-

10/17; see Appendix D) and the Government of South Australia Department for Education 

(reference number: 2018-0013; see Appendix E). 

3.9.1 Participant Consent 

Participation in this project was voluntary. Written consent was obtained from each 

school on behalf of the students, the teachers in the project, and the parents or guardians of the 

children involved. Gaining participants’ consent was more than just a process required by formal 

ethics bodies; it involved mutual agreement concerning what data were collected, how data were 

collected (in terms of the tasks to be designed, modified, and implemented) and how data would 

be used in the analysis. 

All data collected and published for this study are deidentified. Pseudonyms were 

assigned to each of the children and participating teachers. The teachers were assigned the label 

of Teacher A, B or C, consistent with participating Classes A, B and C. The 70 children were 

assigned the code of Child 1, Child 2, … Child 70 throughout the study. The assignment of codes 

protects each participant’s identity in all published materials. 

The participant information sheet and consent forms (see Appendices F and G) detailed 

the potential risks to participants. The information included the opportunity for participants (and 

the parent/guardian for children) to ask questions and clarify any aspect of involvement before, 

during and after consenting to participate in this project, as described in the National Statement 

on Ethical Conduct in Human Research (2007, updated 2018). All participants in this project 
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provided ‘extended consent’. The data collected in this study can be accessed and used in future 

and related studies. Sections 2.2 and 2.3 of the National Statement on Ethical Conduct in Human 

Research informed all sections of the ethics application in this regard. 

3.9.2 Data Storage 

Data storage and protection is a vital element to plan for and detailed in DBR. RMIT’s 

13-step research data management process was studied in detail to consider and plan data 

collection and storage. I used RMIT’s AARNet cloud storage, which is secure, reliable, and 

accessible remotely for a large quantity of data. The links provided in this 13-step process, such 

as the Library’s Research Data Management guide, were used to manage and inform data storage 

throughout the different stages of the project. All data sources (see Section 3.6) were digitised 

and stored securely in password-protected files on the AARNet servers. 

3.10 Chapter Summary 

This chapter has provided a detailed plan for this research project. DBR can be viewed as 

an interpretivist methodology for exploring educational phenomena; this supports the 

investigation of a local instruction theory that explains how young children develop fraction ideas 

through a spatial reasoning approach. 

The key methodological choices were intended to examine the conjectured local 

instruction theory in the following ways. First, the pre- and post-task-based assessment would 

provide insights into the initial starting point for children’s fraction and spatial reasoning 

capabilities and their whole number knowledge more generally through items that assess their 

subitising abilities, number line knowledge, place value understanding and part-part-whole 

knowledge. The post-intervention assessment data would provide the opportunity to examine 

children’s (potential) quantitative gains attributable to the intervention and their (potential) 



151 

qualitative improvements in strategy choice and reasoning capabilities to better understand the 

influence the instruction sequence played. 

Second, the development of an intervention program that provides clear examples of how 

to construct and structure lessons that include both whole number and fraction ideas with a 

spatialised approach aimed to provide teachers with what Simon (1995) and Gravemeijer & Van 

Eerde, 2009) discuss as a pedagogical travel plan. That is, the sequence of learning developed, 

tested, and evaluated on the basis of a local instruction theory throughout the teaching experiment 

can be used as a reference for teachers designing their own children’s mathematical journeys, 

based on their individual class’s knowledge, skills, and experience. 

The next chapter will conclude Phase One of this study with the trial and analysis of the 

discussed tasks. The construction of the intervention program and refinement of the local 

instruction theory will be presented and justified. 
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Chapter 4: Pilot Trial Insights – Class A 

4.1 Chapter Overview 

This chapter reports on Phase One of the DBR project, the purpose of which was to 

conduct the pilot trial of the intervention tasks to confirm the sequence and suitability of the 

conjectured local instruction theory. Section 4.2 sets the scene of this pilot by providing an 

overview of the participating class and how the trial was organised. Section 4.3 discusses several 

tasks and how they were analysed for their suitability and inclusion in the intervention program. 

Section 4.4 presents the refined local instruction theory based on the task analysis and a rationale 

for the organisation of the intervention program for the teaching experiment. Section 4.5 

illustrates two additional representations—spatial language and gesture—that were dominant 

throughout this trial. The purpose of the trial was to acknowledge new findings and ways children 

are representing their understanding, so this section discusses the effects of these representations 

and how this informed the analysis of the teaching experiment. Section 4.6 summarises the 

chapter and looks towards the first iteration of the teaching experiment in Phase Two, which is 

the basis of Chapter Five. 

4.2 Setting the Scene: Class A 

As described in Chapter Three, the participants for this pilot were 26, Year 2 children 

from a regional South Australian public primary school. Consistent with the requirements for 

participating in this research, fractions had not been taught to this class in the same school year 

prior to this pilot commencing. Further, this pilot took place at the beginning of the school year 

(February 2019), so it was expected that the children had little to no experience with the extended 
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range of fraction ideas this intervention explored and that it may have been some time since they 

had engaged with any formal fraction instruction. 

4.2.1 Understanding the Classroom Environment 

After discussing the school’s approach to mathematics with the classroom teacher, it was 

established the children had experienced a two- to three-week unit on fractions in Term 3 of the 

previous year (approximately September 2018). This unit was aligned to the Year 1 Australian 

Curriculum content descriptor (version 8.4): Recognise and describe one-half as one of two equal 

parts of a whole (ACMNA016; ACARA, n.d). The unit involved exploring halves of common 

2D shapes (pictorial, printed representations), making shapes out of plasticine and colouring 

shapes/objects in halves and quarters. 

This suggested the children had some experience with fair shares in area and continuous 

models, primarily in part-whole contexts. They may likely be unfamiliar with set or discrete 

fraction models and fraction meanings such as operator and ratio. It is unknown what spatial 

reasoning constructs children had previously engaged with or how they had engaged with them 

during their fraction instruction. Given the innovative nature of the intervention program 

designed for this study, it was expected that the children may need some explicit scaffolding or 

sustained exploration of the task contexts. 

4.2.2 Organisation of the Pilot 

I worked with groups of four to six children at a time to trial each of the tasks. This 

enabled close observation of how the children were engaging with the activities and the types of 

strategies and representations they were applying. I worked with each group for approximately 

one hour at a time, in a separate learning area to their classroom to avoid distractions. Over the 

course of three weeks, each child participated in multiple sessions and trialled between seven and 

nine tasks each of the available suite of 22 tasks (see Appendix A). 
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The conjectured local instruction theory introduced in Chapter Three, constructed from 

the literature review, is restated in Table 4.1. 

Table 4.1 

The Conjectured Local Instruction Theory (Version One) 

Key indicators of 

fraction understanding 

Characteristics of tasks Supporting 

literature Primary Fraction Foci Spatial Reasoning 

Approach  

Establishing equal 

parts of collections of 

discrete items 

Fraction as an 

Operator: 

Fair share 

Doubling/halving 

Partitive division/ 

recursive 

multiplication 

 

Fraction as a 

Measure: 

Many-as-one 

Visual perception of 

equal groups (drawing 

on subitising). 

Recognising 

relationship between 

creating shares and 

recreating the whole 

from its parts. 

Confrey et al. 

(2014b); Matthews 

and Ziols (2019); 

NRC (2006) 

Establishing equal 

parts of continuous 

items 

Fraction as an 

Operator: 

Fair share 

Doubling/halving 

Partitive division/ 

recursive 

multiplication 

Equi-partitioning a 

single whole 

Geometric symmetries 

Similarity 

 

 

Fraction as a 

Measure: 

Measure 

Composite unit 

Unit fraction 

A focus on concepts of 

space for geometric 

parts—shape, 

orientation, symmetry 

in continuous wholes. 

Visualising the 

relationship between 

the shape and size of 

parts created in relation 

to the whole. 

Confrey et al. 

(2014b) 

Bruce et al. (2013); 

Möhring et al. 

(2015) 
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Reinitialising the unit Fraction as a 

Measure: 

Unit and composite 

fraction 

Equivalent fractions 

 

Fraction as an 

Operator: 

Doubling/ halving 

Times as many 

1-nth-of... … 

Visualising measures 

between parts and 

wholes, composite and 

unit fractions, 

equivalent units. 

Visualising magnitude 

relations between parts 

the distribution of 

parts. 

Bruce et al. (2013); 

Clements and 

Sarama (2014; 

2017/2019); 

Confrey et al. 

(2014b); Confrey 

and Smith (1995); 

Siemon et al. (2017) 

Splitting as a mental 

act 

Fraction as an 

Operator: 

Partitive division/ 

recursive 

multiplication 

Times as many 

1-nth-of...… 

 

Fraction as a 

Relation: 

Many-to-one 

Distribution 

Visualising the 

relationship of partitive 

division/ recursive 

multiplication, times as 

many. 

Stretching/shrinking 

geometric wholes. 

Behr et al. (1983); 

Confrey et al. 

(2014b); Lamon 

(1999) 

Connecting 

multiplicative relations 

Fraction as an 

Operator: 

Partitive division/ 

recursive 

multiplication 

 

Fraction as a 

Measure: 

Part-whole fractions 

Equivalent fractions 

 

Fraction as a 

Relation: 

Distribution 

Proto-ratio 

Scaling and 

proportional reasoning 

to determine 

equivalent units and 

proportions. Visual 

awareness of the 

relationship between 

part-part and part-

whole quantities. 

Bruce et al. (2013); 

Confrey et al. 

(2014b); Möhring et 

al. (2015); Noelting 

(1980); Siemon et 

al. (2017) 
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The tasks designed for each key indicator were trialled and the children’s responses 

analysed to determine the tasks’ suitability and whether the key indicators were an authentic 

framework for young children’s fraction development. The analysis of the children’s responses to 

the tasks is presented in the next section. 

4.3 Evaluating the Tasks 

To determine the adequacy and sufficiency of each task for inclusion in the intervention 

program, the children’s responses were analysed using Posner et al.’s (1982) conceptual change 

framework (see Chapter Three, Section 3.7.1), to determine the extent to which children found 

the tasks intelligible, fruitful, and plausible. 

4.3.1 Task Analysis: Determining Intelligibility, Fruitfulness and Plausibility 

While the analysis was completed on all 22 tasks during this pilot, the following examples 

discussed are demonstrative and are used later in this chapter to evaluate the extent to which the 

intervention program supports the conjectured local instruction theory. 

4.3.1.1 Pilot Tasks One and Two 

Across the first three pilot tasks, common insights were observed when analysing the 

suitability of the tasks. Table 4.2 briefly outlines the focus of each task. 

Table 4.2 

A Summary of Pilot Tasks One, Two and Three 

Pilot Task One: 

Introduce the picture book The Doorbell Rang by Pat Hutchins. 

Children are asked to model and draw how they would share 12 cookies between two, four and six 

children, and then 16 cookies between two children. 

Pilot Task Two: 

 

Task 2A: Does each person get a fair share of cookies, in each of the following examples? How do you 

know? 
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Task 2B: Ask students to use counters as a scaffold. 

How many ways can you share 12 cookies fairly? What about 16? 

 

Task 2C: Provide children with cards of the following images: 

 
 

What is different about each shape, and what is the same? (Focus on proportional relationships) 

What do these shapes and their parts have to do with fractions? Are there other ways these shapes can 

be shared fairly? Children may choose to draw representations to describe their thinking. 

Refer back to the non-example above and ask the children to explain what is the same and different, 

how the parts relate to fractions and discuss in relation to the idea of fair share. 

Pilot Task Three: 

Imagine what ONE cookie would look like if we had to share between two, then four then eight people? 

What about a rectangular lemon slice? 

 

The tasks were designed with a focus on explaining how fair shares could be created with 

different shapes and objects, as indicated in Table 4.2. Both discrete collections and singular 

continuous models were discussed. The majority of children who trialled the task could accept 

that partitioning or sharing the same collection between different groups of people meant there 

would be a different number of shares and those shares would differ in size; that is, they 

recognised the relationship between the number of shares affected the size of each share. 

However, this did not extend to recognising the relationship between the number of shares and 

the name of each share. This was evident in Pilot Task One, when asked to share 16 cookies 

(using counters as a representation) between two people. Several children in the first two groups 
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trialling this task typically placed the counters in groups of two (creating eight shares of two 

cookies) rather than in two equal groups (of eight cookies). Children 4 and 7, who answered 

correctly (i.e., two groups of eight), could describe the relationship between the unit fractions 

created in different collections (e.g., 8 is 1-half of 16; six is 1-half of 12) without being distracted 

by the number of cookies that created the unit. However, many children became distracted or 

confused by the number parts created and how many discrete objects created that unit fraction. 

This suggested a lack of understanding and experience with describing quantities in this way. 

This point is elaborated on in the next section. 

Although the children’s interactions with this task suggest a lack of experience with the 

associated fraction ideas, there was some emerging knowledge evident in nine of the 10 children 

who trialled the task. The following examples highlight the emerging understandings. 

The work samples and explanations that captured this difficulty are now presented for 

discussion. In Pilot Task 2B, when asked to visualise if and how each of the 2D shapes could be 

shared fairly in other ways, many children did not seem to be interested in exploring this strategy; 

rather, they indicated a trial-and-error approach by drawing their ideas. Some children even stated 

they could not ‘see’ or visualise the outcome without drawing, suggesting visualisation alone at 

this point was not a fruitful strategy. 

Child 12 created the representation shown in Figure 4.1 and described below. 
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Figure 4.1 

Representation Created by Child 12 

 

Child 12: There are tenths in this [pointing to the oval representation on the left] and there 

are thirteenths [pointing to rectangular shaped image]. I just counted the parts as I drew 

them in. 

The representations by Child 12 suggests there is some regard for the equality of the parts, 

but a focus on the count of individual parts, rather than the relationship between the parts and the 

whole. Despite this, the child still acknowledged that a whole is partitionable and that there is 

some regularity to the parts created, demonstrating they find this idea of dividing different 

wholes intelligible. 

Supporting this analysis was the observation of how Child 12 created the representation. 

In the oval representation of tenths in Figure 4.1, the child started with an initial mid-line 

partition from the bottom of the shape until approximately 2-thirds of the way up. Child 12 then 

started drawing lines from the bottom of the circular shape (in a ‘V’-like shape) until they 

reached the top of the first vertical line. They counted each part they created, and initially 

recognised they had created eight parts, so they drew a horizontal line through the top segment to 

create 10 parts in total. The central ‘Y’ structure of the circular model suggests this child was 
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drawing on their previous experience and familiarity with this model (possibly the common 

image of a circle partitioned into thirds) and assumed that to create tenths, they would need to 

base their additional partitions around this central ‘Y’ framework. 

Similarly, Child 12 drew the outline of the rectangular shape and started partitioning it 

from left to right, seemingly ignoring the size and equality of each part. When they ran out of 

room to continue their partitions, they counted each segment individually and recorded them as 

‘thirteenths’. While this child believed they had created tenths and thirteenths, their explanation 

suggested this was the product of making an iterative and an unintentional number of lines, rather 

than using spatial proportional reasoning to estimate a deliberate number of predetermined 

units—even when a benchmark or familiar representation (such as the circle partitioned into 

thirds) was inferred. 

In the next example from Task 2B, Child 10 demonstrated some similarities to Child 12’s 

thinking in their representation of partitioning a rectangle (see Figure 4.2). 

Figure 4.2 

Representation Created by Child 10 

 

Child 10: The lemon slice is all cut up, to like, fifteenths, I think. 
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Child 10’s representation could be interpreted as having more regularity in the parts 

created than Child 12’s representation above (Figure 4.1); however, there is a misunderstanding 

about the number of parts created and the name given to those parts. Like the previous example, 

Child 10’s representation does indicate that even though using spatial visualisation or spatial 

proportional reasoning as a partitioning strategy may not have been fruitful, the child understands 

that different wholes can be partitioned and, therefore, demonstrates the task is intelligible. 

However, similar to the representation created by Child 12 above (see Figure 4.1), a 

multiplicative foundation of partitioning is not evident in Child 10’s representation. Child 10 was 

observed simply drawing lines vertically from left to right, and then horizontally from top to 

bottom, rather than halving the region or using spatial proportional reasoning to try and achieve 

equal units. Plausibility was also not evident in this child’s response with regard to their strategy 

choice as, when questioned about how they knew they had created fifteenths, they responded, 

‘I’m not really sure’. 

The children’s representations in Figures 4.1 and 4.2 revealed that these two children have 

a wider vocabulary of fractional terms than was evident in other children’s discussions. Using the 

plural terms tenths, thirteenths, and fifteenths (although not always accurately) indicated that 

some of the children had some awareness that the number of parts names the size of the parts—a 

critical idea for understanding partitioning. 

The next example, from Task 2B, also demonstrates the familiarity with area models that 

many children demonstrated in the tasks. Child 13’s explanation accompanies Figure 4.3, which 

was used to identify how the child constructed the representation. 
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Figure 4.3 

Representation Created by Child 13 

 

Child 13: I’ve seen this picture before in my classroom [pointing to the image of thirds]. 

Five cuts gets you five shares [referring to the image of the triangle]. 

This child’s response indicates that they have an emerging understanding of the 

relationship between the number of parts and the name of the parts, even though their description 

of the partitions and number of parts was incorrect. A consistent understanding between the 

equality of parts in the different shapes was not evident, and, again, the child was observed 

partitioning the triangle from left to right, indicating an iterating, or counting approach rather 

than considering how they needed to partitioning the shape to achieve equal parts. However, the 

child still found the task intelligible, demonstrated by their willingness to partition such wholes, 

and it is quite plausible that the number of partitions or lines drawn can represent the number of 

parts—although that is only true for the circular model above. 
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4.3.1.2 Pilot Task 11: Hidden Fractions 

The next example of the tasks analysis is from Pilot Task 11: Hidden Fractions. Table 4.3 

outlines the focus of this task. 

Table 4.3 

Pilot Task 11 Focus 

Pilot Task 11: Hidden Fractions 

Problem Context: Part of the blue rectangle is hidden under the orange shape. 

 

 
 

What fraction of the blue rectangle could be hiding? Explain your thinking. 

 

 

The children were presented with the image in Table 4.3, printed on an A4 sheet of paper, 

and told that it was a picture of a blue rectangle that was partly hidden underneath an orange 

square. The children were asked to consider the possible size of the blue rectangle and what 

fraction of it could be hiding. The children were asked to explain their thinking. 

This task is deliberately open-ended as it gives children the opportunity to explore their 

thinking in terms of their previous fraction experiences and apply that knowledge to the current 

context. Four of the nine children who experienced this task demonstrated intelligibility, as 

shown in the following explanations they gave in response to this task. 

Child 14: I think maybe a half? If you have this bit [pointed to visible blue section], the 

same underneath, it makes half and half. 



164 

In this case, the child did not draw the missing part (half) that they were explaining; the 

child used their finger to outline the boundary of the fraction of half on the orange square, 

suggesting they found this task intelligible in noting the possibility of an unknown fractional part 

being hidden. Their explanation of the task indicates that they can visualise fractional parts when 

a whole is unknown, also suggesting this strategy provides a plausible outcome or justification 

for a half being the hidden fractional part. 

Child 22 described a multi-step visualisation process in their explanation: ‘If I flipped it 

[the blue section] over, and then over, it would be three parts. So, thirds, but two are hidden’ (see 

Figure 4.4). 

Figure 4.4 

Child 22’s Work Sample 

 

Child 22 used their hand to indicate how they imagined the iteration of the blue section 

(flipping their palm over as they described flipping the parts) to create two additional thirds. The 

multi-step nature of their explanation—flipping ‘over and over’ with an accompanying gesture—

indicates they engaged with spatial visualisation. They also used the word ‘same’ as they pointed 
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to each third (where the proportions drawn were relatively equal), suggesting they found this 

context plausible, that is, that 2-thirds of the blue rectangle can in fact ‘fit’ underneath the orange 

square. This explanation indicates that via an area model, the child is engaging with the ideas of 

composite units and possibly the times-as-many ideas necessary for conceptualising fraction as a 

measure and fraction as an operator meanings (Confrey et al., 2014b). This provides evidence 

that even with little experience of these ideas, the task is achievable for children of this age. 

The next example shows the cognitive conflict Child 17 experienced when asked what 

fraction of the blue rectangle could be hiding. 

Child 17: You don’t know, ‘cos it’s hidden [turned the stimulus paper over, suggesting 

they were checking for clues on the other side of the paper]. 

After considering the problem for a few moments, Child 17 stated, ‘if I used my mind, I 

could imagine half and half’ (see Figure 4.5). 

Figure 4.5 

Child 17’s Work Sample 
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In this representation, Child 17 initially used gesture to describe their explanation of the 

hidden part by flipping their hand over (from palm down to palm up) after drawing the proposed 

hidden part. This child spent some time flipping the paper back and forth, appearing to ‘search’ 

for the hidden part, before developing an explanation that suggested they were able to visualise a 

missing part. This behaviour may indicate that the child was not entirely comfortable or familiar 

with using visualisation as an initial strategy, which suggested a probable lack of experience with 

utilising spatial reasoning skills, especially when exploring fractions. This also suggested that 

although the child may have found the task to be intelligible, the strategy of using spatial 

visualisation was not necessarily deemed fruitful at the beginning of this task. However, the 

search for meaning and the conclusion that half of the blue rectangle could be hidden within this 

representation that was proportionally accurate suggests this child believed the context was 

plausible and that the use of spatial visualisation was, in fact, a fruitful strategy. 

The next example demonstrating the intelligibility and fruitfulness of this task is quite 

different from the previous examples. After looking at the stimulus for a few seconds, Child 16 

asked, ‘does it have to be in a straight line?’ I responded by stating they could represent and 

explain their thinking in any way they liked. Child 16 proceeded to produce the representation 

shown in Figure 4.6. 
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Figure 4.6 

Child 16’s Work Sample 

 

Child 16: You could have five parts hiding if the paper was shaped like this [see Figure 

4.6]. I don’t know how to call it a fraction [sic], but there could be other parts like that 

hidden. 

Child 16 demonstrated a complex iteration of the blue unit fraction: an understanding of 

the equality of the parts as well as the idea that the parts do not need to be connected in regular 

geometric formation to be considered parts of a whole. However, this thinking and explanation 

could suggest a misunderstanding of the task in terms of considering the blue region as a single 

whole, rather than the units within a continuous region or area. Although the child could not 

name the fractional parts as fifths, they did run their hand in one continuous motion over the five 

parts and stated ‘the strip’ of paper, indicating they did find their representation plausible as a 

continuous whole, just in a different arrangement. This suggested that spatial visualisation was a 
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fruitful strategy in exploring the many-as-one and composite unit ideas for the fraction as a 

measure meaning. 

The above examples demonstrate that children were prepared to consider that there were 

multiple possibilities to this problem while working in small groups and comparing their answers. 

Further, fruitfulness was evident in these answers as the emphasis was on visualisation. These 

children chose to communicate their internal representations and mental process through drawing 

on the stimulus provided, using gesture, or a combination of both. The use of spatial visualisation 

was evident in the above examples, demonstrating that children could see a purpose for this 

spatial ability when solving fraction problems, even if it took some time, such as in Child 17’s 

case. 

4.3.1.3 Pilot Task 13: The French Fry Task 

Pilot Task 13: The French fry Task was adapted from Tzur’s (2019) version of this 

problem. Table 4.5 summarises the context of the task. 

Table 4.5 

Tzur’s (2019) Modified French Fry Task 

Pilot Task 13: The French Fry Task 

Mum bought home Maccas for the dinosaurs for tea one night—lucky dinosaurs! But when she got 

home, they had only put in a small pack of fries to share between everyone! 

 

Children will be given different lengths of yellow tape to represent a French fry. 

 

Task 13A: Can you share this fry equally between two dinosaurs? 

Attach to the child’s partitioning operations (observable through folding—child may fold initially). 

Tell me about your strategy. Why did you fold the paper into two parts? What is the name of each part 

you created? How can you convince me that they are halves? 

 

Task 13B: Share one fry equally among three people. Promote the child’s splitting operations through 

spatial visualisation of parts. 

Questions: Have you achieved thirds? Why/why not? What do you notice about thirds here in relation 

to halves in your previous task? 
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Task 13C: Share one fry equally among five people. 

Within task questions: I see you created unequal shares. How can you ensure fair shares? Before you 

make a guess about the size of the share among five people, look at the size of the shares when we 

shared among three people. Will sharing between five result in bigger or smaller shares? Describe how 

you know. 

 

This task was modified from Tzur’s (2019) original task, which anticipated an additive, 

iterative approach to partitioning. However, the redeveloped version was more complex than 

anticipated. Of the 10 children who trialled the task, only three appeared to be aware of the 

relationship between the number of parts and the size of them when considering three and five 

shares. All of the children were able to fold in half and share the paper fry between two children, 

but seven of the children across the two different groups appeared to use a trial-and-error strategy 

to partition into three, four and five parts. They demonstrated this by starting with one end of the 

‘fry’ and iteratively folding the strip over itself, rather than considering the parts in relation to 

each other and the whole. The children created many more parts than required and justified this 

by counting the number of parts created and saying that is how many dinosaurs they could feed. 

Further, nine of the 10 children who trialled this task wanted to discuss the regularity of 

the strip of paper used. For example, Child 23 stated, ‘a real fry would have slanted ends’, 

referring to how a French fry often has a diagonal ‘end’, which would affect the equality of the 

parts. This shows an awareness of the fair share idea in relation to the parts; however, this task 

counting approach rather than partitioning, possibly due to the difficulty with working with thirds 

and fifths. The nature of the paper strip in this task seemed to contribute to the trial-and-error 

approach taken by children, rather than the visualising and partitioning emphasis intended in this 

task. On this basis, this task was omitted from the intervention program. 
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4.3.1.4 Pilot Task 20: Bags of Wool 

There was only one task, Pilot Task 20: Bags of Wool, for which the nominal quota of 

two children (from the sample of 10 children that trialled the task) was not initially reached. 

Table 4.4 outlines the focus of this task. 

Table 4.4 

Pilot Task 20 Focus 

Pilot Task 20: Bags of Wool 

Do you all know the nursery rhyme ‘Ba Black Sheep’? Let’s sing it together! 

 

If the sheep produced three bags of wool—one for the master, one for the dame, and one for the little 

boy—how much wool would each person receive if they had to share three bags between five people? 

Can you estimate/ visualise or draw approximately what each share will be? 

 

Only one child found this task intelligible and the idea of sharing in this context plausible. 

Child 5’s representation of this problem is presented in Figure 4.7 and discussed. 

Figure 4.7 

Representation Created by Child 5  
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While I was not expecting the children to name the share as 3-fifths per se, I was 

examining whether the children could work with such a problem and represent their thinking for 

this task—which was notably complex for this age group. Although Child 5 demonstrated the 

understanding that multiple continuous wholes can be shared fairly (illustrated by an attempt to 

partition some of the bags of wool in what appears to be half), they were not convinced they had 

a sufficient strategy for completing the task. It is evident in their work sample that Child 5 was 

confused about the quantities to be shared and by how many, as they have predominately drawn 

three bags of wool for each of the five people, rather than three bags to be shared between five 

people. 

This task was a modified version from Siemon et al. (2017), which in its original form, 

was the basis of a many-to-one context: ‘Each sheep produces three bags of wool. What if there 

were five sheep—how many bags of wool?’ After observing children’s difficulties with my 

version, it was reintroduced to the children as the original. The original version provided a basis 

to develop children’s multiplicative knowledge by asking children to consider and name the 

quantities using different referent units (Wilson et al., 2012). That is, naming three bags per 

person (many-to-one idea) supports early ratio understanding, while naming one share as three 

bags of wool (many-as-one) promotes an understanding of rational number as a quantity that can 

be measured in relation to a whole (Wilson et al., 2012). This task was based on whole number 

contexts, which is consistent with Confrey et al.’s (2014b) theory for rational number knowledge 

whereby the contexts for ‘dealing, splitting, and distributing multiple wholes to sharers’ (p. 725) 

provides a multiplicative foundation of the target understanding of partitioning and unitising for 

fractions. This task supports the development of the last key indicator of the conjectured local 

instruction theory, therefore an additional group of five children piloted the redeveloped version 

of this problem. The representation created by Child 11 (see Figure 4.8) illustrates that despite 
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wanting to represent how many bags of wool each person would receive (which was outside the 

requirements of the task), they were able to identify that for five sheep there would be 15 bags of 

wool in total. Intelligibility was, therefore, demonstrated by identifying the outcome of five sheep 

producing three bags of wool, as well as this child’s understanding that this collection can also be 

represented as five bags of wool per person—when also incorporating the three characters of the 

nursery rhyme into their representation. 

Figure 4.8 

Representation Created by Child 11’s of the Redesigned ‘Bags of Wool’ Problem 

 

Fruitfulness was demonstrated in the multiple components of the representations Child 11 

produced. Although Child 11 initially drew each bag of wool and counted individually to 

determine a total of 15, and then shared each bag one by one to the three characters in the nursery 

rhyme, recounting each character’s collection multiple times to determine they each received five 

bags each. These early distribution strategies imply Child 11 saw purpose in engaging with this 

form of representation for exploring division and distribution ideas. Three other children also 

produced representations that indicated they too found the task intelligible and their 
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representation strategy of distribution fruitful, by drawing the five repeated units of three bags of 

wool. 

4.3.2 Summary of Task Evaluation 

Overall, the children found the tasks to be more intelligible than fruitful or plausible 

across the suite of tasks. This is not surprising in that to consider a concept, strategy, or idea 

within a task fruitful means they are using their learned knowledge and strategies to solve 

problems previously unsolvable (Hewson & Thorley, 1989). The children have had little if any 

experience with solving fraction problems like those presented in this study, and as the children 

in this cycle were not experiencing the complete intervention program, they did not have the 

opportunity to explore these ideas in a sustained manner. Despite this context, the pilot provided 

valuable information about how and when the specific concepts and strategies in each task may 

be used in the intervention. 

On the basis of the conceptual change framework analysis, several tasks were either 

omitted or modified for the final intervention program (see Table 4.6). 

Table 4.6 

Summary of Changes Made to Tasks for the Intervention Program 

Pilot task 

number 

Children’s engagement Reason for modification or omission 

1 Sharing 

Cookies 

The children tended to become distracted 

by their drawings rather than focus on 

visualising the outcome of creating equal 

shares. 

This task was modified slightly to 

include opportunities for children to fold 

different paper-based regions before 

drawing, to help support the 

visualisation and spatial proportional 

reasoning processes. The focus was on 

discrete collections only; however, it 

was modified to include mixed fractions 

(eight cookies between 12 people; see 

Appendix C). 
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8 Who ate 

more 

pizza?  

Although this task was trialled by the 

greatest number of children (n=11), only 

four found the idea of equivalence 

intelligible and only three found this idea 

fruitful. Children were also reluctant to 

visualise parts before representing 

pictorially, which resulted in a more trial-

and-error approach rather than any 

systematic reasoning of the concepts. 

This type of problem would be better 

suited after partitioning and unitising 

have been established. Children do have 

other opportunities to explore 

equivalence in paper-folding tasks, 

geometric shape task and other cookie 

sharing and partitioning tasks. This task 

was therefore omitted. 

11 Hidden 

Fractions 

This task elicited lots of spatial language 

and three forms of gesture in the 

children’s responses. However, it 

highlighted that if children do not have 

experience with or understanding of 

different representations of fractions, 

then determining an unknown fractional 

part is very challenging. 

This task is similar in conceptual foci 

and spatial skills to several other tasks 

(e.g., Tasks 7, 14, 17). This task only 

took each group approximately 10 

minutes to complete and was not as 

hands on or exploratory as the other 

three similar tasks. This task was omitted 

from the program but kept as a possible 

warm-up activity. 

12 Chocolate 

Ratios  

Three of nine children found this idea of 

distribution as intelligible, and two were 

able to describe the fruitfulness of the 

concept and describe the ratio of 1:2. 

Many children were more concerned with 

cutting up each block so that they ‘looked 

the same’, rather than considering the 

possible ratio of small and large blocks. 

This was deemed an important task to 

include as it challenged the children’s 

ideas about the measure and part-whole 

concept to a for each idea. It was 

determined to be best used as a warm-up 

task rather than the main body of a 

whole lesson, to introduce children to the 

ideas of fraction as a relation. 

13 French Fry 

Task  

Only one-third of the children who 

trialled this task found it intelligible. 

Many used a guess-and-check approach 

using iteration rather than splitting to 

determine the required share. 

The Cuisenaire task (Task 21) offered 

more scaffolding to support this idea for 

this age group. Therefore, this task was 

omitted from the intervention program. 

14 Finding 

Wholes  

The children did not seem to understand 

the context of the task as well as 

expected. The task also promoted a part-

whole understanding more than I 

anticipated, rather than the connection 

between times as many, 1-nth-of... and 

composite units that I intended. 

The task was similar to Pilot Task 17: 

Animal Proportions, which seemed to 

evoke a connection between the ideas 

better and provided a more engaging 

context for children to explore. On this 

basis, this task was omitted. 

18 Plant 

Growth 

Rates 

This task drew far more on children’s 

number fact knowledge than it did on 

their spatial reasoning skills. Half of the 

children who trialled this task were able 

to answer correctly almost instantly 

without the use of materials and or 

Although this task did not elicit spatial 

reasoning skills per se, this task was 

included in the pre- and post-assessment, 

rather than the intervention program, for 

two reasons. The first was to explore 

children’s use of representations and 
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representations. Those who could not, did 

not recognise it as a rate problem, and 

simple answered that Plant B was 

growing faster, which indicates absolute 

rather than proportional thinking. 

whether this included a spatial 

component, and the second was to 

determine whether children responded 

differently to the question in the post-

test, after exposure to a range of different 

meanings of fractions and spatial 

reasoning exposure. 

20 Bags of 

Wool  

Only one child attempted a representation 

of the original problem. 

This task was redesigned during the pilot 

and included in the pre- and post-

assessment (see Section 4.3.1.4). 

22 Dinosaur 

versus 

Human  

The task was similar to Pilot Task 17: 

Animal Proportions; however, the lack of 

concrete materials made this task more 

challenging than anticipated. Many 

children did not necessarily pay attention 

to the mathematical nature of the problem 

(the relationship between a human and 

dinosaur sizes), preferring to spend more 

time drawing and finessing their 

drawings of a particular creature. 

Given the similarity in conceptual focus 

this task had with Task 17 and the fact it 

seemed more challenging and time 

consuming (given the focus on drawing), 

this task was omitted. 

 

4.4 Revised Local Instruction Theory  

The purpose of trialling the tasks was not only to determine their suitability for the 

intervention program, but to examine whether the key indicators of the local instruction theory 

are appropriate learning goals for this age group. Further examination of the children’s responses 

to the suite of tasks in this pilot suggested that some of the key indicators needed to be revised. 

This was to reflect the capabilities the children demonstrated in the pilot, and to better describe 

how the learning was anticipated to develop over time in the teaching experiments.  

Table 4.7 presents the revised local instruction theory (version two).  
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Table 4.7 

The Revised Local Instruction Theory (Version Two) 

Key indicators  Characteristics of tasks 

Primary Fraction Foci Spatial Reasoning Approach  

Creating and justifying 

equal shares 

Fraction as an Operator: 

Fair shares 

Doubling/ halving 

1-nth-of...... 

Partitive division/ recursive 

multiplication 

Geometric symmetries 

 

Fraction as a Measure: 

Many-as-one 

Measure 

Composite units 

Visual perception of equal 

groups (drawing on subitising). 

Equality of parts regardless of 

model (i.e., equal parts for 

discrete collections and 

continuous models less than and 

greater than 1). Visual awareness 

of structure of parts through 

geometric regularities—shape, 

orientation, symmetry. Spatial 

visualising transformations of 

parts and shapes. 

Reinitialising the unit Fraction as a Measure: 

Composite unit 

Unit fractions 

Equivalent fractions 

 

Fraction as an Operator: 

Doubling/halving 

Partitive division/ recursive 

multiplication 

Visualising multiple ways to 

create composite and unit 

fractions through unitising. 

Visualising magnitude relations 

between parts and spatial 

structures for creating and 

reinitialising discrete sets of 

units. 

Recognising 

proportional 

equivalence  

Fraction as a Relation: 

Distribution 

 

Fraction as an Operator: 

Doubling and Halving 

Times-as-many 

1-nth-of...… 

Scaling 

 

Fraction as Measure: 

Composite units 

Unit fractions 

Equivalent fractions 

Visualising proportional 

relationships between fractions 

created, of same and different 

wholes. 
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Connecting 

multiplicative relations 

Fraction as a Relation: 

Many-to-one 

Distribution 

Proto-ratio 

 

Fraction as an Operator: 

Partitive division/ recursive 

multiplication 

Times-as-many 

1-nth-of...… 

 

Fraction as a Measure: 

Part-whole fractions 

Equivalent fractions 

Visual and structural awareness 

of number relations between 

part-part and part-whole 

quantities. 

 

Each of the key indicators are now discussed and their place in the revised local 

instruction theory justified. 

4.4.1 Key Indicator: Creating and Justifying Equal Shares 

To recap from Chapter Three, the design of the tasks was informed by Confrey’s (1994) 

notion of splitting: ‘in its most primitive form, splitting can be defined as an action of creating 

simultaneously multiple versions of an original, an action often represented by a tree diagram’ 

(Confrey, 1994, p. 292). Confrey argued that young children’s rational number reasoning (which 

includes whole number and fraction ideas) develop from recursive acts of splitting that develops 

in parallel to their ‘counting worlds’ (Norton & Wilkins, 2013, p. 8). That is, splitting involves 

paying attention to the magnitude of the splits often through doubling and halving that evoke 

symmetry, similarity and proportional awareness between the quantities generated, not the 

counting of parts or collections. 

The children demonstrated a competency with both continuous and discrete models; 

however, the discrete sets typically evoked counting strategies or a tendency to confuse the 
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number of objects and the relationship to the set—most likely due to the children’s lack of 

experiences with the fraction ideas. This lack of experience suggested that for the target age 

group, the starting point for the local instruction theory is the development of the fair sharing idea 

and the relationship between continuous and discrete contexts. The first and second key 

indicators of understanding for this age group was to focus on equal parts of discrete collection 

and then equal parts for continuous whole, respectively. In the analysis of the pilot tasks, it was 

clear that children are aware of what fair shares and equal parts mean in the context of both 

continuous and discrete, but due to their lack of experience with fractions, children tended to rely 

on their whole number knowledge in the form of counting parts as their primary strategy. Given 

there is a focus on spatial reasoning in this study, combining the first two key indicators of 

exploring fair shares simultaneously in discrete and continuous context provides a greater 

foundation for developing partitioning (based on splitting) through spatial visualisation and 

comparing the magnitude of the shares created. This key indicator of creating and justifying 

equal parts was the major focus of the first four lessons in the intervention program, described in 

Table 4.8. A full description of each lesson of the intervention program is in Appendix C. 
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Table 4.8 

Overview of the Lessons Related to Key Indicator: Creating and Justifying Equal Shares 

Lesson 

 

Fraction Foci  Spatial Reasoning Approach  

Fraction as a 

Relation 

Fraction as an 

Operator 

Fraction as a 

Measure 

Spatial 

Construct 

Context of Lessons  

Lesson 1: 

Sharing 

Cookies 

 Fair shares 

Doubling/ Halving 

Partitive division 

Many-as-one 

Measure 

Spatial 

visualisation 

Visualising partitive division/recursive 

multiplication between parts/shares and 

whole. Conceiving the change in size of 

share (discrete and continuous) as more 

shares are required. 

Visualising sharing outcomes involving 

mixed numbers. 

Lesson 2: 

What is a 

fair share? 

 Fair shares 

Doubling/ Halving 

Partitive division/ 

Recursive 

multiplication 

Unit fractions 

Composite 

units  

Spatial 

visualisation 

To partition small sets (<20) and 

continuous models to develop awareness 

of the size of the parts and number of 

parts created. 

To build visual recognition and 

awareness of the form, pattern, and 

regularity of many-as-one parts forming 

a unit measure. 

To visualise the act of partitioning to 

create other partitioning (splits) to 

conceptualise fraction measures. 

 

Lesson 3: 

Visualising 

 Partitive division/ 

Recursive 

multiplication 

Many-as-one 

Composite 

units 

Spatial 

proportional 

reasoning  

Exploring proportional relationships 

between different shapes that have been 

partitioned into various fractions (i.e., 
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the share of 

a cookie 

Geometric symmetries 

Partitioning a whole 

Similarity 

quarters, halves, thirds). Reasoning how 

they represent the same fractions in 

relation to their whole. 

Lesson 4: 

Sharing 

divisible 

collections 

 Fair share 

Partitive division/ 

recursive 

multiplication 

Times-as-many 

Many-as-one 

Composite 

units 

Unit fractions 

Spatial 

visualisation  

Visualising the relationship/action of 

partitive division and recursive 

multiplication between sets of objects. 

Naming and renaming the shares to build 

a connection between times-as-many and 

many-as-one shares. 
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4.4.2 Key Indicator: Reinitialising the Unit 

The second key indicator for the revised local instruction theory was largely unchanged. 

This included a focus on describing relations between fraction unit size and the whole and 

exploring multiple ways of naming a whole as a set of units. Reinitialising to the whole is a term 

used to describe how a repeated action—such as repeated partitioning (e.g., splitting)—preserves 

the relationship between an increased number of parts and their decreasing size, underpinned by 

composite unit and recursive multiplication ideas. It is essentially the unitising concept that was 

described in Chapter Two. 

During the lessons associated with this key indicator, the children indicated an early 

understanding between unit fractions and composite units from the fraction as a measure 

meaning. They did so in conjunction with visualising how parts and the whole can be operated on 

to generate different quantities. For instance, in the pattern block activities the children described 

different unit fraction, composite unit, and equivalent fraction relationships between the shapes 

(e.g., equilateral triangles as sixths, and a hexagon as ‘1’). Moreover, the children demonstrated 

an awareness (with varying levels of accuracy) that the number of parts names the part, such as 

descriptions of fifths, thirteenths, and tenths as an example, in the children’s pictorial 

representations. The lessons in Table 4.9 have been sequenced to support this key indicator. 
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Table 4.9 

Overview of the Lessons Related to Key Indicator: Reinitialising the Unit 

Lesson 

 

Fraction Foci Spatial Reasoning Approach  

Fraction as 

a Relation 

Fraction as an 

Operator 

Fraction as a 

Measure 

Spatial 

Construct 

Context of Lessons  

Lesson 5: 

Cookie fraction 

estimation 

 Doubling/ halving 

Times-as-many 

Composite 

units 

Unit fractions 

Spatial 

visualisation   

Visualising the magnitude of each part 

in relation to a whole and the total 

quantity created (equal to and greater 

than one) through composite fractions. 

Lesson 6: 

Tablecloths 

Many-to-

one 

Distribution  

Partitive Division/ 

Recursive 

multiplication 

Doubling/ halving 

Geometric 

symmetries 

Similarity 

Partitioning a 

whole 

Many-as-one 

Composite 

units 

Equivalent 

fractions 

Spatial 

visualisation 

Spatial 

proportional 

reasoning  

Exploring the process of multiple 

mental folding (spatial visualisation) 

and rotating parts of the tablecloth to 

determine proportions of colour, 

comparing regions of incongruent and 

congruent wholes. Noticing 

distributions of composite units and 

comparing part-part and part-whole 

relationships. 

Lesson 7: 

Pattern block 

fractions 

Distribution  

 

Doubling/ halving 

Geometric 

symmetries 

Similarity 

Times-as-many 

Scaling 

Partitioning a 

whole 

Many-as-one 

Composite 

units 

Equivalent 

fractions 

Spatial 

visualisation 

Spatial 

proportional 

reasoning  

Similar to Lesson 6, however, children 

will use pattern blocks to manipulate 

and create fractional parts. 

A focus on operating on children’s 

pattern block construction and 

establishing the relational proportions 

between the representations (e.g., what 

would it look like if it were only half 
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the size? Double the size? Three 

times? Etc.). 
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4.4.3 Key Indicator: Recognising Proportional Equivalence 

The original third indicator in the conjectured local instruction theory proposed splitting 

as a mental act through visualising the partitive division and recursive multiplication ideas as the 

intended learning goal. However, the ability to visualise the act of partitioning was critical to the 

children justifying equal shares in both discrete and continuous contexts, and to understanding 

how to name and rename fractions in the previous two key indicators. The tasks that were trialled 

in this pilot relating to mapping contexts revealed that the children were capable of developing an 

early appreciation of proportional equivalence (albeit with limited exposure), thus the key 

indicator was revised to reflect this potential.   

The children were able to recognise proportional equivalence through visualising the 

process and outcome of partitioning similar and unlike wholes. It builds on from the previous key 

indicator were children explored the multiple ways in which a whole can be partitioned and 

named, to describing how different wholes have been partitioned. For example, the associated 

lessons enabled the children to experiment with comparing fractions of pathways between their 

pictorial representations of maps and the larger, carpet maps. Specifically, spatial proportional 

reasoning was a key feature of the tasks designed to explore how to compare different measures 

that represented the same fraction idea (e.g., half of the pathway on a physical map is equal to 

half of the pathways on a smaller, scaled version). Table 4.10 describes the focus of these lessons 

in the intervention program for this key indicator in detail. 
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Table 4.10 

Overview of the Lessons Related to Key Indicator: Recognising Proportional Equivalence 

Lesson Fraction foci Spatial Reasoning Approach  

Fraction as a 

Relation 

Fraction as an 

Operator 

Fraction as a 

Measure 

Spatial 

Construct 

Context of Lessons 

Lessons 8–10: 

The dinosaurs 

have escaped 

(Parts 1, 2 and 

3) 

Distribution,  

Proto ratio, 

Equi-

partitioning 

multiple 

wholes 

Doubling/ 

halving 

Scaling 

Times-as-many 

Geometric 

symmetries, 

Similarity  

Composite 

units 

Unit fractions 

Equivalent 

fractions  

Spatial 

proportional 

reasoning  

Estimating fractional lengths of paths 

on carpet maps through benchmarking 

of half/repeated halving. Paths are not 

straight, so children need to engage in 

spatial visualisation and mental 

rotation to create such benchmarks on 

the length of multiple paths and use 

spatial proportional reasoning to 

compare measures within a single 

pathway/region. 

Creating scaled representations of 

fractional paths, naming and 

describing the distributions of the 

measures: half of …path is greater than 

half of another path. 
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4.4.4 Key Indicator: Connecting Multiplicative Relations 

The final key indicator is unchanged from the conjectured local instruction theory first 

introduced in Chapter Three. The aim for learning here is that children develop an appreciation 

for the multiplicative relations of fractions and simple ratio. Pilot tasks 12, 16, 18 and 20 all 

focused on exploring simple ratio ideas, which the majority of the children found quite 

challenging. A small number of children (n=5) were able to comment on the part-part 

relationship between the quantities dealt with in each task (such as ratio of chocolate bars, 

dinosaur, and human steps). Furthermore, some were also able to move flexibly between the 

many-to-one and many-as-one ideas in the Bags of Wool task, which is complex for this age 

group. These findings show that it is possible for children 6 – 7 years of age to work with simple 

ratio and early multiplicative relations. For the intervention program, the focus on ‘seeing’ and 

‘appreciating’ the connection between fraction and ratio is promoted through Lessons 11–13, 

where part-part and part-whole quantities are explored simultaneously between continuous and 

discrete contexts (see Table 4.11). 
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Table 4.11 

Overview of the Lessons Related to Key Indicator: Connecting Multiplicative Relations 

Lesson Fraction foci Spatial Reasoning Approach  

Fraction as a 

Relation 

Fraction as an 

Operator 

Fraction as a 

Measure 

Spatial 

Construct  

Context of Lessons  

Lesson 11: How 

many steps? 

Many-to-one 

Distribution 

Proto-ratio  

Doubling/ 

Halving  

Partitive 

division/ 

recursive 

multiplication 

Times-as-many 

1-nth-of… 

Scaling   

Composite 

Units 

Part whole 

fractions 

Equivalent 

fractions    

Spatial 

visualisation  

Children explore discrete part-part 

relations of footsteps (i.e., dinosaur: 

human quantities). Focus is on 

visualising the complexity of the 

many-to-one relationship in the outset 

(i.e., for each Dino step, we take many 

steps to travel the same distance). 

Lesson 12: 

Animal 

Proportions 

Distribution 

Proto-ratio 

Doubling / 

halving 

Times as Many 

1-nth-of... 

Composite units 

Unit fractions 

Part-whole 

Spatial 

proportional 

reasoning 

Exploring and preserving continuous 

proportional quantities and relationship 

when replicated (enlarged/shrunk). 

Lesson 13: 

Feeding 

Dinosaurs 

Many-to-one 

Distribution 

Proto-ratio 

Partitive 

division/ 

recursive 

multiplication 

Scaling 

1-nth-of...  

 Spatial 

visualisation 

Children explore discrete part-part 

relations of pies: dinosaurs. 
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4.5 Additional Insights into Children’s Use of Representations 

In addition to examining the intelligibility, plausibility, and fruitfulness of all 22 tasks, I 

conducted thematic analysis on the pilot data for two purposes. The first was to test the existing 

codebook I had generated in the study’s preparation phase to determine if the codes and code 

categories were suitable for analysing the data and generating preliminary themes, in the form of 

examining the relationship between the fraction ideas, representations and spatial constructs 

proposed in the key indicators. The second was to determine if there were any new insights that 

emerged during the trial of the tasks that warranted the inclusion of new codes or categories to 

the codebook to enable all aspects of the of the children’s mathematical behaviour during the 

tasks to be effectively analysed. Two key insights emerged as important factors in children’s 

development and communication of fraction ideas: use of spatial language and use of gesture. 

4.5.1 Children’s Use of Spatial Language 

In the analysis of each of the pilot tasks, it became evident that children were using 

specific terms that were spatial in nature; that is, children would refer to terms that were dynamic 

indicating force or movement (Landau, 2017), such as flipping, moving, and turning, as they 

described creating fractional parts. Other terms indicated reference to the characteristics of 

objects and the spatial relationships identified between objects and their parts, or between 

different objects (Landau & Jackendoff, 1993). This included terms like side, back, front, edge, 

and corner, when children describe parts or characteristics of objects, and beside, next to, under, 

and between when referring to relationships among parts or objects. Drawing on literature (see 

Cannon et al., 2007; Casasola et al., 2020; Gentner & Bowerman, 2009), I identified three 

categories by which to describe these spatial language terms: spatial transformations, spatial 

dimensions, and spatial prepositions. Each term will now be defined and examples of how each 
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of these terms infer children’s thinking will be provided. In addition, this section will provide 

examples of how multiple types of spatial language can be used simultaneously in the same 

activity. 

4.5.1.1 Spatial Transformations 

Spatial transformations are verbs that describe the movement of an object through space 

(Chatterjee, 2008). These terms are used to indicate the mental transformations they performed, 

such as, turn, spin, slide, push, move, rotate, and flip when describing how they determined the 

correct pairs. In the analysis, it became apparent that those children who were successful at 

identifying all or at least some of the matching pairs in Pilot Task 4: How much of the cookie did 

the mouse eat? also demonstrated a greater spatial vocabulary than those who were unsuccessful. 

This was evidenced by the way the children were able to describe the reasons why some parts 

could simply not match with others. Children typically described a ‘folding’ or ‘flipping’ action 

to determine the matching pairs or referred to moving a part of the cookie by ‘turning’, ‘spinning’ 

and ‘sliding’. 

Similarly, in the first part of Pilot Task 2: What is a fair share? the children were asked to 

consider a range of different sharing contexts (both discrete and continuous models) and explain 

whether they thought they had been partitioned into fair shares (see Figure 4.9). 

Figure 4.9 

Stimulus Provided for Pilot Task Two: What is a Fair Share? 

             

Seven children described how they imagined ‘moving’, ‘spinning’ or ‘stacking’ parts of 

the cookie to determine whether the share was fair or not in the continuous examples. Further, 
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Pilot Task 7: Pattern block fractions also elicited children’s use of spatial transformations. Here, 

the children were invited to explore making different fractional representations using the pattern 

blocks. Child 6’s representation of ‘quarters’ (see Figure 4.10) and explanation provide a typical 

example of the interaction between the various tools of representation such as concrete material 

and spatial language in this activity. 

Figure 4.10 

Recreation of the Pattern Block Representation by Child 6 

 

This model is incomplete if it were to represent quarters as the child intended (i.e., 1-

twelfth in the form of a green triangle is absent). Although an incomplete representation, Child 

6’s explanation referred to using one of the trapeziums to ‘fold over sideways’ (left) to get two of 

the quarters and continued to ‘fit’ the rest of the shapes around this to achieve 4-quarters. The use 
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of spatial transformational vocabulary helped this child explain how they conceptualised quarters 

in this context, using shapes that could (but did not in this case) create equivalent parts. 

In all of these examples, the use of spatial transformation terms helped to determine how 

the child engaged in spatial reasoning constructs. In these examples, spatial visualisation was 

inferred because the terms describe some kind of movement the children were imagining. 

4.5.1.2 Spatial Dimensions 

The second category of spatial language I identified was spatial dimensions. These are 

terms that refer to the geometric properties of an object or space (Casasanto & Bottini, 2013). 

Terms such as short, big, curve, straight edges, corners, point, wide, narrow, skinny, and fat, were 

prevalent in the children’s responses when reasoning about the size of fractional parts. For 

example, Pilot Task 13: French Fries (adapted from Tzur, 2019) required children to take strips 

of paper that represented a French fry to create different numbers of fair shares (e.g., share the 

French fry between three people). Nine of the 10 children who trialled this task not only referred 

to the varying lengths of the ‘French fry’ and its parts but also wanted to discuss the regularity of 

the strip of paper used. That is, a ‘real’ French fry would have ‘diagonal’ or ‘slanted’ or be 

described as ‘bendy’ and ‘curved’ with reference to its boundary. The relevance of these 

descriptions is that the children noted the geometric properties of a real French fry would 

ultimately affect the equality of the parts; therefore, the children’s use of spatial dimensions 

appeared to be connected to their understanding about the equality of the parts in question. 

In the next example, several children used spatial dimensional terms to reveal their 

thinking about a fraction as a measure problem. Task 10: The dinosaurs have escaped! (Part 3) 

required children to locate the position of each dinosaur on a large carpet mat, based on a set of 

instructions created by the researcher. For example, one of the instructions read, ‘a dinosaur was 

spotted halfway along the wooden fence near the railway line’. The children not only had to 
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interpret the spatial directions given to decode the carpet mat they were given but also utilise 

spatial proportional reasoning to determine where halfway was along the nominated fence. Figure 

4.11 represents how three children interpreted this task and how they used spatial dimensional 

terms to explain their thinking. 

Figure 4.11 

Recreation of Children 15, 19 and 13’s Placement of the Dinosaur 

 

 

Representation of Child 15’s hand placement 

Children 15, 19 and 13 all stated that the dinosaur had been placed halfway along the 

fence line. When I asked the children to explain to me why this dinosaur represents walking 

halfway along the fence line, Child 15 placed their hand perpendicular to the mat (indicated by 

the pink arrow) and stated that this point was the middle of the fence, so the dinosaur had to be 

on one side of this mid-point to have walked halfway. Child 15’s description suggests that the 

child is thinking about the fence as an area model, presumably a rectangle (represented by the 

yellow rectangle placed around the area in Figure 4.11) and that this portion of the fence is 
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considered a half regarding an area model. The spatial language used in this context suggested it 

was associated with such thinking. 

Spatial dimensions also helped interpret children’s understanding and alternative 

conceptions in other tasks. For example, in the same task, some children could not conceptualise 

1-half or 1-quarter of a path. Children 11, 18, 14 and 17 were observed (in different sessions) 

discussing where a dinosaur would be standing if they were 1-quarter of the way along the 

pedestrian (zebra) crossing on one of the carpet maps (see Figure 4.12). An ‘X’ has been placed 

on the image to represent where the children suggested the dinosaur would be standing. 

Figure 4.12 

Section of the Carpet Map Used by Children in Pilot Task 10 

 

Note. ‘X’ represents where the children suggested the dinosaur would be standing. 

Although the children were discussing that 1-quarter was the same as a fourth, they 

proceeded to count four successive black and white stripes and claim this defined area (marked 

by the ‘X’) was 1-quarter of the crossing, demonstrating a reliance on the counting of parts and 

area model representation as described above. What this task required the children to consider 

was the length of the path as a measure (indicated in Figure 4.12). In addition, the children 
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needed to recognise that the boundary between the middle black and white rectangle was actually 

1-half of this measurement, and 1-quarter of this path is the boundary between the first white and 

the second black stripe (if moving in the direction from the bottom of the picture towards the 

top). The spatial dimensional terms used by the children in this activity to describe the quarters 

(incorrectly identified) included terms that focus on four rectangles (also referred to as blocks and 

stripes by Child 17 and 18). These limitations in the children’s understanding of the measurement 

model were revealed, in part, by their use of spatial dimensional language. 

4.5.1.3 Spatial Prepositions 

The third language category I identified was spatial prepositions. Spatial prepositional 

terms are used to describe the location and orientation of an object in relation to other object, or 

parts of an object in relation to the whole (e.g., next to, on, in, under; Richard-Bollans et al., 

2019). 

Spatial prepositions were prevalent in eight of the 10 children’s descriptions of Pilot Task 

4: How much of the cookie did the mouse eat? when determining which fractional parts were 

paired together. The children who used these terms were far more successful in describing why 

they thought different parts were paired together. For example, spatial prepositions such as 

inside, overlap, over the top, on top and between, were used frequently throughout the task to 

describe what would happen if two circular segments were paired together. Child 16 stated that 

the third segment, would ‘overlap’ if they tried to place it in the 3-quarters representation, 

suggesting this child visualised placing one part on top of another to determine that there would 

be overlap of the segments and, therefore, a quantity of more than one. Further, this child 

explained that if they were to place the sixth into the 2-third representation, there would be 

‘enough room to put another piece next to the [sixth]’, although they could not name what size 

the parts were. 
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Across this cycle, spatial prepositions were the least prevalent forms of spatial terms 

captured in the children’s responses; however, they were often used in combination with spatial 

transformation and dimensional terms. This multiple use of spatial language within the same task 

was evident more generally, as illustrated in the following examples. 

4.5.1.4 Children’s Interconnected Use of Spatial Language 

Pilot Task 9: Tablecloths (see Table 4.9) reveals the use of both spatial transformation 

and prepositional terms such as referring to moving the parts together. For example, Child 9 

describing ‘smooshing’ parts together, and other children indicated they were mentally ‘folding 

or moving’ different parts of their tablecloth ‘next to’ each other to determine fractional measures 

and equivalent fractions. Child 8 described how they imagined ‘flipping’ the orange and purple 

segments in Figure 4.13, so they could ‘see’ that even though they are not next to each other on 

the original cloth, the orange portion still takes up more than half of the tablecloth. The use of the 

term ‘flipping’ implies the child engaged in spatial visualisation. 

Figure 4.13 

Child 8’s Reference to ‘Flipping’ Purple and Orange Segments 

 

 

 

In addition, Child 8 referring to ‘more than half’ reveals they are also considering the 

spatial dimensions of this shape to conceptualise the size of the fraction in relation to the whole. 

Pilot Task 7: Pattern block fractions also revealed a high level of spatial language in the 

children’s representations of fractions. This task was also open-ended, in that the children were 
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asked to use the pattern blocks to represent everything they know about fractions. Child 7 made 

the representation shown in Figure 4.14 and stated, ‘the yellow hexagon is half of all the blue 

shape’. 

Figure 4.14 

Recreation of Child 7’s Pattern Block Representation of Half 

 

The researcher asked Child 7 if there was another way they could explain the relationship 

between the shapes (prompting for the doubling/halving idea, equivalence, etc.). Child 7 then 

rearranged the blocks to the representation shown in Figure 4.15. 
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Figure 4.15 

Recreation of Child 7’s Second Pattern Block Model 

 

After considering this new arrangement, Child 7 stated: 

It’s still the same, because the parts have just moved around but they still take up the 

same space. It’s just like breaking [the hexagon] into three and doubling it to six pieces. 

That makes this [hexagon] half of that [blue block collection]. 

In this description, the child is using spatial transformation terms to explain the 

proportional relationship between the two groups of blocks. This suggested that the spatial terms 

help describe the mental transformations they performed when explaining the spatial proportional 

relationship and emerging multiplicative understandings when referring to doubling of the parts 

(a fraction as an operator idea). There is also a demonstrated awareness of the spatial dimensions 

of the individual shapes and how their location and orientation does not affect proportionally the 

fractional amounts represented (indicating the distribution idea from the fraction as a relation 

meaning). 

Similarly, in the next two examples, Children 15 and 10 stated they could mentally fold 

half of their model over to replicate the same size unit on the opposite side. Child 15 said they 
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could also ‘cut’ the red part ‘to match the parts in the green’ (see Figure 4.16), indicating an 

awareness between partitioning in halves and thirds. 

This suggests there was a connection between the different spatial transformations 

described (which is a process of reasoning), an awareness of the spatial dimensions of the regions 

(which is exploring the size of the shapes used in the representation) the children were visualising 

(see Figures 4.16 and 4.17). 

Figure 4.16 

Recreation of Child 15’s Pattern Block Representation  
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Figure 4.17 

Recreation of Child 10’s Pattern Block Representation 

 

Additionally, both children noted the spatial dimensions of the shapes used in determining 

the unit size and equality of such parts. This suggested they were focused on the geometric 

properties of the shapes and able to make direct comparisons about the size of the parts of their 

nominated fraction. However, it cannot be assumed that these examples indicate that children 

have a proportional understanding of the parts and the fractions they represent. 

This issue was evident when Child 14 joined the discussion with Child 10, Child 15 and 

myself. I asked the group to consider, ‘If the same number of blocks were positioned in a 

different arrangement, would the fractions we described earlier change?’ Child 14 took the blocks 

from Child 10’s above representation (Figure 4.17) and created the formation shown in 

Figure 4.18. 
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Figure 4.18 

Recreation of Child’s 14 Pattern Block Representation 

 

Child 14 claimed that they had thirds because there were three objects, disregarding the 

size or magnitude of the nominated units. Children 15 and 10 were not convinced of Child 14’s 

claim, although they took some time to provide a counterargument; in this, they stated they 

‘knew’ that the collective green shapes were the same size as the blue area, so even though they 

are arranged differently, they still represent a total area of half blue and half green. 

Analysis of the discussions captured across the pilot, indicated that spatial language was 

present in some form in children’s responses to each of the 22 pilot tasks. These initial findings 

suggested that while these tasks were not designed with an explicit spatial language focus and 

that the children in this phase had limited experiences with the intervention program, the children 

appeared to be intuitively drawn to using spatial dimension terms specifically when exploring the 

different meaning of fractions. It also suggested that the tasks themselves presented an increased 

opportunity to explore the spatial dimensions, rather than spatial transformations or spatial 

prepositions. 

These observations suggested that these children may be drawing heavily on their 

previous geometric or area representations in their initial attempt to make sense of the fractional 

contexts presented. This premise is supported by their previous experiences of fraction 
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instruction as described by Teacher A, which illustrated a part-whole emphasis with area 

(geometric)-based models. 

The identification of spatial language as a subset of the spoken word representations, 

provides a finer grain analysis of children’s use of language in the intervention.  Specifically, it 

helps determine what and how children are interpreting different concrete /pictorial models and 

representations in addition to providing further insights into how children may be mentally 

manipulating different objects to explore the various fraction ideas. Adding the different forms of 

spatial language identified to the code book provides an additional lens in which to interpret the 

children’s thinking and reasoning throughout the intervention program.  

4.5.2 Children’s Spontaneous Use of Gesture 

The use of spatial language in helping children develop difficult and abstract 

mathematical ideas is often enhanced by combining with the use of gesture (Congdon et al., 

2017). The spontaneous use of gesture became explicit in many children’s descriptions and 

provided the second insight into the way children engaged with the pilot tasks. 

To illustrate how gesture was used and analysed across the range of tasks, Child 22’s 

response to the Pilot Task 11: Hidden Fractions is revisited. This task asked children to consider, 

‘What fraction of the blue rectangle might be hidden under the orange square?’ 

As previously presented in Figure 4.4 (reproduced below for convenience), Child 22 

created a representation where they explained that up to 2-thirds of the blue rectangle could be 

hidden underneath the orange square. When asked to explain their written response (i.e., 2-thirds 

could be hidden), Child 22 flipped their hand from palm down to palm up (see Figure 4.19) while 

explaining their thinking, suggesting multiple mental transformations and iteration of the blue 

unit. 
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Figure 4.4 

Child 22’s Work Sample 

 

 

Figure 4.19 

Example of the Hand Flipping Gesture Used by Child 22 
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Child 22’s gesture accompanied their description of ‘flipping’, suggesting they used 

spatial visualisation to iterate the unit fraction. This gesture, representing the iteration of a unit 

fractions, was also used extensively by children in Task 10: The dinosaurs have escaped. 

Similarly, many children also used gesture to demonstrate and experiment with 

partitioning or ‘cutting’ the different routes or areas across the suit of tasks (such as cookies, 

roads, paths, carparks, etc.). In this gesture, the right hand would typically move in an action that 

replicated a sawing or cutting motion, indicated by the vertical arrow in Figure 4.20. 

Figure 4.20 

Recreation of a Cutting/Sawing Gesture Observed During Partitioning Contexts 

 

This gesture was prominent in Pilot Task 8: Who ate more pizza?, which had several 

problems for children to work through, including: 

• If you were really hungry and wanted the biggest slice of pizza, which pizza would 

you take a slice from: a pizza cut into quarters, or the same size pizza cut into eighths? 

Why? 

• If you had to share a pizza between three friends, or two pizzas between four friends, 

which situation would give you more pizza? How do you know? 
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• Sam claimed he ate more than Victoria because he took two slices from the pizza 

partitioned into eighths. Victoria ate only one slice from the pizza that was cut into 

fourths. Who ate more? How do you know? 

• What are some other ways you can cut your pizzas, so Sam and Victoria eat a different 

number of slices but eat the same amount of pizza? 

Child 24 worked through the second problem, initially writing the statement ‘1 and 3’ and 

‘2 and 4’ on their workbook. Child 24 then said, ‘the first one is a third’, and as they said this, 

drew the symbolic notation of 
1

3
 in the air. Child 22 then said, ‘but 2 pizzas, gives you… half 

bits’, while drawing the symbol of 
1

2
 in the air. Even with prompting to draw what they were 

thinking, perhaps as pizzas or with the symbols, the child could not communicate their thinking 

adequately. However, Child 22 appeared to be using the symbols of each unit fraction as an 

abstraction of the quantities involved, and, therefore, a metaphoric gesture that represented 

quantity. 

Other examples of gesture were illustrated by Child 1 when describing their thinking for 

the fourth problem in Pilot Task 8. They explained that if a pizza is ‘divided into half’, that is one 

big piece each for Sam and Victoria. As Child 1 was explaining, they made a gesture like they 

were struggling to hold up a big slice of pizza to their mouth. The child then gestured picking up 

something between their two forefingers and thumb and moving their hand to their mouth like 

they were eating what they had gestured picking up in their hand. Child 1 repeated this picking 

up/eating gesture many times. Their explanation was that Victoria’s half of the pizza was cut into 

‘a million little bits!’, while using the sawing/cutting gesture very fast, when describing that Sam 

and Victoria still ate the same quantity of pizza. 
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Given these children’s likely limited experiences with the range of fraction concepts and 

ideas presented in this series of tasks, the use of spontaneous gesture appeared to be an important 

vehicle for them to communicate their use of spatial reasoning in conjunction with their emerging 

fraction understandings. In relation to the data analysis for the teaching experiments, the code 

category of gesture was confirmed, however I made the decision not to implement gesture 

explicitly into the pedagogical approach of the intervention. The reason for doing so was twofold. 

Firstly, as reported in Chapter Two, there is very little literature concerning the way in which 

children 6 – 7 years of age utilised gesture in the development of fraction ideas and what 

literature does exist is not conducted in intervention-based, exploratory contexts. Secondly, there 

is also mixed evidence for what impact teacher led gestures have on children’s development of an 

extended range of fraction ideas. As a result, I decided to explore the ways in which children 

spontaneously used gesture throughout this intervention, rather than being influenced by my use 

of gesture.  

4.6 Chapter Summary 

The pilot revealed that the suite of tasks was typically suitable and accessible for the 

target age group in this study. It was apparent that although many children had little 

understanding of or prior experiences with the three meaning of fractions, they could generally 

work with an extended range of fractions meanings. The children explored these ideas through a 

spatial reasoning approach, which provides further evidence that spatial reasoning has a positive 

influence on children’s mathematical development in an area of mathematics that is not 

considered as typically ‘spatial’ in nature. The findings of this pilot suggest that a spatial 

reasoning approach is a viable pedagogy to continue to explore in the forthcoming teaching 

experiments.  
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The pilot also enabled the key indicators of the local instruction theory to be considered 

and revised. The modification of the first key indicator was in response to supporting a spatial 

awareness of the magnitude of each share, rather than children relying on more familiar processes 

such as counting. Therefore, the first key indicator was revised to include the creation and 

justification of equal shares in both discrete and continuous contexts, to promote a more general 

understanding about fair shares between the two contexts.  

The second key indicator of reinitialising the unit appeared to be an appropriate and 

achievable learning goal for the children, which build on from the first key indicator of creating 

and justifying equal shares. No changes were made to this key indicator as a result of the pilot.  

The third key indicator was initially hypothesised as the children developing the mental 

process of splitting through partitive division and recursive multiplication. However, the ability 

to visualise the act of splitting was foundational two the first two key indicators, so it was 

reconsidered. Furthermore, it was apparent that the children were able to discuss and justify early 

proportional equivalence in some of the associated mapping tasks. The third key indicator was 

therefore revised to recognising proportional equivalence.  

While there was limited indications of children’s ability to work with early multiplicative 

ideas such as simple ratio due to the timeframe of the pilot, there was sufficient evidence that 

they found the tasks associated with these ideas intelligible, and therefore the final key indicator 

of connecting multiplicative relations remained unchanged.  

Finally, the pilot enabled me to identify children’s use of spatial language and gesture as a 

means for identifying and interpreting children’s engagement with various spatial reasoning 

constructs. Young et al. (2018) postulate that many complex and abstract mathematical topics—

such as fractions—are inherently connected to the use of spatial language. This is in part because 

the generation of fractional parts (partitioning) and naming of such parts (unitising) can be 
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described by the spatial transformations performed to generate such quantities, and the magnitude 

of such parts can be described using spatial dimensions and spatial prepositions. This is a critical 

insight for the present study because it reiterates how important the spatial context is to the 

development of early fraction ideas in each of the tasks.  

Similarly, gesture, was another representation that provided insights into how children 

were engaging with spatial constructs and how they were connected to the fraction ideas they 

were exploring. Specifically, the cutting/sawing gesture indicated the act of partitioning that a 

child had imagined or was anticipating within the context provided because it was associated 

with descriptions of the quantities generated (and the size of the parts). Moreover, the flipping 

hand gesture indicated the children’s mental manipulation of objects, quantities, and parts to 

generate new quantities, again suggesting spatial visualisation. Trafton et al. (2006) states that 

‘one of the fundamental findings within the gesture research community is that people gesture 

when they are thinking about something spatial’ (p. 2). Therefore, identifying children’s use of 

gesture and spatial language is important because of the spatial context that underpins the present 

intervention. While gesture was identified as an additional, valuable representation in which to 

interpret the children’s thinking, I made the decision not to include gesture into my own 

pedagogical approach in the intervention. This decision was based on the limited literature that 

explores children’s spontaneous use of gesture when learning fractions, and the mixed results that 

are reported from studies that explored the effect of teacher led gestures in instruction.  

In DBR studies, the iterative analysis of the intervention is critical to understanding the 

phenomenon of the educational problem. The pilot phase of such studies is no exception. In the 

present study, this phase enabled insights into the performance of a sample of 6 – 7-year-old 

children on a range of tasks, thus enabling the design of the intervention program structure for the 
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subsequent teaching experiments and the refinement of the local instruction theory. The teaching 

experiments are detailed in Chapters Five and Six. 
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Chapter 5: Teaching Experiment Insights – Class B 

5.1 Chapter Overview 

As described in Chapter Three, the teaching experiment phase of the study was designed 

to explore the proposed local instruction theory for developing an extended range of fraction 

meanings in the early years of school. The local instruction theory is presented in the form of a 

series of key indicators that describe the conjectured way fraction meanings and spatial reasoning 

are connected and are hypothesised to develop over time. As a manifestation of the local 

instruction theory, a suite of tasks was designed and trialled with small groups of children as 

described in the previous chapter. This enabled the key indicators to be refined and the full 

intervention program to be sequenced accordingly for the teaching experiment phase. This 

chapter presents the findings from Class B as the first iteration of the teaching experiment. 

To provide the context for Class B, section 5.2 describes the classroom environment 

based on a series of pre-intervention classroom observations and an analysis of the children’s pre-

intervention Task Based Interview (TBI) results. Section 5.3 discusses the preparation of the 

teaching experiment in light of the TBI results. Section 5.4 analyses how children demonstrated 

each of the key indicators of the local instruction theory via the children’s responses to the tasks 

in the intervention program. The purpose of this section is to examine the extent to which 

children can work with the three meanings of fractions—fraction as measure, fraction as an 

operator and fraction as a relation—when experienced through a spatial reasoning approach. To 

further explore the impact of the innovative approach, section 5.5 presents quantitative and 

qualitative analyses of the post-intervention TBI data. Section 5.6 summaries the insights from 

this iteration of the teaching experiment and their implications for the next iteration. 
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5.2 Setting the Scene: Class B 

An important part of DBR is understanding the classroom context in which the innovative 

approach is being implemented. In the context of the present study, this is reflected by the 

constructivist and sociocultural perspectives as the orientating theories underpinning this study, 

whereby identifying children’s existing knowledge and the context of the classroom are 

important factors when considering the impact of the intervention. To recap from Chapter Three, 

the Year 1–2 composite class participating in this first iteration of the teaching experiment was 

from a regional public primary school in South Australia. The class comprised of 23 children—

16 boys and seven girls. The mean age was 6 years, 11 months. Data were collected in the form 

of pre- and post-intervention TBI for two reasons. The first was to determine the children’s 

general understanding of whole number ideas expected for this age group, their understanding of 

the fraction meanings, and their spatial reasoning capabilities. The second was to determine if 

any significant shifts in children’s whole number, fraction and spatial reasoning capabilities had 

occurred that could be attributed to the intervention. Children’s work samples from each lesson 

throughout the intervention were collected to analyse how children represented their thinking in 

the various contexts. Observations and written reflections of each lesson from both the classroom 

teacher (Teacher B) and I (as the teacher/researcher) were collected to provide various viewpoints 

and interpretations of children’s mathematical thinking. 

5.2.1 Understanding the Classroom Environment 

To become familiar with the classroom context, I observed Teacher B and the children in 

three mathematics lessons immediately prior to the intervention. The observations commenced in 

May 2019, which meant the children were in Term 2 of the school year. Teacher B stated that 

their planning was guided primarily by the content descriptors in the Australian Curriculum, but 
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they also used educational websites such as Scootle (Education Services Australia, n.d.), a digital 

education newsletter the school subscribed to, and print-based materials they have collected that 

align with the Australian Curriculum content descriptors. 

The first lesson I observed required the children to roll two, 0–9-sided dice, to represent 

each quantity with linking cubes or pop sticks, and then add these quantities through the use of a 

number of sentences and equations. The second lesson involved completing a series of worded 

problems, such as, Jenny bought three cupcakes for $2 each at a cake stall. She paid the stall 

holder with a $10 note. How much change did she receive? The problems were presented on the 

interactive whiteboard and the teacher read through each problem, modelling and suggesting 

strategies (such as drawing pictures, or writing equations like 2+2+2 = $6), before asking the 

children to complete the rest of the problem individually in their workbooks. Many children 

chose to draw pictures but were observed asking the teacher what to do or to re-read the problems 

throughout the lesson, as the tasks appeared challenging for many. 

The third lesson I observed involved several worded problems written on the whiteboard, 

where the children were asked to model place value and trading procedures using base ten blocks. 

The Year 1 children worked with tens and ones, and the Year 2 children worked with hundreds, 

tens, and ones. Teacher B stated that the intention of this lesson was for children to use the base 

ten materials to model the problem and then record it in their books using a vertical algorithm. 

Many children were observed playing with the materials (stacking, lining up the blocks) rather 

than completing the problems. Few children attempted the vertical algorithm in this time as it 

appeared too difficult. 

As described in Chapter Three, the CLASS (Pinta & Hamre, 2009) framework was used 

to analyse and understand the typical ecology of the classroom. Using this framework, the 

following themes were dominant. There was a strong emphasis on the instructional support 
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domain, specifically for developing strategies to support content knowledge in the form of 

modelling and repeating the language that was associated with procedures. For example, children 

were encouraged to describe and practice the abovementioned cupcake problem with several 

variations (i.e., starting with one cupcake and working out the change from $10), using equations 

when adding and representing their responses. The quality of feedback dimension was evident to 

some extent in the way the teacher expanded on different children’s responses (and 

performances) to promote an understanding of the procedure. Teacher B would often direct a 

child to ‘look how … has solved the problem’, encouraging the children to share and model their 

strategies. Over the course of the three observations, it was clear that the children understood the 

expectation that they were to record their solutions to all problems, even if they were primarily 

working with concrete materials. However, many children did not complete this requirement. 

There was less open-endedness and creativity observed with regard to the concept 

development dimension, as children were scaffolded more explicitly to complete the problems in 

a consistent way. For example, many children were observed asking Teacher B throughout the 

third lesson, ‘what do I write?’, after adding the quantities with base ten blocks because they 

seemed unsure of the problem and how the materials used were to be translated into a vertical 

algorithm. 

These observations indicate that the children were not confident in making connections 

between concrete, pictorial and symbolic representations. I asked Teacher B about their 

pedagogical approach, and they suggested that the children ‘needed lots of repetition to really 

understand the problems and getting their sums recorded’. As there was little emphasis on formal 

symbolic notation within the tasks designed for the present intervention study, I anticipated that 

the children would require time and explicit scaffolding to develop and explore the connections 

between modes of representations that may be less familiar to them. 
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5.2.2 Pre-Intervention Task-Based Interview Insights 

The pre-intervention TBI was conducted one on one and comprised 24 items, divided into 

three sets. The first nine items were whole number based, to assess aspects of two big ideas in 

numbers: Trusting the Count (Set One) and Place Value (Set Two), created by Siemon (2006). 

The remaining 15 items (Set Three) targeted children’s fraction understanding and spatial 

reasoning capabilities. I created or adapted these items based on the literature concerning both 

fraction and spatial reasoning research (see Chapter Three). Many of the tasks were open-ended, 

which meant children’s partially correct responses were captured (in addition to correct and 

incorrect responses). The raw scores for the TBI are in Appendix H. 

5.2.2.1 Set One: Trusting the Count Insights 

The items for Set One are summarised in Table 5.1. 
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Table 5.1 

Set One Items 

Item 1: Subitising cards 

Cards 1–6 (common dot die arrangement) 

Cards 7–10 (tens frames and structurally ordered arrangements, e.g., triangular arrangement of 

dots for 10) 

Cards 7–19 (tens frames ordered and random) 

 

Item 2: Hidden counters task 

Place five counters and bag in front of child, rattle to demonstrate that there are counters in the 

bag. Place four counters in front of child. 

‘There are five counters here and five more in this bag. How many counters altogether? How 

did you work that out?’ 

 

Item 3: Tens frame bananas 

Children are asked to think about the dots on the tens frames as bananas. 

‘If I have this many bananas, and three more bananas were added, how many are 

there altogether?’ 

 

Item 4: Hidden dots task 

‘There are seven dots here (in the top section) and nine dots here (bottom 

section).’ 

Cover the ‘9’ card with the flap and ask, ‘How many dots altogether? 

How did you work that out?’ 

 

 

In Item 1, 21 children demonstrated the ability to subitise consistently to at least 12 with 

ordered and unordered dot arrangements, with three children identifying quantities from one to 

19. Similarly, 16 children answered Item 3, with 11 demonstrating flexible whole number 

knowledge of four less than 10 is six, adding three makes nine. What was evident in the majority 

of children’s responses to these items was the use of a residual thinking strategy (Cramer et al., 

2002). Residual thinking is described as recognising the quantity or amount missing to complete 

a whole (Clarke & Roche, 2009). As the subitising cards with the collections of 14, 17, and 19 
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were presented in tens frames, several children stated they subitised the smaller collection of 

empty squares (or amount required to make to the next ten) and subtracted from the whole. That 

is, when 17 was presented for children to subitise, the children recognised three empty squares 

within two tens frames, meaning they recognised three less than 20 is 17. Similarly, in Item 3, the 

majority of children described ‘seeing’ three more than six is the same as one less than 10. 

Items 2 (Hidden counters) and 4 (Hidden dots) proved more challenging; 10 children 

counted on instead of recognising five and four is double five, less one; and only seven children 

fluently stated five plus four is nine, with little regard for the physical objects. Similarly, in Item 

4 (Hidden dots), the majority of the eight children who were able to engage with this task 

predominately counted on by ones using fingers or making marks on a page, rather than 

demonstrating fluent part-part-whole knowledge for nine and seven. These observations 

suggested that the children are figural counters (Steffe et al., 1983), where the children required 

the use of visual cues (such as fingers to count or tapping to keep track) or audio cues (counting 

aloud) to keep track of hidden collections. 

An insight revealed from Set One is that despite the vast majority of the children 

demonstrating part-part-whole knowledge and conceptual subitising capabilities in Items 1 and 3, 

they had limited success in items where collections were hidden or randomly arranged. This 

suggests that their success may be connected to the physical structure and arrangement of the 

collections; that is, when children were required to engage with collections where there were no 

structural aspects to the representations—such as Items 2 and 4—the children did not perform as 

well as in Items 1 and 3. This was surprising, particularly for Item 2 (Hidden collections), as 

many children had demonstrated fluent part-part-whole knowledge in Item 3 (Ten’s frame 

bananas); yet, when the was no structure or the parts were hidden, the children seemed less 

confident and competent. 
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5.2.2.2 Set Two: Place Value Insights 

The items for Set Two are summarised in Table 5.2. 

Table 5.2 

Set Two Items 

Item 5: Counting 26 counters 

 

Child counts collection and records. 

Circle the ‘6’ in ‘26’ and ask, ‘Does this have anything to do with how many counters you 

have there?’ 

Circle the ‘2’ in ‘26’ and repeat the item. Ask the child to explain their thinking if not 

obvious. 

Item 6: Place-Value Bundles 

 

13 bundles of ten pop sticks and 16 single sticks are provided. Child is asked to make 34 

using these materials.  

Item 7: More than/Less than… 

 

Card with ‘86’ is presented to the child. ‘Write the number that is one more than this 

number. Write the number that is one ten more than this number.’ 

 

If correct, say, ‘Write the number that is three less than this number. Write the number that 

is two tens more than this number.’ Ask child to explain their thinking if not obvious. 

 

Item 8: Proportional number line task 

 

Place the 0 to 20 open number line card in front of the child and say, ‘Use the pencil to 

make a mark to show where you think the number eight would be. Why did you put it 

there?’ Repeat with the number 16. 

 

If reasonably accurate and/or explanation plausible, turn the card over to show the 0 to 100 

open number line and say, ‘Make a mark to show where you think 48 would be. Why did 

you put it there?’ 

 

Repeat with the numbers 67 and 26. Ask child to explain their thinking if not obvious. 
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In Set Two, five children demonstrated an understanding of place value units by their 

ability to name, compare and rename collections in terms of their parts evidenced in Items 5 and 

6. For example, two children described 26 as two tens and six ones in Item 5 (26 Counters), and 

three children responded to Item 6 (Place Value bundles) by describing 34 as three tens and four 

ones. When the children used the counters in Item 5 (26 counters), they took more time to name 

the ‘2’ in 26 as two tens. This suggested that this small number of children saw 10 as a composite 

unit, in that they could either describe (or were observed) counting each bundle as ‘1’, where one 

was considered a unit of 10 (i.e., one ten, two tens, etc.). Cobb (1995) categorises this thinking as 

an abstract composite unit. This is the ability to see the units of ‘one ten’ and ‘ten ones’ 

concurrently which is an early indication of multiplicative understandings about our number 

system (Rogers, 2012). 

The majority of Class B (16 children) demonstrated they were able to count a collection 

of 26 objects accurately but were unable to recognise the value of the digits in this number 

beyond stating ‘20’ and/or ‘six’. Similarly, 11 children were able to represent 34 as three bundles 

of ten and four ones, but they too demonstrated an additive understanding of the two quantities 

(i.e., 30 and four is 34; Thomas, 2004). Eight children initially wanted to count only the ones 

provided to make 34, unbundle the tens to check the count of the sticks individually, but then 

counted the bundle as ten rather than considering them as ‘one ten’. This behaviour suggested 

that these children considered the unit of 10 as a numerical composite unit (Cobb, 1995) rather 

than an abstract composite unit. As described by Cobb, this means the children count in tens by 

using a count of ones (10, 20, 30, etc.), only seeing the unit as ‘10 ones’, as opposed to 

simultaneously seeing the unit of ‘one ten’ and ‘10 ones’. 

This was an important insight for this intervention and how children may perceive 

fractions, as the ideas of composite and countable units require children to think flexibly about 
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partitioning, creating unit fractions and renaming fractions (Kieren, 1995). For example, just as 

12 could be made of six and six, eight and four, 10 and two, and so on, fractions can be 

represented as the sum of other fractional amounts, such as one can be the sum of 1-half and 2-

quarters (Kieren, 1995). This analysis of how the majority of the children viewed units in whole 

number contexts may indicate how they may establish an understanding of quantity and 

magnitude in fractional contexts. 

5.2.2.3 Set Three: Fractions and Spatial Reasoning Insights 

In Set Three of the pre-intervention TBI, there were only four items where half or more of 

Class B scored a partial or correct response: 10 (Folding fractions), 16 (Halving the stars), 18 

(Gisele’s paper square) and 19 (Scale the picture). All of these items focused on doubling and 

halving, in addition to spatial visualisation or spatial proportional reasoning. The full list of items 

in Set Three is in Appendix B. The four items discussed here are summarised in Table 5.3. 

Table 5.3 

Set Three Items 

Item 10: Folding fractions 

 

Child is shown the image of a square. ‘How many ways can you imagine 

folding a square in half? Can you describe what you think it would look like 

if you folded it in half, then in half 

again? What is each part called?’ 

 

Item 16: Halving the stars 

 

Child is presented with the image. ‘If you gave away half of this collection of 

stars (16), how 

many would you have left?’ 

 

 

Item 18: Giselle’s paper square 
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A series of folds is made to a square, and the child needs to identify 

what the end result would be from four possible options. The child is 

only shown the four possible outcomes to choose from. 

‘Gisele had a green sheet of paper and cut a white shape out of the middle of the paper. 

Then she folds the paper in half, diagonally. Which of the four shapes below did Gisele 

see?’ 

 

Item 19: Scale the picture 

 

An image of two circles is presented. The diameter of the 

smaller circle is half that of the larger circle. The smaller 

circle contains two shapes, a triangle and a rectangle. The 

larger circle only includes the triangle drawn to scale. The child is required to draw the 

missing rectangle in the larger circle and describe the difference in size between the two 

shapes. 

‘Can you complete the picture of the circle on the left so that it has the same shapes as the 

circle on the right? Explain why you chose to draw the shapes in that way.’ 

 

For Item 10, 13 children identified horizontal, vertical, and diagonal folds as multiple 

ways of folding the paper in half. These 13 children could also determine four parts would be 

created in the second part of the question; however, they did not name the parts as quarters and 

fourths but did indicate the parts were equal in size. For example, Child 38 said, ‘it makes a set of 

smaller squares all the same’, and Child 44 ‘there’s four squares the same, in the big square [of 

paper]’. Only one child accurately named all of the fractional parts created, stating that ‘as long 

as the four parts are the same size, they’re quarters’, referring to creating quarters by repeated 

halving diagonally and vertically, suggesting an understanding of partitioning. What was evident 

about the children’s general engagement with this task, was an awareness of the structure, 

arrangement and congruent nature of the parts generated from repeated halving. In addition, the 

spatial contexts of the task (which are likely to be unfamiliar to the children, given the 

expectations of the Australian Curriculum at this level) did not seem to add another layer of 
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complexity to the tasks. That is, the majority of the children were able and willing to engage with 

visualising the outcome of folding the paper, even if they could not complete the fraction 

component of the problem. 

Item 16 revealed the children’s problem-solving strategies were typically influenced by 

their awareness of the structure and arrangement of the stars. Seven children confidently and 

without hesitation stated, ‘eight is half’, saying they could ‘see double eight’ in the image or 

pointing to two columns of four stars to justify their answer. Seven other children immediately 

recognised the column structures but individually counted one or two columns to determine eight 

was 1-half. This suggested they were paying attention to the geometric symmetries and structure 

of the collection but not viewing the relationship between the 16 starts and 1-half of 16 as a 

fraction as an operator problem; rather, they were using a counting approach to solve the item. 

Given the intervention incorporates whole and rational number ideas simultaneously in the 

intervention (i.e., specifically when partitioning discrete collections), it will be important to 

ensure there are explicit and intentional teaching opportunities for children to connect these ideas 

from a partitioning basis, rather than a counting approach. 

Of the 14 children who correctly identified the outcome of cutting and folding a piece of 

paper in Item 18 (Gisele’s paper square), 12 children made explicit comments about the half 

being a triangle as a result of folding the paper, or that two triangles make the (original) square. 

These children demonstrated they can engage with spatial visualisation to determine the correct 

outcome, but they also paid explicit attention to the geometric symmetry and structure of the part. 

This awareness of symmetry and geometric structure was prevalent in children’s engagement 

with this set of items and may assist children to develop their further understanding of fraction 

ideas throughout the intervention.  
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This item also revealed the highest instances of gesture across the whole TBI; 11 children 

put out their hand palm side up and flipped to palm side down (or similar) when explaining how 

the part they chose was generated. Eight children also used their hand to signify a diagonal fold 

across the paper to justify the geometric structure and regularities of the shape in the way they 

visualised the process and outcome. 

Item 19 (Scale the picture) required the children to use spatial proportional reasoning to 

draw a missing rectangle to scale using an image as a referent. Only two children described the 

relationship between the two images with conceivable explanations in addition to correctly 

drawing the missing rectangle to scale. Child 46 stated ‘it’s the same shape, just zoomed in twice 

as big [pointing to the lager circle]’. Child 42 stated, ‘the missing square is actually the same 

thing [referring to the rectangle on the smaller circle], this is just twice as big, so you have to 

make it all look right’. These statements suggested these children paid explicit attention to 

preserving the proportional relationship between each image, indicating an awareness of 

proportional equivalence. Seventeen children were able to accurately draw the scaled shape but 

were unable to articulate a relationship between the two images, indicating a partial 

understanding. Drawing the image accurately suggested they have some appreciation of 

proportion in this problem but do not necessarily know how to describe the relationship. This had 

important implications for the intervention in terms of examining children’s work samples where 

their verbal, gestural, or written descriptions may be absent or not captured in each individual 

task. Thus, the one-on-one TBI was reconfirmed as an important tool for holistically comparing 

each child’s performance against the work samples generated in the intervention. 

5.2.2.4 Summary of Pre-Intervention Task-Based Interview Insights 

Across the pre-intervention TBIs, it was clear that the children have not had the 

opportunity to experience many of the ideas and contexts in the TBI, resulting in overall limited 
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success across the TBI (see Appendix H). However, this data collection method revealed a new 

insight for consideration in the intervention and local instruction theory more broadly. In the 

analysis of children’s responses to the Set One subitising tasks and the residual thinking analysis, 

the children seemed to be intuitively drawn to the structural regularities of different 

representations—either those presented as stimulus or in their own pictorial representations and 

gestures. For example, a number of children identified a relationship between quarters generated 

from repeated halving through seeing a structure between the parts and the whole in Item 10. The 

structure was referring to the geometric congruence of the quarters created within the larger page. 

Further, this structure was observed when children referred to the column arrangement of the 

stars in Item 16 to determine half. 

The structural element in the children’s descriptions and representations was evident in 

other items. For example, in Item 15 (Missing faces), the four circular faces representing 2-thirds 

of the whole set was presented in a two-by-two array (see Figure 5.1). 

Figure 5.1 

Item 15: Missing Faces Representation 

 

The three children in Class B who correctly identified a unit of two additional faces as the 

missing fractional part either (a) drew a ring around two faces to explain how they ‘saw’ the 

structure of each third (i.e., two faces as a unit), or (b) in conjunction with gesture (where they 

used their hand in a cutting/ sawing-like action), partitioned the group into thirds using a row-
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and-column-like formation to signify where the missing third was to go. While only a small 

percentage of the class succeeded in this task, the fraction problem is quite complex for this age 

group (which has typically have not yet explored thirds). Attention to the pattern and structure of 

the representation appeared to be an important construct for understanding this problem. 

When analysing the data from this pre-intervention TBI with a spatial structuring lens, it 

was apparent this spatial skill was also successfully used by two children in Item 14 (Bags of 

wool). Although 20 children responded incorrectly, the children who were successful 

demonstrated clear use of spatial structure in their representations. For example, the children who 

demonstrated an understanding of the problem provided representations that depicted clear 

structural elements to represent the referent unit (see Figures 5.2 and 5.3). 

Figure 5.2 

Child 35’s Work Sample 
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Figure 5.3 

Child 46’s Work Sample 

 

Children 35 and 46 organised the tally marks, indicating a use of spatial structure, 

suggesting they paid deliberate attention to the structure, pattern, and arrangement of the objects. 

Child 35 presented a row-and-column-like arrangement, in addition to a number line–like figure 

used to represent the numerical pattern. The use of structure indicates two interpretations of 

fractions: the sheep and tally marks indicate a many-to-one idea (fraction as relation) 

representation, and the number line indicates a many-as-one (fraction as measure) idea. Child 46 

drew a triangular formation of each group of three bags of wool to represent the relationship 

between the number of sheep and the three bags of wool produced (a many-as-one 

representation). The awareness and overt attention these children paid to the structural elements 

of the representations throughout the TBI appeared to be an important aspect of their success. 

This finding is discussed as an implication for the teaching experiment in the next section. 

5.3 Implications for the Teaching Experiment 

Analysis of the classroom observations and children’s pre-assessment TBI responses 

provides two implications for this iteration of the teaching experiment: (1) the consideration of 

spatial structuring as an additional spatial reasoning focus for the intervention and (2) how this 
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additional construct may assist in refining the local instruction theory and intervention program 

more generally.  

5.3.1 Spatial Structuring Considerations  

The interpretation of spatial structuring in children’s pre-intervention TBI engagement 

provides additional insight into children’s responses throughout the intervention program. 

Mulligan and Mitchelmore (2009) describe spatial structure as an awareness of mathematical 

relationships that are supported by spatial patterns and arrangements. For example, spatial 

structuring is a core element of subitising because it draws on the patterns and arrangement of 

objects to perceive the quantity of collections. This is evident when objects are arranged to 

represent geometric shapes or arranged in familiar patterns—such as those on a traditional dot 

die, or patterns presented in five and ten frames (Mulligan & Mitchelmore, 2009; Young-

Loveridge, 2002). With regard to the present study, the children’s responses and representations 

suggested that spatial structuring could be a key construct in how children develop their 

understanding about the fair share idea (fraction as operator), distribution and many-as-one ideas 

(fraction as a relation) throughout the local instruction theory, particularly in discrete sets, given 

the connection to subitising. It also suggests that it is a critical construct that promoted a 

partitioning approach, rather than a counting approach, because of the focus on viewing discrete 

collections as a set of composite units.  

Spatial structuring has been studied extensively by Mulligan and Mitchelmore (2009), in 

which children’s responses to a wide variety of studies investigating children’s patterning, 

counting, the numeration system and multiplicative thinking were assessed. Their research 

resulted in the development of the Pattern and Structural Assessment (PASA) classification 

framework (see Table 5.4), which is used to characterise the level of spatial structure evident in 

children’s representations of specific tasks. 
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Table 5.4 

Pattern and Structural Assessment (PASA) Classification Framework (Mulligan et al., 2020) 

Response 

category 

Characteristics of responses 

Advanced 

structural  

An accurate, efficient, and generalised use of the underlying structure. 

Structural A correct but limited use of the underlying structure. 

Partial structural Shows most of the relevant features of the pattern and structure but 

inaccurately organised. 

Emergent  Shows some relevant features of the pattern and structure but incorrectly 

organised. 

Pre-structural  Shows, at most, limited and disconnected features of the pattern and 

structure. 

 

The intention of this framework was to analyse children’s awareness of pattern and 

structure in mathematical tasks explored extensively in the associated Pattern and Structure 

Mathematics Awareness Program (PASMAP; Mulligan & Mitchelmore, 2016) in relation to 

patterning and early algebraic thinking. However, this framework can serve as a practical and 

consistent tool to analyse children’s awareness of pattern and structure in the present study to 

determine if and to what extent the use of spatial structure is related to the children’s 

understanding of rational number ideas.  

Patterning and multiplicative thinking share underlying concepts of partitioning, unitising, 

and equivalence; therefore, this framework lends itself to adaptation to help analyse the use of 

spatial structure within fraction contexts (Confrey et al., 2014b; Nunes & Bryant, 1996; Papic et 

al., 2011). The warrant for adapting this framework is to determine if and how children’s varying 

awareness of spatial structure may influence or is connected to specific understandings of 

fractions. Table 5.5 describes how this framework was adapted for the present study, with 

examples specific to the context of whole and rational number ideas.  



227 

Table 5.5 

Spatial Structuring Codes Adapted for This Study 

Code 

category 

Code(s) Description Examples or provocation 

Spatial 

structuring 

Advanced 

structural  

Generalised use of the 

underlying structure. 

The use of array-like structures to 

generalise part-whole/part-part 

relationships. Identification of proto-ratio 

representation of core unit structure. 

Transfers fraction meaning between 

continuous and discrete contexts. 

Structural Correct but limited use 

of the underlying 

structure. 

Identifies an equal grouping and or 

distribution within fraction context. 

Represent a relationship between number 

of parts and size of part. 

Partial 

structural 

Shows most of the 

relevant features of the 

pattern and structure 

but inaccurately 

organised. 

Demonstrates attention to equal 

grouping/distribution for set collections, 

in unit size of continuous fractions but is 

inconsistently represented/described. 

Emergent  Shows some relevant 

features of the pattern 

and structure but 

incorrectly organised. 

Some attempt at equal distribution/ 

grouping/unit size but quite unorganised 

or misrepresented.  

Pre-

structural 

Shows, at most, 

limited and 

disconnected features 

of the pattern and 

structure. 

Unorganised and unequal understanding 

of unit size/form and distribution for a fair 

sharing context. Represents non-

mathematical/irrelevant features of the 

problem. 

 

Based on this framework adapted from Mulligan & Mitchelmore (2009) the code category 

of spatial structuring and their associated codes were added to the codebook for thematic 

analysis. The implications of this finding will now be discussed in relation to the local instruction 

theory.  
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5.3.2 Refining the Local Instruction Theory  

While the children displayed a minimal understanding of the three meanings of fractions 

in TBIs, they did demonstrate the level of understanding about whole number and place value 

ideas expected for this age. The children were able to communicate and represent their thinking 

in various ways, including engaging in spatial reasoning tasks that were less familiar. Given the 

emphasis in this intervention program was on developing the relationship between fraction 

meanings and spatial reasoning (not symbolic notation), it appeared the tasks would be accessible 

to the children. A small number of children did demonstrate some accurate, early understandings 

of the various fraction meanings through use of spatial reasoning strategies; this suggests the 

current local instruction theory and subsequent intervention program developed in Chapter Four 

is suitable and achievable for this age group. However, the examination of spatial structuring as 

an additional spatial reasoning construct suggests it is a valuable inclusion into the local 

instruction theory and subsequent teaching program. As a result, the spatial reasoning description 

for the key indicators of the local instruction theory have been refined to include this construct 

(see Table 5.6).  

Table 5.6 

The Revised Local Instruction Theory (Version Three)  

Key Indicators               Characteristics of Tasks  

 Primary Fraction Foci  Spatial Reasoning Foci 

Creating and 

justifying equal 

shares  

 

Fraction as Operator:  

Fair shares  

Doubling/ Halving   

Partitive division/ recursive 

multiplication,  

Geometric Symmetries, 

Similarity 

 

Fraction as Measure:  

Visual perception of equal groups 

(drawing on spatial structures and 

arrangements). Equality of parts 

regardless of model (i.e., equal 

parts for discrete collections and 

continuous models less than and 

greater than 1). Visual awareness 

of the geometric properties of parts 

and sets (e.g., shape, orientation, 
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Many-as-one,  

Measure,  

Composite units,  

Unit fraction 

 

 

pattern, symmetry). Observing the 

physical transformations of 

partitioning (dividing and 

reassembling), and visualising and 

predicting the outcome of a 

nominated split (e.g., spatial 

visualisation)  

 

Reinitialising the 

unit    

Fraction as Measure:  

Composite units, Unit fractions, 

Part-Whole fractions, 

Equivalent fractions  

 

Fraction as Operator:  

Fair shares, 

Doubling /halving; Partitive 

division/ recursive 

multiplication, Times-as-many, 

Similarity 

 

Fraction as a relation 

Many-to-one 

Distribution   

 

Visualising measures between 

parts and wholes, and between 

composite and unit fractions 

through unitising. Exploring the 

spatial structure and arrangement 

of objects and sets to create and 

compare different unit fractions. 

Visualising magnitude relations 

between parts (double/ half/ times 

as many) the distribution of parts 

to determine equivalence.  

 

Recognising 

proportional 

equivalence  

Fraction as a relation 

Distribution, Proto-ratio, 

Equipartitioning multiple 

wholes,  

 

Fraction as Operator 

Doubling /halving, Times-as-

many, 1-nth-of...…, Scaling, 

Geometric symmetries, 

Similarity 

 

Fraction as a measure 

Composite units 

Unit fractions  

Equivalent fractions  

  

Visualising the relationship 

between equivalent measures, of 

same and different wholes.  

Connecting 

multiplicative 

relations 

Fraction as Relation 

Many-to-one,  

Distribution, Proto-ratio 

Early relational understandings 

between the structure of part-part 

and part-whole quantities. (e.g., 
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Fraction as Operator 

Doubling / halving, Partitive 

division/ recursive 

multiplication   

Times-as-many,  

1-nth-of…,  

Scaling 

 

Fraction as Measure 

Composite units 

Part-whole fractions 

Equivalent fractions    

visualising and justifying the 

relational magnitude of fractions in 

relation to other fractions (e.g., a 

quarter is a half of a half/ twice as 

small); and working flexibly with 

non-symbolic simple ratios (e.g., 

1:2 = 2:4).  

 

As part of the iterative analysis and refinement synonymous with DRB, spatial structuring was 

included as a focus in the tasks of the intervention program, described in Appendix C. 

5.4 The Teaching Experiment: Insights from the Intervention Program 

This section presents an analysis of how the intervention program provided opportunities 

for children to develop the three meanings of fractions. The analysis highlights the ways in which 

spatial reasoning strategies, and different forms of representations, were critical to the children’s 

success in the development of fraction and ratio ideas in this intervention program. Children’s 

responses to various tasks throughout the intervention, are discussed in relation to the key 

indicators of the local instruction theory. 

5.4.1 Creating and Justifying Equal Shares 

As detailed in Chapter Four, the first four lessons of the intervention explicitly focused on 

developing the key indicator of creating and justifying equal shares in both discrete and 

continuous models. The fraction as an operator meaning was foundational to this key indicator 

and promoted through the ideas of creating fair shares, identifying doubling and halving relations 

between the size of measures and number of parts created. In addition, partitive division/recursive 
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multiplication was explored to help connect the idea that many parts can be generated and, 

therefore, named as a measure. The fraction as a measure idea of many-as-one was of focus to 

develop children’s understanding of creating and justifying equal shares. Across the four lessons 

related to this key indicator the composite unit, and unit fraction ideas from the fraction as a 

measure meaning were also of focus in both discrete and continuous models. These ideas were 

tightly connected to the geometric symmetries and scaling ideas (fraction as operator) when 

exploring the outcome of creating different fair shares. 

The primary spatial reasoning focus of this indicator was to promote a visual awareness of 

quantity; that is, recognise and compare visually the equality and size of the parts created, 

including visualising the size of a part in relation to the whole, and the outcome of creating 

different fair shares from the same whole. This drew on an awareness of the spatial structure 

assigned to the representations and concrete models such as geometric symmetries and 

similarities, and array-like structures for discrete collections. Examples of how children 

established this key indicator will now be discussed through a selection of activities from Lessons 

1 to 4. 

5.4.1.1 Lesson 1: Sharing Cookies 

The children were asked to collect 12 plastic counters that represented ‘cookies’ to 

explore how many ways they could share them fairly, and how they knew each context 

represented a fair share. A worksheet was provided to assist the children in the fair sharing 

component of the lesson (see Figure 5.4). 
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Figure 5.4 

Worksheet Provided for the Fair Sharing Component of Lesson 1: Sharing Cookies 

 

An interaction I had with a small group of children who were unsure where to start with 

this lesson, highlights the way this lesson promoted this key indicator. Using six counters placed 

in two rows of three on the floor in front of the children (sitting in a circle) I asked the children, 

‘How many cookies are here?’ and, importantly, ‘How do you know?’ At first, it was evident that 

the children counted the individual counters, possibly because this is what the children thought 

they had to do when asked such a question. After observing the children nodding and pointing at 

the counters to signify an individual count, they all said, ‘six’. I asked, ‘Is there another way we 

could have worked out there were six counters there, without counting each one?’ 

Child 27, who was pointing in the air to represent the individual counters to enumerate, 

immediately replied, ‘It’s lined up as three and three which means six’. Child 39 then stated, 

‘You can also tell it’s six because you can see two, two and two, which is six’. 
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This suggested these children were aware of these part-part-whole relationships, perhaps 

even that they have a sound structural understanding of ‘six’ because of the way they were able to 

define its part-part relationships of six as 2-threes and 3-twos. I pointed out to the children that 

although no counters had been added or removed from the set, this structure provided two ways 

six counters could be visualised as equal shares. The children were prompted to think about using 

this knowledge when sharing the 12 counters, and set to work independently. 

The children in this group started to make three groups, distributing one counter to each 

pile at a time—indicating the partitive division idea from the fraction as an operator meaning. 

They discussed how many counters there were in each group. For example, ‘There are four, four 

and four because, I can see a square in a group of four counters, my counters make three 

squares!’ (Child 45). Child 45’s arrangement is represented in Figure 5.5.  

Figure 5.5 

Child 45’s Representation of Sharing 12 Counters Between Three People 

 

This representation and accompanying description indicate a many-as-one (fraction as 

measure) idea, and the partitive division/recursive multiplication (fraction as operator) ideas since 

they could see the structure of the units within the whole set. The child referred to the equality of 

the shares being based on the geometric property of the units, rather than counting to check they 

were numerically equal, demonstrating an early appreciation for partitioning.  

Figures 5.6 and 5.7 are representations typical of what the children produced 

independently after this short, small group scaffold.  
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Figure 5.6 

Child 33 Work sample 

 

Figure 5.7 

Child 30 Work sample 

 

Children 33 and 30 demonstrated an awareness of structure and pattern in the 

arrangements they created in their representations. Child 33 stated they ‘just knew’ that two 

groups of six cookies is how to share 12 fairly, even though they were observed dealing one 

counter one at a time into two groups to exhaust the collection, suggesting partitive division 

(fraction as operator) understanding. This suggested Child 33 was aware of some structural 

features of the relationship between the equality of the parts created and the whole collection, 

though unable to provide a description of their representation. 
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Child 30 said they knew that if the problem involved six children and six cookies to share 

each person would get one, so they just doubled each person’s share to two cookies each, because 

‘there was double six cookies to share’. Accompanying Child 30’s description was the use of 

gesture, in the form of the child placing one of their hands on top of the other when describing 

the double of six. This suggested Child 30 understood the relationship between the quantities 

through the fluent description of doubling and halving, and how this was reflected within their 

representations. This is evidence of early fraction as an operator meaning and an appreciation of 

simple ratio, which is a fraction as a relation meaning. 

In the next example, Child 39 chose to represent each problem with a rectangle as the 

kitchen table, larger circles placed on this ‘table’ indicating dinner plates and smaller circles 

drawn on the ‘plates’ representing the cookies and share each person would receive (see Figure 

5.8). 

Figure 5.8 

Child 39’s Representation 
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There is a consistent structure in the way the cookies are organised on the plates, and the 

position of the plates themselves, indicate that attention was paid to representing an order and 

regularity for how they are placed on the table in the creation of equal shares. When asked what 

1-quarter of 12 cookies was, Child 39 described that there had to be four plates (on the table, 

referring to the rectangle in Figure 5.8). Each plate had three cookies; however, the child had to 

count and check that there were 12 in total, rather than recognising the multiplicative relationship 

between four threes (as composite units) represented. This response was considered to 

demonstrate a structural awareness because there is an appreciation that different amounts of 

cookies create a unit (many-as-one idea). 

Similarly, Child 27’s representation (see Figure 5.9) gave further insight into the way the 

structure of fraction units was used in this task. In the first problem (12 cookies between two 

children), Child 27 drew the cookies (without the use of concrete materials) in an array by 

distributing one of the 12 cookies at a time, indicating a partitive division approach. 

Figure 5.9 

Child 27’s Work sample 

 

In the second problem (12 cookies between four children), Child 27 chose to use counters 

first, and dealt one counter out at a time to four groups on the mat in front of them. However, the 
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distribution of the counters was quite random, and the child repeatedly recounted each group they 

had made to ‘check’ they were all the same. When asked to represent this in their books, they 

said it was ‘easier’ for them to ‘see’ the groups (presumably meaning the equality and regularity 

of the parts) when they drew them in a four-by-three array or, in their words, ‘in lines’. However, 

this too took a long time to represent, as Child 27 initially drew four cookies vertically, stating 

that was one group and that they had to then draw four more groups ‘the same’ (which would 

have resulted in a set of 16 counters). I asked Child 27 to check their logic with the counters, and 

with the assistance of a peer, they were able to conceptualise the groups (of four) would receive 

three cookies each. It is evident that Child 27’s understanding is an example of structural 

representation for this context; there is a demonstration of fair sharing through partitive division 

ideas, because the child started with the intent to share in groups of four, but had some 

difficulties representing this quantity accurately. Importantly, Child 27 referred to the regularity 

and structure within the representation as the tool that enabled them to eventually create the fair 

shares in this activity. 

5.4.1.2 Lesson 4: Sharing Divisible Collections 

During Lesson 4, children were asked to provide some discussion about the ideas they 

had engaged with so far in this intervention. The explicit focus on the development of 

partitioning (specifically, fair sharing) was foundational to the first four lessons, where children 

explored partitioning of both continuous wholes (such as strips of paper, string, and paper circles) 

and sets of discrete objects (counters or cubes). In the whole class Launch phase of Lesson 4: 

Sharing easily divisible collections, the children were asked to describe what they learned over 

the recent lessons, specifically, ‘What do you notice about the number of shares you create, and 

the size of those shares?’ 
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The responses included descriptions that used the following terms and phases (captured in 

the journal notes of Teacher B and myself): 

• ‘Half can be in groups, or you can split something (whole) into half’. 

• ‘Groups and wholes can make fractions like half’. 

• ‘Groups are equal to be a fair share’. 

• ‘A fair share means the same size of parts/groups/things’. 

• ‘You get less when there are more to share between’. 

• ‘More shares mean a smaller group (share)/more people mean smaller shares’. 

During these explanations, nine children were observed using gesture to support their 

verbal responses—primarily, use of their hands, with palms facing together and moving in and 

out from each other to indicate the size of parts (see Figure 5.10), or a cutting action that was 

closely connected to their description of partitioning, splitting, or sharing (see Figure 5.11). 

Figure 5.10 

Recreation of Gesture Used by Children 
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Figure 5.11 

Recreation of Cutting/Sawing Gesture Used by Children 

 

For example, Children 28 and 44 used the gesture in Figure 5.10 to describe how the 

pieces of a cake get smaller when there are more people to share between. This indicates the 

children were visualising the action of partitioning, and the relationship between the size of the 

part and the number of parts. 

Seven children were observed specifically using gesture that suggests they were ‘dealing’ 

out fair shares in an array-like structure. Three of these children were observed and reported on 

by Teacher B: 

Children 43, 35 and 29, mimicked Chelsea using their hand on the desk to signal a 

grouping of objects—these boys [were] grouping the counters in a square or rectangle and 

dotting or sharing out the counters in that shape when describing fair shares. (Teacher B, 

written observation) 

When asked about this use of gesture by Teacher B, the children all referred in some way 

to ‘seeing’ the geometric structure of different units created within the same set. For example, 

Child 43 cupped their hands over the counters that were grouped in a square to explain that the 

‘square’ was one fair share—indicating the interplay between spatial structure, gesture, and the 

many-as-one idea. 
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5.4.1.3 Lesson 5: Cookie Fraction Estimation (Part 1) 

In the Launch phase of Lesson 5, there was evidence that children had established the idea 

of equality for this key indicator. This phase of this lesson involved children exploring a fraction 

kit that comprised of nine 12 cm-diameter magnetic circles partitioned into halves, thirds, 

quarters, fifths, sixths, eighths, tenths, twelfths and an unpartitioned whole. The children were 

invited to identify similarities and differences between the parts and units (see Figure 5.12). 

Figure 5.12 

Fraction Kit Model for Lesson 5 

 

Children were observed stacking different parts on top of each other to visually compare 

the magnitude of different units. Some were observed creating composite and equivalent units, 

such as comparing 1-half with 6-twelfths. 

During the Explore phase of this lesson, the following problem was posed to the children 

based on the characters in the picture book The Doorbell Rang (Hutchins, 1989): ‘Victoria and 

Sam left the cookie jar open one afternoon, and a mouse got in! It ate some of the cookies. Can 

you tell how much of each cookie the mouse ate?’ The children were asked to determine how 
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much of a cookie had been eaten by a mouse from different representations of a cookie’s parts 

(see Figure 5.13). 

Figure 5.13 

Worksheet for the Cookie Fraction Estimation (Adapted from Way, 2011) 

 

The children were also asked if they could make a whole cookie exactly by combining 

any of the parts. Some children described a strategy of imagining ‘turning’ and ‘moving’ the 

pieces to match up each pair, suggesting they engaged in spatial visualisation to create a whole 

from composite units. For instance, Children 47 and 49 gestured with a circular motion of their 

hands (like they were turning a dial) and used spatial language when describing the cookie with 

one-third missing. Child 47 stated: 

We can see that that chunk is like a third because in our head if you move this piece [the 

missing third] around, you’d get another two of the thirds to cover the whole cookie. 

Child 38 demonstrated a similar relationship between spatial visualisation and the use of 

gesture when describing how much of a cookie had been eaten based on 1-quarter being visible: 

I imagined folding this part [1-quarter] over [signalling a mirror image flip with their 

hand] to make a half, and then, you know, the other side that makes a half is two perfect 
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quarters—so the missing part has to be three of these quarters. This description suggested Child 

38 was visualising the doubling and halving idea to identify the composite unit, suggesting an 

awareness of the units within units or splitting (rather than counting) basis. However, their 

statement suggested the composite unit idea is still developing, as the phrase ‘three of these 

quarters’ indicated they may not consider 3-quarters necessarily as a unit but rather as the 

measure, or possibly a count of individual unit fractions. 

The above examples are indicative of the way the children successfully engaged with this 

first key indicator of the intervention. The awareness of, and attention paid to, the geometric 

symmetries and similarities of the 2D shapes in continuous models suggest children were visually 

comparing these parts and, at times, mentally moving or doubling them, suggesting spatial 

visualisation played a key role in the development of the early fraction as a measure and fraction 

as an operator understanding. Similarly, the arrangement of sets of objects, where children were 

inclined to make geometric structures or row-and-column arrangements to better describe and 

justify the equality of the parts, suggested spatial structuring was a critical element in developing 

this key indicator. 

5.4.2 Reinitialising the Unit 

The focus of the second key indicator was for children to develop an understanding of 

reinitialising the unit, which is the process of working with ‘unit of units’ (Confrey & Smith, 

1995). It builds on the distribution and partitive division ideas explored with the fair sharing and 

many-as-one ideas in the previous indicator, but there is focus on being able to quantify the 

various units in relation to the number of partitions made. A selection of tasks in this stage of the 

local instruction theory will now be presented to exemplify children’s development of these 

ideas. 
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5.4.2.1 Lesson 5: Cookie Fraction Estimation (Part 2) 

As described in Section 5.4.1.3, Lesson 5 was designed to develop children’s awareness 

of composite units in continuous models through an appreciation of size of parts, evoking spatial 

visualisation. However, there were several examples of children reinitialising the unit through 

this activity. 

During the second part of the Launch phase of this lesson, Child 43 provided some 

insights into the way they reinitialised units. They commented that when exploring the fraction 

kit to work out the unit fraction, they did not have to make the whole when using tenths. They 

first matched the part they thought the mouse ate, a tenth, and stated, ‘if five of those pieces 

covered a half, then it is the right piece—because half of 10 is five. I just doubled and flipped it 

over in my head to work out the right fraction’. 

Here, it is evident that Child 43 is developing the many-as-one and composite unit ideas 

from the fraction as a measure meaning, intertwined with the doubling and halving idea from the 

fraction as an operator meaning. Additionally, the description and understanding appears to be 

supported by the child’s use of visualising and gesturing this act of doubling – suggesting the 

child was engaged in spatial visualisation to reinitialise 5-tenths as 1-half. 

Similarly, there were other instances of children exploring and reinitialising units while 

paying attention to how they were partitioning. For example, Child 35 stated in their summary of 

this task: 

It’s opposite in a way to normal numbers, you have eight people, but the groups and parts 

are heaps smaller because you’re sharing the thing with so many [gesturing a folding-like 

gesture, and then palms drawn together to indicate smaller parts] than if you just had the 

whole thing to yourself or just two people. 
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This statement (along with Child 43’s example) suggested Child 35 is developing their 

own understanding of reinitialising unit, which is an appreciation that a whole can be renamed 

(infinitely) as a set of units of units. Although this understanding is emergent in these examples, 

this is an important key indicator for children to build because it is what separates the 

multiplicative foundation of partitioning (Confrey & Smith, 1995) from an additive 

understanding. 

5.4.2.2 Lesson 6: Tablecloths 

In Lesson 6: Tablecloths, the children were presented with the following problem: 

Ma wanted to buy a new tablecloth for the kitchen table. She asked Victoria and Sam to 

go to the shops and see if they could find one that was suitable. She asked for it to be in 

the colours of purple and orange, but she wanted it to be more purple than orange. 

Victoria and Sam found the following tablecloths. Which of the tablecloths can Sam and 

Victoria choose from? How much is the purple part in each cloth? How do you know? 

The children were provided with a range of A2 laminated images of the tablecloths Ma had to 

choose from (see Figure 5.14). 

Figure 5.14 

Examples of Tablecloths Presented to the Whole Class for Lesson 6 

 a)                            b)                           c)                            d)                             e) 

 

Several children (47, 32, 27, 28 and 36) described that if they ‘move’ different parts 

within a tablecloth—suggesting spatial visualisation—they could ‘see’ which tablecloths had the 

same amount of purple and orange; indicating an awareness of spatial proportional reasoning. For 

example, the children described how they could imagine swapping the centre orange and purple 
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vertical segments in the middle of tablecloth ‘e’ to demonstrate it had the same proportion of 

colour as tablecloth ‘c’. Similarly, the children described how they imagined rotating the small 

orange and purple squares in tablecloth ‘b’ in a clockwise fashion to again justify the spatial 

proportions of each colour were the same size across tablecloths ‘b’, ‘c’ and ‘e’. 

This understanding of unit and composite unit fractions as fraction as a measure ideas, is 

exemplified by the following response: 

Child 30: You can have something [gesturing parts of the third of the tablecloth] that has 

lines all over it, and all different shapes, but it’s still a whole, and you can still make a 

half or a fourth if you look inside these patterns and move them in your head. 

With this, Child 30 gestured to encapsulate the whole of tablecloth ‘b’ with two hands, 

then gestured moving the smaller orange and purple squares to the opposite sides of the 

rectangular area. This child thus indicated an understanding of the distribution idea from the 

fraction as a relation meaning, whereby they visually compared (via spatial proportional 

reasoning) whether a tablecloth is more or less than one colour. The interpretation of this child 

engaging in spatial visualisation was supported by their use of spatial transformation vocabulary; 

that is, words indicating the child was mentally changing parts of the image in some way – such 

as move, turn, and slide – were captured in conjunction with the child’s gestures that supported 

their explanation of how they established ideas about the proportions of colour. Additionally, 

prepositional terms indicating where the fractional pieces were in relation to one another were 

also captured (e.g., next to, above, beside, diagonal). However, these terms were not as prevalent 

as the use of gesture when the child was communicating their ideas. 

The Explore phase of the lesson required children to create their own tablecloth with 

varying proportions of colour, either using a pre-patterned tablecloth or designing their own 

patterns within a blank rectangle. A group of three children created the representation shown in 
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Figure 5.15, and I questioned them as they negotiated how they would represent the unit fractions 

of 1-half and 1-quarter. 

Figure 5.15 

A Representation Created by Children 37, 29 and 52 

 

R: What do you notice about the patterns on the tablecloths? 

Child 37: It’s confusing because there’s all different shapes. 

Child 29: Yeah, but half can just follow this line, because it’s half [referring to the vertical 

line halfway through the tablecloth on the left tablecloth in Figure 5.15]. 

Child 52 coloured the right side of the tablecloth in purple, stating, ‘you can make your 

own lines for the parts, because it’s still coloured in the half of the tablecloth’, indicating an 

awareness of spatial proportional reasoning. The reference to ‘making your own lines’ suggested 

Child 52 is creating units within units (e.g., reinitialising) in this context through visualising the 

partitioning operation, and the use of spatial proportional reasoning to compare the size of the 

parts created.  
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These children continued with the next tablecloth and decided to colour it 1-quarter 

purple. Child 52 immediately coloured in the portion of purple. When I asked, ‘How do you 

know this is a quarter?’, Child 52 paused, indicating they might have been following the printed 

lines rather than considering the coloured part in proportion to the whole. Child 37 interjected, 

‘because you can see it’s two of them in the half, so four altogether’. Child 29 continued, ‘if you 

start with half, it’s two, then you get two more parts in each [half]’. These descriptions indicate 

the children were thinking and visualising partitioning from a process of repeated halving to 

determine the different parts, which is indicative of the fraction as an operator meaning. This is a 

complex task, given the distractions the pre-patterned tablecloths presented. Yet, the focus on 

visualising the relationship between the outcome of recursive multiplication (reassembly) seemed 

to assist with their understating of the size of the parts created. 

I asked the children if they could describe how much of the second table was white, if a 

quarter was already coloured purple. Child 52 flipped their hand from palm side down to palm 

side up in relation to the purple part and explained, ‘there’s another 1-quarter there and then two-

quarters in the other half…so you get 3-quarters [white] to a quarter [purple]’. The flipping hand 

gesture in conjunction with the explanation, suggests the child visualised the splitting and 

process, to determine the different fractional parts. They could also visually determine the 

relationship between halves and quarters, suggesting they are developing the composite unit idea 

from the fraction as a measure meaning. 

5.4.2.3 Lesson 7: Pattern Block Fractions 

Lesson 7: Pattern Block Fractions required children to consider a regular shape (initially a 

hexagon) as a whole, and then describe what a half, third, double and other fractional amounts 

might be. They were also asked how to represent these fractions with the blocks. For example, 

they were asked, ‘If this is a whole [hexagon], what is half?’ The children were provided with a 
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variety of pattern blocks, such as hexagons, equilateral triangles, squares, two types of rhombi 

and trapezoids to explore common and mixed fractions. 

In this lesson, the children were asked to enlarge their pictures by double or shrink them 

by a half and so forth, for a focus on fraction as an operator meaning, in addition to considering 

how they could describe the relative quantities from fraction as a measure perspective. The 

arrangement in Figure 5.16 was created by Children 31 and 42. 

Figure 5.16 

Recreation of Children 31 and 42’s Pattern Block Representation of ‘One’ 

 

Child 31 stated they began with one hexagon and two trapezoids as ‘one’, because each 

colour proportion were halves as they were ‘the same on both sides’. This suggests the child was 

referring to the geometric symmetry between the red and yellow areas. Child 31 stated that ‘[if 

you] look inside the shapes and see the halves of each’; therefore, they were able to identify 

different unit fractions. They stated that one trapezoid was 1-quarter because it was ‘half of the 

red bit, which is half of the “one” bit’ (referring to the whole representation). 

This representation and explanation indicated reinitialising the unit through the fraction as 

an operator meaning from referring to the halving and 1-nth-of... ideas. It also revealed a close 

association with the many-as-one and part-whole ideas from the fraction as a measure meaning, 
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as the child explained seeing the relationship between halves and wholes. This understanding was 

supported by the geometric symmetry, which is a spatial structural awareness of (and visual 

properties of) the blocks in this arrangement. 

A common behaviour exhibited by several children in this activity, was experimenting 

with the doubling and halving idea with the same pattern block shape. For example, Children 34, 

28 and 49 worked as a group with squares to produce the representations shown in Figure 5.17 

(recreated from Teacher B’s notes). 

Figure 5.17 

Children 34, 28 and 49’s Representations Created with Square Pattern Blocks 

  a)               b)          c) 

 

Teacher B asked these children to explain their thinking. Child 28 stated that it is a pattern 

of doubles (paraphrased by Teacher B). The group had used the square in Figure 5.17a (which 

was the unit they referred to, made of four smaller squares, which suggest they were reinitialising 

the unit as 1-four and 4-ones. They described that they doubled the unit of four squares each time. 

Child 49 described that half of Figure 5.17a is actually only ‘1-fourth’ of Figure 5.17c because 

they could see the squares (unit of 1-four) inside the ‘bigger squares.’ 

A group of children working alongside this trio joined the conversation. Child 27 

described that a column of four squares is also 1-fourth (referring to Figure 5.17c) because it is 

the same quantity, just positioned differently. The discussion continued, with the children stating 
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all of the ways they could represent half and quarters within each representation. The awareness 

of the spatial structures of the blocks appeared to support the identification of the different unit 

fractions and composite unit fractions, which are fraction as a measure ideas. Further, the spatial 

structure of the blocks enabled the measures to be determined though doubling and halving, 1-

nth-of... ideas, which are derived from the fraction as an operator meanings. Therefore, spatial 

structuring was an important construct in reinitialising the unit for these children. 

A similar experience was observed with four children using the hexagons. The children 

had used the hexagon, trapezoids and triangles in the representation shown in Figure 5.18. 

Figure 5.18 

Pattern Block Representation by Children 42, 38, 35 and 34 

 

Note. The pattern block representation was recreated and photographed by the researcher from 

the reflective journal notes taken during the lesson. 

I asked the children what they had created, and they replied ‘thirds, but the thirds were 

also in littler parts—just like in the tablecloths’ (Child 35). I asked them to explain what they 

meant by this. Child 34 said the representation was one whole, which they established from 

‘doing three times the hexagon…so a third is one hexagon’. This description shows a relationship 

between the times-as-many and unit fraction ideas, which are derived from the fraction as an 

operator and fraction as a measure meanings, respectively. The children stated they started with 
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three yellow hexagons, but then swapped them out to show the same regions in smaller, equal 

parts. During this observation, they spent time stating how they ‘could see’ smaller fractions 

within the hexagon—such as the trapezoids were ‘half of the one-third’ (Child 42) and ‘you can 

have six of these [triangles] as the same as the third’ (Child 34). However, as expected, they did 

not name the green triangles as eighteenths of the whole region. 

The relationship between identifying 1-nth-of... and re-unitising within different pattern 

block representations indicated the children were visualising and experimenting with the repeated 

spatial structures of the various unit fractions, and their relationship between units of units, which 

is evidence of reinitialising. 

5.4.3 Recognising Proportional Equivalence 

Recognising proportional equivalence is the next key indicator of the local instruction 

theory. The development of proportional equivalence was promoted by the emphasis on spatial 

proportional reasoning. The connection between how the three different meanings of fractions 

were developed in relation to this key indicator is now exemplified through an analysis of 

Lessons 8–10 of the intervention program. 

5.4.3.1 Lessons 8–10: Mapping Activities 

Lessons 8–10 were based on the picture book Knock, Knock Dinosaur (Hart, 2014), as 

described in Chapter Three. Across these three lessons were various activities that required small 

groups of children to explore fictional town maps, and a set of instructions to locate the missing 

dinosaurs (see Appendix C). Throughout Lessons 8–10, the children were engaged in two main 

problem contexts, described below: 

Problem Context 1: The dinosaurs have escaped the boy’s house! They’ve decided to 

explore the neighbourhood—here is the map. Somebody said they saw a T-Rex halfway 

between the boy’s house and the zoo. Where could she be? 
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A range of clues were provided for the whole class to work on the same map. 

Problem Context 2: You have taken a helicopter out to see if you can find some dinosaurs. 

On your group’s carpet map of the town, match the dinosaurs to their locations by 

reading the clues provided. 

Children were then asked to draw parts of their carpet map, that described where they saw each 

dinosaur. 

These problems predominantly engaged children in fraction as a measure and fraction as 

an operator ideas simultaneously, by drawing on the composite units, unit fractions and part-

whole ideas, to explore fractional measures of various paths. In addition, the 1-nth-of..., times-as-

many, similarity, and scaling (fraction as operator) ideas were developed by children comparing 

how different pathways could be partitioned. This also connected to the fraction as a relation 

meaning when exploring ideas about distribution to compare proportionally equivalent fractions. 

Children were asked to spatially visualise different pathways, and use spatial proportional 

reasoning to estimate and justify the different measures and quantities generated. The drawing 

tasks required children to preserve the relationship of the fractions of pathways in scaled 

representations. A selection of data is now presented from each problem context. 

Lessons 8-10: Problem Context One 

In the first example of Problem Context 1, the children were prompted with, A T-Rex was 

spotted halfway between the central fountain and the duck pond—where could she be? From 

observational data and work sample analysis, 18 of the children recognised the fraction as a 

measure meaning for this activity independently, and engaged in a spatial strategy to solve it. For 

example, this was indicated by children drawing lines ‘as the crow flies’ on the map (some 

gesturing the start and end points with their hands or dragging and ‘walking’ their fingers along 
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the map to signify a pathway) to determine what distances needed to be partitioned between the 

landmarks. 

Additionally, rather than drawing a straight line, eight children interpreted this task as 

finding the halfway point of the path the dinosaur may have taken from the central fountain to the 

duck pond, as indicated by Child 48’s work sample (see Figure 5.19). That is, these eight children 

created inventive pathways from one landmark to another, and indicated that they used spatial 

reasoning to determine the halfway point. 

Figure 5.19 

Work Sample Created by Child 48 

 

Note. Work sample digitally enhanced for ease of reading. 

On Child 48’s map, it was evident that a point on their path had been marked with ‘no’ 

(digitally annotated in Figure 5.19 for clarity). When I asked them what this meant, the child 

explained that they had marked a spot as halfway between the fountain and duck pond in the 

same place as their friend sitting beside them. This child soon realised their friend was indicating 

X 

‘no’ 
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the halfway point of a different path than Child 48 had initially drawn. Child 48 stated that they 

had to ‘straighten out the line [drawn path] in my head’, and that when they considered the first 

mark, they realised this was ‘more like a three-part of the way [a third] [using their hands to 

gesture the three parts of the path], than a two [half]’. Child 48 then placed an ‘X’ on the path 

above the yellow car as the halfway mark instead (digitally annotated in Figure 5.19 for clarity). 

To paraphrase, Child 48 stated that it did not matter how long the path was, to be half meant there 

were two equal parts of the concerning path, but you needed to ‘see’ (visualise) what the whole 

path was first (by mentally straightening, as indicated). This explanation of the use of spatial 

visualisation to determine the halfway measure of the path also indicated the child is exploring 

the key indicator of recognising proportional equivalence. That is, they recognised that each 

pathway could be different lengths, but they needed to ‘see’ the whole pathway of each before 

determining if the fractional measures were proportionally equivalent. This suggests they are 

developing flexibility in how they view fractions and their measures, as it is not fixed to a 

particular context (in this case, a specific path) but is indeed dependent on the individual whole 

(path). 

Like Child 48’s response, seven children indicated an understanding of the part-whole, 

unit fraction ideas underpinning the fraction as a measure meaning by their description of a path, 

they mentally partitioned. Two additional work samples are presented as typical interpretations of 

this task (see Figures 5.20 and 5.21). 
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Figure 5.20 

Child 45’s Work Sample 

 

Child 45 identified the halfway point on the paths as the café, and stated they had to 

‘stretch’ out the path to identify where halfway would be. This child explained they had to make 

sure the length of the path either side of the dinosaur was the same, while running their index 

fingers over each part like they were measuring them. This suggested the child was trying to 

visualise the length of each unit of half in relation to where they had located the dinosaur. 

Similarly, Child 46 provided an inventive path that suggested the use of spatial 

visualisation supported by their use of gesture. Child 46 determined the Ferris wheel as the 

halfway point of a pathway that has several bends and turns (see Figure 5.21). 
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Figure 5.21 

Child 46’s Work Sample 

 

In the child’s explanation of halfway on their path, they used a gesture like they were 

picking up both ends of the drawn path and pulling it like a piece of string, to stretch it out 

straight. The child stated that this is how they were able to imagine (visualise) where the dinosaur 

needed to go. 

This evidence suggested the children were thinking about the relationship between half in 

relation to the whole path and were employing spatial visualisation to imagine the length of the 

path if straightened. In addition, their experiences suggested they were using spatial proportional 

reasoning to determine and compare the proportionally equivalent measures of the pathways. 

Lessons 8-10: Problem Context Two 

Problem Context 2 within the suite of mapping activities involved using large carpet maps 

to continue ‘the search’ for dinosaurs (approximately 1.5 m x 1 m). An example of two of the 

carpet mats the children had access to is presented in Figure 5.22. 
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Figure 5.22 

Examples of the Carpet Mats Used in Lessons 8–10  

         a)                                                                    b) 

  

The children were provided with written clues specific to each map, and plastic dinosaur 

figurines to place on the maps when they had determined the position of each dinosaur. The clues 

included statements such as halfway along the carpark, three times the length of the runway and 

2-thirds of the railway line. Most of these clues were open-ended, and needed some decisions to 

be made by the children before solving. For example, children needed to decide which end of the 

runway was considered ‘the start’, or whether the pathways were considered ‘as the crow flies’ 

before making judgments about the position of the dinosaurs. As a class, we discussed there 

might be more than one possibility, so the children had to clearly justify their choices. 

Child 47 described how they interpreted this problem and indicated the times-as-many 

idea represented by their gesture: ‘If it’s three times, it is three lots of something—but it has to be 

the same size [using hands like they were dealing cards three times, in a row]’. 
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Given the class had only limited experiences with explicit teaching on multiplication at 

this point in the year (based on the information provided by Teacher B and current curriculum 

requirements) I prompted the child to tell me more. They stated: 

If you had this road [pointing to a section on the map], I’d have to measure three lots of 

this bit of road [gestured measuring three lengths with their hands] …if you had to find a 

third [of the distance the dinosaur had travelled], it’s like one of these parts. You can see 

that three times this part, it [is] like three of the thirds. (Child 47) 

Child 47’s description of the times-as-many idea in relation to unit fractions, followed by 

the use of gesture, suggested they visualised this relationship of the measure. An interaction with 

Child 47 at the end of the lesson helped further interpret this child’s understandings. I asked this 

child if there were any other ways you can have three times-as-many of something. Child 47 

responded: 

If I had three lollies, and I had three times-as-many… [long pause] …I’d have to have 

three groups of the same lollies… so…. [bundling three groups of three fingers together 

representing a group, then just using one finger as representation of a multiple of three] … 

it would be nine. 

By moving from a continuous to a discrete model to discuss their understanding of this 

idea, it demonstrated this child may indeed have a multiplicative awareness of this mathematical 

relationship. This is indicated by the way they were able to generalise their understanding of the 

quantities to another context, which is an example of proportional equivalence. This 

understanding illustrates the fraction as an operator meaning, involving the ideas of reversibility 

of partitioning, which was supported by visualising the relationship between times-as-many and 

1-nth-of... (to identify a unit fraction) in relation to different wholes. This is another example of 
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how multiplicative partitioning differs in contrast to a measurement, iteration-based partitioning 

approach to fraction understanding (Confrey & Scarano, 1995; Corley, 2013). 

The understanding of proportional equivalence was also evident during the tasks that 

required the children to draw scaled sections of the carpet maps in their workbooks. In Lesson 9’s 

Launch phase, children were given a thin strip of paper and asked to fold it into half and then into 

quarters. Using this paper as a scaffold, I then drew a line on the whiteboard and asked them to 

consider this as a ‘path’ that a dinosaur might have walked (see Figure 5.23). 

Figure 5.23 

Example of a Dinosaur’s Path Drawn onto the Whiteboard 

 
           Start       End 

 

Children were invited to identify where the halfway point on the path above was, using 

their strips as a guide. In the halfway example, all children confidently stated that the dinosaur 

would be halfway along the path, and a child added a cross on the path to demonstrate (see Figure 

5.24). Next, I pointed to 1-quarter of the original path (indicated in Figure 5.24) and stated this 

was how far the second dinosaur had walked. 

Figure 5.24 

Reference Made to 1-Quarter of the Pathway 

 

 

I asked children to describe how far the second dinosaur had walked. However, when I 

asked the children about the 1-quarter mark, several children said they were still in the first half, 

X 

‘How far has the dinosaur walked if 

she stopped here?’ 
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so they were halfway. This type of thinking suggested a familiarity with the area model, perhaps 

because the children were treating the strips of paper as area models rather than thinking about 

them as linear measurement models. This was an alternative conception also demonstrated by 

some children in the pilot phase. To further develop the discussion, I stated the following 

(paraphrased by Teacher B during this lesson). 

R: We can use this number line like a ruler to measure how far the dinosaur has walked. 

When we use a ruler [I held up a 30 cm wooden ruler] to say I’ve walked the whole 

30 cm… where would I be if I started at 0? 

Child 34 explained by running their finger along the ruler until the 30 cm mark. It was 

then considered as 30 cm they had walked. I went on to explore the area previously identified as 

troubling for the children: 

R: If I were to walk the whole length of this ruler, I couldn’t put my finger *here* 

[approximately 2-thirds along] and say I had walked the whole distance of 30 cm, could 

I? 

At this point, a few children replied with, ‘oh yeah!’, suggesting a potential change in 

understanding. Child 28 described their thinking to the class: 

If I walked halfway along this line, [running their finger along the 30 cm ruler until 

approximately halfway] *this section* [gesturing to a half measure by placing one hand at 

the end of the ruler and other at the halfway point] might be half of the ruler, but to say I 

walked halfway along this ruler, I would have to finish here [dragging their finger from 

the start of the ruler, and pointing to the approximate halfway point]. 

Another example of this thinking was displayed by Child 32: 

When you walk along a path, it’s like the bit you’ve walked that’s how big your walk is, 

and then wherever your home is, is how far you’ve got to go. You can break it up too, 
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like, the shop is halfway, so I’ve walked the same amount to the shop, and I have the 

same amount to get home. 

Responding to this point, Child 43 said: 

But I could imagine that I can walk from here to far, far away, and its only half to where 

I’m going—like Adelaide or something. But I could walk from here to that table, and it’s 

halfway of this room. You have to think about what the end is to know how big you’ve 

walked. 

The ideas and understanding children expressed in these statements are consistent with 

Spinillo and Bryant’s (1991) description of the ‘half boundary’ idea, which they argue young 

children develop early on, and helps build an understanding of fraction magnitude. They suggest 

that part-part relations, or comparing one part or half to the other part, develop before part-whole 

relations. In the above example, the children were originally referring to half as a discrete part in 

relation to its other part; however, Child 43’s explanation suggested a shift to intensive 

quantitative understandings. This is evidence of the understanding that a half is proportionally 

equivalent in relation to its relevant whole (Pedersen & Bjerre, 2021). The children are reasoning 

about the meaning of the fraction of half, rather than seeing it as a quantity that is fixed to a 

particular object. 

The next part of this problem context required children to draw a scaled version of part of 

a map with invented clues of their own, such as in the case of Child 34’s description of their 

representation, presented in Figure 5.25. 
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Figure 5.25 

Child 34’s Representation of Lesson 10: The Dinosaurs Have Escaped (Part 3) 

 

When I asked the child to explain what they had represented, they stated: 

The number of parts names the fractions, so if it’s a fourth, it’s four equal parts. I just 

thought in my head to imagine how many parts I wanted—so I wanted sixths, fifths, and 

thirds (Child 34). 

Using a gesture similar to that in Figure 5.26, Child 34 stated they ‘chunked’ each path 

into the same size parts, after they imagined the path ‘straightened out’ in their mind (referring to 

the curved path they have marked as 2-thirds in Figure 5.25). 

‘2-sixths’ 

‘4-fifths [of the way to the] chicken coop’ 

‘2-thirds’ [down the path] 
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Figure 5.26 

Recreated Images of the Gesture Used by Child 34 to Describe the ‘Chunking’ Operation 

Performed 

 

I asked Child 34 how they knew what size to make the ‘chunks’. They put their index 

finger from each hand in the middle of the paths partitioned into sixths and fifths, in what 

appeared to be a deliberate benchmarking of half, while stating ‘the five equal parts needed to go 

along this path’ (referring to the pathway near the chicken coop) and ‘these are smaller, sixth 

parts’. As they referred to the unit fractions ‘chunks’, they made a gesture with each of their 

hands, either side of the halfway point in each part (see Figure 5.26). 

Although Child 34 did not explicitly articulate that the halfway points were acting as a 

reference for partitioning the different paths, their gesture indicated they were engaging in spatial 

proportional reasoning by using halfway as a guide to determine the size of the other measures. In 

the analysis of the classes work sample for this task, 19 children demonstrated this proportional 

awareness with reference to halving as a benchmark, with some additional comments provided by 

the children shown in Table 5.7. 
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Table 5.7 

Examples of Children’s Scaled Representations of the Carpet Maps 

Child Work sample Accompanying observations 

and analysis 

 

Child 

32 

 

Child 32 explained to the 

Teacher B that they were all 

different length paths, ‘so half 

is going to look different on 

each, but still in the middle [of 

each path]’. 

 

Teacher B also recorded that 

the child suggested that for the 

curved path, the halfway point 

had to take into account the 

length of the curves in relation 

to the whole. In other words, 

the child could not just 

consider halfway between the 

destinations as the crow flies 

but had to visualise the length 

of the entire pathway to 

determine the proportions of 

half.  
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Child 

27 

 

During a whole class 

discussion, Child 27 stated that 

they tried to make the ‘windy 

parts’ of the pink parts ‘the 

same [length]’, showing an 

awareness of unit equivalence 

in each half. I asked them how 

they knew the 2-halves were 

the same length and they said 

they just ‘doubled the top bit 

over’. 

 

This suggested they were 

visualising the doubling and 

halving idea.  
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Child 

35 

 

Child 35 described thinking 

about the pathway partitioned 

into thirds as initially difficult. 

The child said they tried to 

‘measure with [their] fingers’ 

where to put the thirds 

(indicating a counting-based, 

iterative approach to 

partitioning) but then said they 

knew that a third was ‘a bit 

before half’. So, they used the 

half benchmark to help 

determine the thirds. The 

relationship between 

visualising and estimating the 

halfway mark to determine 

other fractional measures 

demonstrated an understanding 

of magnitude between thirds 

and half. However, this also 

suggested that this awareness 

was derived from splitting 

(multiplicative partitioning) 

approach and that their 

counting-based, iterative 

approach did not serve their 

purpose. 
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Child 

45 

 

Child 45 demonstrated a spatial 

proportional awareness of half 

in their explanation of ‘my 

lines are all crazy, but there’s 

still two same size parts’, 

referring to each half. With this 

explanation, the child used a 

gesture that suggested they 

were visualising straightening 

out the 2-halves, like it was a 

piece of string they were 

flattening out with the palms of 

their hands. 

 

The most common gestures observed during this task were iconic in the form of a sawing 

action, a chunking gesture (as illustrated in Figure 5.26) and a stretching and pulling hands apart 

gesture when describing how they mentally straightened out the path. The use of spatial language 

is again evident in these contexts, specifically spatial transformations (terms that indicate 

movement) that appeared to support the descriptions of how children mentally visualised or 

‘straightened out’ the paths. Moreover, the children’s use of spatial dimensions (which referred to 

the actual length or size of the parts) suggested the children’s engagement with spatial 

proportional reasoning, because they compared the unit fractions within a given whole, and to 

justify how each path was proportionally equal in comparison to one another. This is primarily 

connected to the fraction as a measure meaning as they seemed to be perceiving or visualising the 
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halfway parts of different spaces. In turn, this appeared to help children determine other 

measures, and conceptualise the idea of fraction magnitude is in relation to its whole. 

5.4.4 Connecting Multiplicative Relations 

The final key indicator is developing children’s ability to connect multiplicative relations 

of fractions and simple ratios. This means children were engaged in a range of experiences that 

developed their understanding of the part-whole and part-part relations of fractions, and simple 

ratios. 

5.4.4.1 Lessons 11 and 12: Exploring Simple Ratio 

Lessons 11 and 12 focused on the multiplicative, part-part foundations for ratio and 

fractions as a relation, such as the many-to-one idea (see Appendix C). The rationale for 

developing children’s understanding of fraction as a relation through whole number units (such 

as ratio) is that it supports an understanding of fractions as multiplicative structures. This 

involves the coordination of units in a way that emphasises proportional reasoning (Confrey, 

1994) such as the ‘building up’ and ‘building down’ (Hino & Kato 2019) strategies to work with 

part-to-part ratio. The selection of lessons discussed in this section are based on activities from 

Lessons 11 and 12. The following two problems will be discussed: 

Problem Context 1: If one dinosaur step was equal to two of your normal steps, how many 

of your steps would you need to take for five dinosaur steps? 

Problem Context 2: Mum decides to feed the dinosaurs some of the pies she has made. 

She has made three pies for each dinosaur. How many dinosaurs will she feed with 18 

pies? How many dinosaurs will eat 1-half of the pies mum baked? (Stretch: How many 

dinosaurs will eat 2-thirds of the pies?) 
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Lesson 11: Problem Context One 

During the Lesson 11: How many steps? activity, children were asked to represent the 

problem, with a range of different questions to challenge the children, such as: 

• If one dinosaur step was equal to two of your normal steps, how many of your steps 

would you need to take for five dinosaur steps? 

• If we take three steps to every dinosaur step, how many steps do we take in two, 

three…10 dinosaur steps? 

• What if the dinosaur had taken six steps and you had taken 18 [also combinations of 

three and nine; four and 12]? What is the smallest number of steps you would need to 

take for one dinosaur step? How can we represent this in a way that helps us describe 

what is happening? 

The children were provided with a bucket of chalk, invited to move outside to work and 

asked to think about describing the number of human steps needed for each dinosaur step. The 

children typically produced the representation depicted in Figure 5.27. 



270 

Figure 5.27 

Children’s Typical Representation of a Fraction as a Relation Problem 

 

Note. Recreation of the children’s representations carefully reconstructed by the researcher and 

Teacher B from our journals. 

I asked a small group of children to explain why they represented their problems in this 

way. Children 28, 43 and 44 responded: 

Child 44: It was hard to think because there seemed like there were so many numbers to 

remember at first [referring to the overall quantities of steps in the many-to-one 

relationship]. 

Child 28: We did, one [dinosaur] step, three of our steps, one [dinosaur] step, three [of 

our] steps… 

Child 43: You just keep these lines going to see the groups. 

As this group of children were describing this process, they were gesturing with their 

hands to signify two parallel lines in relation to Child 43’s comment, which corresponded with 

either the ‘line’ for dinosaur steps or for human steps, indicating the many-to-one idea. However, 

this also indicated a repetition of pattern and structure in the way they were gesturing and 
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describing the relationship between the distribution of dinosaur-to-human-step ratio. This 

evidence suggested that children of this age can understand and explore simple ratio ideas given 

the right contexts. Further, it appears spatial reasoning constructs such as structure in their 

representations and use of gesture, were vital to them developing and communicating such ideas. 

The children were asked to describe their representations, with a focus on them describing 

the number of human steps for each dinosaur step. They were asked to think about how they 

could structure the problem, so that the relationship between the dinosaur and their own steps 

were clear. The children were also asked to describe what they found using the following 

sentence structure, ‘For each (dinosaur or human) step…’. Transferring their chalk 

representations into their workbooks revealed that the majority of the class (19 children) 

displayed a structural understanding of how to coordinate units within a ratio context, 

exemplified by Child 33 in their work sample and description (see Figure 5.28). 
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Figure 5.28 

Child 33’s Work Sample 

 

Note. Teacher B scribed the child’s description, prompting the child to start with, ‘for each 

dinosaur…’. 

Child 33 used an array-like pattern in the way they represented an extension of this 

problem—eight human steps per dinosaur step, indicating a structural awareness of simple ratio. 

This child was working with the problem, there are ‘five dinosaur steps and 40 human steps, how 

many human steps are there to one dinosaur step?’, which was posed to the child by Teacher B. 

Child 33 used a bucket of counters to work with the problem in concrete form, before drawing 

their representation above. They described to Teacher B that ‘for each dinosaur [step] there are 

Teacher B’s 

annotation 
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eight people steps’ (however, the pictorial representation includes a total of 42 human steps 

incorrectly). Teacher B asked this child how they knew they were correct, to which they replied: 

For each dinosaur step there are eight of our [human] steps. So, to work out how many 

steps you need for 50 dinosaur steps or something… you’d just have to go counting eight 

plus another eight [plus another] eight, 50 times. That’s a lot of steps. 

The many-to-one idea is indicated by the use of ‘for each dinosaur step’, which I emphasised by 

asking the children to think about the variations of this problem as they explained their thinking. 

This description reveals a reference to the structure of the quantities involved in this proto-ratio, 

fraction as a relation problem (despite the error in human steps). Child 33 was able to 

demonstrate a ‘building down’ strategy (Hino & Kato, 2019) to determine the underlying unit 

ratio, which is an important step to coordinating units multiplicatively in part-part relations. 

Lesson 12: Problem Context Two 

Lesson 12: How many pies? required children to draw on similar ideas to explore simple 

ratio in the context of feeding pies to dinosaurs. The first part of the task (i.e., three pies per 

dinosaur, how many dinosaurs will be fed with 18 pies) proved challenging for approximately 

half of the class. The children who found this task difficult were unsure of how to deal with the 

quantities presented in the problem. 

Child 46 represented a partial use of spatial structure in their initial description of their 

thinking and representation (see Figure 5.29). 
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Figure 5.29 

Representation Created by Child 46 

 

Child 46 explained their thinking to me during the lesson: 

I knew you had to have 18 [pies] to start with, so I drew them. But then, I grouped into 

threes next to each other, along each line so you see how many groups of pies there are—

it’s six [moving their hands from left to right, signifying groups being made in a linear 

fashion]. 

The explanation, along with the gesturing of the groups in a horizontal direction indicated 

Child 46 was thinking about the many-to-one idea from the fraction as a relation meaning by 

grouping three pies at a time, with a purple boundary to indicate this relationship. However, there 

was a trial-and-error approach observed in the way they tried to group the pies, as they made 

several attempts at creating equal groups in purple. The child also relied on Teacher C’s 

scaffolding (prompting, questioning, and redirecting to the problem) to enable the representation 
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to be created. The trial-and-error approach appeared evident among approximately half of the 

class (based on Teacher B’s and my observations and discussions during the lesson).  

In contrast there were a small number of children that provided quite sophisticated 

representations, and understandings of this problem. For example, Child 29 explained their 

process of problem-solving and representing this task, demonstrating a connection between 

spatial structure and how the child viewed the multiplicative relations between the fraction 

meanings (see Figure 5.30). 

Figure 5.30 

Child 29 Work sample 

 

In this representation, Child 29 stated that rather than drawing 18 pies first and grouping 

them into three for each dinosaur, they drew groups of three pies, counting by three until they 

reached 18. When asked why they chose to draw their pies the way they did, the child stated that 

when you ‘line groups up’, they could easily ‘see how much is there’. That is, the child stated 

they deliberately drew three groups (of pies) across the top and three across the bottom, so they 

could see the groups were equal. If there were more than 18 pies, the child stated they would 
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have started the next group on a new line (underneath the two rows of pies already drawn) as 

threes were easy for them to count by—even though they were observed counting each pie 

individually. This is evidence of structural awareness in the equality and repetition of units 

needed when exploring the many-to-one idea, for the child indicated an understanding of the 

relationship between the whole set of 18 pies, and the distribution of groups of three pies for each 

dinosaur. The child later explained to Teacher B that two dinosaurs would eat 1-third of the 18 

pies, gesturing a vertical line over their representation to indicate where they could ‘see’ thirds 

(see Figure 5.31). 

Figure 5.31 

The Movement of the Child’ 29s Finger to Describe Thirds 

 

This response illustrated a connection to the fraction as a measure meaning, in that the 

child is now naming 18 as the referent unit; therefore, 1-third of the pies is two dinosaurs’ share, 

showing a connection to the composite unit idea. It is this type of response again demonstrates 

how the different fraction meanings are interrelated and closely connected, which is an important 

consideration in the teaching of this complex area of mathematics. 
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Similarly, Child 42 shared the following representation during the Summarise phase of 

the lesson (Figure 5.32), which demonstrated sophistication of understanding. 

Figure 5.32 

Child 42 Work sample 

 

I asked this child to explain how they created their drawing and solved the problem. They 

said, ‘I just knew to draw three pies for each dinosaur, until the 18 pies are gone, then that’s how 

many dinosaurs there are’ (Child 42). I prompted the child to tell me about the numbers they had 

written next to each pie and asked if that helped them in any way. Child 42 said that it helped 

them know that they had ‘used up’ 18 pies. This child’s description of three pies for each 

dinosaur is evidence of the many-to-one idea, as a ‘building up’ strategy (Hino & Kato, 2019). 

That is, the child demonstrated a structural awareness and coordination of the units, where the 
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child build ups the two quantities (dinosaur: pies) to reach the target quantity of pies (18). This is 

evidence of the fraction as a relation meaning. 

5.4.4.2 Revisiting Lesson 1: Child 47’s Discussion 

While packing up to leave after Lesson 8, Child 47 asked if they could show me 

something they had been thinking about since the first lesson. The analysis of this interaction is 

included here as it is evidence of both the reinitialising the unit, and the connecting multiplicative 

relations key indicators. 

The problem they wanted to share with me was from Lesson 1: Share 12 cookies between 

eight children. How much does each child receive? Child 47 asked me if they could describe to 

me their solution, as they struggled to make sense of the different partitioning contexts at the 

beginning of the intervention. Child 47 explained: 

You could split all the cookies in half and then each person gets three of the halves, or 

you can just leave the one [whole] and split this one to share [referring to a single cookie 

drawn in their book for the first attempt]—it’s the same amount. I can see in my head how 

you just cut all the cookies in half, and then I move them around to put them in groups of 

three [halves]—like, all lined up. I don’t even need to write it down; I just do it in my 

head! 

I drew an example in my notebook, instructed by the child at their request, as they had 

difficulty with writing and drawing representations. The child asked me to draw 12 cookies, and I 

asked them how they wanted me to arrange them. The child immediately replied with, ‘it should 

be six on top and six on the bottom’, gesturing two horizontal rows with their finger across the 

page (see Figure 5.33). 
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Figure 5.33 

Representation Drawn from Child 47’s Instructions 

 

The child stated that to share equally between eight people, there would be four ‘left over’ 

if one cookie was initially dealt to each person from the set of 12 (which is the partitive division 

idea from the fraction as an operator meaning). 

Child 47: I know you can get fair shares using all the cookies if they [the cookies] are 

broken in half. [They gestured with their finger a line down the middle of each cookie, 

and I drew it on to confirm.] I line them up in groups, so its eight groups—there’s eight 

people, and you just hand out the halves until they’re all used up. There are no leftovers 

then! 

I started to draw the groups of three-halves, and the child instructed me to put arrows 

indicating where the halves came from (see Figure 5.33) and then a ring around them to highlight 

the many-as-one unit of 1-and-a-half cookies/3-halves per person. As I was doing so, the child 

stated, ‘It’s the same as ... just three, whole cookies between two people [used hands in a cupping 

action to gesture a unit/group]’ (see Figure 5.34). 
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Figure 5.34 

Example of Child 47’s Cupping Gesture 

 

Given the child’s statement indicating they had reinitialised the unit of 1 and a half is 3-

halves, and indicated early ratio understandings of one person: 3-halves, two people: three 

cookies, I decided to push this child’s thinking further to reveal their understanding of part-part 

relationships: 

Researcher: What if you regrouped the cookies again, and there were four children? How 

many cookies would you need if everyone still received 1-and-a-half cookies? 

Child 47: That’s easy—it’s six! Because when you go up this side [child used a gesture 

like their hands were a balance scale; see Figure 5.35] by that amount [double the number 

of children], you need to here as well [double the number of cookies]. But everyone still 

gets the same amount [of cookies]—one and a half. 

Figure 5.35 

Recreated Image of the Gesture Used by Child 47 to Represent a Balance Scale Gesture 

 

This response suggests that child was engaging in spatial visualisation to explain how 

they perceived the inverse relationship between the ratio of 2:3 and 4:6. The child used gesture to 
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signify that doubling the number of children doubles the number of cookies, which relates to the 

fraction as an operator meaning. Additionally, the use of gesture in Child 47’s response to my 

second question suggests an understanding of the proto-ratio and distribution ideas from the 

fraction as a relation meaning. This was indicated by the way in which the child was representing 

the preservation of the multiplicative relationship between the number of children, and number of 

cookies in the problem (Confrey et al., 2014b). This child appeared to have an advanced 

structural, two-dimensional understanding of the quantities (many items per child) rather than 

considering it as a single dimension problem (a focus only on the group of many objects or 

many-as-one). As described earlier in this thesis, several researchers suggest that the use of 

gesture provides a window into the thinking processes and visual imagery children use when 

considering mathematical problems (Alibali, 2005; Beilstein, 2019; Edwards, 2009). The gesture 

used by Child 47 suggested they were visualising the doubling and distribution of the two 

quantities simultaneously. This indicates how spatial visualisation supported the fraction as an 

operator and fraction as a relation meaning to establish early multiplicative relations of fractions.  

5.5 Insights From Post Task-Based Interview 

This section provides a comparison between the children’s responses in pre- and post-

intervention TBIs to determine what effects, if any, the intervention program as a manifestation 

of the local instruction theory had on the children’s understanding of an extended range of 

fraction ideas. To establish the extent to which the teaching intervention influenced children’s 

understanding of fractions, a paired sample sign test was conducted on each set of the TBI. 

5.5.1 Comparison of Pre- and Post-Task-Based Interview Responses 

As described in Chapter Three, the pairwise outcomes for each item in each of Set One 

and Set Two were combined for the purposes of the analysis. For Class B (23 children) and Set 
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One (four items), this resulted in 23 x 4 = 92 possible responses. For Set Two, this resulted in 

23 x 5 = 115 possible responses. 

The results from the paired sample sign test for Set One and Two are presented in Table 

5.8. The results indicate statistically significant positive change from the pre- to post-intervention 

TBI for both sets.  

Table 5.8 

Paired Sample Sign Test Analysis of Set One and Two (Class B) 

Paired Sample Sign Test Analysis: (p≤0.33) 

Category Assessment item(s) Positive change + Negative change – p-value 

Trusting the Count 1, 2, 3, 4 40 52 0.016  

Place Value 5, 6, 7, 8, 9 58 58 <0.000 

 

As described in Chapter Three, the pairwise outcomes for Set Three were grouped into 

fraction meanings and spatial reasoning categories. Table 5.9 presents the results of the paired 

sample sign test by category for Set Three. 

Table 5.9 

Paired Sample Sign Test Analysis of Set Three (Class B) 

Paired Sample Sign Test Analysis: (p≤0.33) 

Category Assessment item(s) Positive 

change + 

Negative 

change – 

p-

value 

Fraction as a measure  10, 11, 12, 15, 16, 20 21 22, 

24 

145 62 <0.000 

Fraction as an 

operator  

10, 12, 13, 15, 16, 17, 18, 19, 

20, 21, 22, 23, 24 

182 117 <0.000 

Fraction as a relation 11, 13, 14, 23 64 28 <0.000 

Spatial Visualisation 10, 12, 15, 16, 17, 18, 20, 21, 

22, 24 

151 79 <0.000 

Spatial Proportional 

Reasoning 

8, 11, 13, 19, 23 64 51 <0.000 
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Significant growth from pre- to post-test is evident across all fraction and spatial 

reasoning categories, with children performing well above chance. Given that the children 

received no other mathematics instruction during the intervention period, these results indicate 

that a spatialised, partitioning based approach to an extended rage of fraction meanings can 

substantially influence children’s fraction and whole number understandings. While a useful 

measure, the quantitative analysis provides only a snapshot of the intervention’s success, as the 

aim of DBR is not just to improve the outcomes of learning but to understand how the 

mechanisms for learning and reasoning can be supported (Cobb & Gravemeijer, 2014). To this 

point, examining the children’s mathematical reasoning and behaviour in the post-TBI provides 

critical information as to how children’s thinking has changed as a result of the intervention. 

5.5.2 Post-Task-Based Interview Insights 

In addition to the paired sample sign test, thematic analysis was conducted on the 

children’s work samples and observations taken during the post-intervention TBI. 

5.5.2.1 Set One and Two Qualitative TBI Insights 

Thematic analysis of the post-intervention TBI data revealed insights in the way children 

engaged with the items compared to the pre-intervention TBI. In Set One and Two of the TBI, the 

most notable difference in the children’s behaviour was their development of whole number 

ideas, such as composite units and an awareness of magnitude, which seemed to be promoted 

through the awareness of spatial structures. This section will discuss this theme in relation to Set 

One and Two. 

An example of this theme is represented by Child 32’s response correctly describing this 

place value idea in Item Five (26 counters). They stated that the ‘6’ in 26 were singles or ones, 

where the ‘2’ represented two tens— ‘not “2” like the “6” [represents]’. As they were describing 
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this idea, they made a gesture with their finger, of two arc-like shapes in a left-to-right motion 

across the table, illustrated in Figure 5.36. 

Figure 5.36 

Example of Child 32’s Gesturing During TBI Item 5: 26 Counters 

 

I asked Child 32 what their gesture meant. They replied: 

It’s like, the ‘2’ is a 20, not a ‘2’ as in two of these [counters], so when you see that 

number, you think, ‘10’ [gesturing first arc] … ‘20’ [gesturing second arc] … so it’s the 

two groups of 10, and then the six is … a bit more than halfway to 30 [gesturing a 

smaller, third arc]. 

This statement indicated the child had established an abstract composite unit (Cobb, 

1995) understanding, as Child 32 considered ‘ten’ as one 10 and 10 ones simultaneously. It also 

suggested Child 32 was demonstrating spatial proportional reasoning in the way they considered 

the magnitude of six in relation to the next 10, and in the way they described and gestured the 

size of arc as being ‘a bit more than halfway’ to the next 10 when representing 26. 

Child 32 took the 26 counters from this problem and made an array of two groups of 10, 

stating: 

You can see 26 is two groups of 10 and then six [more]…but is also two groups of 13—I 

just saw that! [suggesting they visualised this arrangement of adding two groups of three 

to each group of 10 to get the same result] 

This example suggests Child 32 has developed an advanced structural understanding of 

countable units through reinitialising the unit, evidenced by their ability to make flexible 
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statements about the different underlying units they described as 26. They were able to recognise 

familiar structures—in this case, the composite units of 10, six and then 13—in the way they 

structured the concrete materials. Reference to the composite unit of 10 (typically numerical 

composite of 10 ones rather than an abstract composite of one 10) and array structures (e.g., 5 x 5 

counters plus one for 26) were evident in 10 children’s responses, compared to just four children 

in the pre-intervention TBI. 

Of the 23 children in Class B, nine indicated they were using spatial structure when 

describing elements of whole number knowledge. Some made comments that referred to using 

the nearest 10 as a mental benchmark when combining two collections (such as seven and nine). 

In addition, some suggested that 1-ten more, 2- tens less mean ‘skipping’ along in chunks of 10 

as Child 32 stated. Moreover, seven children used gesture in a fashion similar to the example in 

Figure 5.36 to accompany their descriptions, suggesting that they could ‘see’ the structural 

pattern of tens as a unit. 

Also notable about children’s use of spatial structure in these assessment items was the 

accuracy in number line estimation they displayed between the pre- and post-TBIs. Item 8 

(Proportional number line) required children to place the numbers 8 and 16 on an open 0–20 

number line. In the pre-intervention TBI, the majority of the children either guessed or tried to 

count some form of invented or imagined partitions to place eight and 16 on the number line. 

Conversely, in the post-intervention TBI, 14 children demonstrated the use of spatial structuring 

and spatial proportional reasoning to accurately place eight and 16, with the majority of these 

children also able to attempt placing 48, 67 and 26 on a 0–100 blank number line, with similar 

strategies and accuracy. For example, Child 39 used their hands to partition the 0–20 number line 

in half, stating that ‘8’ needed to be placed just below (on the left) of this benchmark, because it 

was close to, ‘but not right next to’, 10. They then used a similar gesture to partition the upper 
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half of the number line in half again, stating that this represented halfway between 10 and 20—or 

15, so that ‘16’ could be placed immediately to the right of this benchmark. The child commented 

that 48 was near the half of 50 (referring to 50 as being half of the 0–100 number line). Child 39 

said they thought about the chunks that could help them, like chunking the line into fourths to 

then place the other numbers. 

Spatial proportional reasoning was evident in the way seven children commented on the 

way they compared the two number lines. For example, both the 0–20 and 0–100 number lines 

were the same absolute length; however, the children only got to view and attempt the 0–100 

number line if they demonstrated some form of understanding and accuracy with the 0–20 

number line. 

In the pre-intervention TBI, 11 children did not view the 0–100 number line because of 

their inability to complete the 0–20 task. Of those that did in the pre-assessment (n=12), five 

stated that they could not place one or more of the required numbers on the line because there 

was ‘not enough room’. The post-intervention TBI data for this item revealed that spatial 

proportional reasoning was evident in the majority of the 21 children’s responses who completed 

both number line tasks. The following responses are examples of this shift in understanding. 

Child 29: Half is like the same length on the line, but the numbers are different because 

there’s more to fit in. 

Child 42: You just think half of 100 instead of half of 20 to work out where the numbers 

go, even though the line looks the same [length]. 

Child 44: It’s like half of something can look the same [running finger along number 

lines] but you have to think about what the whole total is, like half is 10 [pointing to 0–20 

number line], but [half] is 50 here [pointing to 0–100 number line] but they are both the 

same [length]. 
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This thinking indicates a development of understanding between multiplicative relations, 

fractions and proportional reasoning that is underpinned by both mathematical and spatial 

constructs (Hino & Kato, 2019). This has resulted in an increased awareness of children’s whole 

number magnitude. 

Moreover, four children used transformation terms like ‘stretching out’ or ‘folding over 

and over’ when making comparisons about the where the numbers should go and how the 

number lines were the same absolute length but represented different measures, indicating how 

spatial visualisation played a key role in their conceptualisation of the problem. Child 34 

exemplified this use of such terms: 

Like the 20 [number line] I think the…100 is like folding it halfway, then over [halving 

again] so I get my quarters. And these numbers are 20…25, 50 in the middle. Then I 

know where I can put the 26 and 48 because they are close to these [benchmarks]. 

This suggested that this child used spatial structure to visualise the magnitude of the number line 

quantities. 

5.5.2.2 Set Three Qualitative TBI Insights 

From the thematic perspective of the post-assessment data, there were patterns of 

behaviour evident in relation to the children’s improved performance in Set Three. Specifically, 

the interplay between children’s gesture their descriptions of their thinking suggested spatial 

visualisation and awareness of spatial and mathematical structures assisted their understanding.  

This section will provide evidence from seven items to highlight the use of gesture and its 

suggested connection to spatial visualisation and structure (see Table 5.10). Although there were 

large improvements in many items within this set, these items have been chosen as they represent 

the pattern of behaviour in tasks that are quite complex for this age group. 
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Table 5.10 

A Sample of TBI Items 

Item Description 

10 Folding 

Fractions  

Image of a square: 
 

 

Child is shown the image of a square. ‘How many 

ways can you imagine folding a square in half? 

Can you describe what you think it would look 

like if you folded it in half, then in half again? 

What is each part called?’ 

(University of Cambridge, 1997-2023) 

 

 

11 What 

fraction is 

green? 

Image of rectangle: 
 

   

Child is shown the rectangle and asked, ‘What 

fraction of this rectangle is shaded green? How 

did you work that out?’ 

(Created by researcher) 

 

 

15 Missing 

faces  

 

Set image: 

 

 

 

 

 

 

 

 

 

 

 

Each child is shown the set and asked, ‘If this 

group represents 2-thirds of a set, what is 

missing? Draw or explain your thinking.’ 

(Created by researcher) 

 

 

19 Scale the 

picture 

Spatial scaling image: 

 

 
 

An image of two circles is presented. The 

diameter of the smaller circle is half that of the 

larger circle. The smaller circle contains two 

shapes, a triangle and a rectangle. The larger 

circle only includes the triangle drawn to scale. 

The children are required to draw the missing 

rectangle in the larger circle and describe the 

difference in size between the two shapes. 

‘Can you complete the picture of the circle on the 

left so that it has the same shapes as the circle on 

the right? Explain why you chose to draw the 

shapes in that way.’ 

(Adapted from Frick & Möhring, 2016) 

 

21 Eating pies Images of pies: 

 

Children are presented with a 3D image of two 

‘pies’ that have a fractional part missing. They 

need to use their visualisation skills to determine 

what fraction each part represents. ‘Can you 
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describe what size each piece of pie is? How did 

you work that out?’ 

(Adapted from Way, 2011). 

 

22 Fred’s pizza Image of Fred ordering pizza. No image of 

an actual pizza supplied; however, children 

have access to pencils and paper for use. 

 

‘Fred orders a pizza which he will eat the whole 

thing in one sitting. But…he asks for it to be cut 

into quarters, not eighths, because he can’t eat 

eight slices of pizza. Does his request make 

sense? Why or why not?’ 

(Adapted from Dole, 1999) 

 

 

 

23 Plant growth 

rate 

Image provided of the plants as a distractor: 

 

 

 
 

Comparing proportional rate of growth. 

‘If plant A grows 5 cm in half a year, and plant B 

grows 8 cm in a whole year, which is growing 

faster? How do you know?’ 

(Adapted from Dole et al., 2012) 

 

 

In Item 10 (Folding fractions), Item 11 (What fraction is green?) and Item 21 (Eating 

pies), the children were provided with images to prompt their thinking (i.e., a square that 

represented a piece of paper they had to imagine folding/partitioning, a green-and-white coloured 

rectangle, or a pie with a fractional part cut). Of the correct answers for these three items 

combined (50 of a possible 69), there were 30 instances of gesture coded in conjunction with the 

children’s explanation. For example, a typical gesture for Items 10 and 11 were children using 

their hands to replicate folding a piece of paper, or in Item 11, by flipping their hands from palm 

up to palm down when explaining how they came to their conclusion about how much of the 

rectangle was green. Child 42 stated for Item 11, ‘I flipped the white bits over and it wasn’t 

probably half [of the green] it was more like…a third’. Child 29 commented that they ‘flipped 

over the piece of pie in Item 21 to see if it was half or how many pieces would make the whole 

thing’, using a similar gesture with their hand to coincide with describing the unit fraction and 
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iteration of the units. This suggested the child was engaging with spatial visualisation in the 

problem-solving process that helped them determine the size of the parts in the representation. 

Other common instances of gesture with this problem and in Item 11 were children using 

their hand like they were rotating parts to mentally compare the size of the fraction to its 

complement parts. The types of gesture were assumed to be closely related to the multiple, 

mental transformations the children were performing when using spatial visualisation in this 

item, based on the accompanying descriptions. However, this observation also suggest that 

children were, again, drawn to the halfway benchmark in many of these problems to determine 

the size, proportion, or equivalent measure associated with these tasks. 

In Item 12 (Comparing unit fractions), the children were asked to explain which fraction 

is larger, 1-third or 1-eighth, and were not provided with any accompanying representations 

(although they had access to concrete materials, pencil, and paper to use as they wished). No 

child answered this item correctly in the pre-intervention TBI. In the post-intervention TBI, 19 of 

the 23 children in Class B identified 1-third as the larger unit fraction and provided rich 

descriptions supporting their answer that included gesture, evidence of spatial visualisation and 

the use of materials to justify their understanding of unit fraction magnitude. This is illustrated by 

the following response: 

Child 27: It’s a third, because look—if have this square paper [A4 rectangular sheet] and I 

imagine, like cutting in this way [gesturing cutting the paper across two evenly spaced 

places, horizontally across the page], I get threes, each of these are a third. To get eight, 

you have to make more cuts and get more pieces, but the pieces get smaller and there’s 

more of them, but they’re heaps smaller—I can see them shrink. And it doesn’t matter 

what size paper you use—a three [third] is always bigger than an eighth. 



291 

Child 27’s response demonstrated an understanding of partitioning and how they were 

able to visualise this process using a piece of paper, in addition to using gesture to support their 

claims. Although there are some ambiguities in naming fractions (i.e., referring to a ‘three’ 

instead of a third), the child’s reference to a third always being larger than an eighth within the 

relevant whole also indicates the child’s understanding of the inverse relationship between the 

divisor and quotient—a fundamental idea in the conceptual development of partitioning. This 

child also demonstrated spatial visualisation through their description of the units ‘shrinking’ as 

they apply more partitions, reinitialising the unit and recognising proportional equivalence—both 

of which are multiplicative concepts. This is an indication that spatial reasoning skills, together 

with the use of gesture, appeared to assist this child to communicate their understanding of 

fraction magnitude, suggesting a multiplicative foundation to partitioning. 

Several more children provided similar explanations: 

Child 39: It’s a third. When I see the parts in my head, I imagine a line and I can break it 

up evenly. Just…it’s like… it’s the more pieces or groups [of things] you need to make 

out of something, the smaller they get or less you have [gesturing the forming of parts 

with hands, moving imagined objects to imagined groups in the air]. 

Child 36: When you have thirds, its only three groups, so you get more in each. But I 

have to take some out of each three…third and move them to make eight even groups for 

eighths. The parts get smaller because you’ve moved some bits from breaking up the 

thirds [hands moving on the desk as the child referred to redistributing and moving parts]. 

Child 35: You have to keep halving to get eight pieces—like folding over and over [hands 

moved to suggest they were folding a piece of paper], and as you do that they keep getting 

smaller and smaller all next to each other. Thirds are three big parts, not eight small ones. 
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The responses highlight how children visualised the outcome of partitioning and was able 

to generalise the relationship between the parts generated and their relative size. That is, the 

responses indicated a description of continuous contexts—such as a line that they mentally 

partition into thirds, a piece of paper that is ‘folded over and over’—yet also indicated a transfer 

of partitioning knowledge to discrete contexts, by visualising the unit fraction with a set 

representation. This transfer from continuous to discrete contexts is said to be an important 

landmark in early fraction understanding (Confrey & Maloney, 2010), because the learner is 

starting to abstract the idea across multiple contexts. 

In the context of Items 15 and 19, spatial visualisation, structure and gesture were also 

strongly connected. Of the combined 46 possible ‘correct’ responses to Items 15 (Missing faces) 

and 19 (Scale the picture), there were 30 correct responses in the post-intervention TBI in 

comparison to just four in the pre-intervention TBI. However, what was most noticeable in the 

children’s responses to these items in the post assessment phase was the use of gesture 

accompanying the children’s descriptions. For example, gesture was typically associated with 

demonstrating how the structure of the unit fractions and many-as-one understandings of a set 

model in Item 15 was determined, by many children cupping their hand over each group of two 

faces when describing each part as a third. This also connects to the strong association of the 

structure of the units as discussed earlier in this chapter, again, with children in this item typically 

showing a structural understanding of the underlying unit formation. Two children turned their 

paper 90 degrees, stating a third is two faces but 1-half (of the whole) is three while using their 

hand to cover the units identified to model the different size unit fractions. This suggested the 

children have developed fluency with unitising the structure of small collections, which is a 

fundamental concept that underpins all of the meanings of fractions. 
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Moreover, for Item 19 (Scale the picture), where the children were asked to draw the 

missing part of an image that had been enlarged and describe how the image hand changed, a 

common use of gesture was children positioning their hands with their palms facing together and 

then moving the palms away from each other, to indicate they were enlarging the original image. 

Serval children used a similar gesture with a thumb and fore finger, just like one would do if 

zooming in on a digital touch screen (e.g., a smartphone). This accompanied many descriptions; 

terms such as half as big, twice as big, and double as big were typical descriptions of the 

relationship between the two images—which was not evident in the pre-intervention TBI. 

Item 22 (Fred’s pizza) also showed dramatic growth in the number of children correctly 

responding to this item in the post-intervention (from no children pre-assessment to 12 correct 

answers post-assessment) and the use of spatial dimension and spatial transformation language 

used to support their communication of partitioning and equivalence. The problem posed was that 

Fred ordered a pizza that he intends to eat in one sitting, but he asks the pizzamaker to cut the 

pizza into four pieces only, not eight, because he cannot eat eight slices. The children are asked if 

Fred’s request makes sense and to explain their reasoning. Child 34’s response was typical of the 

explanations that included spatial dimensions, which are terms describing the relationship 

between the dimensions of the parts and the whole: ‘The pizza is cut into different parts—which 

can be big or small, but it’s still the same amount of pizza altogether he is eating’. 

As described above in the intervention analysis, it is clear that many children have a 

developing understanding of partitioning, underpinned by the multiplicative inverse relationship. 

That is, an understanding of the number of parts and how these impacts on the size of each part. 

Similarly, the understanding of unitising and equivalence are evident in examples such as these; 

however, these items provided little or no stimulus other than the problem being read to the child. 

This required the children to draw on their mental imagery and understandings of the magnitude 
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and quantities in each of the items. This suggests children developed this awareness of magnitude 

though their spatial reasoning skills in the absence of such representations. 

Finally, Item 23 (Plant growth rates), which required children to compare the rate of 

growth for two plants, provides evidence of children’s use of gesture and how this was integrated 

with their spatial structuring awareness. The item required children to consider the following 

problem: Plant A had grown 5 cm in half a year, Plant B, that had grown 8 cm in a whole year. 

Which plant was growing faster? Only four children were able to answer this problem correctly 

in the pre-intervention TBI, with little or no justification, suggesting they may have guessed. Of 

the 15 children who answered correctly in post-TBI, eight demonstrated a use of spatial structure, 

evidenced in part by the use of gesture, in the way they described and represented their answers 

(see Figure 5.38). 

Figure 5.38 

Children 38 (Left) and 43’s (Right) Representations of Item 23: Plant Growth Rate 

  

These two work samples are typical of the representations the children produced to 

explain their thinking. While the problem refers to plant growth rates in terms of height, the 

diagrams created by the children typically represented horizontal measures in the form of number 
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lines to compare the rates of the two plants. Moreover, they recognised they were not 

representing the growth of the plants within the same timeframe; therefore, a representation that 

demonstrated doubling and halving structure was employed. Further analysis of this item 

revealed that eight of the 15 children who correctly answered this problem used gesture to 

represent the units of time and growth rates for comparison. This was in the form of gesturing the 

partitioning (or ‘chunking’ as many children spontaneously referred to it) of a year—either in the 

air with an imagined number line structure, or when explaining such representations as those in 

Figures 5.38 and 5.39. This finding suggests that the use of gesture was closely associated with 

how the children were visualising the proportional relationship between the two measures and 

early multiplicative relations of fractions and simple ratio during this TBI. 

5.6 Chapter Summary 

This chapter set out to provide insights into the way in which young children drew on 

spatial reasoning to develop an extended range of fraction ideas. With reference to the connection 

between spatial reasoning and early fraction understandings, the following insights were revealed 

in this iteration. Spatial visualisation assisted the children to conceptualise the relationship 

between the size of parts created is determined by the number of parts or shares. It helped 

children to visualise the process of partitioning and rearranging or redistributing parts of objects, 

which incorporated many early fraction as an operator ideas.  

The children’s overt use of gesture in addition to the use of spatial language enabled the 

children to describe the size, orientation, transformation, or movement of the objects as the 

children were explaining their thinking, suggesting they were important tools and strategies for 

identifying how children were visualising and predicting various partitioning contexts. There 

were 116 coded instances of gesture recorded in the post-assessment (compared to a total of 36 
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instances in the pre-assessment). The analysis of gesture in the comparison of the pre- and post-

TBI is important because it was not possible to view and record every child’s use of gesture 

throughout the intervention itself due to the nature of the data recording tools. However, the post-

TBI analysis suggests it was an important communication tool for the children and provides an 

insight into how children mentally represented and constructed these ideas.  

The pattern, repetition and symmetry children paid attention to and engaged with when 

using concrete materials and pictorial representations was evident in both discrete and continuous 

contexts, suggesting spatial structuring was an important construct in developing an appreciation 

for the relationship between parts and whole. Specifically, spatial structuring was associated with 

fraction as a measure meanings about unit and composite fractions and how to coordinate these 

units in various ways across different fraction meanings. In addition, spatial structuring supported 

the fraction as a relation contexts involving discrete distribution and simple ratio activities. 

Spatial proportional reasoning appeared to assist children in the justification of the size of 

the part and its relationship to the whole, particularly when identifying (visually) the halfway 

point within a nominated region (such as pathway or continuous object specifically). The children 

also developed proportional equivalence ideas from comparing fractions between different 

wholes. This suggest that the children’s ability to compare and reason with different fraction 

measures was promoted through spatial proportional reasoning. 

Reflecting on the classroom environment in which this teaching experiment took place, it 

was clear that the children were capable of developing understandings of a range of fraction ideas 

even though the pedagogical approach in the intervention program appeared to be strikingly 

different to the typical pedagogical approach the children experienced in their everyday 

mathematics lessons. 
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From a methodological perspective, the first iteration of the teaching experiment has 

satisfied what Cobb et al. (2001; 2003) describe as an analytical approach to DBR, in that it 

1) has enabled the collective mathematical development of a classroom community to be 

documented through implementing an intervention-based instruction sequence, 2) enabled the 

documentation and analysis of the mathematical reasoning of individual children throughout the 

intervention and 3) resulted in analysis that feeds back into future iterations of the teaching 

experiment.  

It was evident that the local instruction theory provided children with opportunities to 

develop an extended range of ideas from the fraction as measure, fraction as an operator, and 

fraction as a relation meaning, through spatial reasoning constructs. This is further supported by 

the results from the paired sample sign test, which revealed that Class B demonstrated 

statistically significant change from pre- to post-intervention TBI in all three meanings of 

fractions. While some of the tasks in the intervention appeared more challenging than others, the 

tasks still enabled every child to participate meaningfully throughout the intervention. The 

sequence and characteristics of each of the key indicators appeared to support the logical 

construction of fraction understandings throughout the intervention. This suggest there is no need 

to refine or change the local instruction theory at this point in the study. 

Chapter Six reports the results of the second iteration of the teaching experiment for 

Phase Two.  
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Chapter 6: Teaching Experiment Insights – Class C 

6.1 Chapter Overview 

This chapter presents the findings from Class C as the second iteration of the teaching 

experiment. During this iteration, the children experienced only five of the 13 lessons within the 

intervention program. This was due to the COVID-19 pandemic and resultant restrictions on 

fieldwork by the University, and the South Australian Department for Education.  

This chapter begins with an overview of the participating class in section 6.2. This section 

includes an analysis of the Task Based Interview (TBI) conducted prior to the intervention. 

Section 6.3 discusses the implications the pre-intervention TBI and classroom observations, and 

the modifications made to the intervention program consequently. Section 6.4 analyses the 

intervention findings in relation to the local instruction theory. As the intervention was cut short, 

only two key indicators of the local instruction theory are explicitly evidenced. To explore the 

impact of the intervention and the veracity of the local instruction theory, Section 6.5 presents 

quantitative and qualitative comparisons of the pre- and post-intervention TBI data. Section 6.6 

summaries the key insights from this iteration of the teaching experiment. 

6.2 Setting the Scene: Class C 

The class participating in this iteration was from a third public school in regional South 

Australia. The Year 2 class comprised 21 children—11 boys and 10 girls. The mean age was 7 

years, 2 months. 

6.2.1 Understanding the Classroom Environment 

As with the previous class, I undertook three classroom observations in the week before 

the intervention commenced. Using the CLASS framework (Pinta & Hamre, 2009), the 
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observations were analysed to understand the typical ecology of the classroom and the needs, 

strengths, and behaviours of the children in their mathematics lessons. Teacher C used an 

interactive whiteboard during mathematics lessons to introduce the concepts or topics using 

PowerPoint, storybook, or online resources (e.g., songs, YouTube clips). In addition, the children 

were provided with concrete manipulatives such as multi-base arithmetic blocks, counters, dice, 

cards, board games, linking cubes and rulers, as well as a range of printed representations in the 

form of tens frames, number lines and place value charts as required. 

The observations took place in early March 2020, approximately six weeks into Term 1 of 

the school year. While each of the schools participating in this study were demographically 

similar to each other (see Section 3.5), there were many children in this class that had complex 

home environments affecting children’s attendance and school engagement. Some children had 

experienced trauma, and several had diagnosed learning difficulties (e.g., Dyslexia, Attention 

Deficit and Hyperactivity Disorder, Autism Spectrum Disorder, and global developmental 

delays). It was apparent in the observational period that the learning profile of this classroom 

(Class C) was quite different to that of the previous two classes (Class A and B). 

Teacher C stated they had focused on linear measurement, subitising and two-digit place 

value in the lead up to this intervention, but focused on the Australian Curriculum Year 1 

(version 8.4) content, as the majority of the children had not mastered many of these 

requirements. The three lessons observed were on ideas relating to place value. The first task was 

for children to play in pairs and take turns rolling two six-sided dice, adding the numbers rolled 

each time until someone reached 30. The teacher asked the class to represent the running totals 

using base ten blocks and a place value chart to understand the connection between the written 

numerals, their quantity and place value. As a new number was rolled, the children were asked to 

use the base ten blocks to add to the existing quantity and then record the total in numerals. 
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Teacher B modelled to the whole class how to ‘trade’ ten ones for one ten using base ten blocks. 

When the children began to work independently (in groups of three), Teacher C observed groups 

of children for a sustained time without interruption (approximately seven minutes per group), 

documenting their behaviours before identifying what support and scaffolding would be 

beneficial. In this lesson, Teacher C noticed that two children had difficulty representing the 

number 14. Teacher C asked the pair to consider the number they had written down and what 

each digit represented (one of the children had written 41 and required prompting by the teacher 

to establish whether they had recorded the intended number correctly). 

Teacher C gathered several children on the floor whom they had also observed having 

difficulty making or recording different collections to provide some explicit teaching, which 

Teacher C described as a teachable moment. Teacher C asked the group of six children what each 

digit represented in 14. Most stated that the ‘1’ in 14 represented one, suggesting a reference to 

one as a single count (not one ten as a composite unit), and that the ‘4’ represented four ones. 

However, they became confused when this description did not match the number of cubes they 

had. Teacher C questioned them by asking them to line up the 14 individual units they had 

collected, then took a ‘ten’ multi-base arithmetic block and asked them if there was a way for 

them to use this unit in place of some of the ones. With some additional scaffolding, the children 

could eventually represent the number 14 as 1-ten and 4-ones. 

The other two lessons I observed were similar, where Teacher C asked the children in 

groups to each roll two dice and make the highest or lowest two-digit numbers possible. The 

children then had to then represent the number using pop sticks (bundles of tens and individual 

sticks were provided), and then the children were asked to order the numbers. There were several 

classroom interruptions during the second and third lessons, meaning there was only 

approximately 30 minutes of working time in each observation.  
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Using the CLASS framework (Pinta & Hamre, 2009) to analyse the observations, the 

following themes were evident. First, Teacher C’s experience working with diverse groups of 

children was evident in how they built a foundation for understanding by providing challenging 

but achievable tasks. This indicates that the instructional support and classroom organisation 

domains were evident in these lessons. For example, the concept development, quality of 

feedback and language modelling elements of the instructional support domain were obvious in 

how Teacher C encouraged the children to describe their thinking and reasoning. Teacher C often 

used phrases such as, ‘Can you tell me what you were thinking when …?’ or ‘What is another 

way you can describe this …?’, which helped the children connect the idea to the language the 

teacher was modelling and promoting. Teacher C would often paraphrase the children’s 

responses to provide targeted feedback while offering an additional description to help the child 

connect their thinking (e.g., ‘I like how you described 14 as 14 ones and one ten and four ones … 

can we use these ideas to describe 24?’). There appeared to be an emphasis on using the 

children’s explanations to help them think and work through the problems. 

There was no hurry to push children on to the next task; instead, Teacher C made 

adjustments that allowed the children to build confidence and competence with one idea at a time 

as needed (such as the example of representing 14 above). This indicated that the emotional 

support domain was a core component of the teacher–child interactions. For example, Teacher C 

appeared to create a positive climate by frequently using phrases like, ‘I like the way you…’ to 

start a conversation or direct the children’s thinking in a particular direction. In addition, they 

would frequently ask a child (or small group of children) to explain their thinking to another child 

or group, showing sensitivity to different children’s challenges and successes. When I asked 

Teacher C about this approach, they stated that the children needed much repetition to develop 
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ideas (in all learning areas generally). However, they felt this strategy helped achieve this for 

mathematics while building their confidence. 

These observations provided insights for me as the teacher–researcher for this iteration, 

including the need to provide multiple scaffolds (such as the questioning and prompting 

techniques) and opportunities for children to work with each other. 

6.2.2 Pre-Intervention Task-Based Interview Assessment Insights 

As described in Chapter Three, the pre-assessment TBI was conducted one on one and 

comprised of 24 items, divided into three sets. The first nine items were whole number based to 

assess two big ideas in number: Trusting the Count (Set One) and Place Value (Set Two) as part 

of the Assessment for Common Misunderstanding (AfCM) tools (Siemon, 2006). The remaining 

15 items (Set Three) targeted children’s fraction understanding and spatial skills. Set three items 

were created or adapted for this study based on the literature concerning both fraction and spatial 

reasoning research. The children’s responses were scored as either correct, partially correct or 

incorrect as per the rubrics described in Chapter Three. The raw scores from the pre-assessment 

TBI are presented in Appendix H. 

6.2.2.1 Set One: Trusting the Count Insights 

The assessment items for Set One are summarised in Table 6.1 
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Table 6.1 

Set One Task-Based Interview Assessment Item Descriptions 

Set One Assessment Items 

Item 1: Subitising cards 

Cards 1–6 (common dot die arrangement) 

Cards 7–10 (tens frames and structurally ordered arrangements, e.g., triangular arrangement of 

dots for 10) 

Cards 7–19 (tens frames ordered and random) 

 

Item 2: Hidden counters task 

Place five counters and bag in front of child, rattle to demonstrate that there are counters in the 

bag. Place four counters in front of child. 

‘There are four counters here and five more in this bag. How many counters altogether? How 

did you work that out?’ 

 

Item 3: Tens frame bananas 

Children are asked to think about the dots on the tens frames as bananas. 

‘If I have this many bananas, and three more bananas were added, how many are 

there altogether?’ 

 

Item 4: Hidden Dots task 

’There are seven dots here (in the top section) and nine dots here (bottom 

section)’. 

Cover the ‘9’ card with the flap and ask: ‘How many dots altogether? How did you work that 

out?’ 

 

 

The 21 children in Class C predominantly achieved an average of partially correct results 

in Set One of the assessments. For Item 1: Subitising cards, 12 children could subitise to 10, but 

typically only when the dots were presented in an ordered or familiar pattern—such as dot die 

arrangements or tens frames. The collection of eight was presented to the children as shown in 

Figure 6.1. 
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Figure 6.1 

Subitising Card for Eight 

 

Six children said ‘eight’ without counting. When invited to explain, the children referred 

to seeing ‘the lines’ of dots; that is, either as two lines of three and two more, or, that the top and 

bottom lines were the same and the middle was one less. Alternatively, one child stated they 

recognised eight as five and three more. This child (Child 49) also stated that the three dots 

beside the familiar star-like arrangement of five was ‘like its shadow…because it’s the same’, 

referring to the shape and arrangement of the collection. In both types of descriptions (three, three 

and two; or five and three), the children’s responses indicated they are all paying attention to the 

structural arrangements and repetition within the patterns to determine the quantity. 

Two children were able to conceptually subitise all collections up to 19. The following 

response from Child 56 provides some interesting insights into their thinking (see Figure 6.2). 
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Figure 6.2 

Subitising Tens Frame Cards: 17 and 14 

 

Child 56 explained: 

For the 17 card, you can see the first two rows are a ten. But I looked at it like there are 

three rows of five, because one row is five, and so three is 15 and two more is 17. In the 

14 card, I went backwards: there’s three rows of five but one missing, so it’s 14. 

Child 56’s explanation suggests they have a mental object for five and used this unit to 

identify larger collections such as 17 and 14. Their response indicates they were using the 

structure of the tens frame to recognise countable units of five. That is, the child is using the unit 

of five in flexible ways such as three fives (15), two more than three fives (17) and one less than 

three fives (14). This suggests they have an advanced structural awareness of the quantities 

presented in this task, because they were demonstrating a generalised understanding of the 

collections. 

While the examples of Children 49 and 56’s thinking demonstrated flexible ideas about 

whole numbers, most of the children in Class C demonstrated they could only subitise (most) 

numbers to 10 when the arrangements were presented in familiar arrangements (such as dot die 

arrangements and tens frames). However, this insight suggested that spatial structure plays an 

important role in the children’s ability to recognise and work with such quantities. As described 
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in the previous teaching experiment, spatial structuring is an awareness of the pattern and 

arrangement of objects that can assist in determining mathematical relationships such as part-

whole relations of quantities. The children’s awareness of spatial structures in this activity 

suggests children may also draw on these initial understandings to explore fraction ideas in 

discrete sets within the forthcoming intervention. 

The second insight from Set One was children’s inability to work with hidden collections. 

For example, in Item Two (Hidden Counters Task), 10 children were observed counting on their 

fingers in place of the five counters hidden in the calico bag, or they would tap on the bag five 

times and then used one-to-one correspondence on the visible four counters to enumerate the 

collection. This emergent part-part-whole understanding was also evident in Item Three (Tens 

Frame Bananas). Nine children indicated partial success by drawing or placing counters on the 

tens frame of six (many often recounting the six dots to begin with). According to Steffe (2001), 

this behaviour suggests the children are figural counters in that the child uses visual or auditory 

cue to help keep track of the count. That means children can generally only count what they can 

see and have trouble with counting hidden collections (or parts of the collections). This suggested 

that children will need time to develop mental models of different quantities to interiorise the 

quantity and establish the relationship between groups as composite units and the total quantity 

(Steffe, 2001). This insight is consistent with Teacher C’s comment in the previous section that 

children need lots of repetition to develop an idea. 

6.2.2.2 Set Two: Place Value Insights 

Set Two was designed to determine some of the key underpinnings of place value, such as 

name, compare and rename collections in terms of their place value parts. Table 6.2 presents a 

brief description of each task. 
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Table 6.2 

Set Two Task-Based Interview Assessment Item Descriptions 

Set Two Assessment Items 

Item 5: Counting 26 counters 

 

Child counts collection and records. 

Circle the ‘6’ in ‘26’ and ask, ‘Does this have anything to do with how many counters you have 

there?’ 

Circle the ‘2’ in ‘26’ and repeat the item. Ask child to explain their thinking if not obvious. 

 

Item 6: Place-Value Bundles 

 

13 bundles of ten pop sticks and 16 single sticks are provided. Child is asked to make 34 using these 

materials. 

 

Item 7: More than/Less than… 

 

Card with 86 is presented to the child. ‘Write the number that is one more than this number? Write 

the number that is one ten more than this number?’ 

 

If correct, say, ‘Write the number that is three less than this number? Write the number that is two 

tens more than this number?’ Ask child to explain their thinking if not obvious. 

 

Item 8: Proportional number line task 

 

Place the 0 to 20 Open Number Line Card in front of the child and say, ‘Use the pencil to make a 

mark to show where you think the number 8 would be. Why did you put it there?’ Repeat with the 

number 16. 

 

If reasonably accurate and/or explanation plausible, turn the card over to show the 0 to 100 open 

number line and say, ‘Make a mark to show where you think 48 would be. Why did you put it 

there?’ 

 

Repeat with the numbers 67 and 26. Ask child to explain their thinking if not obvious. 

 

 

The modal response across the five items in this set was ‘No/ Incorrect response’. The 

children typically demonstrated little understanding of how two-digit numbers are constructed. 

Using bundles of 10 was challenging, as was identifying one more, three less, or one ten more 
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than or less than a given two-digit number for over half the class. This behaviour suggested the 

children have not necessarily consolidated ideas about viewing 10 as a countable unit. For 

example, some children could count by tens using the multiple of tens counting sequence (e.g., 

10, 20, 30…) but could not represent 34 with bundles and ones, suggesting they may have been 

memorising skip counting by 10 rather than understanding place value unit ideas concerning the 

materials provided. While some children demonstrated an additive understanding of place value 

in terms of stating 26 and 34 were a 20 and six, 30 and four, respectively, they were unable to 

consistently work with a count of tens and a count of ones independently, as evidenced by their 

inability to count by twos with the counters and single pop sticks or using 10 (bundles) as a 

countable unit (Rogers, 2012). 

Twelve children had partial success with Item 8 (Proportional number line task), meaning 

they were able to complete part of the task only. Many children took a counting approach by 

placing their finger at 0 and counting imagined partitions on the 0–20 number line to place eight 

and 16; however, most children attempted to adjust where they placed the number eight if it did 

not seem proportional. This suggested the children were paying attention to the relationship 

between the size of the numbers and where they were placed in relation to each other on the 

number line. Yet, they typically gave no clear rationale for this in their reasoning. It appeared 

there was some intuition as to where they were placing the numbers, but little explanation was 

given, and often the children would try and revert to counting to verify where they placed each 

number. Only one child could complete the 0–100 number line. The typical responses from the 

remaining 12 children to the second part of this task were, ‘there’s too much counting’ (Child 61) 

or ‘I don’t know how to fit them [the numbers] in’ (Child 69). This suggested that the numbers 

are not well understood in terms of their relative magnitude (i.e., how ‘far’ eight is from 16; how 

‘far’ 16 is from 20, etc.). 
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6.2.2.3 Set Three: Fractions and Spatial Reasoning Insights 

Set Three was designed to assess children’s fraction understanding and spatial reasoning 

capabilities. Some items included both fraction and spatial constructs, while others were designed 

to independently evaluate either a spatial reasoning capability or a fraction idea. The full 

description of the items in Set Three is presented in Chapter Three. 

The pre-intervention TBI revealed that the children again predominately scored incorrect 

responses or could not provide a response for most items in this set. There were, however, four 

tasks from this set where more than half of the class scored a partially correct or correct response 

(see Appendix H). Interestingly, these were the same four items the children in the previous class 

(Class B) had the greatest success within the pre-intervention TBI. These were Items 10 (Folding 

Fractions), 16 (Halving the Stars), 18 (Gisele’s paper square) and 19 (Scale the picture). Table 

6.3 describes Items 10, 16, 18 and 19 for this analysis. 

Table 6.3 

Set Three Items 10, 16, 18 and 19 Descriptions 

Selection of Set Three Assessment Items 

Item 10: Folding fractions 

 

Child is shown the image of a square. ‘How many ways can you imagine folding a 

square in half? Can you describe what you think it would look like if you folded it in 

half, then in half again? What is each part called?’ 

 

 

Item 16: Halving the stars 

 

Child is presented with the image. ‘If you gave away half of this collection of stars 

(16) how many would you have left?’ 
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Item 18: Giselle’s paper square 

 

A series of folds is made to a square, and the child needs to identify what 

the end result would be from four possible options. The children were 

only shown the four possible outcomes to choose from. 

‘Gisele had a green sheet of paper and cut a white shape out of the 

middle of the paper. Then she folds the paper in half, diagonally. Which 

of the four shapes below did Gisele see?’ 

 

Item 19: Scale the picture 

 

An image of two circles is presented. The diameter of the smaller 

circle is half that of the larger circle. The smaller circle contains two 

shapes, a triangle and a rectangle. The larger circle only includes the 

triangle drawn to scale. The children are required to draw the missing 

rectangle in the larger circle and describe the difference in size 

between the two shapes. 

‘Can you complete the picture of the circle on the left so that it has the same shapes as the circle on 

the right? Explain why you chose to draw the shapes in that way.’ 

 

Items 10 and 18 both focused on spatial visualisation and partitioning half an object—in 

both cases, images of different pieces of paper. In Item 10 (Folding fractions), two children noted 

several ways the square could be halved, stating the need for the parts to be the same size rather 

than the shape or arrangement of parts. For example, Child 65 drew vertical, horizontal, and 

diagonal lines across the square to demonstrate how they imagined partitioning in half. They then 

stated you could ‘break these parts up though, and put them in two piles, as long as they are the 

same size… they’re half’. Sixteen children described how they visualised or drew at least one 

way a square could be partitioned in half. For example, seven children referred to creating halves 

by folding in a cross formation (where these children used the term ‘cross’ with an associated 

gesture to indicate a diagonal and/or perpendicular fold, typically using a finger in the air to 

illustrate). 
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Further, 11 children referred to geometric properties in terms of the spatial dimensions of 

the unit fraction when describing how halves could be made from the square. An example is from 

Child 69, who stated, ‘you can make a triangle half or a square half [referring to a rectangle]’. 

This is an example of the partitioning concept. That is, the children suggest they understand that 

half is an equal part in relation to its relative whole, rather than using half as a synonym for 

creating two parts of any size. However, not all the 11 children provided such a sophisticated 

response. 

In Item 18 (Giselle’s Paper Square), 12 children indicated they were paying attention to 

the geometric symmetries and structure in the way they identified the correct answer as 1-half of 

the pre-folded paper. For example, Child 55 stated, ‘you can tell [which is the correct shape] by 

the way the corners have been cut’, referring to the diagonal partition down the middle of the 

paper square. Child 61 stated, ‘if you imagine folding it [diagonally], the half and half would 

look like this. They are the same but facing each other’. This statement suggested the child 

visualised the folding of the square in a diagonal form and how this contributed to the structure of 

the halves as triangular parts. Further, these descriptions demonstrate the connection between 

geometric symmetries—an idea within Confrey et al.’s. (2014b) rational number learning 

trajectory framework explained in Chapter Three. 

In the previous two items, 15 children used gestures while thinking about the problem and 

formulating a response. For example, when describing how to fold the square piece of paper in 

Item 10 and how they would physically fold or cut a paper square in Item 18. For example, 

Figures 6.3 and 6.4 indicate how children gestured folding and cutting for partitioning the square. 
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Figure 6.3 

The ‘Folding’ Gesture 

   

Figure 6.4 

The Cutting Gesture 

 

In Figure 6.4, the left hand in this gesture typically moves forward and back over the right 

hand, signifying a sawing or cutting action. 

The following two responses indicate how the children may have engaged in spatial 

visualisation during this task and how their use of gesture assisted in this explanation: 

Child 62: I know if I folded in half this way [used the folding gesture shown in Figure 

6.3], and then folded again [used a similar gesture indicating they imagined the paper 

folded into four vertically positioned parts] would give you four parts the same. 

Child 57: I just thought…you can cut halves like this [gestured the cutting action shown 

in Figure 6.4 to produce a horizontal, vertical and one diagonal partition across the 

square]. 

The use of gesture continued in Item 16, with which the children had the greatest success. 

Item 16 (Halving the stars) required children to determine how many stars would be left in a set if 

half were given away. This item was completed by 13 children, who appeared to subitise two 
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groups of four stars on either side of an imaginary line they said they visualised, indicated in 

Figure 6.5. 

Figure 6.5 

Item 16 Stimulus: If We Gave Away Half of These Stars, How Many Would We Have Left? 

 

Note. Arrow indicates the position of the line the children indicated they visualised. 

All 13 children either ran their fingers down the middle of the collection or placed their 

hands in the position indicated in Figure 6.5 to suggest how they visually partitioned the stars. 

Three children also stated ‘four and four’ with fluency, indicating they subitised rather than 

counted each smaller collection. Although the children successfully recognised the two groups of 

four stars were ‘matching’ and ‘equal’ in terms of quantity, 10 of the 13 children that successfully 

answered this item still counted each star on both sides of the imagined partition before stating 

‘eight’ is half of the collection. When asked about their counting, they typically described 

perceiving the set of stars in two symmetrical parts. However, they reverted to counting 

(observed by head nodding or pointing to each star) to enumerate the half. Here, their part-part-

whole knowledge is emergent and seems to be driven by the image’s geometric symmetry 

(Confrey et al., 2014b). This item intended to explore the fraction as an operator idea of 1-nth-

of... and halving; however, it can also be solved with whole number thinking and counting 

strategies, evident in the children’s responses. This is a weakness of the TBI that will be 
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discussed in Chapter Eight; however, it does provide further evidence for how children may 

develop the fraction ideas in parallel to their whole number knowledge. 

Item 19 (Scale the picture) incorporated doubling/halving ideas in addition to spatial 

proportional reasoning. The task required children to consider the two images of a shape that had 

been enlarged. The larger circle had a diameter double that of the smaller circle. The edges of the 

triangle had doubled, and the children were asked to draw the missing rectangle on the larger 

circle to scale (see Figure 6.6). 

Figure 6.6 

Item 19: Scale the Picture Stimulus 

 

In addition, the children were asked to describe a plausible relationship between the two 

images. It was not expected that the children would understand or recognise the increase in 

diameter measure per se. Instead, the intention was for them to notice and describe the 

proportional relationship between the two images (e.g., the circle on the left is a larger version of 

the circle on the right; the triangle’s edges on the left are twice as big as the triangle on the right, 

etc.). 

While 17 children were able to draw the missing rectangle reasonable accurately to scale 

on the provided image, most could not articulate a relationship between the two images, other 

than the first circle was larger than the second (no mention of the proportional relationship 

between the triangle or rectangle’s size). Most children who scored partially correct needed 
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prompting about describing why they chose to draw their rectangle in the position and size they 

did, with many stating the rectangle they added ‘just looked right’. Even so, many children who 

completed this item were observed running their fingers around the boundary of the two circles or 

using their forefinger and thumb in what appeared to be an informal measuring gesture to 

compare the two objects. The gesture appeared to be a strategy the children used to communicate 

their emergent spatial proportional reasoning awareness. 

6.2.2.4 Summary of Pre-Intervention TBI Insights 

The pre-assessment TBI analysis provides several key insights that help describe the 

children’s baseline understandings of whole number and fraction ideas and their spatial reasoning 

capabilities. First, the results of Set One and Two of the TBI assessment suggested the children 

had limited understandings of part-part-whole understandings based on their performance on the 

subitising tasks, where typically the children could only subitise to 10 and if the dots were in 

structured or familiar arrangements. 

Set Two revealed the majority of the class had difficulties with place value ideas and 

demonstrated they have not established the idea of 10 as a countable unit consistently. Although 

some children indicated some intuition to where numbers are placed on a 0–20, there was often a 

counting-based approach taken and little explanation given, also indicating that one- and two-

digit numbers are not well understood in terms of their relative magnitude within this assessment. 

The results revealed that the children were similar in their experiences and understanding 

of fraction ideas and spatial reasoning abilities to the previous class, as they demonstrated similar 

levels of success on the same four items (Items, 10, 16, 18 and 19). Some children were able to 

create fair shares or the unit fraction of half in some contexts with attention paid to the geometric 

aspects of the representations, meaning there was some fraction as an operator and fraction as a 

measure understanding. A common thread linked these four items analysed in Set Three, 
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suggesting gestures were critical elements in children’s conceptualisation of the problems. This 

inference is made because of the high frequency of gestures observed when the children problem-

solve or justify their answers. 

Finally, despite the children in Class C performing to a similar standard to Class B on the 

TBI, there was a notable difference in how long the TBIs took for Class C, which was related to 

the observation analysis. Typically, each assessment took 30 minutes or more because the 

children needed more time to think and process the questions, or they became distracted from the 

task and required a break in the middle of the interview. 

6.3 Implications for the Teaching Experiment 

Based on the analysis of the classroom context through the observations and pre-

intervention assessment data, I was mindful that the children may need adjustments throughout 

the intervention. I anticipated that this class may need more time to process and explore 

unfamiliar topics than was required in Class B. It was also a challenging time emotionally for the 

children and teacher involved due to the unfolding COVID-19 pandemic, so I wanted to ensure 

the intervention did not cause any additional undue stress or anxiety due to the unfamiliar 

content. 

Table 6.4 summarises the changes to the intervention program as it was implemented, 

including the eventual disruption caused by the COVID-19 pandemic. 

Table 6.4 

List of Changes Made to Each Lesson as It was Implemented 

Lesson Original activities planned Changes made for Class C 

Lesson 1: 

Sharing 

cookies 

Introduction to The Doorbell Rang 

(Hutchins, 1979) and fair shares of 

12 cookies. 

No change. 
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Lesson 2: 

What is a fair 

share?  

Exploring fair and unfair shares in 

discrete and continuous contexts. 

No change. 

 

Lesson 3: 

Visualising the 

share of a 

cookie 

 

Exploring quarters of different 

geometric shapes. Visualising the 

share of a cookie from repeated 

halving, thirds, and sixths. 

 

Visualising the share of a cookie to 

explore partitioning one cookie in 

halves and quarters only (see 

explanation below). 

 

Lesson 4: 

Sharing easily 

divisible 

collections 

 

Exploring shares of 10 cookies, 

Three shares/3-fifths/three times as 

many-as-one share. 

 

Replaced by Lesson 7: Tablecloths 

(see explanation below). 

 

Lesson 5: 

Cookie 

fraction 

estimation 

 

Visualising the size of parts missing 

from a cookie. Visualising 

composite units of cookies created 

from unit fractions (e.g., 1-quarter, 

and 1-half = ¾ of a cookie) 

 

Children were introduced to the 

focus of the original Lesson 4: 

Sharing easily divisible collections. 

 

Lessons 6–13 

 

Abandoned due to COVID-19 restrictions. 

 

For Lesson 3: Visualising the share of a cookie, the activities were originally planned for 

children to explore the outcome of partitioning one cookie and other geometric shapes by 

repeated halving, and then progress to sharing between three and six friends. As the children 

appeared to have little confidence with partitioning, this lesson primarily focused on visualising 

and then comparing the outcome from repeated halving of a single cookie and other geometric 

shapes (i.e., rectangular paper strips) rather than thirds and sixths. 

For Lessons 4 and 5, changes were made to the sequence of tasks. In the debrief with 

Teacher C after the three pre-intervention observations, we noted that many children appeared to 

have difficulty holding a single idea or remembering an idea, such as creating equal parts in both 

discrete and continuous context simultaneously. While the children would still engage in the first 
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two lessons as planned, I decided to introduce Lesson 7 (Tablecloths) on day three to help 

promote the understating of fraction magnitude and how equal parts are created. This lesson 

continued to focus on visualising and comparing equal and composite parts in continuous 

contexts and still promoted the second key indicator of reinitialising the unit. The reason for this 

was to help support the children to continue constructing their understanding of partitioning by 

having a more sustained focus on continuous contexts than was previously planned. The children 

were then introduced to the focus of discrete sets from the original Lesson 4 activity (Sharing 

easily divisible collections) after they had completed Lesson 7 (Tablecloths) to help them build 

fluency in a fair share between both continuous and discrete models and their awareness of 

creating and naming different shares within a given whole—the first two key indicators of the 

local instruction theory. However, not all children were introduced to the discrete contexts due to 

difficulties experienced with competing the prior tasks.  

6.4 The Teaching Experiment: Insights from the Intervention Program 

This section presents an analysis of the lessons experienced by the children in this 

iteration of the teaching experiment. As previously stated, Class C only participated in five of the 

13 intended lessons due to the COVID-19 pandemic. Based on the rapid introduction of 

restrictions and government stay-at-home orders, I made the decision to stop the intervention on 

day five and commence post-intervention TBIs so that I had assessment data for comparison. 

Two days after I finished the TBI assessments, the South Australian Department for Education 

excluded all non-essential persons from entering school premises (including parents), which 

lasted for the duration of 2020. In addition to these restrictions, RMIT University suspended all 

research fieldwork (a restriction that remained in place for much of the next year and a half). 
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Like Chapter Five, the structure of this discussion of the relationship between the spatial 

reasoning constructs and the children’s development of the intended fraction ideas is based on the 

key indicators of the local instruction theory, represented in Table 6.5. 

Table 6.5 

The Local Instruction Theory (Version Three)  

Key Indicators               Characteristics of Tasks  

 Primary Fraction Foci  Spatial Reasoning Approach  

Creating and 

justifying equal 

shares  

 

Fraction as Operator:  

Fair shares  

Doubling/ halving   

Partitive division/ recursive 

multiplication,  

Geometric symmetries, 

Similarity 

 

Fraction as Measure:  

Many-as-one, Measure, 

Composite units,  

Unit fraction 

 

 

Visual perception of equal groups 

(drawing on spatial structures and 

arrangements). Equality of parts 

regardless of model (i.e., equal 

parts for discrete collections and 

continuous models less than and 

greater than 1). Visual awareness 

of the geometric properties of parts 

and sets (e.g., shape, orientation, 

pattern, symmetry). Observing the 

physical transformations of 

partitioning (dividing and 

reassembling), and visualising and 

predicting the outcome of a 

nominated split (e.g., spatial 

visualisation)  

 

Reinitialising the 

unit    

Fraction as Measure:  

Composite units, Unit fractions, 

Part-Whole fractions, 

Equivalent fractions  

 

Fraction as Operator:  

Fair shares, 

Doubling / halving; Partitive 

division/ recursive 

multiplication, Times-as-many, 

Similarity 

 

Fraction as a relation 

Many-to-one 

Visualising measures between 

parts and wholes, and between 

composite and unit fractions 

through unitising. Exploring the 

spatial structure and arrangement 

of objects and sets to create and 

compare different units fractions. 

Visualising magnitude relations 

between parts (double/ half/ times 

as many) the distribution of parts 

to determine equivalence.  
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Distribution   

 

Recognising 

proportional 

equivalence  

Fraction as a relation 

Distribution, Proto-ratio, 

Equipartitioning multiple 

wholes,  

 

Fraction as Operator 

Doubling /halving Times-as-

many, 1-nth-of…, Scaling, 

Geometric symmetries, 

Similarity 

 

Fraction as a measure 

Composite units 

Unit fractions  

Equivalent fractions  

  

Visualising the relationship 

between equivalent measures, of 

same and different wholes.  

Connecting 

multiplicative 

relations 

Fraction as Relation 

Many-to-one,  

Distribution, Proto-ratio 

 

Fraction as Operator 

Doubling/ halving  

Partitive division/ recursive 

multiplication   

Times-as-many,  

1-nth-of.., Scaling 

 

Fraction as Measure 

Composite units 

Part whole fractions 

Equivalent fractions    

Early relational understandings 

between the structure of part-part 

and part-whole quantities. (e.g., 

visualising and justifying the 

relational magnitude of fractions in 

relation to other fractions (e.g.- 

quarter is a half of a half/ twice as 

small); and working flexibly with 

non-symbolic simple ratios (e.g., 

1:2 = 2:4).  

 

Due to the reduced timeframe of this teaching experiment, not all key indicators were 

explicitly explored. This chapter will now present evidence of the following two key indicators: 

creating and justifying equal shares and reinitialising the unit. 
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6.4.1 Key Indicator: Creating and Justifying Equal Shares 

As detailed in Chapter Four, the first key indicator of the local instruction theory was 

creating and justifying equal shares in both discrete and continuous models. 

6.4.1.1 Lesson 1: Sharing Cookies 

In Lesson 1, the children were asked to share 12 cookies between two, four, six and eight 

children and identify the relationship between the shares created and the size of the shares. They 

were provided with counters, paper circles and a task sheet to record their thinking. I spent some 

time asking children how they might use each of these materials with the context of six cookies, 

as it appeared they needed much prompting and scaffolding to start. I also asked the class to 

pause periodically throughout this activity and asked different children to share their thinking and 

strategies for the sharing situation they were working on at the time. This was consistent with 

how Teacher C used examples of children’s thinking during the working time to help promote 

other children’s understandings and strategy choices. 

Child 65, who I observed using the counters available to work through the problem of 

sharing 12 cookies between six people (see Figure 6.7), provided the following insights. 

Figure 6.7 

Recreation of Child 65’s Representation of 12 Cookies Shared Between Six People 

 

 

 

 

 

I asked Child 65 to tell me about what they had done and what their representation meant. 

They replied: 
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There needed to be six groups, because there was six people, so I started to put the 

counters out into six [groups]. But I lined them up so you can see them in twos [moving 

their hand in a horizonal action back and forth]. This way, you can see two, two and two 

[pointing to the top row of six counters], and it’s the same [on the bottom row] two, two 

and two, so you know it makes 12—but you’ve just split them into groups…six groups of 

two cookies. 

Child 65’s systematic way of describing how they viewed or considered the arrangement 

of the quantity indicated the partitive division idea to create the shares, but they were unable to 

conceptualise what the shares meant as a fraction of the set at this point; rather, they were 

exploring this set as a whole number context through multiplicative units. This representation 

revealed that spatial structure was an important element to the child’s explanation and thinking. 

Similarly, children’s drawings revealed the connection between fair sharing and partitive 

division ideas of the fraction as an operator meaning. Child 62 used gesture to describe their 

thinking when representing the following partitions on the story board (see Figure 6.8). 

Figure 6.8 

Child 62’s Work Sample 
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Child 62 chose not to use any concrete materials for this problem. In this work sample, I 

was particularly interested in the representation of 12 cookies between two children, where this 

child had drawn two columns of six cookies, and each cookie also appeared to be partitioned in 

half. I asked Child 62 to explain their drawing. They replied: 

When I drew the two different groups, I knew each kid would get six—a half of 12 is six. 

But then I just cut each cookie in half too, because you can see [using hand perpendicular 

to the page]…12-halves here for this person, and same for this one—two rows of halves 

[using hand to gesture linear groups of partitioned cookies]. (Child 62) 

Child 62’s responses could indicate a sophistication in their number knowledge, as they 

demonstrated a flexibility between whole number and fractional parts in their understanding of 

12, indicating reinitialising the unit. However, their representation could also indicate a confusion 

between half of the collection and half of each item within the collection. The former is implied, 

as Child 62 named ‘how much’ each group is worth in each share (i.e., one share is two ‘rows’ 

[columns] of 6-halves), indicating both partitive division (sharing a quantity between a given 

number) and the many-as-one idea from the fraction as a measure meaning. Further, this child’s 

use of gesture (in the form of indicating the arrangement of the shares they were discussing in 

their drawing) suggested they were using spatial structure to arrange the 12 cookies into two 

equal groups of 6-halves. The child’s representation was not part of the initial problem, so it was 

a surprising representation for this child to draw; however, they had been sitting next to another 

small group of children who were working through the 12 cookies shared between eight children 

problem, where they were exploring how to create mixed fractions as a fair share, which may 

have prompted them to represent their thinking in this way. 

Child 56 interpreted the task differently, in that they chose to represent sharing one cookie 

between two, four and eight people. Although this was different to what was asked, their 
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representation and discussion that followed revealed insights into their understanding of equal 

shares (see Figure 6.9). 

Figure 6.9 

Child 56’s Work Sample for Lesson 1 

 

Child 56: I did it wrong, but it’s still right [referring to sharing one cookie instead of 12]. 

Everyone needs the same amount, but you get more…when it’s less people. 

I asked the child to tell me more about their representation, including how they had 

labelled some of the parts. 

Child 56: It’s doubled [pause]…No, it’s actually, halves. It goes from half to fourths to 

eighths. See, half of a half is fourths, half all the quarters you get eighths [pointing from 

cookie to the next]. 

I prompted the child further, ‘Okay. If its halves, like you say, what would come next?’ 
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Child 56: Ummm, that’s double eight… but half of each eighth [running fingers over the 

cookie partitioned in eighths]…. ahh… [pause]… sixteenths! 

This description indicated that the child was conceptualising the doubling/halving and 1-

nth-of... ideas within the fraction as an operator meaning. The child’s description suggested that 

they knew the shares are equal because of the relationship between the number of parts and the 

size of the parts created though halving. Moreover, this child also revealed the ability to 

reinitialise the unit by naming units within units—the second key indicator in the local instruction 

theory. 

The problem of sharing eight cookies between 12 people revealed some further insights 

into the relationship between the fraction as an operator and fraction as a measure meaning, and 

how spatial reasoning assisted in the development of the key indicator—creating and justifying 

equal shares. For many children, the context of sharing 12 cookies between eight children was 

not attempted in the first instance. Class C clearly struggled as a whole when they came to this 

task, so I took the opportunity to provide some intentional teaching after we had a short break. In 

the whole class discussion, I challenged the children to articulate what exactly the problem was 

asking, and after some discussion and scaffolding with concrete materials, eventually the class 

recognised that there were more cookies than people to share between, therefore everyone is 

going to receive one cookie and some more. While all children had access to concrete materials 

(counters and paper circles), I observed four children spontaneously gesturing a cutting motion 

with hands placed perpendicular to each other, similar to the cutting/sawing gesture in Figure 6.4. 

The ‘cutting/sawing’ gesture suggested it was a catalyst for several other children 

recognising that a cookie could be partitioned to work out individual shares and that they could 

split the cookies to share out to the 12 people in problem. From this action, three children worked 
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together to make the following representation using the counters (see Figure 6.10) and presented 

it to the class. 

Figure 6.10 

Arrangement of Representation from Children 52, 55 and 57 

 

Note. The colour of the counters above were selected in this thesis to assist in the discussion. 

Child 57: We knew that there would be one cookie for each person, so we decided to line 

them up like this so you can see the four and four rows [gesturing horizontal movements 

with hand to indicate the central two rows of four]. This left four over, but to work it out 

it’s easy because these cookies [referring the two counters at the top and bottom of Figure 

6.10] have to be shared between four people [see Figure 6.11]. 
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Figure 6.11 

Interpretation of the Visualised Process of Sharing 

 

During this whole class presentation by Child 57, I could see some children watching on 

looking puzzled, so I repeated and rephrased what this child had described to the whole class, so 

everyone had the opportunity to understand the representation this far. Child 52 continued the 

group’s explanation: 

This one cookie [referring to one of the two cookies represented in yellow in Figures 6.10 

and 6.11] gets broken in half and shared to these two people [pulls hands apart suggesting 

they are dealing out the two parts of the yellow cookie and placing the parts on top of two 

green cookies] and same with this one [gestures the same partition for the two blue 

cookies]. 

This explanation highlights how the children used spatial visualisation in the context of 

partitive division to imagine partitioning the remaining four cookies in half to create equal shares 

of the collection. This also illustrates the many composite unit and part-whole ideas from the 

fraction as a measure meaning and using gesture to help communicate their thinking of each 
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measure, of the representation. Similarly, the spatial structure and arrangement of the cookies, 

whether in set or continuous contexts, appeared to be a critical element visually organising the 

shares. 

6.4.1.2 Lesson 2: Creating Fair Shares 

During the Explore phase of this lesson, the children were placed into small groups to 

explore images of cookies that had been shared both equally and unequally (see Figure 6.12). The 

cards were laminated so the children could not physically manipulate the parts, and the children 

were asked to justify how they knew the shares were fair or unfair. 

Figure 6.12 

Examples of Cookies Representing Fair and Unfair Shares 

       a)                                        b)                                                          c) 

                

Although fair shares is an idea derived from the fraction as an operator meaning, the 

intent of this task was to also consider the individual parts as a measure (i.e., are the parts fair 

[operator] and how much of the whole do the parts represent [measure]?). Further, the intent of 

using the cards was to provide an opportunity for children to draw on their spatial visualisation 

skills and awareness of the spatial structures of the objects, sets and parts to determine their 

answer. 

Two groups of three children were observed playfully stacking their hands on top of each 

other (similar to the card game of ‘snap’). I asked them to explain what they were doing, and 

Child 67 replied: 
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Me and [Child 63] thought that in the one that had four parts [referring to one cookie 

shared between four people]…it’s lining them up, on top of each other [child used their 

hands to represent a stacking gesture]…you see these [points to middle two parts of the 

cookie image] are big ones. 

Their explanation suggested they were using their hand as an informal measuring tool, to 

describe that the middle two parts of the cookie were bigger than the two edge pieces. Child 70 

added: 

If we used our hands like the parts of the cookie they’re all uneven… the edge parts are 

smaller [than the middle two parts] … but joining the two parts on each side does make 

an even, same size half [gesturing semi-circle figure with their hands]. 

I asked the group if it were possible to share a cookie between four people equally, given 

they had determined the current image had unequal parts. Child 69 stated, ‘yes…cutting across it 

will give you fair shares—because the parts are the same’. With this explanation, the child used 

their hand to gesture a horizontal and vertical cut across the centre of the cookie picture. 

These responses and interactions suggested that the children were paying attention to how 

mentally moving (visualising) the parts on top of each to compare the different measures, 

represented by their use of gesture, in this case, helped determine that the parts were unequal. In 

addition, they indicated a many-as-one idea by combining the two unequal parts on either side of 

the mid-line to visualise and recognise the halves. Although the two parts used to create 1-half 

were not equal to each other, the child recognised that the geometric structure of the two parts, 

when combined, resulted in a unit fraction of 1-half, which is evidence of the fraction as a 

measure meaning and how geometric similarities from the fraction as an operator meaning are 

connected. 
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Teacher C documented the following conversation they had with two children during this 

task, where they were exploring how many ways different a collection of cookies could be 

partitioned. Two children provided the following explanations. The first was Child 51, who was 

discussing their thinking: 

It’s like if I had one person to share my cake with—just me, I would have the whole 

thing. More people mean I need to cut it up even, and give away…so everyone gets some 

[gesturing a dealing action of four parts of a circle], so I don’t get it all, and I get less 

[gestures a shrinking action with hands]. 

Child 54 added, ‘yeah, if I only have to share between four [people], my piece is bigger 

than if I had to share it [the cake] between 10…then everyone gets a skinny bit’. Child 51 nodded 

in agreement. 

Analysing this interaction, Child 51 describes and gestures dealing the various parts of the 

cake, while the relationship between dividing equally to exhaust the whole (partitive division) 

and one of those parts (1-nth-of...) are implied, which are fraction as an operator ideas. The 

children recognised a distinct relationship between the number of parts generated and the impact 

on the size of the parts. These explanations suggested they are not only justifying that shares can 

be equal regardless of how many shares there are but that there is a direct relationship between 

the size of the share and the number of shares created. This is a fundamental idea underpinning 

the concept of partitioning. 

The idea of unit fraction was interpreted through the use of Child’s 51’s gesture, where 

their organised structure indicated by the cookie halved vertically and horizontally suggested they 

were thinking strategically about how to represent four equal parts when explaining the 

relationship between the unit fraction generated and the size of that part—a fraction as a measure 

idea. Child 54’s description of the task also demonstrated an understanding of the magnitude of 
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each share if the cake were partitioned into tenths or quarters. This understanding was inferred by 

the child identifying the spatial dimensions of the parts (i.e., the whole thing, less, bigger, 

skinny), suggesting spatial language was an important component for explaining the magnitude 

of the parts and the relationship of these parts to the whole. This suggests fraction as a measure 

understanding, because they are recognising that the smaller the unit, the more units there are, but 

the whole as a referent has not changed. 

Similarly, gesture and spatial structure were evident in the development of unit fractions 

and many-as-one ideas in the Summarise phase of this lesson. Three children were sharing their 

thinking and strategies for how many ways they could share a collection of six cookies fairly. 

Child 50 stated: 

If you had six groups like there [tapping in the air six times to indicate two rows of three], 

you’d call the parts ‘sixths’—there’s more [parts] though than if you just made two 

groups, halves…so they’re smaller. 

I asked Child 50 what about if you had to make four equal groups, to try eliciting their 

thinking about the units themselves. They used the same dotting gesture in the air, this time 

making a square figure, with both hands to indicate quarters: ‘They would be fourths—and 

bigger…than if you had the sixths’ (Child 50). 

The child did not explicitly indicate the many-as-one idea of three cookies as the unit of 

1-quarter by this statement. Nevertheless, they did provide an explanation that demonstrated a 

developing understanding of the name of the unit fractions and how many parts are generated, 

and the relationship to the magnitude or size of each part when the whole is partitioning into 

fourths or sixths. 
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Although emergent, these examples of engaging in fraction as an operator and fraction as 

a measure ideas simultaneously are crucial for the development of partitioning, which is the 

fundamental basis of rational number knowledge (Confrey et al., 2014b; Siemon, 2003). 

6.4.1.3 Lesson 7: Tablecloths 

As described in Table 6.4, Class C was introduced to the tablecloth lesson in a slightly 

different way to how Class B engaged with it. The children’s engagement with the tablecloth 

lesson also provided evidence of how they were using spatial visualisation in the development of 

fraction as a measure ideas when creating and justifying equal parts. For example, Child 67 

stated, ‘if you take a bit from one bit you need to put it back on the other half, but it makes the 

same amount’. As they spoke, they pointed to the pink triangular region on the left-hand side of 

their second tablecloth, shown in Figure 6.17. 

Figure 6.17 

Child 67’s Tablecloth Representations 
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I asked them if they could explain what they meant by this, and they said that if they 

moved the left-hand pink section to join the pink region on the right-hand side, it would ‘look the 

same size as the purple part’, meaning they were equal parts (see Figure 6.18). 

Figure 6.18 

Interpretation of Child 67’s Description of How They Mentally Moved Parts of Their Tablecloth 

 

This child’s explanation demonstrated an awareness of and ability to justify how they 

determined the size and equality of each coloured part through a complex visualisation process. 

 

6.4.2 Key Indicator: Reinitialising the Unit 

The second key indicator evidenced in the teaching experiment was reinitialising the unit. 

An analysis from Lessons 3, 4 and 5 is now discussed. 

6.4.2.1 Lesson 3: Visualising the Share of a Cookie 

During Lesson 3, the activities were designed to build on the knowledge children had 

stared to develop in Lessons 1 and 2. The problem required children to think about the following 

context: 
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Imagine what a cookie would look like if we had to share between two, then four, then 

eight people? Can you imagine and predict what might happen to that cookie as each 

group of visitors arrives? 

Large paper circles were provided for the children to use, but the emphasis was on spatial 

visualisation and communicating their predictions before they folded or drew on the circles. 

Teacher C observed Child 66 working through the problem. Child 66 drew lines on their 

circle to partition it into quarters, explaining by gesturing with their hands a fold from top to 

bottom as the first half, then side to side gesture for the second half: ‘the more folds, or parts, 

they [the parts] get smaller’. Child 66 said that they had noticed that after they drew the circle 

partitioned into quarters after performing two successive folds in half, they thought it must mean 

each of the parts (quarters) would be split in half again if a third fold in half was performed. 

Teacher C asked why they thought that, and the child replied they knew that ‘the half fold meant 

the last two parts were cut into two [gesturing a book fold action with their hands]’, so they 

imagined it would be the same. That is, that every current part (quarters) would be split in halves 

to create eight equal parts. Child 66 drew their thinking by drawing the split of each quarter. They 

folded their paper cookie in front of Teacher C to check—they were so excited to find out they 

were right! The description suggested they were developing an appreciation of units of units 

(Confrey, 1994). This is an indication of the reinitialising key indicator of the local instruction 

theory. 

This example also suggested the child was considering the structure of the whole in 

relation to the number of parts doubling, while the size of the parts halved through each 

successive fold. Teacher C asked me to model how they could extend such thinking at this point 

in the lesson. As a result, I asked Child 66 if they could imagine this same process with groups of 

cookies—like four cookies. The child stated sharing between two children, ‘[it] would be two and 
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two’ (cookies each). As they stated ‘two’, they placed one hand on the desk in front of 

themselves, placing the other hand down on the desk beside the first hand as they said, ‘and two’, 

using their hands to represent the groups of cookies (see Figure 6.13). 

Figure 6.13 

Example of Child 66 Gesturing the Parts of a Discrete Set 

 

 

 

 

Prompting Child 66 with the idea that two more children had arrived and now the cookies need to 

be shared between four, I asked them to consider the set and what 1-fourth would be. After some 

thinking through about what one-fourth meant (i.e., four equal parts needed to be created), they 

used the same gesture to represent a 2 x 2 array formation: ‘Each fourth… is one cookie each’. 

The next step of the problem was that the four cookies had to be shared between eight children. 

This step was quite challenging as there were no concrete materials explicitly provided for this 

task, which I had initiated upon Teacher C’s request. The child thought about the problem for 

several minutes, repeating statements like, ‘eight people mean they’re [the shares] eighths’. After 

repeating the same gesture for the previous setup of sharing between four people, Child 66 

suddenly looked up and stated, ‘Oh, it’s half a cookie! Half a cookie is an eight…1-eighth’. 

Using the same cupping gesture as above, Child 66 explained that each cookie had to be split in 

half. Again, this indicated that this child is visualising the partitive division and recursive 

multiplication idea. That is, they are able to reassemble the whole after imagining the act of fair 

sharing four cookies between eight people. Further, the unit fraction idea from the fraction as a 

‘Two…’ ‘and two’ 
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measure meaning is evident in their understating of the size of one fair share, linking the size of 

the share in relation to the whole. 

6.4.2.2 Lessons 4 and 5 

As described in Section 6.3, Lessons 4 and 5 were modified for this iteration and the 

content from Lesson 7 (Tablecloths) was introduced. As part of this lesson, the children were 

provided with a range of blank paper rectangles (‘tablecloths’) to design various ways equal parts 

of two or more colours could be represented (i.e., the tablecloth had to be half red and half green; 

the tablecloth will represent red, yellow, and pink equally, etc.). 

The focus was on thinking about and visualising the proportions of colour, rather than the 

number of individual parts coloured. The following representations were provided with 

explanations captured by Teacher C and myself. 

Child 56 stated they wanted their tablecloth to be black and white, the same colours of 

their favourite football team. This child explained to Teacher C that tablecloths can be different 

shapes, ‘because you can get round and square tables in kitchens’ (see Figure 6.14). They traced 

around a roll of masking tape to create a circular tablecloth. 
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Figure 6.14 

Child 56’s Representation of Different Tablecloth Shapes 

 

The child explained to Teacher C that even though the tablecloths are different shapes, 

they are all half black and white, because there are ‘2-fourths in each half, and 2-halves in a 

whole’. This is evidence of both the equal shares key indicator of the local instruction theory and 

emerging understanding of reinitialising the unit, where this child is considering the units of 

quarters within the units of halves. 
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Similarly, Children 58, 70 and 67 worked together. When I asked them about their 

representations (see Figures 6.15, 6.16 and 6.17), they concluded that all of their tablecloths 

represent two colours equally. 

Figure 6.15 

Child 58’s Representation of Tablecloths 

 

Child 58 stated they ‘broke the half up and put the colours in different places’, in relation 

to their work sample shown in Figure 6.15. 

Child 70 described they were trying to make an ‘even number of little squares so that the 

pink and red parts were the same’, referring to splitting the proportion of pink and red halves 

equally across their tablecloth (see Figure 6.16). 
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Figure 6.16 

Child 70’s Representation of Tablecloths 

 

When I asked them how many squares they were intending to draw for each half, Child 

70 said they thought they ‘might do 60 squares’ and, after some thinking, stated they would need 

30 of each colour. When I asked the child how they had partitioned their tablecloth, they said 

they had drawn lines down the middle first (two lines at 90 degrees to create quarters), then 

added more lines either side of these partitions to try to create a number of equal groups. Even 

though equal groups were not completed, this behaviour suggested this child was sensitive to the 

half benchmark in their attempt to create equal groups. 

In summary, these examples indicated that the children were developing the fraction as a 

measure meaning because they were able to create a range of unit fractions and compare these in 

relation to the whole. For example, the suggestion that ‘breaking up’ or distributing the colours 

equally on the tables is an indication of the many-as-one idea. This idea was evident in Child’s 58 
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explanation of ‘2-fourths in each half, and 2-halves in a whole’, and Children 58 and 67’s 

representation where they have created (or attempted) units of tenths and sixtieths to distribute 

the two colours equally. This indicates the children were demonstrating spatial proportional 

reasoning, because they were making comparisons between quantities (unit fractions) within each 

tablecloth and between tablecloths—regardless of shape or size in Child 58’s case. Further, the 

suggestion that ‘moving parts’, ‘breaking up’ a unit of half and redistributing suggested they 

were engaging in spatial visualisation to determine these proportions, as a strategy for 

reinitialising the unit. 

6.5 Insights From Post-Tasked-Based Interview 

To examine the impact of the five lessons on children’s learning, a comparison between 

the children’s performance on the pre- and post-TBI assessment in the form of a paired sample 

sign test is presented. Thematic analysis of the post-assessment TBI findings will follow. 

6.5.1 Comparison of Pre- and Post-Task-Based Interview Responses 

A detailed rationale for performing a paired sample sign test was provided in Chapter 

Three. Twenty-one children participated in this teaching experiment; however, due to the impact 

of COVID-19 on school attendance, only 15 children completed both the pre- and post-

assessment. Therefore, the paired sample sign test was only conducted on the data of the 15 

children who completed both TBIs. Each child’s response to each item on the post-test was 

compared to their response to the same item on the pre-test and recorded as representing a 

positive change, no change, or a negative change. To enable a binomial calculation, the no 

change and negative change responses were bundled together. For Set One, this meant that there 

was a total of 60 change possible responses (15 children x 4 items). For Set Two, there was a 
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total of 75 change possible responses (15 children x 5 items). As described in Chapter Three, 

significance was set at p ≤ 0.33. 

Table 6.6 presents the results from the first nine items of the task-based assessment. 

Table 6.6 

Paired Sample Sign Test Analysis for Set One and Two (Class C) 

Paired Sample Sign Test Analysis: (p≤0.33) 

Category Assessment 

item(s) 

Positive change 

+ 

Negative change 

– 

p-value 

Trusting the 

Count 

1, 2, 3, 4 12 60 Not 

Significant 

Place Value Ideas 5, 6, 7, 8, 9 24 62 Not 

Significant 

 

Overall, there was no statistically significant change in children’s responses across the 

whole number items of this assessment. This is not a surprising outcome, given the limited time 

the children had in this intervention. It is clear that more time was needed for the children to 

explore such ideas to determine if this intervention would have had similar results to those for the 

previous iteration (i.e., Class B). 

Table 6.7 presents the results of the paired sample sign test by category for Set Three. 

Table 6.7 

Paired Sample Sign Test Analysis for Set Three (Class C)  

Paired Sample Sign Test Analysis: (p≤0.33) 

Category Assessment 

item(s) 

Positive change 

+ 

Negative 

change – 

p-value 

Fraction as a 

measure 

10, 11, 12, 21, 

22, 24 

52 33 <0.000 

Fraction as an 

operator  

10, 15, 16, 18, 

19, 20, 23, 24 

39 80 Not Significant  

Fraction as a relation 13,14, 22, 23 20 48 Not Significant 
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Spatial Visualisation 10, 12, 15, 17, 

18, 20, 22, 24 

63 79 0.002 

Spatial Proportional 

Reasoning  

8, 11, 13, 19, 

22, 23, 24 

62 74 0.001 

 

There was a statistically significant change in children’s understanding of fraction as a 

measure ideas, likely due to the emphasis on fraction as a measure ideas explored in the duration 

of the intervention. There were no significant changes in children’s fraction as an operator or 

fraction as a relation understandings, even though children experienced fraction as an operator 

ideas frequently throughout the five lessons. Fraction as a relation was not explored explicitly. 

With regard to spatial reasoning constructs, the paired sample sign test revealed 

statistically significant improvements in both spatial visualisation and spatial proportional 

reasoning, despite the short timeframe. While it is well acknowledged in the literature that spatial 

reasoning is malleable (see Cheng & Mix, 2014; Lowrie et al., 2019; Uttal et al., 2013), these 

results suggest that even limited exposure to spatial training—in this case, five lessons—can have 

an impact on children’s spatial reasoning development. However, as described in the previous 

chapter, while indicative, these results only provide a limited perspective on the impact of the 

intervention program. Therefore, qualitative insights into the shifts in children’s reasoning and 

mathematical behaviour between pre- and post-measures are now discussed. 

6.5.2 Post-Task-Based Interview Insights 

There were some differences observed in the way children communicated their thinking, 

with gesture and spatial visualisation and spatial structuring being prominent in the children’s 

responses across each set. 
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6.5.2.1 Set One and Two Qualitative TBI Insights 

With respect to Set One, the most obvious shift in the children’s results is that there was a 

greater awareness of the arrangement and structure of objects. When children were asked to 

subitise collections that were structured in tens frames (not randomised), they often made 

spontaneous comments about noticing structures and arrangement of the dots in the post-

assessment TBI. For example, the term ‘half’ was used by six of the 15 children in the post-TBI 

to describe how they subitised the collections in one or more of the cards in Figure 6.19. 

Figure 6.19 

Examples of Subitising Cards Provided in Set One 

  

Child 69 stated they saw six as 2-halves of three dots. Child 61 stated, ‘10 is two rows of 

five. The fives are halves of the 10—just like in fractions’. These statements indicated that the 

children were paying explicit attention to the structure of the dots to consider their relationship 

between the part-whole units they were subitising. This is evidence that children can and do 

integrate and develop both whole and fractional understandings about number in parallel to one 

another. 

Child 65 commented they could see thirds when solving the problem in Item 3 (Tens 

Frames Bananas): There are this many bananas in a bowl, and three more are added. How many 

bananas are there altogether? The children were shown a tens frame with six dots in it 

representing the ‘bananas’ as the prompt for this problem. 

After Child 65 stated the correct answer of nine to the above problem (counting on from 

six), they immediately went on to state that they could see thirds ‘within the group of nine’, 
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because each third was made up a ‘triangle of three’ dots. They traced their finger over this 

triangle as they described this finding—indicated by the blue lines on the stimulus provided in 

this item in Figure 6.20. 

Figure 6.20 

Item 3 Stimulus and Representation of Child 65 Gesture (Blue Lines) 

 

This explicit attention to the arrangement of the collection suggests the child has a 

structural understanding of three as a composite unit and unit fraction. It was these types of 

behaviours—where children referred to the various spatial structures in their responses—that 

indicated an integrated approach between fraction understanding and whole number 

multiplicative structures is beneficial. 

There were also differences in children’s explanations of Set Two that suggest the 

intervention was influential. The most notable was in Item 8 (Proportional number line task). In 

Item 8, the children were asked to place eight and 16 on an unpartitioned 0–20 number line, and 

48, 67 and 26 on a separate, unpartitioned 0–100 number line. Twelve of the children described 

the number lines as having ‘more or less numbers’, even though the lines were the same length—

indicating an understanding of density and the proportional nature of the representations. Of the 
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12 children who successfully completed this task, 10 referred to visualising the halfway point on 

the number lines and relating this to a numerical value. For example, the children stated eight and 

48 were close to halfway on each line (0–20 and 0–100 number lines, respectively), and seven 

children used their hand to state ‘the middle’ is 10 and 50 of each line. This took the form of a 

sawing action with their hands (to explain they were ‘halving’ the number lines), or a 

measurement gesture with palms facing together, suggesting they were trying to create halves to 

determine where the halfway mark (10 or 50) should be partitioned. This is a shift in the level of 

understanding demonstrated by these children in comparison to the pre-intervention assessment 

phase; in the pre-assessment, those who attempted the task typically took a counting approach to 

positioning the numbers, with only one able to complete the 0–100 number line successfully, in 

comparison to seven in the post-assessment. It could be inferred that the focus on spatial 

proportional reasoning and spatial visualisation to determine the size of fractional parts in the 

tablecloths had an impact on how children engaged in thinking about quantity in this item. 

6.5.2.2 Set Three Qualitative TBI Insights 

As indicated in the quantitative analysis above, there was some statistically significant 

improvement in children’s spatial reasoning capabilities between the children’s pre- and post-

intervention TBI. The following tasks illustrate the connections between spatial constructs and 

the fraction ideas. 

Item 12 (Comparing fractions) asked children to consider, which fraction is bigger, 1- 

third or 1-eighth of a whole? In 11 of the 15 responses, a gesture was evident when the children 

described why 1-eighth was smaller than 1-third, similar to that shown in Figure 6.21. 
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Figure 6.21 

Example Images Representing the Gesture Children Modelled in Item 12  

 

 

 

 

 

 

Figure 6.21 represents how children gestured a unit fraction with their hands. When 

describing 1-eighth, they would bring their hands closer together, indicating a smaller unit, and 

when describing a third, their hands would be further apart, indicating a larger unit fraction. 

These actions indicate an understanding of partitioning within a fraction as a measure meaning 

and the relationship between the number of parts and the size of parts. Several children who used 

this gesture would iterate the unit by moving their widely parted hands in a linear motion three 

times, to represent three units of measure, or with their hands closer together to represent smaller 

units, iterate multiple times in a linear fashion representing eighths. In the pre-assessment, no 

child answered that 1-third was bigger than 1-eighth, and no gestures (other than a shoulder 

shrug) were evident. In the post-assessment, 13 children scored a correct or partially correct 

answer (i.e., partially correct was scored if the child stated one-third but not able to explain why). 

Item 19 (Scale the picture) revealed an improvement in children’s understanding of 

proportion. This task required children to draw a rectangle to scale using a referent image and to 

describe the proportional relationship between the two images. Many children described the sides 

of the triangle had ‘doubled in size’ and then determined that all sides of the rectangle also need 

to double in length. For example, Child 60 stated, ‘the square [rectangle] looks like it needs to be 

Moving hands 
apart 

Moving hands together 
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double along the sides to fit right, ‘cause that’s how the triangle looks. So, it means the whole 

thing has doubled’. 

In the pre-assessment phase, only two children articulated that there was a change in size 

between the two images; in the post-assessment, many children who completed this task used the 

terms, double, half, or twice as (big/long) in their description of the relationship between the 

images. This suggested that although there was no statistical significance in children’s fraction as 

an operator ideas found in the TBI analysis, there was evidence of such understating being 

influenced by their spatial proportional reasoning. That is, the children described that the 

doubling in size was in proportion to the triangle and the circle generally in their descriptions. 

Similarly, Item 22 (Fred’s pizza) was correctly answered by 12 children in this phase in 

comparison to just one in the pre-intervention TBI. To recap, the problem required the children to 

consider the following problem: 

Fred is ordering a pizza that he will eat all of in one sitting. He asks the pizza man to cut 

the pizza into four pieces, not eight, because he says he can’t eat eight slices at once. 

Does his request make sense? (Adapted from Dole et al., n.d) 

As there was no stimulus provided, other than an image of ‘Fred’, the ‘cutting’ or 

‘sawing’ gesture accompanied eight children’s responses. That is, the children were describing 

that a slice of pizza can be cut many times, ‘but it still takes up the same amount of space—pizza’ 

(Child 62). The lack of stimulus also suggests the 12 children were using spatial visualisation 

when the problem was explained to them, highlighting the use of this spatial construct. 

The last task that showed the greatest improvement was Item 15 (Missing faces). The 

children were shown a picture of four smiley faces in a 2 x 2 arrangement, and they were asked: 

If this is 2-thirds of the whole set, what is missing? Of the eight children who engaged with this 

task (there were no correct answers in the pre-intervention assessment), most (n=6) referred to 
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seeing ‘lines’ or ‘rows’ of faces to group and unitise. This suggest they were seeing two faces as 

the unit fraction of 1-third, rather than interpreting the problem as multiples of two. For example, 

Child 56 stated, ‘this is a third’, as they drew a ring around two faces in Item 15 to indicate the 

unit fraction, then, ‘The whole is missing one of these [units], so you add another third’, and the 

child proceeded to draw two more faces. Child 64 also stated, ‘if what’s missing is a third, then it 

needs to be a group of two, because you need 3-thirds to make a whole—which is a group of 

these [faces]’. This is the distinction between this task being interpreted as a fraction problem as 

opposed to whole number multiplication. This change in strategy suggests that spatial structuring 

(e.g., identifying patterns and regularities in the groups of faces to identify fair shares and then 

times-as-many these shares) was a useful tool to building flexible understandings about rational 

number ideas, in the context of fraction as operator. 

6.6 Chapter Summary 

This chapter has presented the findings from the final iteration of the teaching experiment, 

concluding Phase Two of this study. Although the results from this iteration are based on a 

shorter data collection timeframe, the findings suggest that the even limited exposure to the local 

instruction theory enabled children to demonstrate emerging understandings of two key 

indicators—creating and justifying equal shares in discrete and continuous models and 

reinitialising the unit. 

With reference to the creation of equal parts, spatial visualisation played a key role in 

developing the fair share, fraction as an operator idea. Specifically, children used spatial language 

and gesture to explain how they visualised moving parts on top of each other or next to each 

other when justifying that parts would be the same or not. 
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The evidence presented in the analysis of the intervention provides key insights into the 

children’s thinking. First, the relationship between spatial visualisation and the fraction as a 

measure meaning was evidenced throughout the first five lessons. Similarly, the fraction as an 

operator ideas of fair shares though partitive division was supported by children’s awareness of, 

and attention paid to the spatial structures of the representations. 

There was a relationship between spatial visualisation and the partitive division/recursive 

multiplication idea, as children used gesture to describe how they understood the outcome of 

sharing the same collection or region, between a different number of nominated shares (e.g., 12 

cookies between two, four, six and eight people: partitioning a tablecloth into a different number 

of parts). This evidence suggests children were developing the key indicator of reinitialising the 

unit. Although children’s collective responses were not as sophisticated as those in the previous 

class, this evidence does suggest that partitioning as a central concept underpinning the fraction 

as an operator meaning is a spatial activity. 

In discrete context primarily, children’s use of and attention to the spatial structures of the 

representations assisted them in making sense of the relationship between many-as-one, fraction 

as a measure idea and the fair sharing, fraction as an operator idea. The use of spatial structure in 

these contexts enabled children to visually compare and imagine and justify how they knew fair 

shares could be generated, relating to the key indicator of creating and justifying equal shares. 

Moreover, some of the children also used spatial structure when experimenting with the doubling 

and halving fraction as an operator idea to determine composite fractions (fraction as measure) 

and naming the magnitude of the parts, which is evidence of the key indicator reinitialising the 

unit. Spatial structuring was also evident in the way children engaged in partitioning discrete 

collections specifically, as it was associated with how children conceptualised the outcome of the 

share from increasing the number of shares. 
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The quantitative analysis of the pre- and post-assessment data revealed that the Class C 

children made much greater use of their spatial visualisation and spatial proportional reasoning 

capabilities, despite a much shorter timeframe for this teaching experiment (compared to Class 

B). Further, fraction as a measure items were also significantly improved from pre- to post-

assessment for the 15 children. The qualitative analysis of the TBI also suggests that the focus on 

the geometric properties of the shapes (circles and rectangles primarily) within the intervention 

helped children develop a sense of fraction magnitude when estimating and justifying the 

outcome of partitioning. 

The qualitative analysis of the post-intervention TBI revealed that spatial structure was a 

critical component, specifically when describing the relationship between composite units and 

unit fractions (i.e., three as a composite unit and as a unit fraction of nine for the tens frames 

bananas task, 10 as a composite unit and unit fraction of 20 for the number line task, etc.). This 

construct suggested it assisted children to ‘see’ and name quantities in different ways, which 

connected both whole number and fraction ideas, even though there were no statically significant 

improvements in their whole number knowledge for Set One and Two. 

The children’s engagement with spatial visualisation and spatial proportional reasoning 

was evident in far more children’s responses than the pre-assessment TBI for items that had no 

visual stimulus—such as Items 12 (Comparing unit fractions) and 22 (Fred’s pizza). This 

assumption is made based on the accompanying gestures that children typically used when 

explaining and justifying their thinking, which suggested they were visualising different fraction 

measures to compare and justify their reasoning. 

Finally, gesture again was a representation observed as children communicated their ideas 

about creating quantity (fraction as operator) and magnitude (fraction as measure). The use of 

gesture was strongly associated with how children were explaining the outcome of partitioning in 
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various contexts and suggested they were associated with the predictive outcomes of determining 

the different sizes of shares. That is, the process of creating various parts was indicated by 

children’s gestures (such as cutting, pulling apart or distributing imagined shares as a fraction as 

an operator process), and the children also used gesture when justifying the size of parts created 

(fraction as measure). 

Chapter Seven will move this thesis into Phase Three: The Retrospective Analysis, to 

interpret these findings and present a cohesive discussion of this study contribution to young 

children’s fraction development. 
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Chapter 7: Discussion 

7.1 Chapter Overview 

This chapter moves the thesis into the third phase of the Design-Based Research (DBR) 

study – the retrospective analysis phase. The purpose of this phase is to place what the children 

have learned and how they developed their knowledge in a ‘broader theoretical context by 

framing it as a paradigmatic case of a more encompassing phenomenon’ (Cobb & Gravemeijer, 

2104, p. 83). That is, what the findings suggest for the teaching and learning of fractions in the 

early years of schooling. Section 7.2 provides a brief review of the study, its aims, and design. 

Sections 7.3 and 7.4 answer the research questions by exploring the extent to which children’s 

fraction and whole number knowledge improved as a result of the intervention, and how spatial 

reasoning supported this learning. The significance of the study is considered in terms of current 

theories about the teaching and learning of fractions in the early years, the role of spatial 

reasoning in supporting young children’s learning of fractions, and the suitability of the local 

instruction theory in section 7.5. The chapter concludes with a summary of the key outcomes of 

this study (section 7.6). 

7.2 Review of the Study 

This study was prompted by the persistent difficulties experienced by primary school 

children when learning fractions (Callingham & Siemon, 2021; Thomson et al., 2020; Yearly & 

Bruce, 2014). To examine this phenomenon, a Design-Based Research (DBR) study was 

implemented to develop and refine a local instruction theory for teaching fractions in the early 

years of primary school. The purpose of local instruction theories is to explore and refine current 
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theoretical perspectives about a specific mathematical topic, through the design, implementation, 

and analysis of teaching experiments (Prediger et al., 2015). 

This study was developed in three phases, which are summarised below.   

7.2.1 Phase One: Preparation 

The purpose of this phase was to conjecture what the local instruction theory may entail 

for the targeted age group, informed by an extensive transdisciplinary literature review. A range 

of perspectives from the fields of neuroscience, educational psychology and mathematics 

education were considered to examine children’s potential for learning a range of different 

fraction meanings and to determine ways of reasoning that may support this learning. Fractions 

has been the subject of ‘rigorous and knowledge yielding study in mathematics education for 

decades’ (Bruce et al., 2017, p. 156) yet children are still demonstrating persistent difficulties in 

this area of mathematics. Thus, a transdisciplinary examination of theoretical perspectives 

concerning the complexities of learning mathematics enables the ‘relatively untapped research 

area of spatial reasoning’ (Bruce et al., 2017 p. 156) to be explored in relation to the development 

of fractions. Not only does a transdisciplinary approach to investigating this problem aim to 

improve the educational outcomes for young children, but it ultimately helps bridge the 

knowledge gap that is evident between these disciplines (Bruce et al., 2017).  

Current approaches to the teaching and learning of fractions in primary school were also 

examined in light of the theoretical perspectives, to consider how the conjectured local 

instruction theory would inform an innovative approach for learning fractions. It appeared that a 

part-whole emphasis and counting based approaches are not only common in instruction, but 

significantly limit children’s understanding of fractions and their ability to establish flexible, 

multiplicative ways of thinking and working with them (Kieren, 1988; Lamon 2006; Gould et al., 

2006). Confrey’s (2008) splitting perspective was chosen as a basis for this study, where 
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equipartitioning is considered as the foundation for all rational number knowledge and develops 

in parallel to counting (Confrey 2012; Confrey & Maloney, 2015; Confrey & Scarano, 1995). 

Through their extensive work, Confrey and colleagues (2014b) developed the learning 

trajectories for rational number reasoning, which are described as a framework for understanding 

rational number (Confrey et al., 2010; Sztajn et al., 2012). As described in Chapter Two, this 

framework demonstrates how each of the seven trajectories are connected to, and develops from, 

the foundational Equi-Partitioning Learning Trajectory (EPLT) (Confrey et al., 2014b; Confrey 

& Maloney, 2010).  

Another reason this perspective was chosen as a basis for informing the local instruction 

theory is that Confrey et al., (2014b) suggests that their learning trajectory framework represents 

three distinct meanings of fractions: fraction as an operator, fraction as a measure and fraction as 

a relation. However, it appeared that spatial reasoning could play a substantial role in the 

development of the early ideas associated with the fraction meanings described in this 

framework. This conjecture is consistent with several studies suggesting it plays an important 

role in young children’s mathematical development more generally (e.g., Bruce et al., 2016; 

Matthews & Ziols, 2019; Mulligan, 2015; Mulligan et al., 2020).  

The local instruction theory consisted of a series of key indicators to describe the types of 

fraction meanings and associated ideas children were to develop, and a description of how a 

spatial reasoning approach supported their learning. A suite of tasks was designed in relation to 

each of these key indicators and trialled with a participating Year 2 class. The analysis of the 

children’s responses in the preparation phase, enabled new insights to be considered for the 

teaching experiments. That is, the children’s spontaneous use of gesture provided an 

interpretation of how they visualised, and mentally manipulated, various shapes and objects when 

describing their fraction understanding. In addition, the children’s use of spatial language 
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provided another lens to analyse and interpret how they were reasoning with various 

representations. These two forms of representations were added to the codebook for the thematic 

analysis.  

The analysis of the children’s responses to the tasks also enabled the key indicators to be 

refined during this phase, and the full intervention program to be sequenced in readiness for the 

teaching experiments. As described in Chapter Four, the tasks enabled children to explore 

connections between discrete and continuous contexts together through the mental act of 

splitting. This meant the first two conjectured key indicators were combined. In addition, the 

tasks enabled the children to develop more sophisticated understanding of fractions than initially 

anticipated in the key indicators, through their ability to recognise proportionally equivalent 

fractions. This meant the third key indicator was redeveloped to better reflect their learning 

potential. As a result, the local instruction theory was refined to four key indicators and is re-

presented in Table 7.1 

Table 7.1 

The Local Instruction Theory (Version Three) 

Key Indicators Characteristics of Tasks 

 Primary Fraction Foci  Spatial Reasoning Approach  

Creating and 

justifying equal 

shares  

 

Fraction as an Operator:  

Fair shares  

Doubling/ halving   

Partitive division/ recursive 

multiplication,  

Geometric symmetries, 

Similarity 

 

 

Fraction as a Measure:  

Many as one, Measure, 

Composite units,  

Unit fraction 

Visual perception of equal groups 

(drawing on spatial structures and 

arrangements). Equality of parts 

regardless of model (i.e., equal 

parts for discrete collections and 

continuous models less than and 

greater than 1). Visual awareness 

of the geometric properties of parts 

and sets (e.g., shape, orientation, 

pattern, symmetry). Observing the 

physical transformations of 

partitioning (dividing and 

reassembling), and visualising and 
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predicting the outcome of a 

nominated split (e.g., spatial 

visualisation)  

 

Reinitialising the 

unit    

Fraction as a Measure:  

Composite units,  

Unit fractions, Part-whole 

fractions, Equivalent fractions  

 

Fraction as an Operator:  

Fair shares, 

Doubling /halving; Partitive 

division/ recursive 

multiplication, Times-as-many, 

Similarity 

 

Fraction as a Relation 

Many-to-one 

Distribution   

 

Visualising measures between 

parts and wholes, and between 

composite and unit fractions 

through unitising. Exploring the 

spatial structure and arrangement 

of objects and sets to create and 

compare different unit fractions. 

Visualising magnitude relations 

between parts (double/ half/ times 

as many) the distribution of parts 

to determine equivalence.  

 

Recognising 

proportional 

equivalence  

Fraction as a Relation 

Distribution, Proto-ratio, 

Equipartitioning multiple 

wholes,  

 

Fraction as an Operator 

Doubling/ halving, Times-as-

many, 1-nth-of..., Scaling, 

Geometric symmetries, 

Similarity 

 

Fraction as a Measure 

Composite units 

Unit fractions  

Equivalent fractions  

  

Visualising the relationship 

between equivalent measures, of 

same and different wholes.  

Connecting 

multiplicative 

relations 

Fraction as a Relation 

Many-to-one,  

Distribution, Proto-ratio 

 

Fraction as an Operator 

Doubling /halving 

Early relational understandings 

between the structure of part-part 

and part-whole quantities. (e.g., 

visualising and justifying the 

relational magnitude of fractions in 

relation to other fractions (e.g., 1- 

quarter is a half of a half/ twice as 



357 

Partitive division/ recursive 

multiplication   

Times-as-many,  

1-nth-of..., Scaling 

 

Fraction as a Measure 

Composite units 

Part-whole fractions 

Equivalent fractions    

small); and working flexibly with 

non-symbolic simple ratios (e.g., 

1:2 = 2:4).  

 

7.2.2 Phase Two: Teaching Experiment 

To explore the viability of the local instruction theory as a framework for developing an 

extended range of fraction meanings through a spatial reasoning approach, the intervention 

program was implemented in two additional junior primary classes. In preparation for each 

teaching experiment, the individual classes were observed during their typical mathematics 

lessons prior to the intervention. The purpose of this was to gain insights into the general 

classroom environment, pedagogical styles enacted by the teacher, and cognitive behaviours 

exhibited by the children. In addition, a pre- and post-intervention Task Based Interview (TBI) 

was conducted with each participating child immediately before and after the intervention. The 

pre-intervention TBI data was used to gain further insights into their ways of thinking and 

reasoning about assumed familiar mathematical content (i.e., whole number ideas) and likely 

unfamiliar content (i.e., the three fraction meanings). The pre-intervention TBI for Class B 

revealed that spatial structuring was an additional spatial reasoning construct that some of the 

children appeared to utilise in the interview. After considering this construct within the current 

literature as part of the micro analysis and refinement conducted within DBR studies (Prediger et 

al. 2015), the decision was made to include spatial structuring in the intervention program and 

codebook for thematic analysis.   
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This information was used in addition to the classroom observations, to consider if any 

adaptions might be needed in the specific tasks within the intervention program. As reported in 

Chapter Six, the complexity of learning difficulties Class C demonstrated during this period 

resulted in minor changes to the focus and sequence of the tasks for their teaching experiment.   

Only one class experienced the full intervention program as the study was interrupted by 

the COVID-19 pandemic, and associated restrictions. Despite this limitation, the two teaching 

experiments provided powerful evidence that the children were able to develop a sophisticated 

understanding of the three meanings of fractions, when experienced through a spatial reasoning 

approach. Additionally, the post-intervention TBI data confirmed that various levels of 

improvements in children’s whole number, fractions, and spatial reasoning capabilities had 

occurred as a result of the intervention.  

7.2.3 Phase Three: Retrospective Analysis 

The third phase of this study answers the research questions and support the discussion of 

the significance and contribution to early childhood mathematics education. The purpose of the 

retrospective analysis phase is to discuss and interpret what has been learned from implementing 

the local instruction theory through the intervention program. Specifically, the ways in which 

children demonstrated an understanding of the three meanings of fractions through explicit 

spatial reasoning constructs, and to compare these findings to what is currently known about 

young children’s fraction capabilities.  

To begin the retrospective analysis phase of the study, the two research questions will be 

answered. The first question will discuss the extent to which children developed an understanding 

of each of the three meanings of fractions, evidenced by the associated fraction ideas, and how 

particular spatial reasoning constructs supported this understanding. The second question will 
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examine the extent to which the children’s whole number knowledge was influenced by this 

approach.   

7.3 Research Question One 

To what extent and in what ways can young children demonstrate an understanding of an 

extended range of fraction ideas experienced through a spatial reasoning approach? 

As described in previous chapters, each lesson of the intervention was informed by a 

relevant key indicator of the local instruction theory. Each key indicator included opportunities 

for the children to explore multiple meanings of fractions in relation to the intended learning 

goal. The following section will discuss the depth of understanding the children demonstrated for 

each of the fraction meanings in relation to the key indicator that best highlighted their learning.  

The children’s understanding of the fraction as an operator meaning will be discussed in 

relation to the key indicator of creating and justifying equal parts, as it was foundational to the 

early development of the partitioning concept. The children’s ability to work with the fraction as 

a measure meaning will be highlighted through the key indicators of reinitialising the unit and 

recognising proportional equivalence. Finally, the children’s understanding of the fraction as a 

relation meaning will be discussed by the children’s success with key indicator of connecting 

multiplicative relations and the post-intervention TBI.  

7.3.1 Fraction as an Operator 

The most important finding from this intervention in relation to this fraction meaning, is 

that the children understood the relationship between the number of parts and the size of the 

resulting parts, which is the basis of the partitioning concept (Lamon, 2020). The local instruction 

theory included ideas from the fraction as an operator meaning in all four key indicators. 

However, in relation to this fraction meaning, the key indicator of creating and justifying equal 
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shares provides the most salient evidence for discussing children’s understanding of the fraction 

as an operator meaning, and how spatial reasoning influenced this development. 

7.3.1.1 Creating and Justifying Equal Shares 

This key indicator was determined as the starting point of the local instruction theory 

based on literature that suggested children could create fair shares of objects and sets from an 

early age (Confrey, 2008, Lamon, 2007; Empson, 1999; Mamede & Nunes, 2008). However, the 

literature reported an overemphasis on counting parts, in early instructional approaches (e.g., 

Amarto, 2005; Clarke et al., 2006; Gould, 2011; Norton & Hackenberg, 2010). Appreciating the 

relationship between the number of parts, their size, and how they are named, has been noted as a 

consistent area of difficulty in children’s understanding of fractions (Gould, 2013; Siemon, 2003/ 

2019). As this relationship is founded on the basis of a multiplicative, rather than additive 

understanding, a different approach to traditional instruction was needed for children to develop 

the first key indicator. The following sections describe how the emphasis on spatial reasoning 

helped children develop an appreciation of early fraction as an operator ideas in discrete and 

continuous models within this key indicator. 

Continuous Contexts. In exploring continuous models, the act of repeated halving via 

folding pieces of paper (in the form of circles, rectangles, squares, and triangles) was the basis for 

children’s initial partitioning activity. The folding process specifically drew on the fair share, and 

geometric symmetries, and similarity ideas, within the fraction as an operator meaning. This 

focus enabled children to see the physical transformations of the shapes and parts as they 

occurred and allowed the size of parts to be considered in relation to the number of parts created. 

The children were required to pay explicit attention to the geometric properties of the paper shape 

being folded to observe how equal parts were generated, and how the idea of doubling the 

number of parts halved the size of the parts. As children experienced physically folding and 
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manipulating continuous models (including magnetic fraction circles), they were asked to start 

visualising and predicting the outcome of creating equal shares.  

The children commonly referred to ‘seeing’ or ‘imagining’ (interpreted as visualising) the 

outcome of creating equal parts. This allowed them to accurately predict the transformations that 

would need to occur to create multiple shares. For example, in Lesson 5 (Cookie fraction 

estimation), the children were presented with images of cookies that had a segment ‘eaten’ by a 

mouse, and they were asked to justify how much of the cookie it had eaten. In Chapter Five, the 

following observations exemplified the connection between identifying fair shares, and the role 

spatial visualisation played. First, Child 47 explained their thinking about a cookie that had 1-

third eaten: ‘We can see that the chunk is like a third because in our head, if you move this piece 

[the missing third] around, you’d get another two of the thirds to cover the whole cookie’. While 

this child was explaining their thinking, both them and their partner were observed moving their 

hands like they were turning a dial. This gesture suggested they were visualising the rotation of 

the missing third around the circle to determine there were three equal parts. They were paying 

attention to the geometric properties of the parts in relation to the whole circle, however 

conceiving and visualising the proportions of the cookie as a split of thirds. 

 Similarly in Chapter Six, Child 67 and 63 indicated they had visualised stacking parts of 

a cookie (that had been cut vertically into four pieces) to justify that the parts were not equal (see 

section 6.4.1.2). In addition, they described how they visualised joining these parts in ways to 

create equal shares, again paying attention to how the creation of parts affected the size and shape 

of the object. These examples illustrate the influence spatial visualisation had on children’s 

ability to imagine and justify how many equal parts (i.e., fair shares) could be represented in this 

cookie. 
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Spatial visualisation was also associated with the doubling and halving idea in developing 

the fraction as an operator meaning. Child 38’s example was indicative of this connection when 

describing how much of a cookie had been eaten with only 1-quarter of a cookie visible: 

I imagined folding this part over [signalling a mirror image flip of the quarter with their 

hand] to make a half, and then, you know, the other side that makes a half is two perfect 

quarters—so the missing part has to be three of these quarters. 

This example shows the child has a sophisticated understanding of how the doubling and 

halving idea supports the creation of fair shares by visualising the relationship between the parts 

and their size in relation to the whole. It suggests the child understood the process of repeated 

halving and the multiplicative nature of creating composite units in this context because they 

envisioned the whole simultaneously with the unit fraction in the reassembly process.    

Even when children interpreted the sharing tasks differently to what was intended (see 

Chapter Six, Section 6.4), it was evident that the emphasis on visualising and predicting the 

outcome of doubling and halving enabled children to develop an understanding of the 

relationship between the size of the parts, and the number of parts generated. For example, Child 

56 represented the outcome of repeatedly halving a single cookie, drawing three cookies 

partitioned in halves, quarters, and eighths, respectively. I asked the child to tell me more about 

their representation, including how they had labelled some of the parts. They replied, ‘It’s 

doubled [pause]…No, it’s actually halves. It goes from half to fourths to eighths. See, half of a 

half is fourths, half all the quarters you get eighths [pointing from one cookie to the next]’. When 

prompting the child to visualise and justify what would come next if they continued to partition 

another cookie, they stated, ‘Ummm, that’s double eight… but half of each eighth [running 

fingers over the cookie partitioned in eighths] ...ahh…[pause]… sixteenths!’ 
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This example demonstrates that the child recognises the geometric similarity of the 

resulting part, as a split of a split (Confrey & Smith, 1995); that is, double means ‘twice as big’ 

and half is ‘two times as small’.  As Lamon (2020) describes, this type of thinking is beyond 

simply considering a selection of parts in comparison to its whole, or the part-whole meaning of 

fractions. Rather, it demonstrates an early appreciation of the multiplicative relationship between 

the number of parts and the size of the parts within the halving family —that developed by 

visualising the outcome of repeated halving.  

Several researchers (e.g., Confrey & Maloney, 2010; Pothier & Sawada, 1983) suggest 

that it is not just number properties for fractions that impact children’s conceptualisation of fair 

sharing, it is also the geometric qualities of the materials and representations that are essential for 

children to explore in such activities. This evidence demonstrates that utilising spatial 

visualisation in the repeated halving of geometric models, is a powerful way for children to 

develop early partitioning generalisations; that is the multiplicative nature of a divided by b 

shares results in a share of a/b. This is a critical finding as, according to the current literature, 

anticipating the outcome of partitioning, and recognising the multiplicative foundations of 

fractions, are understandings that many older children fail to comprehend (Callingham & 

Siemon, 2021; Siemon, 2016; Thomson et al., 2020).  

Discrete Contexts. The evidence presented in previous chapters showed that young 

children develop sophisticated fraction as an operator understandings in discrete contexts. This 

understanding was clearly supported by a focus on creating and understanding the spatial 

structure of parts generated in the concrete representations, through partitive division and 1 nth of 

ideas. The partitive division idea is the process of creating fair shares through starting with the 

dividend and distributing a collection one at a time, until the collection is exhausted. The 1 nth of 

idea is complex in discrete collections, as children will often confuse the number of individual 
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objects within a share, with the number of shares. For example, early in Class C’s teaching 

experiment, some children confused creating groups of two cookies (from a set of eight) as 

sharing between two people (see section 6.4.1.1).  

The 1 nth of idea is closely related to the fraction as a measure meaning in discrete 

contexts, as it requires children to consider many objects as one part (many-as-one)—such as four 

cookies is one-third of 12 cookies. This study found that spatial structuring, the process of 

assigning patterns and structures in representations either physically or imagined, was critical in 

enabling the children to make judgements about the quantities represented. For example, the 

children’s pictorial representations described in Chapter Five, clearly portrayed a regularity and 

structure when recording fair shares of 12 cookies. It appeared the children were referring to the 

geometrical structure of parts (developed from their experiences with continuous models), which 

in turn, supported their ability to justify equal shares in discrete contexts. A common example 

was Child 45’s representation, where they arranged three groups of four cookies (counters) in a 2 

x 2 format, describing the set of 12 cookies as ‘three squares’ of four cookies. Other children 

demonstrated similar success with the partitive division idea, when encouraged to line their 

cookies in equal rows or columns. This demonstrates that a focus on the structural arrangement of 

the counters enabled children to recognise that one share of 12 cookies (1 nth of) is four cookies, 

and that the shares are equal because the structure and geometry of each share is identical.  

In Confrey et al.’s (2014b) framework derived from a synthesis of the literature, they 

suggest children first develop the fair sharing idea through ‘Case A’, discrete context, which is 

‘sharing mn objects fairly among n children, where m and n are natural numbers’ (Confrey, 2012, 

p. 161). Children then progress to ‘Case B’, sharing a single whole between many (a continuous 

context); and finally, to ‘Case C’, sharing multiple wholes between n children to explore proper 

and improper fractions. They acknowledge that this trajectory of case sharing is largely 
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conjectured from studies that explore one specific case at a time, as no study to date has explored 

the development of the three cases of sharing simultaneously (Confrey, 2012). While the present 

study has not specifically followed the development of the three cases per se, the findings do 

suggest that by focusing on geometric and spatial structures of the sharing contexts, enables 

children to develop flexible connections and generalisations about the fraction as operator 

meaning, in both discrete and continuous contexts.  

The role of gesture was also found to be important in children’s reasoning about discrete 

contexts. While spontaneous gestures were used by the children early in their descriptions of how 

they would physically partition various arrangements of discrete objects, it appeared that an 

emphasis on spatial structure in the intervention was also reflected in gestures. Their gestures 

were predominately classified as iconic, that is, those closely associated with the meaning of the 

idea being explored (explained in Chapter Two). However, it was the geometric attributes 

(gesturing the sharing of discrete sets in square-like arrangements) or gesturing row-and-column-

like structures accompanying their description of fair shares that was evident.  

A further example of the connection between children’s gestures and spatial structure was 

sharing 12 cookies between eight people, which was a complex task given the age of the children 

and the timing of the activity within the intervention. Here, children created row-and-column-like 

structures after dealing one cookie to eight people (in two rows of four) and placed the four 

remaining cookies in a symmetrical arrangement to describe how they would split the remaining 

four cookies equally among eight people, as illustrated originally in Figure 6.11 (reproduced here 

for convenience in Figure 7.1). 
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Figure 7.1 

Arrangement of Representation from Children 52, 55 and 57 and Their Description of 

Visualising the Shares 

 

Note. The counters have been coloured to assist the discussion. 

It was their accompanying gestures that enabled them to communicate how they knew 

each person received a fair share, as highlighted in their explanation: 

Child 52: This one cookie [referring to one of the two cookies represented in yellow in 

Figure 7.2] gets broken in half and shared to these two people [pulls hands apart, 

suggesting they are dealing out the two parts of the yellow cookie, and placing the parts 

on top of two green cookies], and same with this one [gestures the same partition for the 

two blue cookies]. 

While this task was difficult for the majority of the children in the teaching experiment, 

the ways in which some children engaged with it suggests that focusing on spatial structures in 

discrete representations promotes early multiplicative understandings. The children appeared to 

visualise partitioning the collection in a way that enabled them to construct composite units (such 
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as eight units of one cookie and eight units of half a cookie to complete the fair share of eight 

shares of 1-and-a-half cookies). Several studies (e.g., Battista & Clements, 1996; Mulligan et al., 

2005; Mulligan & Mitchelmore, 2013; Van Nes & Van Eerde, 2010) have found that when 

children were taught how to use and develop spatial structures for working with whole number 

collections (e.g., arranging and visualising a collection of six items as 3 x 3 structure), they had 

greater success in developing early arithmetic understandings of whole number. However, no 

studies appear to have examined the way spatial structuring can support the explicit development 

of the different fraction meanings, specifically the fraction as an operator meaning. Although 

emergent, this type of thinking cannot be achieved through an additive approach to partitioning 

(e.g., creating a unit fraction and iterating), because it relies on the creation of fair shares through 

partitive division. A critical finding from the present study is the spatial structures are influential 

on children’s understanding of the fraction as an operator meaning, not only in the physical and 

pictorial representations of equal sharing contexts, but also as communicated through their 

gestures. 

Taken together, the results from children creating and justifying equal shares thorough 

emphasising a spatial reasoning approach suggests that it enables children to develop 

generalisations about the Case A – C sharing contexts. This is an important finding, as Nunes and 

Bryant (2007) state that while children are ‘relatively good at thinking about the consequences of 

sharing’ (p. 4), children between the ages of 5 – 7 years are ‘very bad at partitioning wholes into 

equal parts’ (p. 4). The present study contradicts this last point, finding that through a focus on 

visualising the transformation between the number of parts created through doubling and halving, 

and partitive division, the children were able to comprehend the outcome of familiar and 

unfamiliar sharing situations. Likewise, the emphasis on the geometric similarity of parts in 

continuous contexts appears to have had an influence on how children understand and 
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conceptualise discrete sharing contexts. That is, the use of spatial structures created, visualised, 

and communicated in part via the use of gesture within these sets. This understanding did not rely 

on counting, but a partitive division understanding of the relationship between the number of 

parts and their relative size. This too is an important finding, as the ability to draw connections 

between continuous and discrete contexts is something that Confrey and Maloney (2010) state is 

a complex but important milestone in early fraction understanding, as these ideas require 

different cognitive demands. Children need to recognise that representing fair shares of a 

continuous model is the formation of multiple, connecting parts. The discrete model involves the 

need to perceive a unit within a larger set, while understanding that the two models represent 

proportionally equivalent shares. This study shows that spatial reasoning is a powerful vehicle for 

understanding early fraction as an operator ideas that are explicitly connected to the concept of 

partitioning in both continuous and discrete contexts. 

7.3.2 Fraction as a Measure 

The children demonstrated fraction as a measure understanding in two main ways. The 

first was the children’s ability to recognise fractions as composite units and equivalent fractions. 

The children’s understanding of these ideas was most noticeable in the lessons related to the key 

indicator of reinitialising the unit, which is discussed in section 7.3.2.1. Secondly, the children 

demonstrated an ability to compare the size of fractions between unlike wholes, demonstrating 

proportional equivalence. The children’s responses to the lessons associated with the key 

indicator of recognising proportional equivalence is discussed in section 7.3.2.2.   

7.3.2.1 Reinitialising the Unit  

The intention of this key indicator was for children to understand that many equal parts 

can be named as a unit of the whole (the composite units and equivalent fraction ideas). In 

addition, children were provided opportunities to recognise composite units for simple, common 
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fractions (e.g., ‘1’ can be represented as 2-quarters and 1-half), and to explore the equivalent 

fractions idea, which is a generalised understanding of how fractions can be infinitely renamed.  

Evidence of children’s understanding of the fraction as a measure meaning is illustrated 

by Child 43’s exploration of Lesson 5 (Cookie fraction estimation) in Chapter Five. When using 

the magnetic fraction circles (referring to one partitioned into tenths), this child stated, ‘If five of 

those pieces covered a half, then it is the right piece—because half of 10 is five. I just doubled 

and flipped it over in my head to work out the right fraction’. 

It is evident that the child is developing the composite unit idea from the fraction as a 

measure meaning, intertwined with the doubling and halving idea from the fraction as an operator 

meaning discussed above. The child’s description of ‘flipping in their head’ is a spatial 

transformation term, suggesting spatial visualisation assisted in their justification for reinitialising 

5-tenths as 1-half.  

Other references to spatial visualisation interpreted from children’s use of spatial 

language was evident in explanations that includes spatial transformation terms like slide, move, 

flip, and turn. These words were used to describe how the children described mentally 

manipulating the parts that were distributed in representation, particular in the Tablecloth lessons. 

For example, Child 30 commented: 

You can have something [gesturing parts of the third of the tablecloth] that has lines all 

over it, and all different shapes, but it’s still a whole, and you can still make a half or a 

fourth if you look inside these patterns and move them in your head. 

These statements indicated that many children were developing the composite unit and 

equivalent fraction ideas by engaging in spatial visualisation, which allowed them to mentally 

move and transform parts of the tablecloth to make a judgement on the relative proportions of 

different colours. What these understandings of fraction as a measure ideas represent, are 
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powerful demonstrations of quantitative equivalence understanding facilitated by spatial 

visualisation.  

Another common observation of children’s exploration of the composite unit and 

equivalent unit ideas for the fraction as a measure meaning, was children’s use of the spatial 

structures within the models used. For example, the hexagon, trapezium, and triangle pattern 

blocks in the Pattern Block Fractions lessons enabled many children to create models that 

represented the relationship between halves and wholes by their symmetrical, geometric 

structural relationships. For example, Child 34 stated ‘you can have six of these [triangles] as the 

same [shape and size] as the third [hexagon]’. Similarity, as reported in Chapter Five, the 

description of the geometrical structure and repetition created with the orange square pattern 

blocks (see Figure 5.17) represents the understanding of composite unit and equivalent fraction 

ideas. For example, Child 27 referred to a row of squares as one fourth (many-as-one and unit 

fraction idea), whilst Child 49 commented on how they could see ‘squares within bigger squares’ 

(emerging composite unit idea). This understanding was supported by the doubling and halving 

idea from the fraction as an operator meaning, however, it demonstrates the relationship between 

spatial structure, and the children’s ability to name units of units as fraction as a measure 

understanding.   

Other examples of how spatial structure supported the fraction as a measure ideas were 

evident in discrete contexts. For example, when children explored how 12 cookies could be 

shared fairly resulted in children looking for pattern, repetition and similarity when arranging or 

representing their units. They would often see row-and-column-like structures to not only 

determine they had equal shares, but to describe the quantity based on these structures that were 

created through the partitive division approach. This thinking was exemplified by the children 

working with me in a small group setting (see Chapter Five) on how to share six cookies fairly. 
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One child commented on seeing groups of ‘two, two and two’, and lines of ‘three and three’ as 

units of six, when promoted to name the collection by looking at how the set was arranged. 

Additionally, Child 62’s representation of sharing 12 cookies between two people demonstrated 

how spatial structure influenced how they were able to name the composite units and equivalent 

fractions of the set (originally introduced as Figure 6.8, reproduced below as Figure 7.2).  

Figure 7.2 

Child 62’s Work Sample 

 

Child 62: When I drew the two different groups, I knew each kid would get six—a half of 

12 is six. But then I just cut each cookie in half too, because you can see [using hand 

perpendicular to the page] …12-halves here for this person, and same for this one—two 

rows of halves [using hand to gesture linear groups of partitioned cookies]. 

The way the child explained the connection between the two rows of 6-halves as being the 

same as six cookies – highlights a complex understanding of the fraction as a measure meaning 

(e.g., composite units and equivalent fractions). What is important about these contexts, is the 

children were not just seeing the parts as separate, countable items, they were able to use the 

structure of discrete sets to unitise and ‘see’ different quantities within a defined whole. This 
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study demonstrates that spatial structuring supports a true multiplicative foundation to naming 

and renaming shares. That is, the shares are created simultaneously, therefore ‘one share does not 

exist unless all shares exist, and each is the same 1-nth of the whole’ (Corely, 2013, p. 20).   

Children across both teaching experiments provided additional examples of their fraction 

as a measure understanding and how spatial proportional reasoning supported this learning. 

Similar to Child 30’s comment above, Child 52’s comment indicated this type of thinking: ‘You 

can make your own lines for the parts because it’s still coloured in the half of the tablecloth’. The 

reference to ‘making your own lines’ suggested the child was creating units within units, 

appreciating the equivalent fractions in this context and utilising spatial proportional reasoning to 

justify halves. Similarly, Child 70 stated they needed to represent an ‘even number of little 

squares so that the pink and red parts were the same’, referring to the equality of the pink and red 

regions across their tablecloth as unit fractions of half, rather than the number of individual parts. 

These examples demonstrate how spatial proportional reasoning in the development of the 

equivalent fractions idea (fraction as a measure meaning) is also connected to the distribution 

idea from the fraction as a relation meaning. These are important findings because it provides 

further evidence for how emphasising the connection between the fraction meanings through 

spatial reasoning supports a relational understanding of the quantities. A critical foundation 

needed to work multiplicatively with fractions.  

These examples also demonstrate the tightly connected nature of spatial reasoning 

constructs (i.e., between children’s spatial visualisation, and spatial structuring strategies) and 

how it can be problematic to separate exactly which construct a child may have been using, and 

at which point. Regardless of this, the children developed these fraction ideas on the basis of 

understanding magnitude through reasoning spatially, not by relying on their whole number 

knowledge such as counting individual parts. As described in Chapter Two, Pedersen and Bjerre 
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(2021) provide two novel conceptions of the quantitative equivalence concept of fractions that 

have been largely overlooked in the literature: unit equivalence and proportional equivalence. In 

the present study, it was revealed that by engaging in activities related to this key indicator, 

children were able to not only work with units of units in the naming and measuring of fractions, 

but they also developed an understanding of unit equivalence (i.e., recognising composite units 

and equivalent fractions within like wholes).The children’s reasoning about this fraction meaning 

indicates they are starting to appreciate that fractions, as numbers, are infinitely divisible (Siegler 

et al., 2013) and therefore can be renamed in many ways. This is the foundation of the density 

principle – which is reported as a major shortcoming in upper primary and secondary students’ 

competency with fractions (see Braithwaite & Siegler, 2018; Jordan et al., 2016; Siegler, 2013; 

Thomson, 2020; Ubah & Bansilal, 2018). The present study demonstrates that explicit 

experiences with physically comparing the spatial and geometrical attributes of the fraction parts 

created, in addition to visualising the spatial and geometric structures and proportions of these 

parts, enables children to make sense of the ways in which the quantity can be measured. What 

this demonstrates is an early generalisation about multiplicative relations of fractions because 

they are interpreting (reinitialising) the whole as different multiples of units (Confrey, 1994).  

7.3.2.2 Recognising Proportional Equivalence 

The children’s understanding of the fraction as a measure meaning was also highlighted 

in the way they demonstrated the key indicator of recognising proportional equivalence. This key 

indicator focused on the unit fraction and equivalent fraction ideas in the context of comparing 

unlike wholes, through lessons that involved finding different fractional parts of pathways on 

maps (e.g., Lessons 8-10: The dinosaurs have escaped). The children were asked to compare and 

recreate pictorial representations that were scaled versions of the physical maps. These lessons 

related to the similarity and scaling ideas from the fraction as an operator meaning. As described 
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in Chapter Three, the similarity and scaling ideas derived from Confrey et al.’s (2014) framework 

focus on the properties of proportional relationships between the magnitude of objects and 

shapes.  

As children became more confident with recognising equal parts and the relationship to 

their size from the partitioning experiences earlier in the local instruction theory, they often 

referred to halving as a benchmark to justify the length of pathways on maps. This type of 

reasoning was exemplified in the whole class discussion with Class B during the mapping 

activities in Lessons 8–10. During this, Child 43 stated: 

…but I could imagine that I can walk from here to far, far away, and its only half to where 

I’m going—like Adelaide or something… I could walk from here to that table, and it’s 

halfway of this room. You have to think about what the end is to know how big you’ve 

walked. 

Similarly, Child 48 stated that the length the path was irrelevant. To be half, there simply 

needed to be two equal parts within the concerning path. The critical part was to first determine 

(interpreted as visualising) the length of the whole path. Several children explained their drawn 

representations of their scaled maps with statements like, ‘half is going to look different on each, 

but still in the middle [of each path]’ (Child 32).  

These illustrations of thinking demonstrate that the children were conceptualising 

proportional equivalence (Pedersen & Bjerre, 2021). That is, they recognised that to determine a 

fraction of an object (a pathway in this case) needs to be in relation to the whole (fraction as a 

measure understanding). This reasoning was supported by the fraction as a relation meaning, 

specifically the distribution and equipartitioning multiple wholes ideas to compare the same 

fraction of two different measures (e.g., halfway on paths of different lengths). This is a very 
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complex understanding that emerged through this study. Importantly it was spatial reasoning that 

enabled children to develop this level of sophistication in their thinking.  

The importance of this finding extends the literature on what is known about developing 

young children’s capacity to work with an extended range of fraction meanings. While there are 

several studies that demonstrate children as young as four can reason in spatial proportional 

contexts (e.g., matching juice and water ratios) the explicit connection to spatial proportional 

reasoning and children’s understanding of the various meanings of fractions remains unclear. 

Möhring et al. (2018) reported 8 to 10-year-old children’s spatial proportional reasoning 

capabilities were associated with their formal understanding of fractions, examined through their 

ability to name fractional measures presented in non-symbolic, continuous contexts (e.g., 

estimating the ratio of cherry juice to water mixtures presented pictorially). In reporting this 

finding, however, the authors questioned whether it was children’s previous formal fraction 

instruction or their proportional reasoning competency that enabled the children to successfully 

complete such tasks. The present study suggests that even with little prior knowledge and 

experience with formal fraction instruction, spatial proportional reasoning supports the 

development of the fraction as a measure meaning in developing the ability to compare 

proportionally equivalent fractions between unlike wholes.  

While this understanding was developed primarily in continuous contexts within the 

intervention, it provides an important foundation for children to work with more complex 

multiplicative ideas of fractions. That is, it demonstrates that the children could reason about the 

part-to-whole relationships of two separate objects (paths) whilst comparing the part-to-part 

relationship of the nominated fraction (Lamon, 2014). This is a key component to multiplicative 

thinking, and indicative of the invariant relationship that exists between proportionally equivalent 

fractions.  
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7.3.3 Fraction as a Relation 

The fraction as a relation meaning introduced children to the underpinning ideas of many-

to-one, distribution and proto-ratio. While only the children in Class B experienced the full range 

of activities related to these ideas due to the COVID-19 pandemic, the children’s understanding 

of the fraction as a relation meaning was evident in the activities related to the key indicator of 

connecting multiplicative relations, and the post-intervention Task Based Interview (TBI) 

responses.  These will be discussed in turn. 

7.3.3.1 Connecting Multiplicative Relations 

In the lessons exploring the fraction as a relation meaning, there was an emphasis on 

developing the language of ‘for each’ when exploring simple relationships and ratios. For 

example, in the lessons where children were asked to represent the number of dinosaur steps ‘for 

each’ human step, or the number of pies baked ‘for each’ dinosaur. The focus on encouraging 

children to describe their thinking using a ‘for each’ statement was intentional in order to support 

the development of the many-to-one idea. This is the basis for exploring how a fraction can 

represent a simple ratio. 

A small group of children provided evidence of this thinking when working out a 

dinosaur to human step ratio: ‘We did, one [dinosaur] step, three of our steps, one [dinosaur] step, 

three [of our] steps… you just keep these lines going to see the groups’. In this example, the 

children used a similar gesture that was associated with building up or repeating the structure of 

the many-to-one relationship indicating the understanding of the invariant property of simple 

ratio. Here, the child is considering three human steps as a composite unit, to coordinate the 

structure of the many-to-one relationship. In the context of the fraction as a relation meaning, the 

coordination of the composite unit of three human steps per one dinosaur step is the primitive 

foundations of multiplicative reasoning (Confrey & Smith, 1995) 
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This thinking was also reflected in the way many children used pictorial representations 

to illustrate this understanding, where they typically used row and column structures to organise 

the part-part quantities to represent the ratio ideas. Spatial structuring enabled children to 

represent these problems accurately and was also influential in how children not only worked 

with the many-to-one idea, but also connected multiplicative relations between other fraction 

meanings. For example, in the Feeding Dinosaurs tasks, Child 42 demonstrated a flexibility 

between the simple ratio and a connection to the fraction as a measure meaning, which was 

supported through their use of gesturing (Figure 5.31 reproduced below as Figure 7.3 for 

convenience). 

Figure 7.3 

Child 42’s Representation of the ‘Feeding Dinosaurs’ Task 

 

Child 42 stated they lined the pies up so they could see if they were equal, referring to the 

distribution of the pies to the dinosaurs. Then they gestured over the top of this representation 
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how they ‘could see’ that two dinosaurs’ share (6 pies) was one-third of the total number of pies 

(18)—a composite unit idea that supports the fraction as a measure meaning.  

The emphasis on spatial structuring enabled children to make multiplicative connections about 

this context (e.g., viewing the representation as a many-to-one or part–part quantity in addition to 

naming it as a composite unit, or part-whole quantity).  

Understanding of the fraction as a relation meaning was also evident in the way the 

children’s utilised spatial visualisation to describe the different quantities as a proto-ratio. Child 

47’s discussion with me (see Chapter Five, section 5.4.4.1.3) about their understanding of sharing 

12 cookies between eight people highlights this connection.  

I can see in my head how you just cut all the cookies in half, and then I move them  

 around to put them in groups of three [halves]—like, all lined up. I don’t even need to  

 write it down; I just do it in my head! 

During this interaction, I asked the child several prompting questions to further probe 

their understanding of the fraction as a relation meaning. When I asked them to describe how 

many cookies would be needed for four people, if they were each given 1-and-a-half cookies, 

they replied while gesturing their arms like a balance scale:  

That’s easy—it’s six! Because when you go up this side by that amount [double the 

number of children], you need to here as well [double the number of cookies]. But 

everyone still gets the same amount [of cookies]—1 and a half. 

This is evidence of the proto-ratio idea, which Vanluydt et al. (2022) refer to as the many-

to-many idea. In their study investigating the development of proportional reasoning in children 

from 5 – 8 years of age, they found that the many-to-one idea provided an essential steppingstone 

for the proto-ratio idea to develop. While the present study supports Vanluydt et al.’s (2022) 

findings, it also indicates how visualising and gesturing the structure of the quantities revealed 
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the extent of their understanding. In this example, the child’s ability to visualise the doubling of 

the quantities (supported by their gesture) is a demonstration of connecting multiplicative 

relations as they are articulating the relationship between how many times bigger the quantities 

are increasing by, while preserving the inverse relationship. The associated gesture suggest they 

have visualised a two-dimensional understanding of fraction as a relation (Confrey et al., 2014). 

This mans, they recognised the relationship between the two quantities needed to be preserved, 

even when they were ‘building up or building down’ the number of cookies and shares. 

Moreover, it demonstrated the emergence of multiplicative relations, as they were able to work 

‘in such a way that one of the composite units is distributed over the elements of the other 

composite unit’ (Steffe, 1994, p.19). That is, the child demonstrated the coordination between 

units of equal size, the number of units per group and the total quantity.  

In summary, the children’s capability to work with the fraction as a relation meaning was 

developed though visualising and gesturing spatial structural changes when many-to-one and 

proto-ratio contexts were explored. This highlights the intervention not only enabled children to 

develop early fraction as a relation ideas through an emphasis on spatial structuring, but also 

children’s understanding of the multiplicative relations between the fraction meanings more 

broadly. For example, the ability to connect multiplicative relations were supported through 

integrating the fraction as an operator ideas (specifically doubling/ halving, times-as-many and 

partitive division/ recursive multiplication) in the exploration of simple ratio (e.g., many-to-one 

and proto-ratio ideas). Furthermore, children’s use of spatial structure enabled them to link 

fraction as a measure meaning to the various quantities, such as the many-as-one idea observed in 

the Feeding Dinosaurs activity. This finding provides salient evidence for how these fraction 

meanings are tightly connected, and how spatial visualisation and spatial structuring are strategies 

for building children’s awareness and flexibility for working with such complex ideas.  
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7.3.3.2 Post-Intervention Task-Based Interviews  

The post-intervention Task Based Interview (TBI) data also provides evidence that the 

children developed an understanding of the fraction as a relation meaning, influenced by spatial 

structuring and visualisation strategies. For instance, Item 23 (Plant growth rates) asked children 

to determine which plant had grown more within a year. The information provided was that Plant 

A had grown 5 cm in half a year and Plant B had grown 8 cm in a whole year. This was a 

complex problem because the children needed to recognise that the respective measures of the 

plants did not reflect the same time period, nonetheless 15 children correctly answered this item 

in the post-intervention TBI in comparison to four in the pre-intervention TBI. The children 

predominantly referred to chunking the periods of time (where they described ‘seeing’ – 

interpreted as visualising – half a year in comparison to a whole year), to compare the plant’s rate 

of growth. This type of explanation was often accompanied by children drawing lines to represent 

the many-to-one relationship between the period of time (one year) and the measurement of the 

plant, as described in Chapter Five (section 5.5.2.2). This evidence would suggest that the 

children were drawing on the doubling and halving idea from the fraction as an operator 

meaning, which was overtly supported by spatial visualisation and spatial structuring as 

discussed above.  This finding demonstrates the critical link spatial reasoning plays for enabling 

children to connect the different meanings of fractions, again, demonstrating early multiplicative 

foundations of their reasoning.   

The development of children’s fraction as a relation understandings were developed 

though visualising spatial structural changes when many-to-one and proto-ratio contexts are 

explored. This highlights the intervention not only enabled children to develop early fraction as a 

relation ideas through an emphasis on spatial structuring, but also children’s multiplicative 
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relations between the fraction meanings more broadly. For example, the ability to connect 

multiplicative relations were supported through integrating the fraction as an operator idea 

(specifically doubling/ halving, times-as-many, and partitive division/ recursive multiplication) in 

the exploration of simple ratio (e.g., many-to-one and proto-ratio ideas). Furthermore, children’s 

use of spatial structure enabled them to link fraction as a measure meaning to the various 

quantities, such as the many-as-one idea observes in the Feeding Dinosaurs activity.  This finding 

provides salient evidence for how these fraction meanings are tightly connected, and how spatial 

visualisation and spatial structuring are strategies for building children’s awareness and 

flexibility for working with such complex ideas.  

7.3.4 Summary of Research Question One  

The present study demonstrates young children can develop complex and flexible 

understandings of the three meanings of fractions, however it is the emphasis on spatial 

reasoning—namely spatial visualisation, spatial proportional reasoning, and spatial structuring—

that is critical to helping children develop this understanding. For example, the children 

demonstrated fraction as an operator knowledge through their ability to predict the outcome of 

fair sharing situations through visualising the operations (e.g., doubling/ halving, partitive 

division/ recursive multiplication, times as many) performed on both continuous objects and 

discrete sets. The fraction as an operator meaning supported by spatial visualisation was evident 

throughout the intervention; however, this fraction meaning, and spatial construct were highly 

impactful in children’s development of the creating and justifying equal shares key indicator. 

The children’s fraction as a measure understanding was evidenced by their ability to work 

with unit fractions, composite units, and equivalent fractions. This was observed in lessons that 

developed their ability to reinitialise the unit and recognise proportional equivalence as the next 

two key indicators of the local instruction theory. This understanding was supported by spatial 
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structuring in discrete contexts specifically, and spatial proportional reasoning in continuous 

contexts. The extent to which children developed an understanding of the fraction as a measure 

meaning was evidenced by their appreciation of early quantitative equivalence and fraction 

magnitude knowledge.  

Evidence of the fraction as a relation meaning was observed in the lessons related to the 

final key indicator – connecting multiplicative relations. The children demonstrated this by their 

ability to work with and describe many to one and proto-ratio ideas, when preserving the 

invariance relationships of simple ratios. Spatial structuring and spatial visualisation were critical 

constructs the children utilised in demonstrating this understanding. The children’s post-

intervention TBI also revealed the role spatial structuring and spatial visualisation had when 

working with a complex rate problem, where children drew on fraction as an operator and 

fraction as a measure ideas to connect different multiplicative relations (e.g., doubling and 

halving, partitive division, composite units, and equivalent fractions).  

Also evident across the intervention, including in the TBI, was the children’s use of 

gesture and, to a lesser extent, spatial language. The use of gesture was not included as a 

pedagogical approach in the intervention, since there has been little attention given to children’s 

self-initiated use of gesture in the current literature (Krause & Salle, 2019). Yet these forms of 

representations provided insights into, and evidence of, the spatial reasoning constructs the 

children were utilising when tackling the different fraction meanings.  

In summary, while Confrey et al.’s (2014) framework articulates the connections between 

fraction as an operator, fraction as a measure and fraction as a relation meanings, the present 

study provides fundamental evidence of how a spatial reasoning approach facilitates this 

understanding. Importantly, the emphasis on working with these meanings through a spatial 
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reasoning approach enabled children to demonstrate an appreciation of the multiplicative nature 

of the three meanings of fractions, well beyond what is expected for this age group.  

The next section will answer Research Question Two, which was concerned with the 

intervention’s impact on young children’s whole number knowledge. 

 

7.4 Research Question Two 

To what extent, if any, does this approach to fractions impact young children’s 

understanding of whole number? 

The TBI provided data will be used to answer this research question. In relation to 

children’s whole number knowledge, the assessment included four subitising tasks and five place 

value tasks (Siemon, 2006). As outlined in Chapter Three, the purpose of including whole 

number questions was to gain insight into children’s general number knowledge. Given that the 

intervention was designed to help children visualise and develop a sense of magnitude about 

quantity, which included fraction and whole number relations (such as simple ratio), I wanted to 

explore if and how children’s whole number knowledge was influenced by the intervention 

activities. The extent to which children demonstrated an improvement in their understanding or 

strategy choice within whole number knowledge, was evident in two main areas: their part-part-

whole understandings, and whole number magnitude knowledge, characterised by the children’s 

improvement in their understanding of the relative size of whole numbers.  Both are discussed 

below. 

7.4.1 Part-Part-Whole Relations 

The results of the post-TBI assessment of subitising indicated an overall improvement in 

the children’s part-part-whole knowledge, specifically for numbers up to 12. It is argued that the 

integration of spatial structuring throughout the intervention, in discrete contexts, contributed to 
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this improvement. For example, the children’s experience with explicitly visualising and 

describing quantities based on their structure in the representation (e.g., considering six as two 

rows of three, three columns of two, etc.) enabled them to make connections in both whole 

number and fraction contexts. Statements like Child 61’s description of how they subitised 10 

presented in a tens frame—‘10 is two rows of five. The fives are halves of the 10—just like in 

fractions’—are an example of how many children demonstrated a flexible understanding of how 

they saw the structure of the quantity as different composite units, and flexibly named them 

between fraction and whole number parts. 

This thinking is further reflected by children’s description of the many-as-one 

understanding from the fraction as a measure meaning, and how pattern and structure transferred 

into the relationships children developed in the whole number contexts. For example, children 

referred to ‘seeing’ various structures such as ‘triangles of dots’ in Item 4 (Tens Frame Bananas). 

Although the task asked the children to describe how many bananas there would be if three were 

added to the group of six presented in a tens frame, one child referred to the geometric 

(triangular) structures of the ‘3-thirds’ as triangles of bananas (referring to their arrangement in 

the representation). Similarly, many children identified half of a set of 16 stars as eight in Item 

16, by describing how they ‘saw’ two groups of four stars, also indicated the connection between 

spatial structure and children’s part-part-whole number accuracy. This contrasts with the pre TBI 

where many children were observed counting individual stars. 

The analysis of the post-intervention TBI also revealed a shift in children’s level of 

flexibility about part-part-whole relations related to place value tasks. Child 32’s explanation of 

what the ‘2’ and ‘6’ refer to in the number 26 is an example of the type of structural awareness of 

numerical magnitudes evident in many children’s post-assessment responses: ‘You can see 26 is 

two groups of 10 and then six [more]…but is also two groups of 13—I just saw that! An 
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increased number of children in the post-intervention TBI, made flexible statements about the 

spatial structure of the different underlying units, suggesting a deep understanding of composite 

(whole) units. It also suggests that children had started to develop early ideas about multiplicative 

relationships for various small collections, because they demonstrated an understanding of 

different abstract composite units (Cobb, 1995) such as 26 is two tens (and six) or two thirteens. 

As Cobb and Gravemeijer (2014) describe, identifying how a particular form of reasoning 

employed as a strategy in the intervention, and its effect on the reorganisation of other forms of 

reasoning, is an important component to the retrospective analysis of DBR studies. In this case, 

the awareness and assignment of spatial structure in the development of range of fraction, and 

simple ratio ideas, appears to have helped children think and work with whole number quantities 

in a more sophisticated manner. That being, the ability to visualise and work with different 

composite units with whole number quantities. 

This evidence of part-part-whole thinking through exploring the spatial structures in 

representations suggests the intervention improved children’s understanding that whole numbers 

can be decomposed into, and composed of, smaller units (Kullberg, 2020; Resnick, 1983). This is 

evidence of reinitialising the unit in both whole number and fraction contexts. This understanding 

was not achieved through counting single units, but by working with composite units of whole 

numbers to explore unitising, and early arithmetic skills.  

The acts of dividing, sharing, reproducing copies of parts, and reassembling quantities the 

children experienced in the present study were influenced by the spatial structure children 

developed and assigned to the representations to support an understanding of the relationships 

between the quantities. As Battista et al. (1999) state, spatial structuring is an activity of the 

individual that is constructed in the child’s mind; it is not ‘in’ the representations themselves, but 

a personal construction or interpretation of the representation that the child makes. It is the 
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abstraction of the structure of the context itself that supports the children’s ability to reason about 

the quantity. In this study, the children developed the ability to assign spatial structures to whole 

number and early fraction part-part relationships. This ability to work between whole number and 

fraction ideas – specifically with the abstraction of structure of composite units, is the basis early 

multiplicative thinking (Siemon & Breed, 2006). To this point, these findings demonstrate that 

the local instruction theory enabled children to develop a broader range of rational number ideas 

that reflected the structural relationship between whole number and fraction quantities through a 

spatial reasoning approach. 

7.4.2 Whole Number Magnitude 

Evidence of a significant shift in children's understanding of whole number magnitude 

was reflected in the responses to the post-intervention TBI. For example, in Item 8 (Proportional 

number line), over half of the children in the pre-intervention interview exhibited a counting 

based strategy to place the numbers eight and 16 on an unpartitioned 0–20 number line (with only 

five across both classes attempting the 0-100 number line). In the post-assessment, 18 children 

were able to complete both the 0–20 and 0–100 number line tasks accurately. However, there was 

a noticeable change in the strategies children used to tackle this task. These strategies indicated 

they were engaging with spatial proportional reasoning. For example: 

Child 42: You just think half of 100 instead of half of 20 to work out where the numbers 

go, even though the line looks the same [length]. 

Child 44: It’s like half of something can look the same [running finger along number 

lines], but you have to think about what the whole total is, like half is 10 [pointing to the 

0–20 number line], but [half] is 50 here [pointing to 0–100 number line], but they are both 

the same [length]. 
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This thinking indicates a developing sense of proportional equivalence, whereby the child 

is using strategies such as benchmarking to the halfway mark to reason about their whole number 

knowledge. While working with two number lines of the same absolute length, the children were 

able to recognise that the density of each number line was different. Using spatial proportional 

reasoning to benchmark halfway on each line, demonstrates that the children appreciated the size 

of the quantities required in relation to the whole, without being distracted or confused by the 

length of the line itself, as was seen in the pre-intervention data.  

These findings again highlight the connection between mathematical and spatial 

structures (Hino & Kato, 2018), specifically the influence spatial proportional reasoning has had 

on children’s whole number magnitude understandings. In comparison to the theoretical 

perspectives on numerical magnitude knowledge that suggest it develops from whole number 

foundations (e.g., Olive, 1999; Siegler et al., 2011; Steffe & Olive, 2009), the present study’s 

findings offer insightful evidence that demonstrate the power of a spatial reasoning partitioning-

based approach, can positively influence children whole number magnitude understanding.  

7.4.3 Summary of Research Question Two  

The results of the TBI reveal that the intervention had a substantial influence on 

children’s part-part-whole number knowledge and whole number magnitude understanding. Due 

to the nature of the TBI, identifying the exact reasons for the improvement on the children’s post 

TBI data is difficult. However, it is reasonable to suggest that the focus on spatial structures in 

discrete contexts to explore the creation and justification of fair shares, and the reinitialisation of 

fraction units supported children's subitising capabilities and their ability to view whole numbers 

as abstract composite units. That is, it appeared that children’s capacity to recognise and name 

composite units and equal groups through utilising spatial structures in various representations 

improved their ability to subitise the part-part structures, and work with composite units in place 
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value problems. Similarly, the improvement in children’s whole number magnitude knowledge 

was supported by spatial proportional reasoning and the doubling and halving idea, in their 

ability to reason about the relative magnitude of whole numbers, when working with number 

lines (e.g., 0-100).  

7.5 Zooming Out: Examining the Significance of the Findings 

As part of the retrospective analysis phase of this DBR, this section discusses the broader 

significance of the findings, considering the current theoretical perspective on young children’s 

rational number development. This section will compare the findings to current approaches for 

teaching fractions, to highlight the contribution this study makes to the field of early childhood 

mathematics education.  

To discuss the study’s significance, I have framed the discussion in three parts to 

highlight the most salient contributions it makes. The first is a discussion about introducing early 

fraction ideas through a partitioning and spatial reasoning approach. The second significant 

contribution this study makes concerns what is currently known about the role of spatial 

reasoning, and its positive influence on mathematical competency. The third part addresses the 

efficacy of the local instruction theory and the contribution this research provides for further 

implementation and refinement.  

7.5.1 Developing Early Conceptual Understandings of Fractions 

There are two distinct interpretations of partitioning: one multiplicative, – known as 

splitting/ equipartitioning, (e.g., Confrey & Scarano, 1995; Confrey & Maloney, 2010) and one 

based on unit iteration (Cortina et al., 2014; Steffe, 2010). As described in Chapter Two, the 

design of this study was based on Confrey’s (2008) perspective of partitioning (also referred to as 

equipartitioning or splitting) which suggests this approach is the basis for the development of all 
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rational number knowledge. In this context, partitioning is considered a primitive construct that 

develops early in young children’s lives, but in parallel to whole number knowledge (Confrey, 

1994). This perspective considers partitioning as multiplicative because the origin for splitting is 

‘1’. That is, to determine a unit fraction, the whole is considered as the starting point for n-splits 

to be applied as repeated multiplication (Confrey & Harel, 1994). In contrast, Steffe’s (2010) 

perspective of partitioning has an origin of ‘0’, whereby a unit fraction is created from the whole 

and iterated to recreate the whole, as repeated addition (see Chapter Two).  

Despite these differences in perspectives on partitioning, much of the literature on the 

early development of fractions, states partitioning is the most authentic and meaningful pathway 

to developing fraction and rational number ideas more broadly (e.g., Behr et al., 1983; Confrey & 

Maloney, 2010; Kieren, 1993; Mack, 1990; Pitkethly & Hunting, 1996; Siemon, 2003). However, 

Cortina et al’s (2014) research draws upon Freudenthal’s (1983) discussion of this approach to 

present several criticisms with this perspective of partitioning. They state that by starting with an 

origin of ‘1’, this limits children’s thinking to part-whole and proper fractions. They suggest 

starting with ‘1’ implies the nth part resides exclusively within the whole, limiting the children’s 

ability to work with fractions beyond the part-whole meaning. The evidence presented in this 

study, however, challenges this view as it demonstrates that young children are able to work with 

an extended range of fraction meanings that go well beyond the part-whole meaning. Moreover, 

the emphasis on spatial reasoning has enabled children to develop mental models of an extended 

range of fractions, which has resulted in children moving from qualitative compensation to 

quantitative understandings of the three meanings of fractions. This is a significant contribution 

to what is currently known about young children’s potential for rational number reasoning 

because it demonstrates they have developed an early understanding of fractions as multiplicative 

relations.  
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Confrey et al., (2014) refers to qualitative compensation as the ability to notice the change 

in size of a part as a result of partitioning (e.g., as each share becomes smaller when I share my 

cookie with more people). The focus on spatial reasoning in this study enabled children to 

develop their qualitative awareness of an extended range of the fraction ideas, well beyond the 

part-whole meaning. This understanding was evident in children’s descriptions of how they 

visualised the spatial attributes of the materials to make predictions about the outcomes of 

partitioning and distributing shares in association with how they are named. This is evidence of 

early fraction magnitude understanding which is recognising that how the number of sharers will 

either increase or decrease the size (magnitude) of the shares (Corley, 2013; Confrey, 2012). As 

reported in Chapter Two, fraction magnitude is critical for children to understand and work with 

a broad range of rational number concepts throughout their years of schooling (e.g., Bruce, 2013; 

Confrey et al., 2015; Jordan et al., 2017; Matthews & Ellis, 2018 Siegler et al., 2011), however 

this study demonstrates that a focus on spatial reasoning has enabled the multiplicative 

foundations of partitioning to develop this understanding of magnitude.  

Although the role of partitioning in the development of fraction knowledge and 

confidence has long been recognised (e.g., Confrey 2008; Kieren, 1993; Siemon, 2003), the 

findings of this study suggest that this needs to be supported by observing and visualising the 

geometrical transformations of the objects the children are partitioning. What this study shows is 

that a focus on these spatial transformations of objects supports children to appreciate the 

simultaneous partitioning operation that provides a multiplicative understanding of quantity, as 

opposed to an additive basis implied by the literature underpinning current curriculum 

expectations. That is, the focus is often on counting the number of parts created, rather than 

examining the size of the parts generated in relation to the original whole (Gould, 2011). In the 

present study, it was the initial focus on visualising the act of fair sharing, doubling, and halving 
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and reassembling objects and sets to name composite and equivalent units and ratios, which 

enabled children to think flexibly about the three meanings of fractions and to recognise how they 

are tightly connected. As reported in the literature, many children much older than the 

participants of this study experience difficulties in recognising the different meanings and 

contexts of fractions, and the ability to work meaningfully and efficiently with them (Callingham 

& Siemon, 2021; Siemon, 2016; Thomson et al., 2020). This study shows that children as young 

as 6-and-7-years of age are capable of this reasoning, meaning this approach provides a powerful 

foundation for rational number reasoning.  

An important goal of the development of partitioning according to Confrey (2012) is to 

move from qualitative compensation to quantitative compensation. Quantitative compensation is 

recognising ‘by how much’ a share changes when more or less shares are created, which is the 

result of repeated splits and reassembly. Whilst Confrey et al., (2014b) provide examples of 

children in first and second grade demonstrating aspects of quantitative compensation, they 

emphasise that this proficiency level (and cognitive behaviours described as essential for rational 

number reasoning as described in Chapter Two) are cumulative, rather than strictly hierarchical. 

Therefore, consistent patterns of reasoning through a range of different problems are required to 

make sense of the children’s proficiency and capabilities. In this study, examples of this thinking 

include children’s ability to justify the outcome of creating equal shares, where they described 

how much a share had increased or decreased because of changes in the number of sharers (e.g., 

double the number of sharers results in parts that are twice as small). Further, spatial visualisation 

and spatial structuring enabled the children to identify the quantitative relationships that reflected 

the different meanings of fractions (e.g., ratio of pies to dinosaurs; composite and equivalent 

units in the Tablecloths and Pattern Block lessons). Moreover, the integration of spatial 

proportional reasoning with a range of representations (e.g., pattern blocks, fraction kits, maps) 
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also enabled children to develop clear understanding about proportional equivalence, when 

comparing part-part to part-whole relations.  

The evidence of children’s quantitative compensation has implications for theoretical 

perspectives on the development of fraction magnitude understandings. In light of theoretical 

perspectives such as the Ratio Processing System (RPS) and ITND that discuss the development 

of magnitude (see Carraher, 1993; Lewis et al., 2016; Matthews & Ziols, 2019; Siegler et al., 

2011), the present study also provides significant insights that help bridge theory and practice. 

The RPS and ITND suggests that humans are born with a sensitivity to ‘perceive’ various non-

symbolic ratio representations, ‘based on the relative magnitudes of components a and b rather 

than by the magnitudes of either component considered in isolation’ (Matthews & Ziols, 2019, p. 

2016). Interestingly, Gabriel et al., (2013) point out the juxtaposition between such theories that 

assume the sensitivity toward non symbolic ratio is evolutionally determined, and the persistent 

difficulty children experience with fractions throughout schooling and beyond. Bruce et al., 

(2015a) note that while there are several explanations (although conflicting) that account for 

these assumptions about magnitude processing from the field of neuroscience, they note there is 

still little practical applicability for how these perspective translate into the classroom. The 

present study presents a bridge between the theoretical and practical application by suggesting the 

explicit focus on spatial reasoning in these early years of fraction instruction enables children to 

build on their initial awareness and sensitivity to fraction and ratio magnitude, to develop flexibly 

understandings of the multiple meanings of fractions.  

In summary, this study contributes to what is known about how children develop early 

fraction ideas and what is known about the current approaches to partitioning. It confirms 

Confrey’s (2008) splitting conjecture, whereby the development of the three meanings of 

fractions is dependent on the foundation of fair sharing (i.e., the equipartitioning learning 
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trajectory). Critical to this finding, however, is that it is an emphasis on spatial reasoning 

provides the means for the multiplicative roots of fractions to be established.  

7.5.2 Advancing the Spatial Reasoning – Mathematics Connection 

As described in Chapter Two, there is no question that spatial reasoning and general 

mathematical achievement are highly correlated (Mix & Cheng, 2012). While the role of spatial 

reasoning in building part-part-whole knowledge for the numbers to ten has been recognised 

(e.g., Bobis 2008; Clements 1999), its role in relation to the development of early rational 

number knowledge has not been explored. This study provides innovative perspectives about the 

positive influence a spatial reasoning approach can have on young children’s early fraction and 

whole number knowledge, particularly the role gesture played in interpreting the way children 

were using various spatial reasoning constructs. 

A significant finding of this study was the way in which children represented their spatial 

reasoning when communicating their ideas about the process of partitioning and fraction 

magnitude. Gesture was not a construct that was explicitly employed as a pedagogical tool by me 

or the classroom teachers during the intervention study, however, the increased use of gesture 

between the pre- and post-TBI and those captured during the daily lessons, provided a valuable 

lens for interpreting how children were developing spatial reasoning constructs in relation to 

fraction magnitude. This is an important finding since, as Krause and Salle (2019) describe, very 

little is known about the self-initiated way learners use gestures when learning new concepts. 

Specifically, in the context of young children and fractions. 

In relation to partitioning, a third of all gestures captured across the entire intervention 

were classified as iconic, those being associated with ‘chopping, sawing, or cutting action’ in 

relation to how the child was describing the act of partitioning at the time. Analysing how the 

children were using these gestures, suggested they were connecting the act of creating equal 
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shares with how they gestured radial cuts on a circle, or cutting repeatedly in half a square or 

rectangle. 

The second most common form of iconic gesture captured across the intervention, was 

described as a ‘cupping’ or ‘dealing’ gesture. These cupping gestures were associated with many-

as-one and composite unit ideas when children were describing the size of the unit they were 

referring to or creating at the time, and they would cup their hands like they were holding such 

part or group. In addition, the ‘dealing’ gestures were associated with children’s fair share, 

partitive division ideas from fraction as operator, in addition to many-to-one, fraction as a 

relation idea, specifically when working with discrete collections. That is, while children may 

have physically dealt out the fair shares or parts of a physical model, when they were unable to 

manipulate an image, or they were required to explain their thinking, they would use these 

dealing gestures in the air. This suggested they were visualising the process of making groups, 

and an understanding of how big these group were, while referring to the recreation of the whole. 

An example of this was when children used both hands to gesture partitive division of cookies 

into four groups but referred to the four groups as a ‘square’ (each corner representing a part of 

the set) that recreated the whole. These are emergent understandings and were not always 

associated with a description (e.g., 1-quarter of 12 is three cookies, four shares of three cookies 

are 12). Nonetheless, the gestures indicated an emergent understanding of the relationship 

between the act of partitioning, the creation of units and the whole, based on their understanding 

of the spatial and geometrical structures of the physical objects they were examining and/or 

visualising. 

Other iconic gestures recorded in the intervention were classified in the form of hands 

moving together or apart, indicating a shrinking or enlarging action, and children outlining a 

geometric figure. The latter gesture was typically motioning the shape of a part in relation to a 
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whole when describing the spatial dimensions (size) of specific parts or groups, and geometric 

attributes of the various shapes and spaces explored. Gestures are said to provide evidence of the 

mental images and transformations a learner may engage with, while solving tasks that are spatial 

in nature (Alabali, 2005; Hostetter & Alibali, 2008; Patahuddin et al., 2018). Other studies 

suggest that children’s gestures helped support them when thinking about, and working through, 

a range of spatial reasoning tasks (Logan et al., 2014; Ng & Sinclair, 2013). The present study 

aligns with these findings, suggesting that the children were using gesture as a support 

mechanism for the thinking about the spatial contexts in which fractions were explored. The 

increase in gesture over the intervention could be attributed to the children’s confidence and 

ability to visualise different fraction parts and transformations as they participated in the 

intervention. Alternatively, it also may indicate they had not fully established a working 

understanding of the ideas, as Logan et al., (2014) found that children’s use of gesture slowly 

declined as their conceptual understandings and confidence became more robust.  

The children in the present study gestured both dynamic and static forms of information. 

That is, the children would freely gesture the static attributes of shapes and arrangements of 

various fraction models (e.g., the outline of a shape or the arrangement of a set of objects).  They 

also gestured ‘movement’ operations such as how they visualised splitting, reassembling, 

increasing, or decreasing various objects and sets. Ng and Sinclair (2013) suggest the 

combination of dynamic and static gestures as an important finding, because it provides further 

insights for how gestures communicate conceptual and procedural understanding of mathematics. 

Furthermore, the gestures provided observable details of the strategies children use to 

communicate and defend the connections between the cognitive and conceptual mechanisms of 

the mathematical context (Alabali, 2005). Given there is scarce literature that examines children’s 

spontaneous use of gestures in the learning of mathematics, its emergence in this case with young 
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children and in relation to fractions demonstrates that this is an important and powerful means of 

identifying and supporting children’s mathematical reasoning.  

7.5.3 Applicability of the Local Instruction Theory 

The goal of this study was to explore the extent to which children could develop an 

understating of the three meanings of fractions and in what ways spatial reasoning supported this 

learning. Examining the creation and refinement of the local instruction theory by exploring the 

key indicators in relation to the children’s actual process of learning enables the applicability of 

the local theory to be determined, and provides insights for more encompassing theories (Cobb, 

2003).  

An important consideration of the development of a local instruction theory is that the 

envisioned sequence of learning goals – referred to in this thesis as key indicators, should not be 

interpreted as strictly hierarchical. Rather, they should be viewed as a coordinated and 

interrelated pathway for developing teaching programs that provide the most beneficial and 

authentic sequencing of ideas and opportunities to explore concepts (Gravemeijer & Van Eerde, 

2009). While the starting point of the conjectured theory was an explicit focus on creating and 

justifying equal shares, the children had the opportunity to continue to conceptualise this key 

indicator throughout the intervention program. That is, in the lessons that focussed on the key 

indicators of reinitialising the unit and recognising proportional equivalence, the children 

demonstrated a flexibility and extended understanding of what equality means, in the given 

context (e.g., recognising that a set can be partitioned and described by different equals units; 

recognising that comparing “halves” of different objects requires a proportional understanding of 

equality). Similarly, equality was also explored and required in the last key indicator, where 

children developed an appreciation for the invariant property underpinning the units of a ratio. 

What this demonstrates is that the local instruction theory enabled mathematical generalisations 
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of equality, to evolve throughout the coordination of the ideas within the local instruction theory, 

the strategies (e.g., spatial reasoning) and mathematical practices developed (gesture, language, 

and representations) because of the intervention. 

The second aspect of exploring the applicability of the local instruction theory is that it 

serves as a framework for developing learning programs (e.g., hypothetical learning trajectories) 

to teach a specified area of mathematics (Gravemeijer, 2012). The lessons and activities designed 

in this intervention were designed for children to develop and achieve each key indicator. Yet, as 

Gravemeijer (2004) states, local instruction theories are not the explication of fixed teaching 

sequences. Instead, they should offer a bridge between innovative theoretical assumptions about 

the types of learning possible and the ways in which that learning is supported, and classroom 

practice. This was evidenced in Chapter Four, where the tasks and learning sequence were 

refined because of the children’s responses and potential for learning. In addition, the tasks and 

sequence were refined in Chapter Six because the needs of Class C appeared to be quite different 

to that of Class B. As described in the teaching experiment for Class C, the children required a 

more sustained focus on the development of the first key indicator (creating and justifying equal 

shares) as they demonstrated a general lack of understanding about what constituted equality – 

particularly in continuous contexts. Despite the actual learning sequences being different in the 

teaching experiment phase, the local instruction theory enabled children to explore and develop a 

range of early multiplicative foundations to rational number knowledge as a direct result of 

participating in this intervention (Gravemeijer and Cobb, 2013).   

In summary, the local instruction theory for developing and extended range of fraction 

meanings though a spatial reasoning approach has contributed significant insights into what is 

currently known about young children’s potential for this area of mathematics. As Cobb and 

Gravemeijer (2008) state, the intent of undertaking DBR (and constructing local instruction 
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theories) is not ‘just to develop more effective instructional approaches for addressing traditional 

instructional goals, but to also influence what the goals could be by demonstrating what is 

possible for students’ mathematical learning’ (p. 69). This study clearly demonstrates that the 

overarching goal for teaching and learning fractions in the early years, should be based on a 

multiplicative (partitioning) foundation for fraction meanings supported by spatial reasoning. 

This goal is justified through the findings presented in this study that demonstrate the depth of 

understanding possible, which mitigates many of the persistent difficulties children experience, 

as reported in the literature. Furthermore, local instruction theories should be explored through 

additional design-based studies, to gain additional insights into what types of learning are 

possible, and how such learning can inform a domain-specific theory (Prediger et al., 2015). The 

present study provides a substantial justification for the exploration and development of a 

domain-specific theory that explores the power of spatial reasoning, in early rational number 

reasoning.  

7.6 Chapter Summary 

This chapter has provided a discussion on the findings of this study, as part of the 

retrospective analysis phase. The study demonstrated that young children developed complex and 

sophisticated understandings of fraction as operator, fraction as a measure and fraction as a 

relation meanings, through a spatial reasoning approach. The discussion of the first research 

question highlighted how the children evidenced their understandings of core concepts that 

underpin these meanings, namely partitioning, unitising and quantitative equivalence, which 

indicated early multiplicative understandings of fractions. Spatial visualisation is a key construct 

that supports the partitioning concept, and underpins the fraction as an operator ideas, primarily 

because it enabled children to move from physically creating shares to predicting and visualising 
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the outcome of operating on various quantities. The emphasis on creating spatial structure 

patterns and arrangements in representations that reflected much of the geometrical and physical 

transformations children were visualising, enabled children to develop fraction as a measure ideas 

to name and quantify various parts and relationship between parts. This understanding reflects a 

multiplicative appreciation of the quantity, as a whole being the product of the parts created 

(Vergnaud, 1988). This emphasis on structure and arrangement also enabled children to develop 

understanding of simple ratio. Moreover, spatial proportional reasoning was influential in how 

children developed their understanding of equivalent relationships between like and unlike 

wholes.  

The children’s use of gesture and spatial language throughout the study provided 

additional ways to interpret how they were thinking and working with the fraction ideas, 

revealing ways to support both conceptual and procedural understanding. Much of the children’s 

gestures supported their explanations of how they were visualising the size and structure of parts, 

and how they predicted the outcome of creating different sharing situations. 

The impact this study had on young children’s whole number knowledge became the 

basis for Research Question Two.  The children demonstrated an improvement in part-part whole 

relation and whole number magnitude. These improvements were attributed to the focus on the 

spatial structures and flexibility between naming and reinitialising various units in relation to a 

whole. The local instruction theory has provided a framework for how the fraction as measure, 

fraction as an operator and fraction as a relation meanings can be authentically introduced and 

developed in the early years of primary school, and showcased that spatial reasoning plays a 

powerful role in this development. 

Hawes et al. (2015) state that mathematics is an inherently spatial activity that connects to 

many learning areas within this discipline. This study provides more evidence of the spatial-
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mathematical connection in a domain not typically considered ‘spatial’ such as fractions. This 

research advances the field with practical, significant findings that provide new theoretical 

insights into what is currently known about the connection between early fraction understandings 

and spatial reasoning and how it supports early multiplicative foundations to rational number 

reasoning. Additionally, it provides substantial insights into young children’s capabilities that can 

be used to inform current policy and curriculum standards. The implications for practice, 

limitations of the study and recommendations for future research will be explored in the next 

chapter. 
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Chapter 8: Conclusion 

8.1 Chapter Overview 

This chapter begins with a summary of the key findings from the study in section 8.2. 

This will reiterate the types of fraction understandings young children are capable of developing 

through a spatial reasoning approach and highlight the early multiplicative ideas the children 

developed as a result of this intervention. The implications and limitations of the study related to 

pedagogical and curricula considerations are presented (sections 8.3 and 8.4), and 

recommendations for further research are discussed in section 8.5. Finally, I share my final 

reflections of the study to conclude this thesis in section 8.6.  

8.2 Summary of the Findings 

This study investigated the extent to which young children could develop an 

understanding of the fraction as operator, fraction as a measure and fraction as a relation 

meanings, though a spatial reasoning approach. The connection between spatial reasoning and an 

extended range of early fraction understanding has not previously been explored in research 

literature. A series of teaching experiments were conducted to explore a local instruction theory 

that described a conjectured sequence of fraction understandings and how spatial reasoning 

supported this learning. The findings demonstrate that young children can develop complex and 

flexible understandings of the three meanings of fractions that indicated early multiplicative 

understandings of fractions and whole number properties. However, it is the emphasis on spatial 

reasoning—specifically, spatial visualisation, spatial proportional reasoning, and spatial 

structuring—that were critical for supporting this learning. The local instruction theory is re-

presented in Table 8.1.  
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Table 8.1 

The Local Instruction Theory (Version Three) 

Key Indicators Characteristics of Tasks 

 Primary Fraction Foci  Spatial Reasoning Approach  

Creating and 

justifying equal 

shares  

 

Fraction as an Operator:  

Fair shares  

Doubling/ halving   

Partitive division/ recursive 

multiplication,  

Geometric symmetries, 

Similarity 

 

Fraction as a Measure:  

Many as one, Measure, 

Composite units,  

Unit fraction 

 

 

Visual perception of equal groups 

(drawing on spatial structures and 

arrangements). Equality of parts 

regardless of model (i.e., equal 

parts for discrete collections and 

continuous models less than and 

greater than 1). Visual awareness 

of the geometric properties of parts 

and sets (e.g., shape, orientation, 

pattern, symmetry). Observing the 

physical transformations of 

partitioning (dividing and 

reassembling), and visualising and 

predicting the outcome of a 

nominated split (e.g., spatial 

visualisation)  

 

Reinitialising the 

unit    

Fraction as a Measure:  

Composite units,  

Unit fractions, Part-whole 

fractions, Equivalent fractions  

 

Fraction as an Operator:  

Fair shares, 

Doubling /halving; Partitive 

division/ recursive 

multiplication, Times-as-many, 

Similarity 

 

Fraction as a Relation 

Many-to-one 

Distribution   

 

Visualising measures between 

parts and wholes, and between 

composite and unit fractions 

through unitising. Exploring the 

spatial structure and arrangement 

of objects and sets to create and 

compare different unit fractions. 

Visualising magnitude relations 

between parts (double/ half/ times 

as many) the distribution of parts 

to determine equivalence.  

 

Recognising 

proportional 

equivalence  

Fraction as a Relation 

Distribution, Proto-ratio, 

Equipartitioning multiple 

wholes,  

Visualising the relationship 

between equivalent measures, of 

same and different wholes.  
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Fraction as an Operator 

Doubling/ halving, Times-as-

many, 1-nth-of..., Scaling, 

Geometric symmetries, 

Similarity 

 

Fraction as a Measure 

Composite units 

Unit fractions  

Equivalent fractions  

  

Connecting 

multiplicative 

relations 

Fraction as a Relation 

Many-to-one,  

Distribution, Proto-ratio 

 

Fraction as an Operator 

Doubling /halving 

Partitive division/ recursive 

multiplication   

Times-as-many,  

1-nth-of..., Scaling 

 

Fraction as a Measure 

Composite units 

Part-whole fractions 

Equivalent fractions    

Early relational understandings 

between the structure of part-part 

and part-whole quantities. (e.g., 

visualising and justifying the 

relational magnitude of fractions in 

relation to other fractions (e.g., 1- 

quarter is a half of a half/ twice as 

small); and working flexibly with 

non-symbolic simple ratios (e.g., 

1:2 = 2:4).  

 

The children demonstrated fraction as an operator knowledge through their ability to 

predict the outcome of fair sharing situations through visualising various operations (e.g., 

doubling/ halving, partitive division/ recursive multiplication, times as many). The children were 

able to predict and visualise these operations in both continuous and discrete contexts to develop 

an understanding of the relationship between the number of parts and their size. The fraction as 

an operator meaning supported by spatial visualisation was evident throughout the intervention; 

however, it was highly efficacious in relation to the key indicator of creating and justifying equal 

shares.  
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The children’s fraction as a measure understanding was tightly connected to the 

development of unit fractions, composite units, and equivalent fractions ideas. In discrete 

contexts, spatial structuring played a vital role in how children were able to view unit fractions 

and composite unit arrangements, to demonstrate an early appreciation of the quantitate 

equivalence concept. By developing this understanding of the fraction as a measure meaning, the 

children became competent with naming and renaming fraction relationships, demonstrating the 

key indicator of reinitialising the unit. Within continuous contexts, the children developed the 

key indicator of recognising proportional equivalence, through their ability to compare unit 

fractions, composite units, and equivalent fractions between different wholes. This understanding 

was explicitly supported by spatial proportional reasoning. The extent to which children 

developed an understanding of the fraction as a measure meaning suggested the early 

appreciation for fraction magnitude. That is, the children demonstrated early awareness of the 

density principle of fractions, as they were able to experiment with various structures or 

proportions of objects to make sense of how fractions are named and related.   

 The fraction as a relation meaning was evidenced by children’s ability to work with and 

describe the many-to-one and proto-ratio ideas when preserving the invariance relationship of 

simple ratios. Spatial structuring and spatial visualisation were important spatial constructs the 

children utilised in demonstrating this understanding, which was reflected in the key indicator of 

connecting multiplicative relations. Examples of this thinking included descriptions of how the 

children organised and arranged the part-part structures to describe the many-to-one idea, and 

how they visualised doubling or halving the units to make sense of the proto-ratio idea. The 

children’s post-intervention Task Based Interview (TBI) also revealed the influence spatial 

structuring and spatial visualisation played in working with a complex rate problem, where 

children drew on fraction as an operator and fraction as a measure ideas to connect different 
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multiplicative relations. Finally, the children’s whole number knowledge was improved between 

the pre- and post-intervention TBI, specifically, the way many of the children viewed whole 

numbers as composite units. In addition, many children demonstrating a greater appreciation for 

the relative magnitude of whole numbers in number line tasks. These findings suggested that the 

emphasis on spatial structure assisted children’s understanding of whole number composite units, 

in addition to spatial proportional reasoning when reasoning about the density of two different 

number lines. This study has demonstrated that the children have developed early multiplicative 

foundations for working with initial rational number ideas, by their ability to recognise the 

relative magnitude of fractions and whole numbers. This was evidenced by the children’s ability 

to work with double and half, times-as-many ideas; and their flexibly with partitive division/ 

recursive multiplication, composite units and the distribution of units. These types of ideas and 

skills were developed as a direct result of the local instruction theory, as they are not supported 

by the current curriculum requirements for children at this age.  

Another important finding across the intervention, including in the TBI was the children’s 

use of gesture and, to a lesser extent, spatial language. These forms of representations provided 

insights into, and evidence of the spatial reasoning constructs the children were utilising when 

working with the different fraction meanings. The use of gesture was not included as a 

pedagogical approach in the intervention, because there is little known about the role spontaneous 

gestures (rather than teacher lead gestures) may play in the early development of fraction ideas. 

However, it was clear that the children used gestures to effectively communicate both spatial and 

mathematical knowledge, which is an essential contribution to the literature that this study 

provides. The implications of the findings of the study will now be discussed.  



406 

8.3 Implications 

This research has shown that using spatial reasoning to explore fraction meanings 

positively influences young children’s ability to understand seemingly complex ideas. This 

finding has important implications for both curriculum expectations in Australia, and the 

conceptual and pedagogical knowledge of teachers.  

8.3.1 Curricula Implications 

The way teachers implement mathematics education programs is directly influenced by 

the demands of the curricula standards in Australia. For this reason, it is critical that the 

curriculum standards reflect current research. When the curriculum is research-informed, this 

supports teachers to enact best-practice teaching methods. Utilising spatial reasoning constructs 

to support children in exploring an extended range of fraction meanings should be reflected in the 

curriculum. As described in Chapter One, the curriculum descriptors in the Australian 

Curriculum: Mathematics document (ACARA, 2023) reflect a limited range of ideas. Since the 

data collection period of this study, the Australian Curriculum: Mathematics document has 

undergone a significant update. The newest version, known as version 9.0, is currently being 

implemented across most states and territories. Yet, like the previous versions of the Australian 

Curriculum, version 9.0 does not reflect the capabilities of the children observed in this study.  

8.3.1.1 Content Descriptors  

When we look closely at the curriculum, we can see that in Foundation (the first year of 

school in Australia) 5- and 6-year-old children are required to:   
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AC9MFN06: represent practical situations that involve equal sharing and grouping with 

physical and virtual materials and use counting or subitising strategies (ACARA, 2023).  

While mentioning subitising, this content descriptor also emphasises a counting based approach 

to explore fair sharing. This is reiterated in the elaborations (which provide further advice for 

teachers on the content descriptors) which describe discrete contexts only for equal sharing and 

emphasise counting as a strategy to check for equality. For example,  

…sharing pieces of fruit or a bunch of grapes between 4 people and discussing how you 

would know they have been shared equally; when playing card games where each player 

is dealt the same number of cards and counting the number of cards after the deal to 

ensure they have the same amount (ACARA, 2023) 

For teachers who lack a strong understanding of the best ways to teach rational numbers, this 

descriptor may encourage them to focus on the problematic double-counting idea to think about 

and name fractions, described as in Chapter Two (See Gould, 2011; Lamon 2007).  

For these descriptors to be truly reflective of current research, it is important they include 

the introduction of the fraction as an operator meaning, that is underpinned by the fair sharing 

idea. At this age, a focus on spatial reasoning is important. An alternative description for this year 

level should involve creating and justifying equal shares in both discrete and continuous contexts. 

In addition, there should be an emphasis on predicting, visualising, and describing (using gesture 

and spatial language) the process and outcome of creating different fair shares. With the inclusion 

of visualisation in the content descriptor, the elaboration should also suggest a focus on observing 

and creating different patterns and structures with discrete and continuous materials, to justify the 

equal shares. This acknowledges the role spatial structuring plays in young children’s awareness 

of equal shares.  
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While the children in the present study were older than children who would typically be 

in the Foundation year of schooling, establishing the idea of equality in a range of contexts is 

critical. Supporting this understanding in the first year of school through an emphasis on spatial 

reasoning strategies, is likely to provide children with a rich foundation for developing more 

complex ideas for the three meanings of fractions in Year 1 and 2.  

In Year 1, the Australian Curriculum version 9.0 content description related to fraction 

states:  

AC9M1N06:  use mathematical modelling to solve practical problems involving equal 

sharing and grouping; represent the situations with diagrams, physical and virtual 

materials, and  use calculation strategies to solve the problem (ACARA, 2023).  

The inclusion of various representations (diagrams, physical and virtual materials) is pleasing to 

see when working with equal sharing and grouping ideas. Yet, there is no mention of the role 

spatial reasoning plays when working with such models, in the context of fractions. An 

alternative content descriptor should include visualising, naming, and renaming fair shares in 

discrete and continuous contexts, by exploring and communicating how many ways the same set 

or object can be shared fairly. This suggested descriptor aligns with a major finding of the present 

study, which is that Year 1 and 2 is a critical time for supporting children to shift their reasoning 

from a focus on creating and justifying sharing sets or continuous models to an appreciation that 

the quantities can be named in multiple ways. Within the accompanying elaboration, teachers 

should be guided to explore the fraction as an operator ideas of doubling and halving, partitive 

division/ recursive multiplication, and times-as-many ideas to support visualising and 

communicating (e.g., gesture and spatial language) the outcome of fair sharing. Further to this, 

introducing children to explorations of how fractions are named and renamed based on fair 

sharing contexts connects to the fraction as a measure ideas of composite fractions, unit fractions, 
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and equivalent fractions. These ideas need to be supported through comparing parts in relation to 

one another through spatial proportional reasoning (e.g., using pattern blocks to explore the 

relationships between composite and equivalent fractions). In discrete contexts, children should 

explore making patterns with objects, (e.g., row, and column structures) to help them consider 

how a whole can be named by various shares. In addition, the focus on creating structures to 

represent the early fraction as a relation understanding should be introduced by exploring 

problems such as: who gets a bigger share of cookies: four children sharing 12 cookies, or three 

children sharing six cookies fairly?   

In Year 2, children are expected to develop the following skills and understanding in 

relation to fractions.  

AC9M2N03: recognise and describe one-half as one of 2 equal parts of a whole and 

connect halves, quarters, and eighths through repeated halving (ACARA, 2023) 

This expectation is very concerning as it explicitly emphasises the part-whole construct and does 

not build on from the Year 1 content expectations. As discussed in Chapter Two, there is a wealth 

of literature that describes how and why focusing solely on the part-whole meaning is limiting 

(see Confrey et al., 2014b; Gould, 2011; Kieren, 1995; Lamon 2006; Siemon 2006). The findings 

of this study demonstrate that children at this age are far more capable of engaging with a range 

of fraction meanings that implied in this descriptor. A more suitable inclusion for the curriculum 

at this age would be a focus on developing children’s proportional understanding of fraction and 

whole number relations. This suggested content builds upon the suggestions made for the 

previous two years of schooling much more authentically than the current sequence. The 

elaboration should describe using spatial proportional reasoning to justify the similarities and 

differences between fair shares of different wholes, (e.g., comparing 1-quarter of the way along 

two different length pathways).  In addition, children should also be supported to use spatial 
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proportional reasoning for fraction as a relation problems, such as: Would you get a bigger, 

smaller, or same size share if there were two chocolate bars shared between four children, or one 

chocolate bars between two children? Problems like these can also enable children to explore 

how many ‘times as big’ one share is in relation to another (fraction as operator), again by 

focusing on spatial proportional reasoning. In discrete contexts, children should be focusing on 

spatial structures to explore ‘building up and building down’ strategies (e.g., the ‘Dinosaur Steps’ 

problem) to explore simple ratio and early multiplicative relations further.  

It is noteworthy that a specific reference to ‘fractions’ only appears in the curriculum 

descriptors from Year 2 (in Year Foundation and 1, reference is made to ‘sharing’). Many 

teachers may not necessarily make the connection between fair sharing and early fraction 

reasoning. This perpetuates the assumption that children younger than Year 2 are not ‘ready’ for 

exploring a range of fraction ideas.  

8.3.1.2 Spatial Reasoning and the Australian Curriculum  

Spatial reasoning was one element of the ‘numeracy’ general capability within the 

Australian Curriculum (version 8.4) (ACARA, n.d). General capabilities are described as the 

‘knowledge, skills behaviours and dispositions to live and work successfully’ (ACARA, 2023). 

They are an acknowledgement that learning, in general, requires a range of disciplinary (e.g., 

literacy, numeracy) and non-disciplinary skills and understandings (e.g., ethical understanding, 

critical and creative thinking etc.). Teachers are required to consider how they can provide 

opportunities for children to develop the general capabilities across all areas of the curriculum.  

In the updated curriculum, spatial reasoning has been removed from the numeracy general 

capability. Omitting spatial reasoning from the numeracy general capability does not reflect the 

vast research on the connection between spatial reasoning and mathematics more generally, as 

discussed in Chapter Two. Not only should spatial reasoning be ‘visible’, like the suggestions 
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made for the fraction content described above; it should be a part of the general capabilities. 

Including spatial reasoning into this area of the curriculum will reflect the contribution this 

cognitive behaviour makes to many areas of learning – specifically mathematics.  

In summary, the findings of the present study suggests that the current curriculum 

demands for rational number knowledge are inadequate for children in the early years of school. 

They fail to consider the capabilities of these children; fail to promote best practice in teaching 

fractions and fail to highlight the importance of spatial reasoning and its connection to 

mathematics. The suggested content based on the result of this study reflect a much more 

coherent, appropriate, and evidence-informed sequence of learning for children in the early years 

of school. 

8.3.2 Conceptual and Pedagogical Content Knowledge Implications 

The second implication from the findings of this study suggest that teachers conceptual 

and pedagogical content knowledge needs to be supported in relation to the teaching and learning 

of fractions. Hurrell (2013) found that many Australian primary school teachers hold negative 

views about the teaching of fractions, which stems from their own lack of conceptual 

understanding and confidence in this area of mathematics. The approach taken in this study 

requires teachers to have a deep understanding of the three meanings of fractions and how spatial 

reasoning supports this learning. Therefore, it is imperative that teachers are supported to develop 

their conceptual knowledge about the three meaning of fractions and their underpinning ideas, so 

that the negative views are not reinforced. This can be achieved through quality professional 

development and pre-service teacher education programs.  

The findings of this study also imply that pre- and in-service teachers need to understand 

the role of spatial reasoning and representations in their pedagogies for teaching fractions. For 

example, gesture and spatial language were important representations the children used to 
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communicate spatial and mathematical information. As such, teachers need to be supported to 

recognise and understand what the use of gestures and spatial language might mean in the context 

of learning fractions and how they can utilise these representations to further support learning. As 

described in Chapter Two, there is unquestioned connection between learner’s spatial reasoning 

performance and improved mathematical achievement (Mix & Cheng, 2012). Chamberlain 

(2020) discusses this point in relation to the Australian Institute for Teaching and School 

Leadership (AITSL) standards. She suggests that teachers may interpret the professional 

knowledge standards of know students and how they learn, and know the content and how to 

teach it, as a ‘focus on abstract mental operations, which often reduce, and occasionally dismiss, 

the importance of embodied interactions’ (p. 54). This includes a lack of awareness about the role 

gesture plays in the development of spatial and mathematical information.  

In summary, there is increasing evidence of how spatial reasoning is tightly connected to 

a range of early mathematical topics (e.g., Bruce et al., 2015b; Gunderson et al., 2012; Lowrie et 

al., 2018; Mulligan et al., 2020; Seah & Horne, 2020), with Gilligan-Lee et al., (2022) suggesting 

it is a missing component to the mathematics curricula and our pedagogical approaches. The 

importance of pre-service and in service teachers exploring the role spatial reasoning and 

representations such as gesture and spatial language play in early fraction development is clear.   

8.4 Limitations 

There were two main limitations identified in this study. The limitations were in relation 

to the data collection tools and level of exposure the children received in the intervention.  

8.4.1 Data Collection Methods and Tools 

The observation tools employed throughout the intervention, in addition to the Task 

Based Interview (TBI) are the limitations associated with the data collection methods and tools.   
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8.4.1.1 Observation Tools 

As described in Chapter Three, the sources of data collected (reflections on children’s 

behaviour, observations of gestures and records of discussions) were all interpreted by the 

classroom teacher and researcher as they happened, or later from the work samples and 

representations collected during each lesson. This type of data collection and interpretation 

presents an issue of credibility. The absence of video recordings meant the context and 

interactions were not able to be observed multiple times. To address this issue, I regularly cross 

checked my interpretations with members of my supervisory team and constantly interrogated 

and analysed my notes, work samples I gathered, and the notes of the classroom teachers. This 

limitation became particularly evident when exploring the use and prevalence of gesture in the 

children’s interactions. Without video and audio data I was unable to accurately capture the 

incidental gestures and the use of language by children who were working independently in each 

lesson. 

8.4.1.2 Task-Based Interview 

The Pre and Post Task Based Interviews (TBI) provided useful data to examine the 

impact of the intervention on three main areas: whole number, fraction, and spatial reasoning 

capabilities. However, the number of items in the TBI in each of the three areas limited the 

conclusions that could be made. Less whole number items were used compared to the fraction 

and spatial reasoning items. This limited the insights gathered into children’s whole number 

knowledge. Future iterations of this research may include using other whole number testing 

measures, such as the Progressive Achievement Test in Mathematics (PAT-M), which is 

commonly administered in Australian schools. While this test is only administered once a year, it 

may provide additional insights into the influence a spatialised approach to teaching fractions has 

on children’s whole number knowledge and general mathematical achievement.   
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In addition, when assessing the student’s fractional understanding, there were a different 

number of items addressing each of three fraction meanings and the relevant spatial constructs. 

Some of these items were also created or adapted for this TBI, meaning the items had not been 

validated. As described in Chapters Five and Six, the statistical inferences made in this study 

related to children’s pre and post intervention TBI success should be taken with caution. In order 

to address this limitation for future research, the development and validation of assessment items 

for fractions and spatial reasoning specifically for the early years is an important first step to 

determine the impact of this instruction.  

8.4.2 Participant Exposure to the Intervention 

The dependability of the results in this study is influenced by the sample size and timing 

of this study. Class A participated in the trial of the tasks designed to explore the conjectured key 

indicators for the initial local instruction theory. Useful insights were gained about how children 

engaged with the tasks in the intervention, including their use of spatial skills and 

representational tools (such as gesture) which resulted in additional themes being added to the 

codebook. However, as this cohort did not experience the intervention in its entirety, the findings 

of this study are primarily based on the cohort of 44 children who participated in Phase Two 

(Class B and C). This number (n=44) is relatively modest and needs to be considered when 

making theoretical and pedagogical generalisations related to the data. This was further 

complicated by the COVID-19 global pandemic, where Class C’s intervention was limited to just 

five of the 13 intended lessons due to government and university restrictions. Furthermore, post-

intervention assessment data was collected from only 15 of the 21 children in this cycle, meaning 

the statistical inferences made were from a smaller sample size. To mitigate this limitation, 

additional cycles of this intervention are recommended be undertaken to compare with the current 

findings.  
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8.5 Recommendations for Future Research 

Three clear lines of inquiry are recommended for further research into the connection 

between an extended range of fraction meanings and spatial reasoning: (1) the expansion of the 

intervention materials for the local instruction theory across the first three years of primary 

school; (2) examination of how the current approach may support the transition and 

understanding of symbolic representations of an extended range of fraction meanings, and (3) 

conducting a video study to investigate children’s spontaneous gestures throughout the 

intervention program.  

8.5.1 Expanding the Local Instruction Theory 

To build upon the present study, the next step is to examine the outcomes of the local 

instruction theory on a larger scale. For example, implementing the first key indicator of the local 

instruction theory into the first year of school would be advantageous to examine the effects this 

approach may have on children’s whole number and fraction understandings.  

In addition, the development of an extended range of teaching materials beyond the 13 

lessons in the present study, may reveal additional spatial reasoning constructs that could be 

beneficial for children. That is, while spatial visualization, spatial proportional reasoning, and 

spatial structuring were the predominant spatial constructs explored within the current 

intervention program, experimenting with different ways to introduce and explore the three 

meanings of fractions may also reveal new spatial constructs that could be equally as beneficial in 

instruction. It is hoped that this study provides the impetus for other researchers to explore 

additional spatial constructs in relation to fractions and rational number reasoning more broadly, 

so that teachers (and researchers) can explore the potential of spatial reasoning in relation to this 

important area of mathematics.   
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8.5.2 The Introduction of Symbolic Notation 

A second recommendation for further research would be to examine what impact this 

approach has on children’s understanding of symbolic notation for fraction understanding. As 

described in the literature review, one of the main difficulties children in the upper primary and 

secondary years of schooling exhibit with fractions is the misinterpretation of symbolic fraction 

representations. The misconceptions associated with symbolic representations of fractions is 

closely associated with what Ni and Zhou (2005) termed, the Whole Number Bias (WND). As 

mentioned in Chapter Two, the bias is based on a lack of appreciation of fraction and whole 

number magnitude, where the fraction symbols can be misinterpreted as cardinal numbers. Kalra 

et al., (2020) suggest the WNB is better reframed as ‘the failure to think relationally in a general 

sense, rather than failures of processes specific to numerical cognition’ (p. 2). They also found in 

their study that Year 2 and Year 5 children’s relational reasoning of various fraction meanings in 

non-symbolic (pictorial) contexts, was directly associated with children’s interpretation of 

symbolic representations of fractions. However, this study acknowledged that the mechanism for 

developing young children’s relational reasoning in the context of fractions has not been widely 

explored in the primary years of schooling. This present study provides clear evidence that 

children developed relational reasoning which was supported by early multiplicative foundations 

of fractions through a spatial reasoning approach to learning fractions. Therefore, there is an 

opportunity to extend this research to examine how this innovative approach supports children’s 

transition from a spatial reasoning approach to formal symbolic understanding later in primary 

school and beyond.   

8.5.3 Exploring the Potential of Gesture 

The children’s spontaneous use of gesture is an important finding of this study.  As 

described in the previous chapters, the way children spontaneously gestured when describing 
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their reasoning or manipulating materials provided a critical lens in which to interpret how they 

were establishing the fraction ideas and utilising spatial reasoning. The mechanism for how 

gesture supports young children’s learning is also not well understood in relation to mathematics 

in general (Aldugom et al., 2020). As reported in Chapter Two, there is very little literature 

concerning the role of gesture and fraction understanding. The studies that do exist, 

predominantly focus on how children gesture in response to fraction tasks in experimental 

conditions, or how teacher led gestures assist in learning mathematics. A video study would be an 

appropriate methodology to explore the ways in which a spatial reasoning approach to learning 

fractions evokes the use of gesture.  

8.6 Final Reflection 

This research serves as a reminder of how mathematically capable young children are, 

and that we must not underestimate their creative and intuitive ways of thinking and 

communicating. It highlights that for learning fractions, with the right instruction, children can 

understand complex ideas well before previously suggested, and that instruction should be 

derived from a multiplicative, partitioning approach. The findings have revealed that 

opportunities to engage with explicit spatial reasoning strategies when exploring early fraction as 

operator, fraction as a measure and fraction as a relation ideas are not only beneficial but are 

critical to assist children to make connections between these mathematical ideas. As educators, 

we must strive to provide learning environments that consistently enhance the cognitive skills 

and intuition of children.  

This study extends the current perspectives related to how children develop early rational 

number concepts. In doing so, it has provided a platform for demonstrating the affordances of 

other cognitive domains – such as specific spatial skills and abilities, and how they enhance and 
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can be embedded into children’s thinking and learning of rational number. This innovative 

approach provides teachers with clear and practical ways to support their young students, which I 

hope, builds their professional capabilities and self-efficacy for teaching this area of mathematics. 

Finally, but most importantly, it is my hope that this research will contribute to an improvement 

in children’s understanding of fractions by enabling them to fulfill their learning potential in this 

area. When we embrace the powerful and creative ways in which young children think and 

communicate mathematically, our profession will ultimately provide greater opportunities for 

young children’s mathematical success at school and beyond.  
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Appendices 

Appendix A: Cycle One Pilot Tasks 

Pilot Task 1: Sharing Cookies 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the 

task  

Fraction as Operator Fraction as Measure Construct Group 1 Group 2  
Fair Share 

The creation of equal size shares (of discrete collections or 

continuous wholes) where the shares created exhaust the 

whole. Naming fair shares of collections, including 

counting and relational naming (naming one share in 

relation to the whole collection or single whole). 

 

Doubling and Halving 

Derived from splitting (2-split) which is founded on 

repeated doubling and halving (splits of splits), 

perceptually recognising similarity (Confrey & Smith, 

1995). Conceptualising the size of the share(s) as twice as 

big for doubling, or two times as small/ half as big for 

halving (Confrey & Maloney, 2015). 

 

Partitive division/ recursive multiplication 

The introduction to division and multiplication are viewed 

as inverse operations 

 

1-nth-of...… 

The relationship between “1/nth of” in naming fair shares 

and identifying the referent units (greater or less than 1) for 

the fair shares resulting from equipartitioning (Confrey & 

Maloney, 2010, p. 973). 

 

Many-as-one 

Many-as-one is a group of m objects, where the quotient 

represents the extensive quantity that one sharer receives 

(Confrey, 2012) 

 

Measure 

Directly related to fair share, in that when fair shares are 

created, these shares represent a quantity that can be used 

as a measure in reference to the whole. 

 

Spatial Visualisation 

Spatial visualisation is the ability or 

skill drawn upon to imagine multi-step 

spatial transformations within objects or 

sets of objects (Frick, 2019; Lowrie et 

al., 2021; Linn & Petersen, 1985; 

Sorby, 1999). 

 

Child 1 

Child 2 

Child 3 

Child 4 

Child 5 

 

 

 

Child 6 

Child 7 

Child 8 

Child 9 

*Child 23 

Child 25 

(introduced 

later in the 

cycle for 

gesture 

observations 

– see 

Chapter 4) 

Relationship between fraction ideas and spatial constructs: 

Visualising partitive division/ recursive multiplication between parts/ shares and whole. Conceiving the change in size of share as more shares are required. 

Visualising shares involving mixed numbers. 

 

Task: 

Introduce the picture book – “The doorbell rang” by Pat Hutchins. Ask the children to describe what is happening in the story. 
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Each child receives a “story board” that shows how many children were at the table at each part of the story. The children are asked to model/ draw how each group of cookies would be shared in 

each of the boxes. 

Story board (A3 size): 

 

Children are provided with paper circles (as cookies) and plastic counters if they choose to use them. 

Children are asked to name how they might describe the different shares of cookies. 

 

 

 

 

12 cookies, 2 children 

 

12 cookies 4 children 

 

 

12 cookies 6 children 

 

16 cookies between 2 

children 
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Pilot Task 2: Creating Fair shares 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as Measure Fraction as an operator  Construct  Group 1  Group 2 
Many-as-one 

Considering smaller units as a unit of one: ten ones as 1 ten, 

2- quarters as 1 half etc) 

 

Unit Fraction Constructing and comparing unit fractions 

(1/n) though drawing on many-as-one idea (Confrey, 2008) 
 

Composite units 

Derived from splitting, a composite unit is a unit of units. 

E.g., 3/4 is a composite unit of three, 1/4 units as a result of a 

from a three split, 1 1/2 is a composite of two 3/4 units 

derived from halving; related to recursive multiplication. 

 Fair shares 

The creation of equal size shares (of discrete collections or 

continuous wholes) where the shares created exhaust the 

whole. Naming fair shares of collections, including counting 

and relational naming (naming one share in relation to the 

whole collection or single whole). 
 

Doubling and Halving Derived from splitting (2-split) which 

is founded on repeated halving (splits of splits). Perceptually 

recognising similarity (Confrey & Smith, 1995). 

Conceptualising the size of the share(s) as twice as big for 

doubling, or two times as small/ half as big for halving 

(Confrey & Maloney, 2015). 
 

Partitive division/ recursive multiplication 
Partitive division: Connects to the process of fair sharing by 

starting with the dividend, then distributing one unit in each 

set and repeating this process until no more distributions can 

be shared fairly. 

 

Equipartitioning a whole 
Geometrical reasoning in which symmetries and congruence 

are utilised to develop equal parts of (primarily) rectangles 

and circles. 

 

Geometric Symmetries 

Geometric symmetries relate to fair share and equal parts/ 

groups. “When folding, congruence is built directly into the 

activity through symmetries, but the result of the action is 

hidden until the paper is unfolded, providing opportunities to 

examine one’s predictions” (Confrey, 2012, p. 167) 

 

1-nth-of... 

The relationship between “1/nth of” in naming fair shares and 

identifying the referent units (greater or less than 1) for the 

fair shares resulting from equipartitioning (Confrey & 

Maloney, 2010, p. 973). 

 

 

Spatial Visualisation 

Spatial visualisation is the 

ability or skill drawn upon to 

imagine multi-step spatial 

transformations within objects 

or sets of objects (Frick, 

2019; Lowrie et al., 2021; 

Linn & Petersen, 1985; 

Sorby, 1999). 

 

Mental Rotation 

“Mental rotation is the ability 

to imagine how an object 

would look in a different 

orientation – in other words, 

to turn something in one’s 

mind” (Frick et al., 2013, 

p. 386). 

 

Child 10 

Child 11 

Child 12 

Child 13 

Child 14 

Child 15 

Child 16 

Child 17 

Child 18 

 

Child 21 

Child 22 

(introduced in 

part for gesture 

observations) 
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Relationship between fraction ideas and spatial constructs: 
To partition small sets and continuous models to develop awareness of the size of the parts and number of parts created 

To build visual recognition and awareness of the structure, form, pattern, and regularity of many-as-one parts forming a unit measure. 

To visualise the act of partitioning to create other partitioning (splits) to conceptualise 1/nth of … 

The exploration of the different fraction ideas lies in asking children to consider the quantities from different perspectives (Wilson et al., 2012). 

 

Task 2A: 
Does each person get a fair share of cookies, in each of the following examples? How do you know? 

 

       
 
Ask students to use counters as a scaffold. 

Task 2B: 

How many different ways can you share 12 cookies fairly?  Can you add any new ways to what we did yesterday?   Or 16? Or your own chosen number of cookies? 

 

Task 2C: 

Provide children with cards of the following images: 

 
What is different about each shape, and what is the same? (Focus on proportional relationships) 

What do these shapes and their parts have to do with fractions? Are there other ways these shapes can be shared fairly? Children may choose to draw representations to 

describe their thinking 

Refer back to the non-example above and ask the children to explain what is the same and different, how the parts relate to fractions. 
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Pilot Task 3:  Visualising the Share of a Cookie 

 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as Operator Fraction as Measure Construct  Group 1  Group 2 

Doubling Halving 

Derived from splitting (2-split) which is 

founded on repeated halving (splits of splits). 

Perceptually recognising similarity (Confrey 

& Smith, 1995). Conceptualising the size of 

the share(s) as twice as big for doubling, or 

two times as small/ half as big for halving 

(Confrey & Maloney, 2015). 

 

Partitive division/ Recursive multiplication 

Partitive division: Connects to the process of 

fair sharing by starting with the dividend, 

then distributing one unit in each set and 

repeating this process until no more 

distributions can be shared fairly. 

For example: 20 stickers shared between 4 

children (Confrey & Scarano, 1995). For 

young children, partitive division often 

involves trial and error in creating fair shares, 

rather than problems that involve 

multiplicative reasoning (Hackenberg & 

Tillema, 2009). 

 

Recursive multiplication: The reversal of 

equipartitioning is reassembly or recursive 

multiplication (not counting; Confrey, 2012). 

 

For example: the introduction to division and 

multiplication are viewed as inverse 

operations to establish a recursive rather than 

iterative foundation for multiplication (i.e., 

times as many; Confrey et al., 2014b). 

 

Equi-partitioning a single whole 

Many-as-one 
Many-as-one is a group of m objects, where the 

quotient represents the extensive quantity that one 

sharer receives (Confrey, 2012) 

For example: If I share 12 lollies with my friend, 

we each get 6 lollies, 6 is half of the 12. 

 

Composite units 
Derived from splitting, a composite unit is a unit 

of units. E.g., 
3

4
  is a composite unit of three, 

1

4
 

units as a result of a from a three split, 1 
1

2
 is a 

composite of two 
3

4
 units derived from halving; 

related to recursive multiplication. 

 

Spatial Visualisation 

Spatial visualisation is the ability or skill drawn 

upon to imagine multi-step spatial transformations 

within objects or sets of objects (Frick, 2019; 

Lowrie et al., 2021; Linn & Petersen, 1985; Sorby, 

1999). 

 

The intent of this spatial construct for this study is 

to develop children’s visualisation capabilities in 

relation to partitioning, unitising and equivalence 

concepts in a range of discrete and continuous 

contexts. For example, children will be encouraged 

to visualise the size and shape (geometric 

symmetries and similarities) and arrangements 

(composite units, part-whole, many-to-one or 

many-as-one) of a fair share by mentally 

manipulating and transforming objects or sets of 

objects. 

 

In addition, the process of creating a fair share 

(e.g., visualising partitive division/ recursive 

multiplication, doubling/ halving) of one quantity 

can be visualised and compared to another related 

quantity (fraction equivalence, part-whole) or 

unrelated quantities (measure) as examples. 

 

Spatial Proportional Reasoning 
Non-symbolic, visual recognition that shape, object 

and arrangements of different wholes can have the 

same value and therefore are equivalent. 

 

This can be an awareness of doubling and halving, 

times as many, distribution and proto-ratio ideas in 

the development of fraction magnitude. 

 

Spatial proportional reasoning includes scaling, 

which refers to the ability to compare different-

sized spaces (Frick & Möhring, 2016); the ability to 

relate distances in one space to distances in another 

Child 19 

Child 20 

Child 21 

Child 22 

Child 23 

Child 24 

Child 25 

Child 26 

Child 1 

Child 2 

 

 

Child 15 

Child 13 

(introduced in 

part for gesture 

observations) 
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Geometrical reasoning in which symmetries and 

congruence are utilised to develop equal parts of 

(primarily) rectangles and circles. 

 

Geometric symmetries 
Geometric symmetries relate to fair share and 

equal parts/ groups. “When folding, congruence is 

built directly into the activity through symmetries, 

but the result of the action is hidden until the paper 

is unfolded, providing opportunities to examine 

one’s predictions” (Confrey, 2012, p. 167) 

 

Similarity 
Related to splitting through identifying similarities 

between the properties of equal shares and non-

symbolic proportional relationships (continuous 

parts and sets) 

 

space (Frick & Newcombe, 2012). Spatial scaling 

and proportional scaling recruit overlapping 

cognitive processes (Möhring et al., 2018) therefore 

spatial proportional reasoning for the purposes of 

this thesis includes the ideas of both spatial scaling 

and non-symbolic proportional reasoning. 

 

At this age, it is the perceptual awareness of this 

relationship, rather than necessarily quantitative 

measures. For example, transforming one space in 

size to match the other (Frick & Newcombe, 2012) 

such as “mentally shrink[ing] or expand[ing] spatial 

information in the sense of zooming in or out (of 

the map)…internally transforming magnitude 

information” (Möhring et al., 2018, p. 58). 

Thus, geometric symmetries and similarity of 

spaces, objects and arrangements are key 

connections in the development of fraction 

understanding. 

 

Relationship between fraction ideas and spatial constructs: 
To visualise the act of partitioning and the multiplicative nature of doubling the parts results in halving the size of each share. 

To estimate and visualise proportional similarities between different geometric wholes and their fractional parts. 

 

Task: 
Imagine what a cookie would look like if we had to share between two, then four then eight people? Can you imagine and predict what might happen to that cookie as each group of visitors arrives? 

What if there were 3 people to share between? Then 6? What would those cookies look like if shred fairly? Just by looking at your cookie, can you visualise a way you would share your cookie 

fairly? 
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Pilot Task 4: Sharing Easily Divisible Collections 

 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as a relation Fraction as Operator Fraction as Measure Construct  Group 1  Group 2 
Many-to-One 

Many-to-one correspondence is the 

understanding of part-part relations 

(n:1). (Confrey & Smith, 1995). 

“Many” = counterpart objects, “One” = 

target object. 

For example: Three flowers for each 

vase (Sophian & Madrid, 2003). 

To make a juice mixture, there is a 

relationship between the water and 

juice quantities, which may not be 

equal, but preserved when replicated. 

 

Distribution 

Coordinating units to represent 

consistent part-part relations, with 

multiple target objects 

For example: Three children each 

receive two apples; In continuous 

contexts, recognising which part 

represents more than/ less than half. 

E.g., a container with juice and water 

may have more/ less water than juice; 

the water maybe more/ less than half of 

the container capacity. Naming the 

relationship such as 3 quarters water, 1 

quarter juice produces a weaker mix 

than 3 quarters juice to 1 quarter water. 

 

Doubling and Halving 

Derived from splitting (2-split) which is 

founded on repeated doubling and 

halving (splits of splits), perceptually 

recognising similarity (Confrey & 

Smith, 1995). Conceptualising the size 

of the share(s) as twice as big for 

doubling, or two times as small/ half as 

big for halving (Confrey & Maloney, 

2015). 

 

Partitive division/ recursive 

multiplication 

The introduction to division and 

multiplication are viewed as inverse 

operations 

1-nth-of...… 

The relationship between “1/nth of” in 

naming fair shares and identifying the 

referent units (greater or less than 1) for 

the fair shares resulting from 

equipartitioning (Confrey & Maloney, 

2010, p. 973). 

 

Times as many 

Related to reassembly (recursive 

multiplication). The ability to name the 

original collection multiplicatively in 

relation to a single fair share using 

“times as many,” or “times as much,” 

(Confrey & Maloney, 2015, p. 924). 

 

Many-as-one 

Many-as-one is a group of m objects, 

where the quotient represents the 

extensive quantity that one sharer 

receives (Confrey, 2012) 

 

Unit fractions 

Unit fraction involves identifying and 

naming a single share of n fair shares as 

“1/n of 1” (Confrey & Maloney, 2015). 

 

Composite units 

Derived from splitting, a composite unit 

is a unit of units. E.g., 3/4  is a 

composite unit of 3 1/4 units - related to 

recursive multiplication. 

 

Spatial Visualisation 

Spatial visualisation is the 

ability or skill drawn upon to 

imagine multi-step spatial 

transformations within objects 

or sets of objects (Frick, 

2019; Lowrie et al., 2021; 

Linn & Petersen, 1985; 

Sorby, 1999). 

 

 

Child 3 

Child 4 

Child 5 

Child 6 

 

Child 7 

Child 8 

Child 9 

Child 10 

Child 11 

 

 

Child 16 

Child 18 

(introduced in 

part for gesture 

observations) 

Relationship between fraction ideas and spatial constructs: 
Visualising partitive division/ recursive multiplication between parts/ shares and whole. Conceiving the change in size of share as more shares are required. 

Naming 2 thirds as two shares of…, two times as many-as-one share etc. 
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Task: 
We know that the number of shares we partition our whole into, names the fraction. Using any number of counters under 12, divide your collections and see if you can record 

what fraction you have divided your set into. Record how you have done this, and name each of the shares (Model recording strategies as a whole group as many have difficulty 

with discrete sets). 

Emphasise visualising the relationship/ action of partitive division and recursive multiplication 

Prompts for children: when sharing 10, by 5 people… i.e., fifths; the whole is how many times as big as one share? How many cookies is three shares?  (Confrey & Hotchkiss – 

Scarano, 1995). 

 
 

What if I doubled the collection I started with? What changes? What stays the same? 

 
 

Two shares/ 2-fifths: 

 

Three shares/ 3-fifths / three times as many-as-one share. 
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Pilot Task 5: Cookie fraction estimation 

 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator  Fraction as Measure Construct  Group 1  Group 2 
Doubling and Halving 

Derived from splitting (2-split) which is founded on 

repeated doubling and halving (splits of splits), 

perceptually recognising similarity (Confrey & Smith, 

1995). Conceptualising the size of the share(s) as twice as 

big for doubling, or two times as small/ half as big for 

halving (Confrey & Maloney, 2015). 

 

 

Unit fractions 

Unit fraction involves identifying and naming a single share of 

n fair shares as “1/n of 1” (Confrey & Maloney, 2015). 

 

Composite units 

Derived from splitting, a composite unit is a unit of units. E.g., 

3/4  is a composite unit of 3 1/4 units - related to recursive 

multiplication. 

 

Part-whole fractions 

The conceptualisation of the relationship between measure, 

many-as-one, composite and unit fractions for 1. For example: 

An apple is cut into y equal parts and x of these parts are eaten 

(Tsay & Hauk, 2009). 

 

 

Mental Rotation 

“Mental rotation is the ability 

to imagine how an object 

would look in a different 

orientation – in other words, 

to turn something in one’s 

mind” (Frick et al., 2013, 

p. 386). 

 

Child 12 

Child 13 

Child 14 

Child 15 

Child 16 

 

Child 17 

Child 18 

Child 19 

Child 20 

Child 21 

 

 

Relationship between fraction ideas and spatial constructs: 
To visualise the quantities created from composite fractions through splitting (doubling/ halving, n splits) 

Comparing images of cookie parts via mental rotation 

 

Task: 
Victoria and Sam left the cookie jar open one afternoon, and a mouse got in! It ate some of the cookies – here are what is left: 

 

 
Which cookie had been eaten the most? 

Can you order the left-over cookies from the least eaten to the most eaten? 

Can you see any parts that would fit together to make a whole cookie? Name and describe the parts you join to make a whole cookie. 
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Pilot Task 6: Birthday Cake Decorations 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator  Fraction as Measure Construct  Group 1  Group 2 
Doubling and Halving 

Derived from splitting (2-split) which is founded on 

repeated doubling and halving (splits of splits), 

perceptually recognising similarity (Confrey & Smith, 

1995). Conceptualising the size of the share(s) as twice as 

big for doubling, or two times as small/ half as big for 

halving (Confrey & Maloney, 2015). 

 

Times as many 

Related to reassembly (recursive multiplication). The 

ability to name the original collection multiplicatively in 

relation to a single fair share using “times as many,” or 

“times as much,” (Confrey & Maloney, 2015, p. 924). 

 

Unit fractions 

Unit fraction involves identifying and naming a single share of 

n fair shares as “1/n of 1” (Confrey & Maloney, 2015). 

 

Composite units 

Derived from splitting, a composite unit is a unit of units. E.g., 

3/4  is a composite unit of 3 1/4 units - related to recursive 

multiplication. 

 

Part-whole fractions 

The conceptualisation of the relationship between measure, 

many-as-one, composite and unit fractions for 1. 

 

Equivalent fractions 

The equivalence of two fractional parts. 

For example: 
2

4
 = 

1

2
   (Confrey & Maloney, 2015), explored non-

symbolically in this context 

 

Mental Rotation 

“Mental rotation is the ability 

to imagine how an object 

would look in a different 

orientation – in other words, 

to turn something in one’s 

mind” (Frick et al., 2013, 

p. 386). 

 

Child 22 

Child 23 

Child 24 

Child 25 

Child 26 

 

Child 1 

Child 2 

Child 3 

Child 4 

Child 5 

 

 

Relationship between fraction ideas and spatial constructs: 
To visualise the quantities created from composite fractions through splitting (doubling/ halving, n splits) 

Comparing images of cookie parts via mental rotation 

Recognising times-as-many and double and halving structures to create different quantities of cookie (including mixed fractions (i.e., 3 halves as three times as many) 

 

 

 

Task: 
Victoria and Sam’s friend were having a birthday. They made her a birthday cake and cut up some of Ma’s cookies to decorate it on top. 

So not to waste any of the leftover cookies, Ma put the unused parts back in the cookie tin. How many whole cookies are there? (Adapted from Mix, Levine, and Huttenlocher (1999). 

 

To scaffold: teacher models putting cookie fractions into a tin – e.g., 3 halves, 1 half at a time. Once each fractional part is put in the tin the students won’t be able to see them anymore. 2- halves 

(one after another) – describe how much of a cookie? 

• 2 quarters 

• 3 quarters 

• 1 half and 1 quarter 

• 3 halves 

 

Students visualise what they think the parts would look like all put together and describe how much. To scaffold, children might like to nominate more than, less than a whole, half etc. 



498 

 

Each partner gets a bag with fractional parts: 

 
The must show the parts to their partner one at a time, as they put in a cookie jar (i.e., paper bag). Their partner must mentally keep track of parts and see if they can describe how many cookies 

those parts would make.  Again, the child can draw how many whole cookies would be made if all the parts were placed together and nominate more than, less than a whole, half etc. 
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Pilot Task 7: Patten Block Fractions 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as a relation Fraction as Operator Fraction as Measure Construct  Group 1  Group 2 
Proto-ratio 

Coordinating two numerical sets, 

typically through building up and 

building down strategies (Hino & Kato 

2019). 

Building up: If there are 6 lollies in one 

packet, how many lollies in 3 packets? 

Building down: If there are 18 lollies in 

three packets, how many lollies are sold 

in one packet? Continuous example: 4 

equal parts water, 2 equal parts juice 

Similarly, responses such as:“3 out of 

12, or “1 out of every 4” are examples 

of the proto-ratio idea (Confrey & 

Maloney, 2015, p. 925). 

 

Double Halving 

Derived from splitting (2-split) which is 

founded on repeated doubling and 

halving (splits of splits), perceptually 

recognising similarity (Confrey & 

Smith, 1995). Conceptualising the size 

of the share(s) as twice as big for 

doubling, or two times as small/ half as 

big for halving (Confrey & Maloney, 

2015). 

 

Geometric symmetries 

Geometric symmetries relate to fair 

share and equal parts/ groups. “When 

folding, congruence is built directly into 

the activity through symmetries, but the 

result of the action is hidden until the 

paper is unfolded, providing 

opportunities to examine one’s 

predictions” (Confrey, 2012, p. 167) 

 

Times as many 

Related to reassembly (recursive 

multiplication). The ability to name the 

original collection multiplicatively in 

relation to a single fair share using 

“times as many,” or “times as much,” 

(Confrey & Maloney, 2015, p. 924). 

 

Similarity 

Related to splitting through identifying 

similarities between the properties of 

equal shares and proportional 

relationships (continuous parts and sets) 

 

Unit fractions 

Unit fraction involves identifying and 

naming a single share of n fair shares as 

“1/n of 1” (Confrey & Maloney, 2015). 

 

Composite units 

Derived from splitting, a composite unit 

is a unit of units. E.g., 3/4  is a 

composite unit of 3 1/4 units - related to 

recursive multiplication. 

 

Part-whole fractions 

The conceptualisation of the 

relationship between measure, many-as-

one, composite and unit fractions for 1. 

 

Equivalent fractions 

The equivalence of two fractional parts 

For example: 
2

4
 = 

1

2
   (Confrey & 

Maloney, 2015).   Explored non-

symbolically via perception of 

geometric models (size/ proportions of 

parts) and discrete sets. 

Spatial Visualisation 

Spatial visualisation is the 

ability or skill drawn upon to 

imagine multi-step spatial 

transformations within objects 

or sets of objects (Frick, 

2019; Lowrie et al., 2021; 

Linn & Petersen, 1985; 

Sorby, 1999). 

 

Spatial Proportional 

Reasoning 

Non-symbolic, visual 

recognition that shape, object 

and arrangements of different 

wholes can have the same 

value and therefore are 

equivalent. 

 

 

 

Child 6 

Child 7 

Child 8 

Child 9 

Child 10 

 

Child 11 

Child 12 

Child 13 

Child 14 

Child 15 

 

 

Relationship between fraction ideas and spatial constructs: 

 

Children will use pattern blocks to manipulate and create fractional parts. 
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A focus on operating on children’s pattern block construction and establishing the relational proportions between the representations. E.g., What would it look like if it were 

only half the size? Double the size? Three times etc. 

 
Task: 

The children will have access to a range of pattern blocks, e.g.: 

 
Using the pattern blocks, students need to model 1 half, 1 quarter, 1 third and a free choice fraction. 

 

For example: If this is a whole: 

What is half? 

1-third? 

Three times as much? 

 

Children are to make and record their findings. Children can then experiment making their own creations and demonstrating fractional parts/ scaling/ ratios etc. 

Describe how you constructed your representations. What fractions did you create? What strategies did you use to help you? How did you shrink or enlarge your original 

picture? What patterns did you discover? 

 

 
  

 



501 

Pilot Task 8: Who Ate More Pizza? 

 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator  Fraction as Measure Construct  Group 1  Group 2 
Equipartitioning a single whole 

Geometrical reasoning in which symmetries and congruence 

are utilised to develop equal parts of (primarily) rectangles 

and circles. 

 

Similarity 

Related to splitting through identifying similarities between 

the properties of equal shares and non-symbolic proportional 

relationships (continuous parts and sets) 

 

Times as many 

Related to reassembly (recursive multiplication). The ability 

to name the original collection multiplicatively in relation to 

a single fair share using “times as many,” or “times as 

much,” (Confrey & Maloney, 2015, p. 924). 

For example: How many times as large as one share is the 

whole collection? (reassembly)…the whole collection is 3 

times as much as one share” (Confrey & Maloney, 2015, 

p. 922). 

Measure 

Directly related to fair share, in that when fair shares are 

created, these shares represent a quantity that can be used as a 

measure in comparison to the whole. 

 

Composite Units 

Derived from splitting, a composite unit is a unit of units. 

E.g., 3/4  is a  composite unit of three, 1/4 units as a result of 

a from a three split, 1 1/2 is a composite of two 3/4 units 

derived from halving; related to recursive multiplication. 

 

Equivalent Fractions 

The equivalence of two fractional parts 

For example: 2/4 = 1/2   (Confrey & Maloney, 2015).   

Explored non-symbolically via geometric models and 

discrete sets in this study. 

 

Spatial Visualisation 

Spatial visualisation is the 

ability or skill drawn upon to 

imagine multi-step spatial 

transformations within objects 

or sets of objects (Frick, 

2019; Lowrie et al., 2021; 

Linn & Petersen, 1985; 

Sorby, 1999). 

 

Spatial Proportional 

Reasoning 

Non-symbolic, visual 

recognition that shape, object 

and arrangements of different 

wholes can have the same 

value and therefore are 

equivalent. 

 

Child 16 

Child 17 

Child 18 

Child 19 

Child 20 

 

Child 21 

Child 22 

Child 23 

Child 24 

Child 26 

Child 1 

 

 

Relationship between fraction ideas and spatial constructs: 

 
To visualise the act of partitioning and relationship between splitting to conceptualise fraction measures 

Children will visually recognise and compare the size of the parts in relation to the whole and compare between each child.   

Task: 

Ma ordered 2 pizzas for tea. Both pizzas are the same size but when Victoria and Sam opened the boxes, one was cut into fourths, and one was cut into eighths. 

If you were really hungry and wanted the biggest slice of pizza, which pizza would you take a slice from – 1- fourth or 1-eighth? Why? (Children can use mini whiteboards and markers to problem 

solve). 
Sam claimed he ate more than Victoria because he took two slices from the pizza partitioned into eighths. Victoria ate only one slice from the pizza that was cut into fourths. Who ate more? How 

do you know? 

 

What are some other ways you can cut your pizzas, so Sam and Victoria eat a different number of slices, but eat the same amount? (2 fourths and 1 half for example). 

 

Stretch: Victoria and Sam share 1 pizza. Victoria has eaten twice as much pizza as Sam. What size parts could they have eaten? 
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Pilot Task 9: Tablecloths 

 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator   Fraction as Measure Construct  Group 1  Group 2 
 Distribution 

Coordinating units to represent 

consistent part-part relations, with 

multiple target objects 

For example: Three children each 

receive two apples; In continuous 

contexts, recognising which part 

represents more than/ less than 

half. E.g., a container with juice 

and water may have more/ less 

water than juice; the water maybe 

more/ less than half of the 

container capacity. Naming the 

relationship such as 3 quarters 

water, 1 quarter juice produces a 

weaker mix than 3 quarters juice to 

1 quarter water. 

 

 

Double Halving 

Derived from splitting (2-split) which is 

founded on repeated doubling and halving 

(splits of splits), perceptually recognising 

similarity (Confrey & Smith, 1995). 

Conceptualising the size of the share(s) as 

twice as big for doubling, or two times as 

small/ half as big for halving (Confrey & 

Maloney, 2015). 

 

Partitive division/ Recursive Multiplication 

Partitive division: Connects to the process of 

fair sharing by starting with the dividend, 

then distributing one unit in each set and 

repeating this process until no more 

distributions can be shared fairly. 

For example: 20 stickers shared between 4 

children (Confrey & Scarano, 1995). For 

young children, partitive division often 

involves trial and error in creating fair 

shares, rather than problems that involve 

multiplicative reasoning (Hackenberg & 

Tillema, 2009). 

 

Recursive multiplication: The reversal of 

equipartitioning is reassembly or recursive 

multiplication (not counting; Confrey, 

2012). 

For example: the introduction to division 

and multiplication are viewed as inverse 

operations to establish a recursive rather 

than iterative foundation for multiplication 

(i.e., times as many; Confrey et al., 2014b). 

Involves splitting and reassembly of 

continuous models and discrete sets. 

 

Geometric symmetries 

Geometric symmetries relate to fair share 

and equal parts/ groups. “When folding, 

Composite units 

Derived from splitting, a composite unit 

is a unit of units. E.g., 3/4  is a composite 

unit of 3 1/4 units - related to recursive 

multiplication. 

 

Part-whole fractions 

The conceptualisation of the relationship 

between measure, many-as-one, 

composite and unit fractions for 1. 

 

Equivalent fractions 

The equivalence of two fractional parts 

For example: 
2

4
 = 

1

2
   (Confrey & Maloney, 

2015).   Explored non-symbolically via 

perception of geometric models (size/ 

proportions of parts) and discrete sets.  

Spatial Visualisation 

Spatial visualisation is the 

ability or skill drawn upon 

to imagine multi-step 

spatial transformations 

within objects or sets of 

objects (Frick, 2019; 

Lowrie et al., 2021; Linn & 

Petersen, 1985; Sorby, 

1999). 

 

Mental Rotation 

“Mental rotation is the 

ability to imagine how an 

object would look in a 

different orientation – in 

other words, to turn 

something in one’s mind” 

(Frick et al., 2013, p. 386). 

 

Spatial Proportional 

Reasoning 

Non-symbolic, visual 

recognition that shape, 

object and arrangements of 

different wholes can have 

the same value and 

therefore are equivalent. 

 

 

 

Child 25 

Child 2 

Child 3 

Child 4 

Child 5 

 

Child 6 

Child 7 

Child 8 

Child 9 

Child 10 
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congruence is built directly into the activity 

through symmetries, but the result of the 

action is hidden until the paper is unfolded, 

providing opportunities to examine one’s 

predictions” (Confrey, 2012, p. 167) 

 

Similarity 

Related to splitting through identifying 

similarities between the properties of equal 

shares and proportional relationships 

(continuous parts and sets) 

Relationship between fraction ideas and spatial constructs: 
Children will visually recognise and compare (through mental rotation) the size of parts and proportion of colour within and between tablecloths 

Exploring the process of multiple mental folding and or splitting (SV) and rotating parts of the tablecloth to determine proportions of colour, comparing regions of incongruent and congruent 

wholes. Noticing distributions of composite units and comparing part-part and part-whole relationships. 
Task: 

Ma wanted to buy a new tablecloth for the kitchen table. She asked Victoria and Sam to go to the shops and see if they could find one that was suitable. She asked for it to be in the colours of 

purple and orange, but she wanted it to be more purple than orange. Victoria and Sam found the following tablecloths. Which of the tablecloths can Sam and Victoria choose from? How much is 

the purple part in each cloth? How do you know? 

 

 Here are some new tablecloths Ma was considering buying. Choose one and colour it to represent half purple and half blue, or 1 quarter yellow etc. How many 

other equal parts can you see? Can you name the parts? 
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Pilot Task 10: Mapping 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as a relation Fraction as Operator Fraction as Measure Construct  Group 1  Group 2 
Distribution 

Coordinating units to represent 

consistent part-part relations, with 

multiple target objects 

For example: Three children each 

receive two apples; In continuous 

contexts, recognising which part 

represents more than/ less than 

half. E.g., a container with juice 

and water may have more/ less 

water than juice; the water maybe 

more/ less than half of the 

container capacity. Naming the 

relationship such as 3 quarters 

water, 1 quarter juice produces a 

weaker mix than 3 quarters juice 

to 1 quarter water. 

 

Double Halving 

Derived from splitting (2-split) 

which is founded on repeated 

doubling and halving (splits of 

splits), perceptually recognising 

similarity (Confrey & Smith, 

1995). Conceptualising the size of 

the share(s) as twice as big for 

doubling, or two times as small/ 

half as big for halving (Confrey & 

Maloney, 2015). 

 

1-nth-of...… 

The relationship between “1/nth 

of” in naming fair shares and 

identifying the referent units 

(greater or less than 1) for the fair 

shares resulting from 

equipartitioning (Confrey & 

Maloney, 2010, p. 973). 

 

Scaling 

Related to times as many. “There 

is only one salient dimension 

here, namely, objects. The 

splitting operation in this instance 

establishes the foundation of the 

ideas of a scalar (a  dimensionless 

number possessing only 

magnitude) and a scaling factor” 

(Confrey, 2012, p. 162). 

 

 

Times as many 

Related to reassembly (recursive 

multiplication). The ability to 

name the original collection 

multiplicatively in relation to a 

single fair share using “times as 

Unit fractions 

Unit fraction involves identifying 

and naming a single share of n 

fair shares as “1/n of 1” (Confrey 

& Maloney, 2015). 

 

Composite units 

Derived from splitting, a 

composite unit is a unit of units. 

E.g., 3/4  is a composite unit of 3 

1/4 units - related to recursive 

multiplication. 

 

Part-whole fractions 

The conceptualisation of the 

relationship between measure, 

many-as-one, composite and unit 

fractions for 1. 

 

 

Spatial Visualisation 

Spatial visualisation is the ability or skill drawn 

upon to imagine multi-step spatial 

transformations within objects or sets of objects 

(Frick, 2019; Lowrie et al., 2021; Linn & 

Petersen, 1985; Sorby, 1999). 

 

Spatial Proportional Reasoning (Scaling) 

Non-symbolic, visual recognition that shape, 

object and arrangements can have the same 

value and therefore are equivalent. 

 

Mental rotation  

Mental Rotation is the ability to imagine how 

an object would look if it were rotated; that is, 

mentally turn a 2D or 3D object (Frick et al., 

2013). 

 

Child 11 

Child 12 

Child 13 

Child 14 

 

Child 15 

Child 16 

Child 17 

Child 18 

Child 19 
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many,” or “times as much,” 

(Confrey & Maloney, 2015, p. 

924). 

 

Relationship between fraction ideas and spatial constructs: 

Visualising different pathways on the carpet maps by observing the roads and paths an imagining how far a dinosaur has travelled through these spaces. 

Scaling distances from carpet mat to pictorial representations 

Visualising and comparing the spatial structure and size of different parts (linear paths/ areas) between the physical carpet models and pictorial representations. 

Creating scaled representations of fractional paths, naming and describing the distributions of the measures: half of …path is greater than half of another path. 
Task: 

Introduce the new picture book “Knock, knock dinosaur” by Caryl Hart. 

 

The dinosaurs have escaped the boys house! They’ve decided to explore the neighbourhood – here is the map. Somebody said they saw a T-Rex halfway between the boy’s house, and the zoo. 

Where would that be? (The Food store). Another person said they saw a dinosaur halfway between the central fountain and the duck pond – where would that be? (museum). One lady saw a 

velociraptor 2- thirds of the way along the road in front of the café, heading toward the food market…where would this dinosaur be? 
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Lots of scaffolding of directions/ position and then visualising 2/3 of the length of said 

road. 

 

Can you represent a road and landmarks on your individual whiteboards (spatial 

scaling foci). 

 

 
 
 
 
 
 

 

 

You have taken a helicopter out to see if you can find some dinosaurs. On this map of the town (floor carpet), match the dinosaurs to their 

locations by sticking the correct tag on each dinosaur and placing on the mat. 

Children represent parts of the carpet map that described where they saw each dinosaur, on an A3 sheet of paper. They need to draw the points 

of interest – e.g., the runway of the airport; draw the position of the dinosaur and then write in words their explanation such as, “dinosaur spotted 

1 quarter of the way along the runway, twice the length of the fence towards the hospital”. 

 

Children can draw a map of another’s whole (or part thereof) mat, again describing the position of the dinosaur in a fraction sense. 

What is the same about the carpet… (zoo/ airport/ farm etc) and your map? (Same proportions/ fraction, different scale etc). What is different? 

(Absolute size). 
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Pilot Task 11: Hidden Fractions 

 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator  Fraction as Measure Construct  Group 1  Group 2 
Double Halving 

Derived from splitting (2-split) which is founded 

on repeated doubling and halving (splits of 

splits), perceptually recognising similarity 

(Confrey & Smith, 1995). Conceptualising the 

size of the share(s) as twice as big for doubling, 

or two times as small/ half as big for halving 

(Confrey & Maloney, 2015). 

 

1-nth-of...… 

The relationship between “1/nth of” in naming 

fair shares and identifying the referent units 

(greater or less than 1) for the fair shares resulting 

from equipartitioning (Confrey & Maloney, 2010, 

p. 973). 

 

Times as many 

Related to reassembly (recursive multiplication). 

The ability to name the original collection 

multiplicatively in relation to a single fair share 

using “times as many,” or “times as much,” 

(Confrey & Maloney, 2015, p. 924). 

 

Many-as-one 

Many-as-one is a group of m objects, 

where the quotient represents the 

extensive quantity that one sharer 

receives (Confrey, 2012) 

 

Composite units 

Derived from splitting, a composite unit 

is a unit of units. E.g., 3/4  is a 

composite unit of 3 1/4 units - related to 

recursive multiplication. 

 

Unit fractions 

Unit fraction involves identifying and 

naming a single share of n fair shares as 

“1/n of 1” (Confrey & Maloney, 2015). 

 

Spatial Visualisation 

Spatial visualisation is the ability or skill drawn upon to 

imagine multi-step spatial transformations within objects or 

sets of objects (Frick, 2019; Lowrie et al., 2021; Linn & 

Petersen, 1985; Sorby, 1999). 

 

 

 

Child 14 

Child 16 

Child 17 

Child 18 

 

Child 15 

Child 19 

Child 20 

Child 21 

Child 22 

 

 

Relationship between fraction ideas and spatial constructs: 
Children make conjectures about the proportion and size of the blue part that could be hidden. This includes reasoning if more than/ less than half is hidden or showing and drawing on their spatial 

visualisation skills to determine what splits could be made. 

 

Task: 
What fraction of the blue rectangle could be hidden underneath the orange square? How many possibilities are there?  Visualise, try out a strategy, and justify. 
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Pilot Task 12: Chocolate Ratios 

 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as a relation Fraction as a measure  Construct  Group 1  Group 2 
Many-to-one 

correspondence is the understanding of part-

part relations (n:1). (Confrey & Smith, 1995). 

“Many” = counterpart objects, “One” = target 

object. 

For example: Three flowers for each vase 

(Sophian & Madrid, 2003) 

 

Distribution 

Coordinating units to represent consistent 

part-part relations, with multiple target 

objects 

For example: Three children each receive two 

apples 

 

Many-as-one 

Many-as-one is a group of m objects, where 

the quotient represents the extensive 

quantity that one sharer receives (Confrey, 

2012) 

For example: If I share 12 lollies with my 

friend, we each get 6 lollies, six is half of 

the 12. 

 

Spatial Visualisation 

Spatial visualisation is the ability or skill drawn upon to 

imagine multi-step spatial transformations within objects or 

sets of objects (Frick, 2019; Lowrie et al., 2021; Linn & 

Petersen, 1985; Sorby, 1999). 

 

 

 

Child 20 

Child 21 

Child 22 

Child 23 

Child 24 

 

Child 25 

Child 26 

Child 1 

Child 2 

Child 3 

 

 

Relationship between fraction ideas and spatial constructs: 

Exploring the connection between many-as-one and many-to-one ideas by naming and renaming the collection. Many-to-one requires to the child to name how many per person/ 

per share, with distribution ideas between part (children) and part (chocolates) explored, whilst many-as-one considers a share of the chocolates as a fraction of the whole set, 1 

share is a third of the set. It involves is visualising the compositions of the quantities involved to name and rename the shares.  

Task: I have some big blocks of chocolate and some small blocks. If I were to share the following chocolate bars between three people so everyone gets some big and small blocks how might I do 

that, so it is fair? What is a rule I could invent for sharing these chocolates (each share is a ratio of 1 big block: 2 small bars)? Describe each person’s share in relation to the whole set. 
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Pilot Task 13: The French Fry Task 

 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator  Fraction as Measure Construct  Group 1  Group 2 
 Partitive Division/ Recursive Multiplication 

Partitive division: Connects to the process of 

fair sharing by starting with the dividend, 

then distributing one unit in each set and 

repeating this process until no more 

distributions can be shared fairly. 

For example: 20 stickers shared between 4 

children (Confrey & Scarano, 1995). For 

young children, partitive division often 

involves trial and error in creating fair shares, 

rather than problems that involve 

multiplicative reasoning (Hackenberg & 

Tillema, 2009). 

 

Recursive multiplication: The reversal of 

equipartitioning is reassembly or recursive 

multiplication (not counting; Confrey, 2012). 

 

For example: the introduction to division and 

multiplication are viewed as inverse 

operations to establish a recursive rather than 

iterative foundation for multiplication (i.e., 

times as many; Confrey et al., 2014b). 

Involves splitting and reassembly of 

continuous models and discrete sets. 

 

Equipartitioning a whole 

Geometrical reasoning in which symmetries 

and congruence are utilised to develop equal 

parts of (primarily) rectangles and circles. 

 

 

Unit fractions 

Unit fraction involves identifying and 

naming a single share of n fair shares as 

“1/n of 1” (Confrey & Maloney, 2015). 

 

Spatial Visualisation 

Spatial visualisation is the ability or skill drawn upon to 

imagine multi-step spatial transformations within objects or 

sets of objects (Frick, 2019; Lowrie et al., 2021; Linn & 

Petersen, 1985; Sorby, 1999). 

 

 

 

Child 23 

Child 24 

Child 25 

Child 26 

Child 1 

 

Child 2 

Child 3 

Child 4 

Child 5 

Child 6 

 

 

Relationship between fraction ideas and spatial constructs: 
This tasks was originally designed by Tzur (2019) from a measurement/ iterative approach to teaching fractions, however I re-focused the task to explore it from a splitting approach that 

emphasised visualising the act of splitting and reassembly in relation to the whole (Partitive division/ recursive multiplication) as well as an awareness of fair share, congruence through the 

geometric properties of the “French fry”. 

 
Tzur’s “French fry” modified task. 
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Mum bought home Maccas for the dinosaurs for tea one night – lucky dinosaurs! But when she got home, they had only put in a small pack of fries to share between everyone! 

 

Children will be given different lengths of yellow tape to represent a French fry. 

 

 

Task 13A: Can you share this fry equally between 2 dinosaurs? 

Attach to the child’s partitioning operations (observable through folding—child may fold initially. 

Tell me about your strategy. Why did you fold the paper into two parts? What is the name of each part you created? How can you convince me that they are halves? 

 

Task 13B: Share one fry equally among three people. Indicator: Promote the child’s splitting operations through spatial visualisation of parts. 

Questions: Have you achieved thirds? Why/ why not? What do you notice about thirds here in relation to halves in your previous task? 

 

Task 13C: Share one fry equally among five people 

Within task questions: I see you created unequal shares. How can you ensure fair shares? Before you make a guess about the size of the share among five people, look at the size of the shares when 

we shared among three people. Will sharing between five result in bigger or smaller shares? Describe how you know 
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Pilot Task 14: Finding Wholes 

 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator  Fraction as a measure Construct  Group 1  Group 2 
1-nth-of...… 

The relationship between “1/nth of” in naming fair 

shares and identifying the referent units (greater or 

less than 1) for the fair shares resulting from 

equipartitioning (Confrey & Maloney, 2010, p. 973). 

 

Times as many 

Related to reassembly (recursive multiplication). The 

ability to name the original collection multiplicatively 

in relation to a single fair share using “times as 

many,” or “times as much,” (Confrey & Maloney, 

2015, p. 924). 

 

Composite Units 

Derived from splitting, a composite unit is a unit of 

units. E.g., 
3

4
  is a  composite unit of three, 

1

4
 units as a 

result of a from a three split, 1 
1

2
 is a composite of two 

3

4
 units derived from halving; related to recursive 

multiplication. 

 

Part-whole 

The conceptualisation of the relationship between 

measure, many-as-one, composite and unit fractions 

for 1. 

 

Spatial Visualisation 

Spatial visualisation is the ability or skill 

drawn upon to imagine multi-step spatial 

transformations within objects or sets of 

objects (Frick, 2019; Lowrie et al., 2021; 

Linn & Petersen, 1985; Sorby, 1999). 

 

 

 

Child 7 

Child 8 

Child 9 

Child 10 

Child 11 

 

Child 12 

Child 13 

Child 14 

Child 15 

Child 16 

 

 

Relationship between fraction ideas and spatial constructs: 

Estimating and visualising the whole (length) based on a fractional part. To explore the times as many, part-whole and composite unit relationship. 

 

Task: 
On the floor, place different lengths of masking tape with a size on them. If this is half, a fourth, a third etc, what is one whole? Estimate and visualise first where the total length of the whole 

would be. Then, come up with a strategy that will help you. What does the name of the part tell us about how many parts are in the whole? How close were your estimations of the whole to the 

actual length? What made it easy to visualize? What made it hard? 
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Pilot Task 15: Muesli Bars 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator  Fraction as Measure Construct  Group 1  Group 2 

Doubling / Halving 
Derived from splitting (2-split) which is founded on 

repeated halving (splits of splits). Perceptually 

recognising similarity (Confrey & Smith, 1995). 

Conceptualising the size of the share(s) as twice as big 

for doubling, or two times as small/ half as big for 

halving (Confrey & Maloney, 2015). 

 
Times as Many 

Related to reassembly (recursive multiplication). The 

ability to name the original collection multiplicatively in 

relation to a single fair share using “times as many,” or 

“times as much,” (Confrey & Maloney, 2015, p. 924). 

For example: How many times as large as one share is 

the whole collection? (reassembly)…the whole 

collection is 3 times as much as one share” (Confrey & 

Maloney, 2015, p. 922). 

 

1-nth-of... 
The relationship between “1/nth of” in naming fair 

shares and identifying the referent units (greater or less 

than 1) for the fair shares resulting from equipartitioning 

(Confrey & Maloney, 2010, p. 973). 

 

For example: 12 objects shared among 3 children, a 

share is 4 objects 

(Per child). Each child receives 
1

3
 of the collection; one 

third of 12 is 4 (Confrey & Maloney, 2015). 

 

Composite units 
Derived from splitting, a composite unit is a unit of 

units. E.g., 
3

4
  is a  composite unit of three, 

1

4
 units as a 

result of a from a three split, 1 
1

2
 is a composite of two 

3

4
 

units derived from halving; related to recursive 

multiplication. 

 

Unit fractions 
Unit fraction involves identifying and naming a single 

share of n fair shares as “1/n of 1” (Confrey & Maloney, 

2015). 

 

Spatial proportional reasoning 

 
Spatial proportional reasoning is the 

non-symbolic, visual recognition that 

shape, object and arrangements of 

different wholes can have the same 

value and therefore are equivalent. 

 

 

Child 17 

Child 18 

Child 19 

Child 20 

Child 21 

 

Child 22 

Child 23 

Child 24 

Child 25 

Child 26 

 

 

Relationship between fraction ideas and spatial constructs: 

Visualising and preserving continuous part-part quantities. Estimating fractional parts of the bars that have been eaten. 

 

Task: 
Mum keeps a few boxes of muesli/ chocolate bars in the pantry for snacks. They are not all the same size. From each pair of muesli bars, which bar did the T-Rex eat the MOST of? How do you 

know? Which bar did it eat the LEAST of? How do you know? 

(Children will receive 2 bars in various sizes with various amount eaten – as indicated by a different colour e.g., grey section uneaten, brown section eaten etc). They need to work out which bar out 

of the two had more eaten. 
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Student can try and verbalise how much of each bar was eaten. 

 

What did you discover? How did you decide which bar had more of it eaten? What strategies did you use to work this out? 
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Pilot Task 16: How Many Steps? 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as a measure Fraction as an operator  Construct  Group 1  Group 2 

Many-to-one 
Many-to-one correspondence is the understanding of 

part-part relations (n:1). (Confrey & Smith, 1995). 

“Many” = counterpart objects, “One” = target object. 

For example: Three flowers for each vase (Sophian & 

Madrid, 2003). 

To make a juice mixture, there is a relationship 

between the water and juice quantities, which may not 

be equal, but preserved when replicated. 

 

Distribution 
Coordinating units to represent consistent part-part 

relations, with multiple target objects 

For example: Three children each receive two apples; 

In continuous contexts, recognising which part 

represents more than/ less than half. E.g., a container 

with juice and water may have more/ less water than 

juice; the water maybe more/ less than half of the 

container capacity. Naming the relationship such as 3 

quarters water, 1 quarter juice produces a weaker mix 

than 3 quarters juice to 1 quarter water. 

 

Proto-ratio 
Coordinating two numerical sets additively, typically 

through building up and building down strategies 

(Hino & Kato 2019). 

Building up: If there are 6 lollies in one packet, how 

many lollies in 3 packets? 

Building down: If there are 18 lollies in three packets, 

how many lollies are sold in one packet? Continuous 

example: 4 equal parts water, 2 equal parts juice 

Similarly, responses such as: “3 out of 12, or “1 out of 

every 4” are examples of the proto-ratio idea (Confrey 

& Maloney, 2015, p. 925). 

 

Partitive division/ recursive multiplication 
Partitive division: Connects to the process of fair 

sharing by starting with the dividend, then distributing 

one unit in each set and repeating this process until no 

more distributions can be shared fairly. 

For example: 20 stickers shared between 4 children 

(Confrey & Scarano, 1995). For young children, 

partitive division often involves trial and error in 

creating fair shares, rather than problems that involve 

multiplicative reasoning (Hackenberg & Tillema, 

2009). 

Recursive multiplication: The reversal of 

equipartitioning is reassembly or recursive 

multiplication (not counting; Confrey, 2012). 

For example: the introduction to division and 

multiplication are viewed as inverse operations to 

establish a recursive rather than iterative foundation 

for multiplication (i.e., times as many; Confrey et al., 

2014b). Involves splitting and reassembly of 

continuous models and discrete sets. 

 

Times as many 
Related to reassembly (recursive multiplication). The 

ability to name the original collection multiplicatively 

in relation to a single fair share using “times as many,” 

or “times as much,” (Confrey & Maloney, 2015, 

p. 924). 

For example: How many times as large as one share is 

the whole collection? (reassembly)…the whole 

collection is 3 times as much as one share” (Confrey 

& Maloney, 2015, p. 922). 

 

Spatial Visualisation 

Spatial visualisation is the ability or skill 

drawn upon to imagine multi-step spatial 

transformations within objects or sets of 

objects (Frick, 2019; Lowrie et al., 2021; 

Linn & Petersen, 1985; Sorby, 1999). 

 

 

 

Child 1 

Child 2 

Child 3 

Child 4 

Child 5 

 

Child 7 

Child 8 

Child 9 

Child 10 

Child 11 

 

 

Relationship between fraction ideas and spatial constructs: 

Children explore discrete part-part relations of footsteps, i.e., dinosaur: human quantities. Focus is on visualising the complexity of the many-to-one relationship in the outset 

(i.e., for each Dino step, we take many steps to travel the same distance). Naming the relationship as times-as-many and building up/ building down to represent pro-ratios. 
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Task: 
 

If one dinosaur step was equal to two of your normal steps, how many of your steps would you need to take for five dinosaur steps? 

A dinosaur only took 1 quarter of the number of steps it took you to walk across the park. How many steps did you each take? How many possibilities are there? 

What if the dinosaur had taken six steps, and you had taken eighteen? What is the smallest number of steps you would need to take for one dinosaur step? How can we represent 

this in a way that helps us describe what is happening? 

 Children will  have access to concrete materials such as blocks and counters and paper to record pictorially if they wish. 

 

What did you discover? How did you problem solve this question and represent your answer? 

If you took 5 normal steps and a dinosaur took 5 normal steps, who would go further? How much further? Why? 
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Pilot Task 17: Animal Proportions 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as Operator Fraction as Measure Construct  Group 1  Group 2 

Doubling / Halving 
Derived from splitting (2-split) which is 

founded on repeated halving (splits of splits). 

Perceptually recognising similarity (Confrey 

& Smith, 1995). Conceptualising the size of 

the share(s) as twice as big for doubling, or 

two times as small/ half as big for halving 

(Confrey & Maloney, 2015). 

 

Times as Many 

Related to reassembly (recursive 

multiplication). The ability to name the 

original collection multiplicatively in 

relation to a single fair share using 

“times as many,” or “times as much,” 

(Confrey & Maloney, 2015, p. 924). 

For example: How many times as large 

as one share is the whole collection? 

(reassembly)…the whole collection is 3 

times as much as one share” (Confrey & 

Maloney, 2015, p. 922). 

 

1-nth-of... 
The relationship between “1/nth of” in 

naming fair shares and identifying the 

referent units (greater or less than 1) for the 

fair shares resulting from equipartitioning 

(Confrey & Maloney, 2010, p. 973). 

 

For example: 12 objects shared among 3 

children, a share is 4 objects 

(per child). Each child receives 
1

3
 of the 

collection; one third of 12 is 4 (Confrey & 

Maloney, 2015). 

 

Composite units 
Derived from splitting, a composite unit is a 

unit of units. E.g., 
3

4
  is a  composite unit of 

three, 
1

4
 units as a result of a from a three 

split, 1 
1

2
 is a composite of two 

3

4
 units 

derived from halving; related to recursive 

multiplication. 

 

Unit fractions 
Unit fraction involves identifying and 

naming a single share of n fair shares as 

“1/n of 1” (Confrey & Maloney, 2015). 

 

Spatial proportional reasoning 
Spatial proportional reasoning is the non-symbolic, visual 

recognition that shape, object and arrangements of different 

wholes can have the same value and therefore are equivalent. 

 

 

Child 6 

Child 12 

Child 13 

Child 14 

Child 15 

 

Child 16 

Child 18 

Child 19 

Child 20 

Child 21 
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Relationship between fraction ideas and spatial constructs: 

Exploring and preserving continuous part-part quantities and relationship when replicated (enlarged/ shrunk). 

 

Task: 
 

Read a selection of pages from picture book, If you hopped like a frag by David M. Schwartz (1999) 

Some animals have some pretty interesting characteristics. For example, a Chameleon’s tongue is twice the length of their bodies. (Sample page from picture book): 

 

 
 

If you were a chameleon – but the same height you are now, how long would your tongue be? Discuss strategies you would use to figure this out (i.e., model using freeze tape to 

measure heights and partition in half). 

 

Using strips of paper, make your tongue based on the chameleon’s proportions (twice the length of your body = length of tongue). What if the length of the Chameleon’s tongue 

was only one third of the length of its body? How many times is your body the length of your tongue? 

 

If you were a frog, you could hop five times the length of your leg. How far could you hop if you were a frog? Estimate first, think about what strategies you would use. 

 

Provide students with different length of freeze tape: If this was a frog jump, how long would its leg be? How do you know? (Visualising fractions of a measure). 

What do the names of the fraction parts tell us about the size of the part? 
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Pilot Task 18: Plant Growth Rate 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as a relation Fraction as Operator Construct  Group 1  Group 2 
Distribution 

Coordinating units to represent consistent 

part-part relations, with multiple target 

objects 

For example: Three children each receive two 

apples; In continuous contexts, recognising 

which part represents more than/ less than 

half. E.g., a container with juice and water 

may have more/ less water than juice; the 

water maybe more/ less than half of the 

container capacity. Naming the relationship 

such as 3 quarters water, 1 quarter juice 

produces a weaker mix than 3 quarters juice 

to 1 quarter water 

Doubling / Halving 
Derived from splitting (2-split) which is 

founded on repeated halving (splits of 

splits). Perceptually recognising similarity 

(Confrey & Smith, 1995). Conceptualising 

the size of the share(s) as twice as big for 

doubling, or two times as small/ half as big 

for halving (Confrey & Maloney, 2015). 

 

 

Spatial proportional reasoning 
The ability to compare different-sized spaces or measures 

(Frick & Möhring, 2016); the ability to relate distances in one 

space to distances in another space (Frick & Newcombe, 2012). 

In this case it is visualising a consistent whole in which to 

imagine and compare the rate of growth against. 

E.g., imagining which plant is bigger at either the half year or 

full year mark.  

Child 17 

Child 22 

Child 23 

Child 24 

Child 25 

 

Child 26 

Child 1 

Child 2 

Child 3 

Child 4 

 

 

Relationship between fraction ideas and spatial constructs: 

To recognise the need for a consistent measure to compare the growth rate (half a year or one year) and then visualise the growth of each the plant in relation to that measure. 

 

Task: 
Plant A grew 5cm tall in half a year.           Plant B grew 8cm tall in a whole year. 

 

 

 

 

 

 

 

 

 

 

Which plant is growing faster? How do you know? 

 

Images are provided as distractors, so children need to focus on visualising a consistent measure to compare each plant. 
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Pilot Task 19: Dino Paths 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as Operator Fraction as Measure Construct  Group 1  Group 2 
Equi-partitioning a single whole 

Geometrical reasoning in which symmetries 

and congruence are utilised to develop equal 

parts of (primarily) rectangles and circles. 

 

Scaling 

Related to times as many. “There is only one 

salient 

dimension here, namely, objects. The 

splitting operation in this instance establishes 

the foundation of the ideas of a scalar (a 

dimensionless number possessing only 

magnitude) and a scaling factor” (Confrey, 

2012, p. 162). 

 

 

 

 

Unit Fractions 

Unit fraction involves identifying and 

naming a single share of n fair shares as 

“1/n of 1” (Confrey & Maloney, 2015). 

 

Spatial proportional reasoning (Scaling) 
The ability to compare different-sized spaces (Frick & 

Möhring, 2016); the ability to relate distances in one space to 

distances in another space (Frick & Newcombe, 2012). Spatial 

scaling and proportional scaling recruit overlapping cognitive 

processes (Möhring et al., 2018) therefore spatial proportional 

reasoning for the purposes of this thesis includes the ideas of 

both spatial scaling and non-symbolic proportional reasoning. 

 

Child 17 

Child 22 

Child 23 

Child 24 

Child 25 

 

Child 26 

Child 1 

Child 2 

Child 3 

Child 4 

 

 

Relationship between fraction ideas and spatial constructs: 

Estimating the fraction of the oval each of the dinosaurs travelled, and then comparing that in proportion to the oval. Using spatial proportional reasoning (possibly 

benchmarking to half) to determine which paths is proportionally longer. 

 

Task: 

You took a helicopter out to look for the dinosaurs who had escaped and took photos of different areas where the dinosaurs had been seen. 

 

Here is a photo of the school oval that was taken from different heights in the helicopter. What do you notice about the different photos of the ovals? Which was 

taken as a close up? Further away? 
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The lines on the ovals indicate how far two different dinosaurs walked across the ovals. Which dinosaur walked the furthest? How do you know? 
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Pilot Task 20: Bags of Wool 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator  Fraction as Measure Construct  Group 1  Group 2 
Fair share 

The creation of equal size shares (of 

discrete collections or continuous 

wholes) where the shares created 

exhaust the whole. Naming fair 

shares of collections, including 

counting and relational naming 

(naming one share in relation to the 

whole collection or single whole). 

 

For example: 12 objects shared 

among 3 children, a share is 4 

objects 

(per child). Relationally, each child 

receives 
1

3
 of the col‑ 

Lection (Confrey & Maloney, 2015, 

p. 924) 

 

Measure 

Directly related to fair share, in that 

when fair shares are created, these 

shares represent a quantity that can 

be used as a measure in comparison 

to the whole. 

 

Composite Units  

Derived from splitting, a composite 

unit is a unit of units. E.g., 3/4  is a  

composite unit of three, 1/4 units as 

a result of a from a three split, 1 1/2 

is a composite of two 3/4 units 

derived from halving; related to 

recursive multiplication. 

 

Spatial Visualisation 

Spatial visualisation is the ability or skill drawn upon to imagine multi-step 

spatial transformations within objects or sets of objects (Frick, 2019; Lowrie et 

al., 2021; Linn & Petersen, 1985; Sorby, 1999). 

 

 

 

Child 17 

Child 22 

Child 23 

Child 24 

Child 25 

 

Child 26 

Child 1 

Child 2 

Child 3 

Child 4 

 

 

Relationship between fraction ideas and spatial constructs: 

Visualising the outcome of sharing five bags fairly between three people, and the size of each share. Encouraging naming of the share (visualising whether each person would 

get more than/ less than …) 

 

Task: Recite the nursery rhyme, Ba Ba Black Sheep. 

 
If the sheep produced three bags of wool – one for the master, one for the dame, and one for the little boy, how much wool each person would receive if they had to share three bags between five 

people? Can you estimate/ visualise approximately what each share will be? (E.g., at least one full bag and some more…) 
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Pilot Task 21: Cuisenaire Fractions 
Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator  Fraction as a measure Construct  Group 1  Group 2 
Times as Many 

Related to reassembly (recursive 

multiplication). The ability to name 

the original collection 

multiplicatively in relation to a 

single fair share using “times as 

many,” or “times as much,” 

(Confrey & Maloney, 2015, p. 924). 

For example: How many times as 

large as one share is the whole 

collection? (reassembly)…the whole 

collection is 3 times as much as one 

share” (Confrey & Maloney, 2015, 

p. 922). 

 

Similarity 

Related to splitting through 

identifying similarities between the 

properties of equal shares and non-

symbolic proportional relationships 

(continuous parts and sets) 

 

Composite units 

Derived from splitting, a composite unit is a 

unit of units. E.g., 
3

4
  is a composite unit of 

three, 
1

4
 units as a result of a from a three split, 

1 
1

2
 is a composite of two 

3

4
 units derived from 

halving; related to recursive multiplication. 

 

Unit fractions 

Unit fraction involves identifying and naming 

a single share of n fair shares as “1/n of 1” 

(Confrey & Maloney, 2015). 

 

 

Spatial proportional reasoning 
Spatial proportional reasoning is the non-symbolic, visual 

recognition that shape, object and arrangements of different wholes 

can have the same value and therefore are equivalent. 

This can be an awareness of doubling and halving, times as many, 

distribution, and proto-ratio ideas in the development of fraction 

magnitude 

 

Spatial Visualisation 

Spatial visualisation is the ability or skill drawn upon to imagine 

multi-step spatial transformations within objects or sets of objects 

(Frick, 2019; Lowrie et al., 2021; Linn & Petersen, 1985; Sorby, 

1999). 

 

 

 

Child 5 

Child 6 

Child 7 

Child 8 

Child 10 

 

Child 9 

Child 11 

Child 12 

Child 13 

Child 14 

 

 

Relationship between fraction ideas and spatial constructs: 

Visualising the relationship between various measures / rods and naming their fractional relationships. Visualize the splitting action and the relationship between the number of 

shares and their size. 

 

Task: 

Children will have sets of Cuisenaire rods to explore. 

 

  
If this is one (orange, dark green etc) – what colour is half? (Spatial proportion activity) 

If this is a 2 thirds (dark green) what is one whole? 

What is 3 times light green? How many ways can you name it? 
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Pilot Task 22: Dinosaur Versus Human 
 

Rational Number Foci 

 

Spatial Reasoning Foci Children trialling the task  

Fraction as an operator  Fraction as a measure Construct  Group 1  Group 2 

Doubling / Halving 
Derived from splitting (2-split) which is founded on 

repeated halving (splits of splits). Perceptually 

recognising similarity (Confrey & Smith, 1995). 

Conceptualising the size of the share(s) as twice as 

big for doubling, or two times as small/ half as big for 

halving (Confrey & Maloney, 2015). 

 

Times as Many 

Related to reassembly (recursive 

multiplication). The ability to name the original 

collection multiplicatively in relation to a single 

fair share using “times as many,” or “times as 

much,” (Confrey & Maloney, 2015, p. 924). 

For example: How many times as large as one 

share is the whole collection? (reassembly)…the 

whole collection is 3 times as much as one 

share” (Confrey & Maloney, 2015, p. 922). 

 
 

Composite units 
Derived from splitting, a composite unit is a unit of 

units. E.g., 
3

4
  is a  composite unit of three, 

1

4
 units as a 

result of a from a three split, 1 
1

2
 is a composite of two 

3

4
 units derived from halving; related to recursive 

multiplication. 

 

Unit fractions 
Unit fraction involves identifying and naming a 

single share of n fair shares as “1/n of 1” (Confrey & 

Maloney, 2015). 

 

Spatial proportional reasoning 
Spatial proportional reasoning is the non-

symbolic, visual recognition that shape, 

object and arrangements of different wholes 

can have the same value and therefore are 

equivalent. 

This can be an awareness of doubling and 

halving, times as many, distribution and 

proto-ratio ideas in the development of 

fraction magnitude 

 

 

 

Child 15 

Child 16 

Child 17 

Child 21 

Child 23 

 

Child 24 

Child 18 

Child 25 

Child 26 

Child 1 

 

 

Relationship between fraction ideas and spatial constructs: 

Visualising the relationship between various measures / rods and naming their fractional relationships. Visualize the splitting action and the relationship between the number of 

shares and their size. 

 

Task: 

All of the dinosaurs are different shapes and sizes. To illustrate, we can make a type of reference that will help us explain how big each dinosaur is, compared to 

a human. 

 

Draw each of the dinosaurs and yourself to represent the following proportions: 

 

• A diplodocus is six times taller than an average adult (like your teacher’s height). 

• A velociraptor is half the height of an average adult. 

• An adult is 1 quarter of the height of a t-rex. 
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• An adult is half as tall as a triceratops. 
 

What strategies did you use to draw your pictures? What is the same or different between yours and your friends pictures?  
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Appendix B: Task-Based Interview Items 

Set One: Trusting the Count 

Item   Conceptual 

Focus 

Materials/ Stimulus For each Task 

 

Source and Description 

1: Subitising 

collections 

Part-part-whole 

knowledge 

 

 

Cards 1-6 (common dot die arrangement) 

E.g., 

   
Cards 7-10 (ordered arrangements) 

E.g., 

  
 

Cards 7- 19 (tens frames ordered and random) 

E.g., 

  
 

Hold the Subitising Cards out of the 

view of the child. Show each card in 

order for approximately 2 seconds. 

After each card, ask, 

“How many dots were on that card? 

… How did you work that out” 

(Siemon, 2006) 

 

 

2: Hidden 

counters 

task  

Part-part-whole 

knowledge 

9 Counters 

Calico bag 

(Example of resources provided) 

     

Place 5 counters and bag in front of 

child, rattle to demonstrate that there 

are counters in the bag. Place four 

counters in front of child. 

“There are 4 counters here and 5 

more in this bag. How many counters 

altogether? How did you work that 

out?” (Siemon, 2006) 

 

 

3: Tens 

frame 

Bananas  

Part-part-whole 

knowledge 

Tens frame representing 6 bananas: 

 

 
 

 

Children are asked to think about the 

dots on the tens frames as bananas.  

“If I have this many bananas, and 

three more bananas were added, how 

many are there altogether?” 

(Siemon, 2006) 

 

4: Hidden 

Dots  

Part-part-whole 

knowledge 

Dot card with flap: 

                    

                     

Place the ‘7’ and ‘9’ dot cards in front 

of the child. “There are 7 dots here 

and 9 dots here. Turn the ‘9’ card 

over and ask: How many dots 

altogether?  How did you work that 

out?” (Siemon, 2006) 

 

 

 

Set Two: Place Value 

5: 26 

counters 

Place value parts 

Composite, 

countable units 

26 counters plastic counters 

(Example image of resource provided) 

 

 

Tip out counters and say,  “Please 

count these and write down how 

many”. 

Circle the 6 in 26 and ask, “Does this 

have anything to do with how many 

counters you have there?” 

Circle the 2 in 26 and repeat the 

question. Ask child to explain their 

thinking if not obvious. (Siemon, 

2006) 

 

(Cut along 
dotted line 

to fold 

bottom 
flap over) 
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6: Place-

value 

Bundles  

Place value parts 

Composite, 

countable units 

13 bundles of ten pop sticks and 16 single sticks 

(Example image of physical resources provided) 

 

 
 

 

 

Place bundles and single sticks in 

front of the student, point to bundles 

and say, “Do you know how many 

straws are in this bundle?” Suggest 

counting if necessary, then say, 

“Please show me how you would 

make 34”.  If child asks or moves to 

unbundle a ten, point to the bundles 

of ten and say, “Before you do that, is 

there any way you could use these to 

make 34?” (Siemon, 2006) 

 

7: More 

than/ Less 

than.. task 

Place value parts 

Composite, 

countable units 

More than/ Less than Number Card: 

 

86 

 

 

 

Place the card in front of the student 

and ask, “Write the number that is 1 

more than this number? Write the 

number that is 1 ten more than this 

number?” 

 

If correct, say, “Write the number 

that is 3 less than this number? Write 

the number that is 2 tens more than 

this number?” Ask child to explain 

their thinking if not obvious. (, 

Siemon, 2006). 

 

8: 

Proportional 

Number line 

task   

Place value 

ordering 

 

Spatial 

proportional 

reasoning  

Number line card. Card is folded on the dotted line so only 

one number line is visible at once. 

 

 

0___________________________________20 

 

 

 

(fold line) 

- - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - 

 

 

 

0_________________________________100___

_____________________________ 

 

 
 

Place the 0 to 20 half of the folded 

Open Number Line Card in front of 

the child and say, “Use the pencil to 

make a mark to show where you think 

the number 8 would be …Why did you 

put it there?” Repeat with the number 

16. 

 

If reasonably accurate and/or 

explanation plausible, turn the card 

over to show the 0 to 100 open 

number line and say, “Make a mark 

to show where you think 48 would be. 

Why did you put it there?” 

 

Repeat with the numbers 67 and 26. 

Ask child to explain their thinking if 

not obvious. 

(Siemon, 2006) 

 

 

9: Four-digit 

number task  

Place value parts 

Composite, 

countable units 

Four-digit number card: 
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Child is presented with card “Can you 

please read this number?” If correct, 

say “Can you count on by ones 

please? What is ten less? 

(Siemon, 2006) 

Set Three: Fractions and Spatial Reasoning 

10: Folding 

Fractions  

Fair share 

Doubling/ halving 

Unit fractions 

Image of a square: Child is shown the image of a square. 

“How many ways can you imagine 

folding a square in half? Can you 
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Spatial 

visualisation  

 

 

describe what you think it would look 

like if you folded it in half, then in 

half again? What is each part 

called?” 

 

University of Cambridge, 1997-2023) 

 

 

 

11: What 

fraction is 

green? 

Composite units 

Unit fractions 

Many-to-one (2 

fifths: 3 fifths) 

 

Spatial 

proportional 

reasoning 

 

Image of rectangle: 
 

   

Child is shown the rectangle and 

asked, “What fraction of this 

rectangle is shaded green? How did 

you work that out?” 

(Created by researcher) 

 

12: 

Comparing 

unit 

fractions 

Unit fractions 

Equipartitioning a 

single whole 

1-nth-of...… 

 

Spatial 

Visualisation 

 

No additional stimulus provided.  Researcher asks: “Which is bigger, 1 

third or 1 eighth? How do you 

know?” 

(Created by researcher) 

 

13: Cordial 

mixture  

Scaling 

Distribution 

 

Spatial 

proportional 

reasoning  

Image of two “jugs “of water and cordial mixtures: 

 

 

 

 

 

 

 

Child is shown the two jugs of cordial 

mixture and asked, “Which jug of 

cordial will taste sweeter? How do 

you know?” 

 

Adapted from Boyer & Levine, 2012) 

 

14: Bags of 

wool  

Many-to-one 

Many-as-one 

Partitive division/ 

recursive 

multiplication 

Spatial 

visualisation 

  

No image. 

Referred children to the well-known nursery rhyme, Ba Ba 

Black Sheep. 

 

 

Child is shown the pictorial stimulus 

and asked, “Each sheep produces 3 

bags of wool What if there were five 

sheep, and they each produced three 

bags of wool? How many bags? 

(Siemon et al., 2011) 

 

15: Missing 

faces  

Composite Units 

1-nth-of..... 

 

Spatial 

visualisation  

Set image: 

 

Each child is shown the set and asked, 

“If this is 2-thirds of a set of stickers, 

what is missing? Draw or explain 

your thinking” 

(Created by researcher) 

 

 

 

 

 

16: Halving 

the stars 

Doubling and 

halving 

1-nth-of...… 

Geometric 

symmetries 

Many-as-one 

 

Spatial 

visualisation  

Problem image: 

 

 

 

 

 

 

 

 

 

Child is presented with the image. “If 

you gave away half of this collection 

of stars, how many would you have 

left?” 

(Created by researcher)  
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17: Flip it   Geometric 

symmetries 

 

Mental rotation  

Problem image: 

 

 
 

 
 

Choose one of the following options: 

 

       

The child is shown the image of the 

pairs of “3s”. “If we flipped this 

number sideways, it would look like 

this”. 

 

The child is asked, “What would the 

number 1 look like (point to number 

1) if we flipped it sideways?” 

 

 (Adapted from Nrich.maths.org) 

 

 

 

 

 

 

 

 

 

 

 

 

18: Giselle’s 

paper square 

Doubling and 

halving 

Geometric 

symmetries 

Equipartitioning a 

single whole 

 

Spatial 

Visualisation  

Images provided for children whilst researcher is explaining 

the task: 

 

 

 

 

 

 

 

 

 

         

 

 

 

A series of folds is made to a square, 

and the child needs to identify what 

the end result would be from four 

possible options. 

“Gisele had a green sheet of paper 

and cut a white shape out of the 

middle of the paper. Then she folds 

the paper in half, diagonally. Which 

of the four shapes below did Gisele 

see?” 

Note: Images of the paper square 

being cut and folded not shown to 

child. 

(Adapted from Ekstrom et al., 1976) 

 

 

19: Scale 

the picture  

 

Doubling and 

Halving 

Times as many 

Geometric 

symmetries 

Scaling 

 

Spatial 

proportional 

reasoning   

 

Spatial scaling image: 

 

 
 

 

An image of two circles is presented. 

The first circle has the diameter 

doubles, and area increased by four 

times. Children are required to draw 

the missing element (rectangle) and 

describe a relationship between the 

two images. 

“Can you complete the picture of the 

circle on the left, so it has the same 

objects as the right-hand image? 

Explain why you chose to draw the 

objects in that way? Can you explain 

how these two circles are the same or 

different? 

(Adapted from Frick & Möhring, 

2016) 

 

20: What’s 

the object? 

Doubling and 

halving 

Geometric 

symmetries 

Mental rotation image: 

 

Children are required to choose an 

image that would be the outcome of 

combining 2 halves of an object. “If 

you pushed the two parts in the blue 
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Equipartitioning  

a whole 

Unit fractions 

 

Mental rotation 

 

 
 

box together, which of the four shapes 

on the right would it make? Why do 

you think so?” 

(Mix, 1998). 

 

21: Eating 

pies 

Equipartitioning a 

whole 

Recursive 

multiplication 

Composite unit 

Unit fractions 

Part-whole 

fractions 

 

Spatial 

visualisation 

 

Images of pies: 

 

     
 

Children are presented with a 3D 

image of two “pies” that have a 

fractional part missing. They need to 

use their visualisation skills to 

determine what fraction each part 

represents. “Can you describe what 

size each piece of pie is? How did you 

work that out?” 

(Adapted from Way, 2011). 

     

22: Fred’s 

pizza 

Equipartitioning a 

whole 

Equivalent 

fractions 

 

Spatial 

visualisation   

Image of Fred ordering pizza. No image of an actual pizza 

supplied; however, children have access to pencils and paper 

for use. 

 

“Fred orders a pizza which he will 

eat the whole thing in one sitting. 

But…he asks for it to be cut into 

quarters, not eighths, because he 

can’t eat eight slices of pizza. Does 

his request make sense? Why or why 

not?” 

 

(Adapted from Dole, 1999) 

 

23: Plant 

growth rate 

Distribution 

Proto-ratio 

Doubling and 

halving 

 

Spatial 

Proportional 

Reasoning  

Image provided of the plants as a distractor: 

 

 
Plant A                                      Plant B 

 

Comparing rate of growth. 

“If plant A grows 5cm in half a year, 

and plant B grows 8cm in a whole 

year, which is growing faster? How 

do you know” 

(Adapted from Dole et al., 2012) 

 

24: How big 

is a half? 

Measure 

Unit fractions 

1-nth-of...… 

 

Spatial 

Visualisation 

 

 

No additional stimulus provided.  “I want you to close your eyes and 

think about what you see when you 

think about the word half? Just think 

for a moment about when you might 

have heard that word. Now tell me, is 

half big or small? Tell me why you 

think that?” 

(Adapted from Ball, 1993)  
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Appendix C: Intervention Program 

 

Lesson 1:  

Sharing 

Cookies 
 

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 
 Fair shares 

Doubling/ Halving 

Partitive division 

1-nth-of...… 

Geometric 

Symmetries 

 

Many-as-one 

Measure;  

Spatial Visualisation 

 

*Added during Cycle Two: Spatial structuring of units/ shares created – 

i.e., pattern, formation, repetition of units. 

 

 

Relationship between 

fraction ideas and 

spatial constructs  

Visualising partitive division/ recursive multiplication between parts/ shares and whole. Conceiving the change in size of share as more shares are required. 

Visualising shares involving mixed numbers. 

*Emphasising the structure and organisation of parts and wholes to help develop the mathematical ideas.  

 

Launch 

Questions and provocations for the children: What are fractions? What types of fractions have you heard of before? When you hear the word half, what do you think of? (Close 

your eyes and imagine). When you hear quarter? What do you see in your mind? 

Draw the pictures you see in your mind about half and quarter. 

After children explore these questions and representations, they will share with each other in small groups. 

 

Explore 

Introduce the picture book – “The doorbell rang” by Pat Hutchins. Ask the children to describe what is happening in the story. 

Each child receives a “story board” that shows how many children were at the table at each part of the story. The 

children are asked to model/ draw how each group of cookies would be shared in each of the boxes. 

Story board (A3 size): 

 

Children are provided with paper circles (as cookies) and plastic counters if they choose to use them. 

Children are asked to name how they might describe the different shares of cookies. 

 

Summarise 

Discuss how the children problem solved; specifically, 8 cookies between 12 children (a complex problem not 

explored in the picture book) 
Intentional Teaching: How much of the whole set of cookies (12) does 1 of these 8 children have? What patterns do you notice about the shares created? 

What happened to the number of cookies each person receives when there are more children to share the cookies with? 

What did you notice about each person’s share? What does this have to do with fractions? 

 

12 cookies, 2 children 

 

12 cookies 4 children 

 

 

12 cookies 6 children 

 

8 cookies 12 children 
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Lesson 2: 

What is a Fair 

Share   

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 
Many-to-one  Fair shares 

Doubling and Halving 

Partitive division/ 

recursive multiplication 

Geometric Symmetries 

1-nth-of... 

  

Many-as-one 

Unit fractions 

Composite units 

Spatial Visualisation 

Mental Rotation 

 

*Added during Cycle Two: Spatial structuring  

Relationship between 

fraction ideas and 

spatial constructs 

To partition small sets and continuous models to develop awareness of the size of the parts and number of parts created 

*To build visual recognition and awareness of the structure, form, pattern, and regularity of many-as-one parts forming a unit measure. 

To visualise the act of partitioning to create other partitioning (splits) to conceptualise fraction measures 

Exploring naming the collections from the fraction as relation, many-to-one perspective: e.g., x cookies for each child 

Launch 

Recap initial ideas from Lesson 1. What is a fraction? Where have you seen/ heard/ used fraction ideas in your daily life? 

 

Each child takes a strip of paper (all different lengths). They are asked to partition in half . Then each child is asked to buddy up with a partner or group of three and compare. 

Questions and Provocations: 

What is the same? What is different? Have you all got half? Why or why not?  What does half mean? 

 

 

Explore 

Re-read “The doorbell rang” by Pat Hutchins. 

Small groups of children receive laminated sets of cards of each picture (they can draw with whiteboard markers on these). 

Does each person get a fair share of cookies, in each of the following plates? (Start by modelling and discussing a continuous and discrete example as a whole class). 

2 cookies shared between 2 people. Fair or unfair? Why? 

 

                 
 

 

Ask students to use counters as a scaffold. 

How many different ways can you share 12 cookies fairly?  Can you add any new ways to what we did yesterday?   Or 16? Or your own chosen number of cookies? 

 

What about sharing 1 cookie between a group of children? How could you do this fairly? 
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Summarise 

 

Questions and Provocations: 

Let’s take a minute to go over a few important “rules” about fractions. When we talk about fraction names like halves (“twoths”), quarters (fourths), thirds, fifths… that means 

each of those parts or size of the groups are exactly the same. 

If I were to cut this cookie like this (show non-example  ) can we call them fourths/ quarters? Why or why not? How do you know just by visualising? 

 

Children are asked to discuss their thinking with a set model of  four unequal groups: three unequal groups with counters. 

 

Invite children to cut up the cookie above to prove that they are not equal parts when cut this way. 

 

So, let’s talk about the name of some of the parts we explored today. What about this cookie:  How many parts? Are they all equal? How do we know? – e.g., 

engage in spatial visualisation/ mental rotation). What do we call them? What does the number of equal parts tell us about the name of the fraction? 

 

How many cookies is a fair share if there are three people and 12 cookies? 16 cookies and 4 people? 

 

What did you discover about your sharing examples? Was it easy to tell a fair share from an unfair share? Why? 
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Lesson 3: 

Visualising the 

share of a 

cookie 
 

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 

 Doubling Halving 

Partitive division/ 

Recursive 

multiplication 

Equipartitioning a 

whole 

Geometric symmetries 

Similarity 

Many-as-one 

Composite units 

 

Spatial Proportional Reasoning 

Spatial Visualisation  

Relationship between 

fraction ideas and 

spatial constructs 

Exploring proportional relationships between different shapes that have been partitioned into various fractions (i.e., quarters, halves, thirds). Reasoning how they 

represent the same fractions in relation to their whole. 

To visualise the act of partitioning and the multiplicative nature of doubling the parts results in halving the size of each share. 

To estimate and visualise proportional similarities between different geometric wholes and their fractional parts. 

Launch 

Take a square sheet of paper, fold into half (must be square or ‘short’ rectangle for this task for ease of folding diagonally). 

Questions and provocations: 

If I wanted to fold it into fourths, what would that mean? How many ways can I do that so there are fourths (four equal parts)? 

Model one example and also a non-example. 

 

How many fourths are there in a whole (sheet of paper)? Why? 

Provide children with cards of the following images: 

 
What is different about each shape, and what is the same? (Focus on proportional relationships) 

What do these shapes and their parts have to do with fractions? 

Refer back to the non-example above and ask the children to explain what is the same and different, how the parts relate to fractions. 

 

Explore 

Bring out a large, paper cookie (A4 size). 

If I were the only one in the room, how much of the cookie would be mine? (The whole thing). 

What happened if someone else came along? (model halving the cookie – either by drawing on board or folding cookie). Focus on language and size of parts. 

And the doorbell rang – its 2 more friends! Ask children to get into groups of four. How will we equipartition to each get a fair share? What is each part called now? (fourth) 

Why? (Name of the part names the share etc). Imagine what your cookie would look like if you had to share between 8 people.  Just by looking at your cookie, can you visualise 

a way you would share your cookie fairly? Now use your cookie to fold/ partition into eighths. Are all the parts equal? 
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Finally, children were given a paper cookie/ lemon slice (rectangular shape) and asked to share between a number of their friends – three, six. They had to visualise and draw 

where and how they would cut their cookie. 

 

Summarise 

Describe what happens to the cookie as more people come to share the cookie. If you were hungry and it was your favourite cookie – would you like to share between 3 people 

or 5 people? That is, would you prefer a third of a cookie or a fifth? Visualise and discuss. What does this mean for fractions? Is there a rule we state that applies to fraction 

which helps us think about them? (The more shares the smaller the part). 

 

 

 

 

Lesson 4: 

Sharing 

divisible 

collections 
 

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 

 Many-to-one 

Distribution  

Partitive division/ 

recursive 

multiplication 

Times-as-many   

Many-as-one 

Composite units 

Unit fractions 

 

Spatial visualisation 

*Added during Cycle Two: Spatial structuring  

Relationship between 

fraction ideas and 

spatial constructs 

Visualising the relationship/ action of partitive division and recursive multiplication between sets of objects. Naming and renaming the shares to build 

a connection between many-to-one, times-as-many and many-as-one shares. 

Spatial structuring of distributing far shares of collections. 

Use of spatial language (i.e., spatial dimensions). 

 

Launch 

Questions and Provocations: 

Who can remember a rule for creating fractions? (The more shares the smaller the part/ share; all parts/ shares must be equal to be named a fraction / number of fair shares 

names the fraction). 

Take a strip of paper, and fold in half. Open – what can you see? (2 equal parts). What do we call them? (Halves or twos) 

Now fold in half again – what can you see? (Four equal parts). What do we call them? (Fourths) What can you tell me about fourths and halves? (Direct children’s attention to 

one half = 2 equal parts, are bigger than 1 fourth/ quarter etc). 

Imagine re-folding in half, half and then in half one more time. Predict what you think will happen – Check: What has happened? What can you tell me about the parts you see? 

What are they called? What can you tell me about 2- eighths? 

Which is bigger? 1-eighth or 1- half? 1- fourth or 1- eighth? 

What is the same here as what we did yesterday with the cookies? What is different? Emphasise that the shape of the whole to start with does not matter, it is the way its 

partitioned. That is, a circle and a square can both be partitioned into eighths, but they may look different. The fraction is relative to its whole – nothing else. 

 

 

Explore 
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We know that the number of shares we partition our whole into, names the fraction. Using any number of counters under 12, divide your collections and see if you can name 

what fraction you have divided your set into. Record how you have done this, and name each of the shares (Model recording strategies as a whole group as many have difficulty 

with discrete sets).  Emphasise visualising the relationship/ action of partitive division and recursive multiplication 

Prompts for children: when sharing 10, by 5 people… i.e., fifths; the whole is how many times as big as one share? How many cookies is three shares?  (Confrey & Hotchkiss – 

Scarano, 1995). 

 

 
 

Two shares/ 2-fifths: 

 

Three shares/3-fifths / three times as many-as-one share. 

 

Summarise 

 

Children will develop some conjectures or statements about the distribution of the set and how they have named the fractional parts. What do you notice about the number of 

shares you have created, and how big each share is? 

 

 

 

 

 

Lesson 5: 

Cookie fraction 

estimation 

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 
 Double halving 

Times as many 

Similarity 

 

Composite units 

Unit fractions 

Part-Whole fractions 

Equivalent fractions 

Spatial Visualisation (Mental Rotation) 

Relationship between 

fraction ideas and 

spatial constructs 

Visualising the magnitude of each part in relation to a whole, and the total quantity created (equal to and greater than one) through composite 

fractions. 

Comparing images of cookie parts via mental rotation. Recognising times-as-many and double and halving structures to create different quantities of 

cookie (including mixed fractions (i.e., 3 halves as three times as many) 

Launch 

Victoria and Sam’s friend were having a birthday. They made her a birthday cake and cut up some of Ma’s cookies to decorate it on top. 

So not to waste any of the leftover cookies, Ma put the unused parts back in the cookie tin. 
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How many whole cookies are there? 

 

To scaffold: teacher models putting cookie fractions into a tin – e.g., 3 halves, one half at a time shown to the students in different 

orientations. Once each fractional part is put in the tin the students won’t be able to see them anymore. Student can draw what they see 

one at a time, but the focus is on visualising the total quantity of the parts and connecting that to their understanding of composite parts. 

 

• 2 halves (one after another) – describe how much of a cookie? 

• 2 quarters - how much? 

• 3 halves 

• 1 whole, 1 half and 1 quarter 

 

Students visualise and can draw what they think the parts would look like all put together. 

 

Each partner gets a bag with fractional parts but only whole, halves quarters and thirds are used for this task. One partner choose three parts. They must show the parts to their 

partner one at a time, as they put in a cookie jar (i.e., paper bag). Their partner must mentally keep track of parts or draw and see if they can describe the size of the parts.  Then 

they need to work out the total quantity created form combining the three part, justify and then check with the parts. 

 

 

Explore 

 

Victoria and Sam left the cookie jar open one afternoon, and a mouse got in! It ate some of the cookies – here are what is left: (students will be shown each of these parts and 

asked to visualise and use the fraction kits to help them solve what fraction was eaten etc). 

 

         

                              
 

Which cookie had been eaten the most? 
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Can you see any parts that would fit together to make a whole cookie? Name and describe the parts you join to make a whole cookie. Children have access to fraction kits to 

explore this task 

 

 

Summarise 

 

What did you notice about the different parts? How do you know which pairs fit together? What strategies did you use? What parts were hard/ easy to visualise combining? 

What strategies did you use (estimating if it were more than/ less than half/ quarter etc?) 

  

 

 

Lesson 6 

Tablecloths 

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 
Distribution  Doubling/ Halving 

Partitive Division/ 

Recursive 

multiplication 

Equi-partitioning a 

whole 

Geometric symmetries 

Similarity 

 

 

Composite units 

Part-whole fractions 

Equivalent fractions 

Spatial Visualisation 

Spatial Proportional Reasoning  

Relationship between 

fraction ideas and 

spatial constructs 

Exploring the process of multiple mental folding (SV) and rotating parts of the tablecloth to determine proportions of colour, comparing regions of 

incongruent and congruent wholes. Noticing distributions of composite units and comparing part-part and part-whole relationships.  

Launch 

Ma wanted to buy a new tablecloth for the kitchen table. She asked Victoria and Sam to go to the shops and see if they could find one that was suitable. She asked for it to be in 

the colours of purple and orange, but she wanted it to be more purple than orange. Victoria and Sam found the following tablecloths. Which of the tablecloths can Sam and 

Victoria choose from? How much is the purple part in each cloth? How do you know? 

 

 

 

 

 

 

 

 

Explore 
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Here are some new tablecloths Ma was considering buying. Where can you see a half? A fourth? How many other fractions can you see? Colour and name the parts. (A range 

of simple and complex patterns will be provided). 

Children will also be provided with blank squares and rectangles to create their own representations. 

  
 

Summarise 

 

What fraction parts did you see?  What strategies did you use to help you see different fraction parts?(multiple mental fold/ rotating parts, comparing proportional regions of 

incongruent and congruent wholes) What did you discover about the proportion of colour on your tablecloth? 

 

 

 

Lesson 7 

Pattern Block 

Fractions  

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 
Proto-ratio  Doubling/ Halving 

Geometric symmetries 

Similarity 

Times as many 

Scaling   

Many-as-one 

Composite units 

Equivalent fractions 

Spatial Visualisation 

Spatial Proportional Reasoning  

*Added during cycle 2: Spatial Structuring  

Relationship between 

fraction ideas and 

spatial constructs 

Similar to lesson six however children will use pattern blocks to manipulate and create fractional parts. 

A focus on operating on children’s pattern block construction and establishing the relational proportions between the representations. E.g.: what 

would it look like if it were only half the size? Double the size? Three times etc. 

Launch 

Revisit/ modified task from Lesson 6: Ma wanted to buy a new tablecloth for the kitchen table. She asked Victoria and Sam to go to the shops and see if they could find one that 

was suitable. She asked for it to be in the colours of purple and orange, but this time, she wanted it to be more orange than purple. Victoria and Sam found the following 

tablecloths. Which one is more orange? How much of the tablecloth is orange in each cloth? How do you know? 

Example of tablecloths 
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Explore 

 

Using the pattern blocks, children explore modelling 1 half, 1 quarter, a third and other fraction combinations of the choice, using different pattern blocks. 

 

For example: 

If this is a whole: 

 

 

What is half? How many ways are there to represent half with the pattern clocks (connection to equivalent fractions) 

 

If this is a third,              what is a whole? 

 

Create a picture using different pattern blocks, focusing on where you can see fractions within your picture. Record and discuss your ideas with a friend. 

What would your representation look like if it were half/ double, three times the size (area) of the original?  If there are three triangles to half a hexagon, how many triangles in 

three hexagons? (Building up proto-ratio) 

 

Summarise 

Describe how you constructed your representations. What fractions did you create? What strategies did you use to help you? How did you shrink or enlarge your original 

picture? What patterns did you discover? 

 

    

 

Lesson 8 

The dinosaurs 

have escaped 

(Part 1)  

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 
 Double/Halving 

1-nth-of...… 

Scaling 

Times as many 

Composite units 

Unit fractions 

 

Spatial Visualisation 

Mental Rotation 

Spatial proportional reasoning   

Relationship between 

fraction ideas and 

spatial constructs 

Estimating fractional lengths of paths on carpet maps. Paths are not straight, so children need to engage in spatial visualisation and mental rotation to 

compare the length of multiple paths and use spatial proportional reasoning to estimate measures within a single pathway/ region. 
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Launch 

Introduce the new picture book “Knock, knock dinosaur” by Caryl Hart. 

 

The dinosaurs have escaped the boys house! They’ve decided to explore the neighbourhood – here is the map. Somebody said they saw a T-Rex halfway between the boy’s 

house, and the zoo. Where would that be? (The Food store). Another person said they saw a dinosaur halfway between the central fountain and the duck pond – where would 

that be? (museum). One lady saw a velociraptor 2-thirds of the way along the road in front of the café, heading toward the food market…where would this dinosaur be? 

Lots of scaffolding of directions/ position and then visualising 2-thirds of the length of said road. 

 

 
 

Explore 

You have taken a helicopter out to see if you can find some dinosaurs. On this map of the town (floor carpet), match the dinosaurs to their locations by sticking the correct tag on 

each dinosaur and placing on the mat (group task – each group will get a different mat). 
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Each set of directions will be specific to each mat, but include half, fourths, thirds, fifths and eights as well as language like twice as far etc. Children will also be encouraged to 

create their own fraction positions. 

 

 

Summarise 

Gallery walk: Check out the other group’s positions of their dinosaurs. Do you agree on their position? Is there another way of naming that position?  What was hard about this 

task? What strategies did you team use to work out the position of your dinosaurs? 
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Lesson 9 

The dinosaurs 

have escaped 

(Part 2) 

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 
 Doubling/ Halving 

Scaling 

Times as many 

Composite units 

Unit fractions 

Part-whole fractions 

 

Spatial proportional reasoning   

Relationship between 

fraction ideas and 

spatial constructs 

Estimating fractional lengths of paths on carpet maps. Paths are not straight, so children need to engage in spatial visualisation and mental rotation to 

compare the length of multiple paths and use spatial proportional reasoning to estimate measures within a single pathway/ region. 

 

Launch 

Students start with a thin strip of paper, folding in half and to quarters. 

Using this as a scaffold, a number line will be drawn on the board. Students will be invited to mark the halfway point on the number line, using their strips as a guide. Repeat 

with quarters. Scaffold “a dinosaur walking along the number line/ paper strip”. If I walked from start of the number line to *here* (point to halfway, three quarters etc) how far 

would he have walked. A focus on measurement interpretation. 

 
Repeat the introduction for the class from previous lesson. This time, pairs of students have this map between 2, and I call out clues where a dinosaur was found, and they need 

to mark on their maps. 

The clues were: halfway between the central fountain an *a* park bench (they choose which park bench) 

Three times the length of the school 

1- quarter of the way through the zoo, from the front gate. 

 

Explore 

Each group of students gets a different map and set of instructions. They need to work as a team to find their dinosaurs. Then the children create at least one new instruction for 

another group to find. 
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Summarise 

How did your group decide, and problem solve each of the clues? How do you know that your location is correct? Could there be other possibilities – why? 
Gallery walk: Check out the other group’s positions of their dinosaurs. Do you agree on their position based on their task cards? Is there a different position the dinosaur could have been 

standing? (i.e., one third of the runway depends on which end of the runway is considered the ‘start’). 

What was hard about this task? What strategies did your team use to work out the position of your dinosaurs? 

 

 

 

 

Lesson 10 

The dinosaurs 

have escaped 

(Part 3) 

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 
Distribution 

 

Doubling/ Halving 

Scaling 

Times as many 

Composite units 

Unit fractions 

Part-whole fractions 

 

Spatial proportional reasoning (Scaling) 

 

Relationship between 

fraction ideas and 

spatial constructs 

Creating scaled representations of fractional paths, naming and describing the distributions of the measures: half of …path is greater than half of 

another path. 

Launch 

 
If this is one (orange, dark green etc) – what colour is half? (Spatial proportion activity) 

If this is a 2 thirds (dark green) what is one whole? 

What is 3 times light green? How many ways can you name it? 

Give students a bag of rods in groups for them to explore. 

 

Explore 

 

Children represent parts of their carpet map that described where they saw each dinosaur, on an A3 sheet of paper. They need to draw the points of interest – e.g., the runway of 

the airport; draw the position of the dinosaur and then write in words their explanation such as, “dinosaur located 1 quarter of the way along the runway”. 

 

Children can draw a map of another’s whole (or part thereof) mat, again describing the position of the dinosaur in a fraction sense.  
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Summarise 
*Intentional Teaching: What is the same about the carpet map (zoo/ airport/ farm etc) and your map? (Same proportions/ fraction, different scale etc). 

What is different? (Absolute size). 

 

Gallery walk: Check out the other group’s positions of their dinosaurs. Do you agree on their position based on their task cards? Is there a different position the dinosaur could have been 

standing? (i.e., one third of the runway depends on which end of the runway is considered the ‘start’). 

 

 

 

 

Lesson 11 

How many 

steps?  

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 

Many-to-one 

Distribution 

Proto-ratio 

 

Partitive division/ 

recursive 

multiplication 

Times-as-many 

 Spatial Visualisation  

*Spatial structuring  

Relationship between 

fraction ideas and 

spatial constructs 

Children explore discrete part-part relations of footsteps, i.e., dinosaur: human quantities. Focus is on visualising the many-to-one relationship in the 

outset (i.e., for each Dino step, we take many steps to travel the same distance). Naming the relationship as times-as-many and building up/ building 

down to represent pro-ratios.  

Launch 

It’s getting cold outside. Each dinosaur needs a pair of boots. For each dinosaur (2 legs or 4) how many boots? What if there were 5 dinosaurs? Think about how you can record 

this. 

 

Explore 

If one dinosaur step was 2 of your normal steps, how many of your steps would you need to take for 5 dinosaur steps? (Model this on the board/ with plastic counters) 

 

Use materials to help you in any way you like. 

 

If we take 3 steps to every dinosaur step, how many steps do we take in 2 dinosaur steps? 

What if there are 5 dinosaur steps – how many steps will we need to take? 

What if the dinosaur had taken 6 steps, and you had taken eighteen? What is the smallest number of steps you would need to take for 1 Dino step? 

 

Summarise 

 

What did you discover? How can we represent this in a way that helps us describe what is happening 
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Lesson 12 

Animal 

Proportions   

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 

 
 Distribution 

Equipartitioning 

multiple wholes  

Doubling / Halving 

Times as Many 

1-nth-of...  

Composite units 

Unit fractions  

Spatial proportional reasoning   

Relationship between 

fraction ideas and 

spatial constructs 

Exploring and preserving continuous part-part quantities and relationship when replicated (enlarged/ shrunk). 

 

Launch 

If you ate like a dinosaur you would eat A LOT! The t-rex has eaten through a heap of muesli and chocolate bars but hasn’t quite finished each one before it started on the next. 

 

Mum keeps a few boxes of muesli/ chocolate bars in the pantry for snacks. They are not all the same size. Which bar, did the T-rex eat the MOST of? How do you know? Which 

bar did it eat the LEAST of? How do you know? 

(Students will receive 2 bars in various sizes with various amount eaten – as indicated by a different colour e.g., grey section uneaten, brown section eaten etc). 

 

  

  

   

  

 

 

Explore 

Some animals – not as big as dinosaurs, have some pretty interesting characteristics. For example, a Chameleon’s tongue is twice the length of their bodies. (Show a picture of a 

chameleon from If you hopped like a frog (Schwartz, 1990) picture book). 
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If you were a chameleon – but the same height you are now, how long would your tongue be? Discuss strategies you would use to figure this out (i.e., model using freeze tape to 

measure heights and partition in half). 

 

Using strips of paper, make your tongue based on the chameleon’s proportions (twice the length of your body = length of tongue). What if the length of the Chameleon’s tongue 

was only one third of the length of its body? How many times is your body the length of your tongue? 

 

If you were a frog, you could hop five times the length of your leg. How far could you hop if you were a frog? Estimate first, think about what strategies you would use. 

 

Provide students with different length of freeze tape: If this was a frog jump, how long would its leg be? How do you know? (Visualising fractions of a measure). 

 

Summarise 

What is the difference between one fifth and one third? Think about how you would describe these fractions to a friend. 

Which is longer: A tongue that is a one third of your height, or a tongue that is one half of your height? 

What do the names of the fraction parts tell us about the size of the part? 

What strategies helped you? 
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Lesson 13 

Feeding 

dinosaurs 
 

Rational Number Foci 

 

Spatial Reasoning Foci 

Fraction as Relation Fraction as Operator Fraction as Measure Construct 
Many-to-one 

Distribution 

Proto-ratio 

 

Partitive division/ 

recursive 

multiplication 

Times as many 

1-nth-of...  

Many-as-one  Spatial Visualisation 

 

Added during cycle Two: Spatial Structuring    

Relationship between 

fraction ideas and 

spatial constructs 

Children explore discrete part-part relations of pies and visualise the many-to-one and distribution of these quantities. Children build up and build 

down in pro-ratios to explore naming the quantities by changing the referent units (many-to-one versus many-as-one/ times as many/ 1-nth-of... etc).  

Launch 

Imagine you and your friend were sharing some chicken nuggets between you. However, you were STARVING, but your friend was not that hungry. You both decided that you 

should get twice as many nuggets as your friend. How many nuggets would you both get? Is there more than one solution? 

 

Explore 

Dinosaurs eat so much food! Did you know, that if you were a T-rex, you could eat 300 hamburgers in one mouthful! 

 

Mum decides to feed the dinosaurs some of her pies she has made. For each dinosaur, she has made 3 pies. How many dinosaurs will she feed, with 18 pies? How can you use 

the strategies in the dinosaur step problem to help you with this? 

 

How many dinosaurs will eat one half of the pies? 

 

Summarise 

Explain your solution to the problem and the strategies you used to solve. What are some different strategies the class used? 
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Appendix D: RMIT Ethics Approval 
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Appendix E: Government of South Australia Ethics Approval 
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Appendix F: Information Sheet 

 

 
 

Participant Information Sheet 

Title 
Exploring the efficacy of an alternative approach to the teaching 

and learning of fractions in the early years of primary school.  

Chief Investigator/Senior Supervisor Emerita Professor Dianne Siemon 

Principal Investigator] Associate Investigator(s)/Associate 

Supervisor(s) 
Doctor Angela Rogers  

Principal Research Student(s) Chelsea Cutting  

 
 

What does my participation involve? 
 
1 Introduction 

 
You are invited to take part in this research project, which is called ‘Exploring the efficacy of an 
alternative approach to the teaching and learning of fractions in the early years of primary school’. You 
have been invited because you are a South Australian Department for Education teacher in Years 1 or 2, 
who currently teaches mathematics. Your contact details were obtained from your school’s general 
email address. 
 
This Participant Information Sheet/Consent Form tells you about the research project. It explains the 
processes involved with taking part. Knowing what is involved will help you decide if you want to take 
part in the research. 
 
Please read this information carefully. Ask questions about anything that you don’t understand or want 
to know more about. Before deciding whether or not to take part, you might want to talk about it with a 
colleague or your Principal. 
 
Participation in this research is voluntary. If you don’t wish to take part, you don’t have to. 
 
If you decide you want to take part in the research project, you will be asked to sign the consent section. 
By signing it you are telling us that you: 
• Understand what you have read 
• Consent to take part in the research project 
 
You will be given a copy of this Participant Information and Consent Form to keep. 
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2  What is the purpose of this research? 
 
The aims of this research are to develop an evidence based, alternative approach to teaching fractions 
in the early years of primary school (Years 1 or 2). 

Many primary students have significant misconceptions about fractions that hinder understanding 
and restrict the development of effective strategies for working with fractions (AAMT, 2017). 

 
The development of an alternative approach is intended to assist and improve the teaching and learning 

of fractions in the early years of primary schooling. This will have immediate benefits to the participating 

teachers, students and their schools, however there is also the potential that the findings in this research 

may help improve and extend learning in other areas of rational number and proportional reasoning 

concepts. 

 
 
This research is for the purpose of obtaining a degree through RMIT University. 
The results of this research will be used by the researcher Chelsea Cutting to obtain a Doctor of 
Philosophy (PhD) degree. 
 
3 What does participation in this research involve? 
 

• You will be required to sign a consent form prior to your involvement in the research. This 
consent form includes gaining consent from your Principal to be part of this research project 
and the consent from the parents of the students in your class. 

• Before the research commences, the researcher will observe your mathematics classes over a 
series of your normally scheduled mathematics classes, to understand the context of your 
class and students. You will also be individually interviewed by the researcher to gain insight 
into your teaching methods. 

• You will not be able to teach your normal unit of work on fractions at all during 2019. 

• In late term 2 or early term 3 2019, the researcher will teach a unit of work to your class over 
a period of 3-4 weeks, which utilises this evidence based alternative approach. 

• Copies of student work samples and anecdotal notes may be taken, but no audio or visual 
recordings will be taken of the children. 

• There are no costs associated with participating in this research project, nor will you be paid. 

• You will receive a copy of all of your student’s data and progress for your own assessment and 
reporting purposes. 

 
4 Other relevant information about the research project 
 

• The aim is to have at least 2 teachers participate in this the project from either Years 1 or 2. 

• There is no requirement for teachers to teach, administer or assess any of the tasks; this will 
be done by the researcher. 

• You will receive all assessment data from the unit of work the researcher has taught, for you 
own assessment and reporting purposes. 
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5 Do I have to take part in this research project? 
 
Participation in any research project is voluntary. If you do not wish to take part, you do not have to. If 
you decide to take part and later change your mind, you are free to withdraw from the project at any 
stage. 
 
If you do decide to take part, you will be given this Participant Information and Consent Form to sign and 
you will be given a copy to keep. 
 
Your decision whether to take part or not to take part, or to take part and then withdraw, will not affect 
your relationship with the researchers or with RMIT University. 
 
6 What are the possible benefits of taking part? 
 
We cannot guarantee or promise that you will receive any benefits from this research; however, you 
may appreciate contributing to knowledge. Possible benefits may include: 

• An understanding of the intuitive idea’s students develop when learning fractions in the early 

years. 

• An understanding of how a range of different strategies are utilised in the conceptual 

development of fractions. 

• An understanding of the extent to which these strategies assist primary school aged children 

when learning fractions and how they can promote the proficiencies of understanding, 

reasoning, fluency and problem solving. 

• A greater awareness of such strategies and the development of more effective pedagogical 

approaches to teaching fractions. 

• Involvement in this project will count toward your 60 hours of Professional Learning required 
for your teacher registration. 

 
7 What are the risks and disadvantages of taking part? 
 

• Your participation will involve allowing the researcher to administer a 3–4-week unit of work 
during your normal mathematics lessons in term 2 or 3.  Therefore, a disadvantage is that you 
cannot teach your fraction unit at all during 2019. 

 
8 What if I withdraw from this research project? 
 
If you do consent to participate, you may withdraw at any time. If you decide to withdraw from the 
project, please notify Chelsea Cutting, via email or phone: 
 
You have the right to have any unprocessed data withdrawn and destroyed. 
 
9 What happens when the research project ends? 
 
The collected from the study will be analysed by the researcher.  As this forms part of the researcher’s 
PhD degree, the results (de-identified) will be published in the thesis at the completion of the degree, no 
later than 2023. 
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How is the research project being conducted? 
 
10 What will happen to information about me? 
 

• Names and contact information (email or phone numbers) will only be collected and used by 
the researcher to communicate with the participating teachers during the research project. 

• They will be stored under password protected files on the researcher’s PC. No other personal 
or identifiable information about the participating teachers or schools will be collected, stored 
or used in the research project’s publications (whether they are published or not). 

• The only personal information recorded about the students will be their age and current year 
level. 

• All work-samples or written observations collected by the participating teachers for the 
project will be de-identified before the researcher obtains the data.  Pseudonyms such as 
"Student A, Teacher 1" will be assigned to all participants to ensure confidentiality when 
research findings are presented either in aggregate form or as individual responses. 

• All data including non-identifiable work samples, anecdotal notes and observations will be 
kept on the researcher’s PC under password protected files. Hard copies of data will be kept 
in a locked filing cabinet only accessible by the researcher. Once hard copies have been 
scanned and saved into the appropriate password protected files, the originals will be 
destroyed via a secure document shredding company or returned to the participating teacher. 

• All electronic files associated with this study (including the scanned copies of original work 
samples, consent forms etc) will be stored, password protected by the researcher in line with 
the Public Records Office of Victoria Standard (02/01) for at least 5 years. This data will also 
be backed up on RMIT’s digital infrastructure through AARNET CloudStor+ which is also 
password protected and only accessible to the researcher. 

• By signing this form, you are giving extended consent which means any of the unidentifiable 
data collected can be used in related, future research projects. 

• By signing the consent form you consent to the research team collecting and using de-
identified information from you for the research project. Any information obtained in 
connection with this research project that can identify you, such as the consent form, will 
remain confidential by the data storage means outlined above. 

 
It is anticipated that the results of this research project will be published and/or presented in a variety of 
forums. In any publication and/or presentation, information will be provided in such a way that you 
cannot be identified, as all data relating to this study will be unidentifiable. No names of participating 
teachers, students and schools will ever be included in published or unpublished materials. 
 
In accordance with relevant Australian and/or South Australian privacy and other relevant laws, you have 
the right to request access to the information about you that is collected and stored by the research 
team. You also have the right to request that any information with which you disagree be corrected. 
Please inform the research team member named at the end of this document if you would like to access 
your information. 
 
Any information that you provide can be disclosed only if (1) it protects you or others from harm, (2) if 
specifically allowed by law, (3) you provide the researchers with written permission. Any information 
obtained for the purpose of this research project and for the future research that can identify you will be 
treated as confidential and securely stored. 
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11 Who is organising and funding the research? 
 
This research project is being conducted by Chelsea Cutting as part of her PhD study. 
 
12 Who has reviewed the research project? 
 
All research in Australia involving humans is reviewed by an independent group of people called a 
Human Research Ethics Committee (HREC). This research project has been approved by the RMIT 
University HREC. 
The Department for Education and Child Development South Australia have reviewed this project and 
provided ethics approval (forthcoming). 
This project will be carried out according to the National Statement on Ethical Conduct in Human 
Research (2007). This statement has been developed to protect the interests of people who agree to 
participate in human research studies. 
 
13 Further information and who to contact 
 
If you want any further information concerning this project, you can contact the researcher – Chelsea 
Cutting on or any of the following people: 
 
 Research contact person 

 
 
14 Complaints 
 
Should you have any concerns or questions about this research project, which you do not wish to discuss 
with the researchers listed in this document, then you may contact: 
 

 
  

Name Emerita Professor Dianne Siemon  

Position Senior supervisor 

Telephone [removed] 

Email  

Reviewing HREC name RMIT University 

HREC Secretary  

Telephone  

Email human.ethics@rmit.edu.au 

Mailing address Research Ethics Co-ordinator 
Research Integrity Governance and Systems 
RMIT University 
GPO Box 2476 
MELBOURNE  VIC  3001 

mailto:human.ethics@rmit.edu.au
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Appendix G: Consent Form 

Consent Form 
 

Title 

Exploring the efficacy of an alternative approach to 
the teaching and learning of fractions in the early 
years of primary school 

Senior Supervisor Emerita Professor Dianne Siemon 

Associate Supervisors 
 

Dr Angela Rogers  

Research Student 
 

Chelsea Cutting  

  

 
 
Acknowledgement by Participant 
 

I have read and understood the Participant Information Sheet. 
 

I understand the purposes, procedures and risks of the research described in the project. 
 

I have had an opportunity to ask questions and I am satisfied with the answers I have received. 
 

I freely agree to participate in this research project as described and understand that I am free to 
withdraw at any time during the project without affecting my relationship with RMIT. 
 

I understand that I will be given a signed copy of this document to keep. 
 

 
 Name of Participant (please print)     

 
 Signature    Date   

 
 
 
Declaration by Researcher† 

 

I have given a written explanation of the research project, its procedures and risks, and I believe 
that the participant has understood that explanation. 
 

 
 Name of Researcher† (please print)   

  
 Signature    Date   

 
† An appropriately qualified member of the research team must provide the explanation of, and information 
concerning, the research project. 

 
 
Note: All parties signing the consent section must date their own signature. 
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Appendix H: Raw Scores from Pre and Post Task Based Interview 

Raw Scores for TBI: Class B (n=23) 

 

Set One: Trusting the Count 
 

Item Assessment Phase No/Incorrect Response 
Partially Correct 

Response 
Correct Response 

1 Subitising cards 

 

Pre 2 18 3 

Post 0 6 17 

2 Hidden Counters 
Pre 5 10 7 

Post 2 7 14 

3 Tens Frame Bananas 

 

Pre 7 5 11 

Post 2 9 12 

4 Hidden Dots 

 

Pre 15 5 3 

Post 8 11 4 

Set Two: Place Value 

 

Item Assessment Phase  No/Incorrect Response  Partially Correct 

Response 

Correct Response  

5 26 Counters 

 

 

Pre 5 16 2 

Post 0 11 13 

6 Place-Value Bundles 

 

 

Pre 8 12 3 

Post 2 8 12 

7 More than/ Less 

than… 

 

 

Pre 18 5 0 

Post 9 9 6 

8 Proportional 

Number line 

 
 

Pre 11 8 4 

Post 2 10 11 

9 Four-digit number 

task 

 

 

Pre 19 4 0 

Post 16 5 2 

Set Three: Fractions and Spatial Reasoning 

 
TBI Item Assessment Phase  No/Incorrect 

Response  

Partially Correct 

Response 

Correct Response 

10 Folding fractions 

 

 

Pre 9 13 1 

Post 0 5 18 
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11 What fraction is green? 

 

 

Pre 22 1 0 

Post 3 2 18 

12 Comparing unit 

fractions 

 

 

Pre 23 0 0 

Post 3 1 19 

13 Cordial mixtures 

 

 

Pre 20 3 0 

Post 5 4 14 

14 Bags of wool 

 

 

Pre 18 2 1 

Post 3 2 18 

15 Missing faces 

 

 

Pre 20 1 2 

Post 12 0 11 

16  Halving the stars 

 

 

Pre 9 7 7 

Post 1 0 22 

17  Number flip 

 

 

Pre 16 2 5 

Post 2 1 19 

18 Gisele’s paper square 

 

 

Pre 9 2 12 

Post 2 0 21 

19 Scale the picture 

 

 

Pre 4 17 2 

Post 1 2 19 

20 What’s the object? 

 

 

Pre 
15 

 
4 4 

Post 4 1 18 

21 Eating pies 

 

 

Pre 21 2 0 

Post 4 5 14 

22 Fred’s Pizza 

 

 

Pre 23 0 0 

Post 11 0 12 

23 Plant growth rate 

 

 

Pre 18 1 4 

Post 8 0 15 

24 How big is a half? 

 

 

Pre 16 7 0 

Post 7 6 10 
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Raw Scores for TBI: Class C* 

Pre-Intervention: n=21 

Post-Intervention n= 15 

*Only the data of the 15 children who completed both the pre and post TBI was used for the 

paired sample sign test. 

 
Set One: Trusting the Count 

 

TBI Item Assessment Phase  No/Incorrect Response  Partially Correct 

Response  

Correct Response 

1 Subitising cards 

Pre (n=21) 7 12 2 

Post (n=15) 0 10 5 

2 Hidden counters 

task 

Pre (n=21) 9 10 2 

Post (n=15) 2 9 4 

3 Tens frame 

bananas 

 

Pre (n=21) 8 9 4 

Post (n=15) 3 10 2 

4 Hidden Dots task  

Pre (n=21) 16 5 0 

Post (n=15) 7 8 0 

 

Set Two: Place Value 

 
Item Assessment Phase  No/Incorrect 

Response  

Partially Correct 

Response  

Correct Response 

5 Counting 26 

counters 

 

Pre (n=21) 11 9 1 

Post (n=15) 7 4 4 

6 Place-Value Bundles 

 

Pre (n=21) 12 8 1 

Post (n=15) 2 10 3 

7 More than/ Less 

than… 

Pre (n=21) 12 8 1 

Post (n=15) 4 6 5 

8 Proportional 

Number line task 

 

Pre (n=21) 8 12 1 

Post (n=15) 3 5 7 

9 Four-digit number 

task 

 

Pre (n=21) 19 2 0 

Post (n=15) 11 3 1 
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Set Three: Fractions and Spatial Reasoning 
 

TBI Item Assessment Phase No/Incorrect Response 
Partially Correct 

Response 
Correct Response 

10 Folding fractions 

 

 

Pre (n=21) 3 16 2 

Post (n=15) 0 15 0 

 

11 What fraction is green? 

 

 

Pre (n=21) 15 6 0 

Post (n=15) 5 5 5 

 

12 Comparing unit fractions 

 

 

Pre (n=21) 21 0 0 

Post (n=15) 2 2 11 

 

13 Cordial mixtures 

 

 

Pre (n=21) 16 0 5 

Post (n=15) 6 1 8 

 

14 Bags of wool 

 

 

Pre (n=21) 12 4 4 

Post (n=15) 8 3 5 

 

15 Missing faces 

 

 

Pre (n=21) 20 1 0 

Post (n=15) 7 5 3 

 

16  Halving the stars 

 

 

Pre (n=21) 5 3 13 

Post (n=15) 4 4 7 

 

17  Number flip 

 

 

Pre (n=21) 12 0 9 

Post (n=15) 0 8 7 

 

18 Gisele’s paper square 

 

 

Pre (n=21) 9 0 12 

Post (n=15) 0 4 11 

 

19 Scale the picture 

 

 

Pre (n=21) 4 15 2 

Post (n=15) 0 13 2 

 

20 What’s the object? 

 

 

Pre (n=21) 12 2 7 

Post (n=15) 4 4 7 

 

21 Eating pies 
Pre (n=21) 21 0 0 
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 Post (n=15) 3 5 7 

 

22 Fred’s Pizza 

 

 

Pre (n=21) 20 0 1 

Post (n=15) 3 2 10 

 

23 Plant growth rate 

 

 

Pre (n=21) 20 0 1 

Post (n=15) 11 1 4 

24 How big is a half? 

 

 

Pre (n=21) 17 4 0 

Post (n=15) 3 8 4 

 


