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Abstract 

Advances in communication and digital technologies have created a highly 

connected world through a plethora of networks, such as social media, e-commerce, 

industry trading, telecommunication, banking, social communication and insurance. 

The relentless growth of such networks has provided opportunities for criminals to 

infiltrate and manipulate them for their own benefits, creating serious threats to 

physical, social, economic and cyber domains. Given the magnitude of the financial, 

social and emotional damages these threats could bring, robust fraud detection 

methods and algorithms are needed to enable law enforcement agencies to detect 

these potentially destructive activities before they erupt. 

Crime is an inherently social behaviour. Understanding the organisation of social 

networks and their embedded patterns of social relationships is a key step in the 

analysis of criminal behaviours. In recent years, there has been extensive refinement 

and development of network analysis methods within criminology. Network analysis, 

which includes different statistical, mathematical, machine learning techniques, has 

proven to be capable of providing deep insights into the structural and dynamic 

characteristics of different types of networks. Such insights could expose information 

about individuals and their interactions with others within the network, providing 

valuable data to flag possible embedded anomalies as potential deviant activities.  

Graph-based anomaly detection (GBAD) approaches are among such robust and 

reliable machine learning techniques capable of unearthing relational patterns of social 

network of individuals and their social ties (network connections). These techniques 

have been extensively used by researchers and law enforcement experts to detect 

deviant activities. 
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 The major challenge in the use of GBAD approaches to detecting a deviant 

behaviour is analysing users’ connectivity patterns over time owing to the multiplex 

nature of human interactions. To avoid being detected, criminals tend to preserve 

secrecy by spreading their deceptive activities over different time periods and actively 

concealing their networking information by engaging in different types of activities. This 

research addresses this challenge in social networks by developing three GBAD-

based algorithms to extract structural features from network connectivity patterns to 

detect deviant activities. It draws on the tenets of five criminological theories–rational 

choice theory, routine activity theory, crime pattern theory, differential association 

theory and social disorganisation theory–to provide the substantive base for 

developing the algorithms using the design science research (DSR) methodology. The 

efficacy of the proposed algorithms is evaluated using real-world data, and the results 

are compared with extant state-of-the-art algorithms in fraud detection. The 

experimental results of the developed algorithms indicate that they generate practically 

useful solutions in different application contexts.  

This thesis makes significant contributions to both theory and practice by providing 

solutions for detecting suspicious activities in multiplex (or multi-layer) time-evolving 

networks and covert communities within multi-layer criminal networks. The 

implementation of the proposed algorithms provides fraud investigators and law 

enforcement agencies with a promising list of likely suspects to productively start their 

investigations.  

Keywords: Fraud Detection, Feature Extraction, Graph-based Anomaly Detection, 

Multi-layer Network, Time-evolving Network, Community Detection, Network Embedding.  
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1 Chapter 1—Introduction 

Advances in communication and digital technologies have created a highly 

connected world (Velampalli and Eberle 2017). The relentless growth of different types 

of networks, such as social media, e-commerce websites, blogs, industry trading 

networks, telecommunication networks, banking networks, social communication 

networks and insurance networks, has led to the generation of an increasing volume 

of data among them (Velampalli and Eberle 2017), giving opportunities for fraudsters 

and criminals to manipulate them for their own benefits (Hooi et al. 2017).  

These criminal activities lead to serious threats, which impact physical, social, 

economic and cyber domains (Home Office 2020). Online sexual predators can, for 

example, access user information in different online social media websites, allowing 

them to target and interact with vulnerable youngsters (Savage et al. 2014). The social 

and economic costs of organised crime are estimated to be at least £37 billion per 

year in the UK alone (Home Office 2020). Given the magnitude of the financial 

damages these criminal activities impose on society at large, not to mention the 

immense social and emotional pains they inflict on the victims, robust fraud detection 

methods and algorithms are required to enable law enforcement agencies to sniff out 

these potentially destructive activities before they erupt, especially in the era of ‘big 

data’.  

Crime is an inherently social behaviour, and the propensity to commit crime is 

influenced by individuals’ social ties (Sarnecki 2001). Understanding the organisation 

of social networks and their embedded patterns of social relationships arising from 

individual behaviour is thus pivotal to the study of criminal behaviours (McGloin and 

Kirk 2010; Sarnecki 2001). Network analysis is an interpretive approach that has been 

proven to be capable of providing deep insights into the structural and dynamic 
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characteristics of different types of networks, thereby facilitating the understanding of 

their complex structure, entities, interdependence and vulnerabilities (McGloin and 

Kirk 2010). 

In network analysis, the main attention in recent years has been directed to  

understanding the interdependence between individual relationships with others rather 

than individuals’ attributes (McGloin and Kirk 2010). This feature makes network 

analysis particularly well placed to align with the principles of criminological theories 

that explain the causes and consequences of crime (McGloin and Kirk 2010). This is 

because network analysis implicitly assumes that associations among individuals are 

powerful explanatory factors of different social behaviours (McGloin and Kirk 2010). 

For instance, in investigating the influence of deviant peers on individuals’ risk of 

victimisation (McGloin and Kirk 2010; Zavala et al. 2019), differential association 

theory (Sutherland 1939) orients us to the influence of relationships some individuals 

use to impose on others. Stressing the importance of social networks in facilitating the 

transmission of values, attitudes, techniques and motives for criminal behaviour, 

differential association theory (Sutherland 1939) contends that exposure to delinquent 

friends increases the risk of victimisation (Zavala et al. 2019). This explanation asserts 

the importance of factors, such as associates of a person, the balance of individuals 

in the network (i.e. whether the individuals within the network are mostly devious or 

not), the transformation of a deviant behaviour through the relations or links within the 

network and the quality or strength of the connections (i.e. the more frequent or the 

stronger the connections, the greater the influence on individuals’ behaviours) 

(McGloin and Kirk 2010). Another example is the analysis of the organisational 

structure of criminal groups and networks (McGloin and Kirk 2010; Peoples and Sutton 

2015) using social disorganisation theory (Shaw and McKay 1942). Studies drawing 
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on social disorganisation theory (Shaw and McKay 1942) utilised systematic models 

to identify the social organisation of communities by analysing social networks 

(Kasarda and Janowitz 1974). 

In recent years, there has been considerable work done in refining and developing 

network analysis within criminology (Bouchard and Malm 2016; McGloin and Kirk 

2010). Analysing the connectivity patterns in communication networks could reveal 

information about individuals and their interactions with others within the network, thus 

providing valuable data for detecting a deviant behaviour (Hooi et al. 2017; Sarnecki 

2001). These interactions, which are represented as interdependencies and 

relationships between data objects in graphs1, are analysed using machine learning 

techniques to detect possible embedded anomalies to be flagged as potential deviant 

activities (Akoglu et al. 2015).  

Graph-based anomaly detection (GBAD) techniques (Velampalli and Eberle 2017), 

a branch of machine learning techniques, are a set of arithmetical methods that 

analyse relational patterns of social network of individuals (nodes as actors) and their 

social ties (network connections) based on mathematical computations (Hulst 2009). 

These computations result in measurements that quantify the characteristics of 

network activities, individuals’ social roles and positions and their associated social 

mechanisms (Hulst 2009). These characteristics and measures are analysed to further 

interpret and detect patterns in social ties within the individuals’ network and to identify 

the impact of the social structures and ties on the functions of actors and networks 

(Hulst 2009). With the help of the GBAD techniques, the interpreted structural network 

characteristics are less sensitive to subjectivity, and the risk of missing out important 

signals or information is reduced (Hulst 2009). GBAD techniques have been 

                                                           
1 Throughout this thesis, the terms ‘network’ and ‘graph’ are used interchangeably. 
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extensively used to detect deviant activities within networks; moreover, they are 

recognised by law enforcement experts as robust, reliable and promising anomaly 

detection methods in recent years (Akoglu et al. 2015; Velampalli and Eberle 2017).  

1.1 Research Scope 

Over the past few decades, both law enforcement agencies and researchers have 

paid considerable attention to the application of the GBAD techniques to the 

processing and intelligent criminal analysis of social networks (McGloin and Kirk 

2010). In line with this trend, this research focuses on the analysis of social networks 

using the GBAD techniques on two major criminal phenomena, namely, cybercrime in 

online dating social networks and organisation of criminal networks.  

These two domains are of particular interest for two reasons. First, the Internet is 

now an irreplaceable source of information and communication. The widespread use 

of the Internet has also brought an increasing popularity to online social networks 

(OSNs), which also provide criminals an opportunity to use them as a medium of 

operation for cybersex, unsolicited commercial communications, cyber defamation, 

cyber threats, data theft and data interception. As more criminals interact in 

cyberspace, there has been an increase in cybercrime incidents, which has not been 

matched by a corresponding rise in potent technical responses from law enforcement 

agencies (Hulst 2009; Nouh et al. 2016).  

Second, regardless of whether criminals act in the online world or not, the strategic 

analysis of criminal groups, their operations and activities in cyberspace is an essential 

and necessary step to disrupt such criminal networks (Leuprecht and Hall 2014). This 

analysis provides criminal investigators and law enforcement agencies with 

information related to the strengths and vulnerabilities of the criminal networks relevant 
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to designing tactical options to demobilise these criminal networks (Leuprecht and Hall 

2014). 

1.2 Research Problem 

Detecting illicit and deviant behaviours in social networks is a significant problem. 

The GBAD techniques are known to be very practical in identifying such behaviours 

(Bindu et al. 2017). The success of graph methods, however, depends on the choice 

of data representation being used (Cresci et al. 2015; Goyal and Ferrara 2018). 

Generally, feature engineering and graph representation learning (also called graph 

embedding) techniques aim to embed the structural characteristics of a network into 

a vector space (or feature space), in which the machine learning models are then built 

(Goyal and Ferrara 2018). Therefore, defining measures that can best map a social 

network structure into a vector space is highly important. This method helps preserve 

the topological and structural characteristics of actors and their network information, 

which can then be explicitly analysed using machine learning methods to detect 

anomalies and deviant behaviours (Goyal and Ferrara 2018). 

Feature engineering is a useful way of capturing human ingenuity and prior 

knowledge (Bengio et al. 2013). In this technique, features are designed based on 

analysts’ foreknowledge with regard to the network entities and known suspicious 

behaviours. These features range from simple attributes, such as in-degree2, out-

degree3 and reciprocity, to more complex ones, such as clustering coefficients4 (Bhat 

and Abulaish 2013). Thus, the learning algorithms in feature engineering are highly 

dependent on human intervention, creating scalability problems and potentially 

reducing the accuracy of the approach. In recent years, GBAD researchers have 

                                                           
2 For a vertex 𝑣 in a graph, the number of edges adjacent to 𝑣 is called the in-degree. 
3 For a vertex 𝑣 in a graph, the number of edges leaving 𝑣 is called the out-degree. 
4 The clustering coefficient is a measure of the degree to which the nodes in a graph tend to cluster together. 
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started developing new methods, such as graph representation learning or graph 

embedding techniques (Cai et al. 2017), with the aim of building graph structures 

without any human intervention. These techniques use different methods, such as 

deep learning (Goyal and Ferrara 2018; Zhong et al. 2016), to quickly construct 

models and reveal hidden explanatory factors previously unknown to security experts. 

Therefore, the accuracy of the detection depends on how good these features are and 

how well they can reflect ‘true’ structural connectivity (Cai et al. 2017).  

Extant research studies on the GBAD methods do not consider the multiplex nature 

of human interactions while analysing social networks for detecting an illicit behaviour 

(Pourhabibi et al. 2020). However, real-life interactions within social communities are 

multi-faceted in nature and comprised multiple relationship types, leading to the 

formation of multi-layer social networks. To avoid being detected, criminals embrace 

secrecy and actively conceal their networking information by engaging in different 

types of activities (i.e. different types of connections within the network). These multi-

faceted interactions are more appropriately represented as a multi-layer network 

(Rosvall et al. 2014; Zhang et al. 2013). Single-layer networks fail to capture the multi-

faceted interactions, which could lead to information loss (De Domenico et al. 2015) 

and distortion of both the network topology and the embedded dynamics (Rosvall et 

al. 2014), which consequently dampens the chances of detecting a real deviant 

behaviour.  

Further, most research studies using the GBAD methods have considered just one 

snapshot of the network and disregarded the analysis of changes in connectivity 

patterns over different timestamps (Bhattacharjee et al. 2017; Lima and Pereira 2015; 

McGlohon et al. 2009; Moriano and Finke 2014; Pourhabibi et al. 2020; Rashidi 2017; 

Shah et al. 2016; Tselykh et al. 2016). Evolution is a natural phenomenon in many real 
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communication networks. These networks, which are known as time-evolving 

networks, are frequently changing (Ranshous et al. 2015). Millions of nodes and links 

are added and removed from networks every moment, changing their attributes 

(Ranshous et al. 2015). Criminals also attempt to spread their illusive activities over 

time by making new links or changing their existing links (Bhattacharjee et al. 2017; 

Lima and Pereira 2015; Moriano and Finke 2014; Rashidi 2017). Due to the high 

dynamicity in real-world networks plus the large volume of links created and destroyed 

every moment, analysing connectivity patterns and detecting constantly evolving 

illusive activities remain a major challenge (Bhattacharjee et al. 2017; Lima and 

Pereira 2015; Moriano and Finke 2014; Rashidi 2017).  

Finally, although many criminological theories have provided substantive 

knowledge about crimes and criminal behaviours, there is a void in fraud detection 

research to link core criminological principles to the analysis of social networks in 

analysing a deviant behaviour. Drawing on the tenets of criminological theories, e.g. 

rational choice theory (Cornish and Clarke 2014), routine activity theory (Cohen and 

Felson 1979), crime pattern theory (Brantingham and Brantingham 1993), social 

disorganisation theory (Shaw and McKay 1942) and differential association theory 

(Sutherland 1939), this thesis aims to address the challenges in fraud detection 

studies by employing the GBAD techniques and introducing algorithms to analyse 

users’ connectivity patterns in a social network to detect suspicious behaviours. 

1.3 Research Questions 

This thesis aims to develop algorithms for detecting deviant activities, using the 

GBAD techniques. Its principal research question is: 

How could suspicious activities be accurately and efficiently detected within 

a network of interconnected users? 
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The GBAD techniques hold great potential to help detect a deviant behaviour in 

different domains. In the scope of this research, there are a number of existing 

commercial tools that support network analysis. Tools such as COPLINK (Chen et al. 

2003), LogAnalysis (Ferrara et al. 2014), CrimeNet Explorer (Xu and Chen 2005), 

GANG (Shakarian et al. 2015) and PAVENET (Rasheed and Wiil 2014) are developed 

to support law enforcement agencies in criminal network investigations for detecting 

criminal organisations within network data. Technologies, such as Klout and 

Twitalyzer, are employed for monitoring users’ engagements in different social media 

(Wani et al. 2018). Such tools measure user engagement by employing different 

metrics, such as subscriptions, number of active participants and other actions and 

attitudes provoked by the other users (Drula 2012). 

Given the great potential of the GBAD techniques, this thesis develops algorithms 

to address the above question. It focuses on two main types of deviant behaviour: (i) 

finding spamming social activities and (ii) organising criminal networks. The prowess 

of the GBAD fraud detection algorithms is evaluated against two criteria: quality and 

efficiency of detection. Quality denotes a high level of accuracy in the detection 

process. A detection mechanism should be able to detect as many true fraudulent 

cases as possible and raise less false alarms. To evaluate the accuracy of the 

proposed algorithms, the ground truth data (i.e. the actual incidents of reported fraud) 

is used as a reference. The final results of the algorithms, which include the list of 

identified normal and fraudulent cases, are then compared with the ground truth data. 

Based on the results of this comparison, accuracy is evaluated using some numerical 

measures, such as area under curve (AUC) (Molloy et al. 2017; Subelj et al. 2011), 

receiver operating characteristic (ROC) curve (Molloy et al. 2017; Moriano and Finke 

2014) and normalised mutual information (NMI) (Ye and Akoglu 2015).  
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Further, the accuracy depends on how good the network structure is analysed 

(Cresci et al. 2015). Data scientists attempt to analyse network structures in a way 

that they can best distinguish suspicious from normal users (Goyal and Ferrara 2018). 

This process can be performed in one of two ways, namely, using either feature 

engineering or graph embedding techniques (Cai et al. 2017; Nikolentzos et al. 2017). 

Real-world network data are inherently large. Processing a large amount of data to 

detect a suspicious activity is a very challenging process that should be performed in 

a scalable way (Chamberlain et al. 2018; Debajit and Samar 2015). In this context, 

efficiency means less time and memory complexity and is evaluated using numerical 

measures, such as convergence time (Tian et al. 2015) and run-time (Phua et al. 

2009). With these in mind and considering the existing challenges in the application of 

GBAD methods to fraud detection, the primary research question is categorised into 

three sub-research questions (SRQs): 

SRQ 1. What set of features can be defined and extracted from a network to 

capture anomalous activities?  

Criminals can easily mimic some patterns of legitimate users’ behaviours. This 

characteristic renders the process of characterising them very difficult. However, 

extracting a set of features that can depict deviant behaviours in a network is very 

important to improve the detection process (Bhat and Abulaish 2013; Yang et al. 

2013). One approach is to use manual feature engineering. With this technique, data 

scientists could select sets of features to differentiate normal and suspicious activities 

in a network based on the problem domain (Varol et al. 2017). 

The other perspective for extracting structural features is using techniques that do 

not require manual feature engineering, leading to the second sub-research question: 



 
 

12 
 

SRQ 2. How can users’ anomalous activities be detected in a network without 

any manual feature engineering?  

One perspective for analysing users’ connectivity patterns in a network is using 

graph embedding techniques to extract the behavioural features from a network 

without any manual feature engineering (Cai et al. 2017; Goyal and Ferrara 2018). 

Where no domain knowledge exists about the network and users’ behaviours, data 

scientists have been able to extract structural features using graph embedding 

techniques and graph representation learning to analyse and detect anomalous 

interactions (Cai et al. 2017; Goyal and Ferrara 2018). These techniques use 

mathematical concepts, such as matrix factorisation (Ahmed et al. 2013), or stochastic 

theories, such as random walk (Perozzi et al. 2014), to extract structural features from 

a network. 

As this research aims to detect anomalous activities in time-evolving networks, 

another sub-research question is posed: 

SRQ 3. How can users’ anomalous activities be detected in a time-evolving 

network? 

Most real-world networks are evolving. Not only do users change their relationships 

and activities over time, fraudsters also attempt to evade detection by redistributing 

their deceptive activities over time (Rashidi 2017). To detect fraudulent activities, it is 

necessary to analyse fraudsters’ activities over different timestamps to capture any 

change in their behaviours (Bhattacharjee et al. 2017; Lima and Pereira 2015; Moriano 

and Finke 2014; Rashidi 2017). 

1.4 Algorithm Development Methodology: Design Science Research 

This thesis develops algorithms to answer the research questions by applying 

existing theories and testing and modifying them according to the three-cycle problem-
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solving framework prescribed by the design science research (DSR) paradigm 

(Hevner 2007; Hevner et al. 2004). 

First proposed by Hevner et al. (2004), the DSR paradigm is an approach to 

scientific inquiry in which organisational problems are addressed by introducing 

ingenious ideas, methods and products in the form of information technology (IT) 

artefacts (e.g. constructs, models and algorithms). According to Hevner et al. (2004), 

seven fundamental guidelines should be followed to ensure that an information system 

(IS) problem is clearly defined, necessary solutions are found, and the required 

artefacts are deployed. These guidelines are presented in Table 1.1. 

Table 1.1. Hevner’s guidelines for solving IS problems 

Guideline Description 

Guideline 1: Design Artefacts New artefacts should be created. 

Guideline 2: Domain-specific The novel solutions should address a specific business problem domain and 
should result in a utility. 

Guideline 3: Artefact Evaluation The quality and efficiency of created artefacts need to be evaluated. 

Guideline 4: Research Contribution The approach must make new clearly defined contributions to the literature 
by implementing novel artefacts for a new problem domain or introducing 
methodological advances in existing solutions. 

Guideline 5: Research Rigour The artefact should be clearly defined and evaluated using rigorous methods. 

Guideline 6: Research Process The research process and problem space should be clearly defined. 

Guideline 7: Research Communication The result of DSR must effectively communicate with the technical and 
managerial audience. 

(Modified from source: Hevner et al. (2004, p.83)) 

To follow the seven-step guideline, Hevner et al. (2004) introduced a three-cycle 

framework of IS research (Figure 1.1). In this framework, the Relevance Cycle is a 

bridge between the contextual environment of the project and the design science 

processes to ensure that business needs are addressed (Hevner 2007; Hevner et al. 

2004). The Rigor Cycle bridges the design science activities to the knowledge base 

by appropriately applying scientific basis, experience and expertise related to the 

research project (Hevner 2007; Hevner et al. 2004). The central Design Cycle 
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iteratively builds and evaluates the design artefacts and processes of the research 

(Hevner 2007; Hevner et al. 2004). 

In this framework, the environment defines the problem domain of interest (Hevner 

2007; Hevner et al. 2004). In IS research, the environment includes people (i.e. their 

role, capabilities and characteristics), organisations (i.e. business strategies, culture 

and business processes) and technology (i.e. development capabilities, 

communication architectures, applications and infrastructures) (Hevner 2007; Hevner 

et al. 2004). The business needs or problems related to technology are perceived from 

the environment (Hevner 2007; Hevner et al. 2004). The researchers then attempt to 

frame the research activities to address the perceived business needs (Hevner 2007; 

Hevner et al. 2004). 

When business needs are identified, IS research is conducted by developing 

theories and artefacts and then evaluating the proposed theories using various 

experimental studies, case studies and process simulation (Hevner 2007; Hevner et 

al. 2004). Design science addresses the research by building and evaluating the 

artefacts to meet the business needs (Hevner 2007; Hevner et al. 2004). 

The knowledge base provides raw materials related to the problem domain of 

interest, including foundations (e.g. basic models, theories, instruments and 

frameworks) and methodologies (e.g. data analysis techniques, data, measures and 

validation criteria) (Hevner 2007; Hevner et al. 2004). All these materials are used as 

a knowledge base through which IS research is conducted (Hevner 2007; Hevner et 

al. 2004). 

This thesis develops artefact(s) (i.e. algorithm(s)) to address the research 

questions. The proposed algorithms are evaluated using different numerical 

measures, and the final results are compared with existing works.  
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Figure 1.1. IS framework (Source: Hevner et al. (2004, p.80)). 

1.4.1 Research Procedure 

This research employs Hevner et al.’s (2004) three-cycle framework to develop the 

required artefacts (algorithms) to answer the research questions. Figure 1.2 presents 

the different stages of this research organised according to Hevner et al.’s (2004) IS 

framework (Figure 1.1), preserving relevance and rigor between different stages. The 

research stages and related processes are described below. 

 
Figure 1.2. Proposed research methodology based on Hevner et al.’s (2004) IS framework. 

Environment 

The environment section of Hevner et al.’s (2004) framework defines the problem 

space. 
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 Stage 1—Problem Identification: The first step in this research is the identification 

of the problems that motivated the research, the research scope and the research 

questions. This thesis conducts a systematic literature review in the first stage (see 

Chapter 2). The most significant outcomes of this step are the research ‘questions’ 

and ‘scope’, which are equivalent to ‘business needs’ in Hevner et al.’s (2004) 

framework. 

Knowledge Base 

The knowledge base in Hevner et al.’s (2004) framework includes data, theories 

and models to conduct the IS research. 

Stage 2—Literature Analysis: Once the research questions are identified and the 

scope is specified, existing research studies are analysed to find answers to the 

research questions. In this stage, the research will go through the details about 

different methods, theories and extant algorithms that can be employed to develop 

new algorithms in response to the research questions.  

Stage 3—Sample Selection and Data Collection: Since this thesis develops 

algorithms to answer the research questions, it is important to collect data samples to 

test the efficiency and accuracy of the proposed algorithms. One of the main concerns 

in data collection in this research is privacy and confidentiality issues: organisations 

and stakeholders are reluctant to share their data for fraud investigations. Therefore, 

this thesis uses anonymised publicly available data samples with ground truth (i.e. the 

actual incidents of reported fraud), which are compiled and published by third-party 

research groups or individuals, e.g. LINQUE5 and UCINET6 dark network repositories.  

 

 

                                                           
5 https://linqs.soe.ucsc.edu/data 
6 https://sites.google.com/site/ucinetsoftware/datasets/covert-networks 

https://linqs.soe.ucsc.edu/data
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks
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Information Science Research 

The IS section of Hevner et al.’s (2004) framework introduces theories and artefacts 

and evaluates them using different methods. 

Stage 4—Algorithm Development: Based on theories in the context of criminology 

(see Chapter 3), this thesis develops algorithms to detect anomalous activities in a 

network by analysing the connectivity patterns in the network. The algorithms are 

developed based on two GBAD techniques, namely, feature engineering and graph 

embedding techniques, to analyse and detect deviant behaviours in multi-layer social 

networks. Here an appropriate programming language (e.g. Python and R) is required 

for the implementation of the algorithms. 

Stage 5—Test and Evaluate: When the algorithms are developed and the 

experiments are designed, they would be tested using the collected data. Each 

algorithm goes through several refinements and evaluations. The efficiency of the 

proposed approaches is evaluated using numerical measures, such as run-time (refer 

to Table 2.4, Chapter 2). This measure evaluates the execution time of an algorithm. 

In this case, existing algorithms are used as baseline, i.e. the execution time of the 

proposed algorithm would be compared with that of existing algorithms on the same 

dataset to establish time efficiency.  

Analysis of time and space complexity can also be another approach to evaluate 

the efficiency of the proposed algorithms by estimating the required memory space 

and the time required for the execution of an algorithm (Cook 1983). To measure the 

accuracy of the proposed approaches, the pre-defined labelled data (e.g. fraud, 

normal) or the results of previous state-of-the-art approaches (Alzahrani and Horadam 

2014; Canu et al. 2015) are used as a reference. The final results, which include the 

list of identified normal and anomalous cases, are compared with the ground truth (i.e. 
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actual incidents of fraud that have been reported) to evaluate their accuracy using 

various measures, such as AUC, ROC curve, modularity and NMI (refer to Table 2.4, 

Chapter 2).  

Stage 6—Interpret the Results: In this stage, the results of the proposed algorithms 

are interpreted, and their strengths, weaknesses and effectiveness are discussed. To 

evaluate the results, each chapter includes experiments designed to help the 

interpretation of the results. Figure 1.3 shows an overview of the designed 

experiments and their usage.  

 
Figure 1.3. Designed experiments for result evaluation and interpretation. 

1.5 Research Significance and Expected Contributions 

This thesis aims to develop innovative GBAD-based algorithms to analyse the 

structural connectivity patterns in multi-layer networks with a view to detecting 

suspicious and deviant behaviours hidden within them. The proposed algorithms are 

designed to circumvent challenges facing the development of robust GBAD-based 

fraud detection techniques. The significance of this research comes from its three main 

contributions. 

First, the proposed algorithms are substantiated by five different criminological 

theories. From a survey of studies using the GBAD approach to develop fraud 
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detection algorithms up until 2018, none have developed their algorithms based on 

the tenets of criminological theories. This thesis is among the first to incorporate a 

theoretical lens from criminology to develop fraud detection algorithms focusing on 

deviant behaviours in a network. Criminological theories offer an in-depth 

understanding of anomalous behaviours and provide the conceptual base for 

developing appropriate algorithms to identify suspicious deviant activities.  

Its second contribution is the development of an algorithm that introduces a new set 

of features that are easy to manually extract for analysing deviant behaviours of 

cybercriminals in a time-evolving multi-layer online social dating network.  

Third, this thesis is devoted to introducing two algorithms that can automatically 

determine the combination of structural features from multi-layer criminal networks 

when no prior domain knowledge of the network and anomalous activities are 

available. Without the need for human intervention, the developed algorithms are 

expected to automatically reveal a new combination of structural characteristics or 

features embedded in criminal networks to find criminal communities within such 

networks. This contribution has a significant practical value; it reduces the dependence 

of human expert interventions and enables a rapid and efficient detection of criminal 

groups. Detecting criminal communities within criminal networks would enable law 

enforcement agencies to dismantle criminal networks and neutralise their threats. 

The broader significance of this thesis is its value in the field of anomaly detection 

in application domains, including OSNs, telecommunication, healthcare, intrusion 

detection, cyber security and banking anomaly, as well as in improving law 

enforcement agencies’ awareness of issues, such as drug and human trafficking, and 

extremist organisations’ activities in cyberspace (Debajit and Samar 2015). For many 
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businesses, this problem is too important to ignore, as these events often carry 

financial and social consequences to their operations. 

1.6 Thesis Structure 

Chapter 2 consolidates the existing research know-how in analysing inter-

dependent data objects in a graph for fraud detection using GBAD. This chapter 

reviews the state-of-the-art studies on GBAD and identifies key research issues on the 

applications of the GBAD method. To synthesise existing works, this chapter develops 

a classification framework, which also serves as an analytic platform in identifying 

gaps in extant studies. The identified challenges are addressed in Chapters 4–6.  

Chapter 3 elaborates the tenets of mainstream theories in criminology to explain 

different aspects of crime commitment from the perspective of criminology: why some 

people commit crime (i.e. rational choice theory (Cornish and Clarke 2014)), what 

conditions breed crimes (i.e. routine activity theory (Cohen and Felson 1979)), when 

and where crimes happen (i.e. crime pattern theory (Brantingham and Brantingham 

1993)) and how a deviant behaviour can be detected (i.e. differential association 

theory (Sutherland 1939) and social disorganisation theory (Shaw and McKay 1942)). 

This chapter also reviews social network analysis (SNA) as a strong methodological 

tool, which includes statistical, algebraic and simulation models rooted in the GBAD 

techniques. As this thesis focuses on how to detect criminal acts using the GBAD 

techniques, Chapter 3 also explains the relationship between network analysis and 

criminal intelligence by drawing on the tenets of differential association theory 

(Sutherland 1939) and social disorganisation theory (Shaw and McKay 1942). This 

explanation builds the theoretical basis for the algorithms developed in Chapters 4–6 

to answer the proposed research questions. 
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Chapter 4 is dedicated to analysing the connectivity patterns in a time-evolving 

online social dating network to detect a deviant cyber behaviour using feature 

engineering. Its main objective is to address the first and last proposed sub-research 

questions: What set of features can be defined and extracted from a network to 

capture anomalous activities? (SRQ 1) How can users’ anomalous activities be 

captured in a time-evolving network? (SRQ 3). Guided by the tenets of 

criminological theories reviewed in Chapter 3, Chapter 4 first analyses the commitment 

of crime in an online social dating network from the perspective of criminology and 

draws on the principle of differential association theory (Sutherland 1939) to elucidate 

how suspicious cyber activities may be detected. It then designs four sets of human-

engineered features to detect suspicious behaviours in a time-evolving multi-layer 

social dating network.  

Extant learning algorithms in feature engineering designed to interpret suspicious 

signals of covert criminal activities heavily relying on domain experts’ knowledge and 

are fraught with problems. Not only is the process time-consuming, but the accuracy 

of the resulting features in detecting suspicious activities is also suspect, not to 

mention issues of scalability to large-scale networks. To overcome problems 

associated with human intervention, Chapters 5 and 6 explore new GBAD methods 

using stochastic theories, graph representation learning (embedding techniques) to 

discover co-offending groups among criminals within criminal networks (i.e. criminal 

groups/communities). These two chapters address the second sub-research question: 

How can users’ anomalous activities be detected in a network without any 

manual feature engineering? (SRQ 2). 

Chapters 5 and 6 investigate two different approaches to form this new stream of 

GBAD methods to discover co-offending groups among criminals within criminal 
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networks (i.e. criminal groups/communities). These two chapters are devoted to 

addressing the second sub-research question: How can users’ anomalous activities 

be detected in a network without any manual feature engineering? (SRQ 2).  

Chapter 5 introduces an algorithm that draws on the principles of discrete-time 

random walks to detect collusive criminal activities in multi-layer criminal networks. 

The formation of criminal networks is first analysed using the tenets of criminological 

theories. Then, drawing on the principles of social disorganisation theory (Shaw and 

McKay 1942), this chapter proposes an approach to find a list of the most important 

criminals who tend to co-offend together. The proposed approach uses random walk 

to find the list of criminals who are in touch with each criminal within the network. The 

Jaccard correlation is then employed to score the similarities among the list of people 

each pair of criminals is in contact with. The resulting similarity values are then fed into 

a hierarchical clustering procedure to categorise the criminals into their respective 

groups by maximising an objective function referred to as asymptotic Surprise (AS) 

(Traag et al. 2015).  

One major concern while developing machine learning algorithms on networks is 

how the rich topological information of the graph should be incorporated into the 

machine learning model. In the proposed approach in Chapter 5, once the Jaccard 

similarities are calculated and fed into the clustering model, no further learning is 

required. Thus, such information is not optimised during the learning process 

(Hamilton et al. 2017). This characteristic may reduce the accuracy of the detected 

communities, especially when the network is very sparse or large. 

To overcome this difficulty, Chapter 6 proposes a new algorithm by drawing on a 

new paradigm of graph-based techniques called network embedding (Goyal and 

Ferrara 2018; Li et al. 2018; Salim et al. 2020) and applies the algorithm to find covert 
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communities in multi-layer criminal networks using random walks and a sequence-

based network embedding approach. The sequences of criminals and co-offenders 

extracted are then fed into the network embedding model to extricate the hidden 

structural characteristics (representations or features) that represent the covert 

communities. 

Finally, Chapter 7 concludes the thesis. It highlights the main contributions and their 

implications for future GBAD research and fraud detection practices. It also discusses 

the research limitations and presents an agenda for future research.
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2 Chapter 2—Previous Works on GBAD Approaches in Fraud 

Detectiona

Graph-based anomaly detection (GBAD) is among the most popular techniques used to 

analyse the connectivity patterns in communication networks for the detection of suspicious 

behaviours (Akoglu et al. 2015). Given the different GBAD approaches proposed for fraud 

detection, this chapter develops a framework to synthesise existing literature on the 

application of GBAD methods in fraud detection. This chapter aims to identify trends and 

key challenges that need to be addressed in developing answers to the research questions 

posed (see Section 1.3).  

2.1 Search Methodology 

This chapter adopted Booth et al.’s (2011) systematic approach to literature review and 

followed the three-phase methodology employed by Ngai et al. (2009) and Ngai et al. 

(2011), as presented in Figure 2.1. A systematic literature review is considered to be the 

most reliable, transparent and rigorous literature review method for identifying, synthesising 

and assessing all available evidences to clearly answer the formulated questions (Booth et 

al. 2011; Mallett et al. 2012). It follows a clearly defined plan with explicitly stated criteria 

before the review is conduced, which allows it to be replicated by other researchers (Booth 

et al. 2011; Mallett et al. 2012). 

The first phase is ‘research definition’. It includes the identification of the research area, 

formulation of review goals and definition of the research scope. The research area in this 

review is ‘fraud detection’ with three main goals: (1) to identify the current  

                                                           
a A journal paper developed based on the information presented in this chapter was published: Pourhabibi, T., Ong, K.-
L., Kam, B.H., Boo, Y.L., (2020). ‘Fraud detection: A systematic literature review of graph-based anomaly detection 
approaches.' Decision Support Systems, Vol.133, pp. 1–15. 
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Figure 2.1. Systematic literature review process. 

trends, (2) to highlight the current challenges and provide directions for future research and 

(3) to introduce a classification framework for analysing current studies. The scope covers 

studies that have employed the GBAD techniques. 

The second phase is ‘research methodology’, which starts with the identification of 

scientific databases hosting articles related to the selected research context. Five major 

online scientific databases were selected, namely, ScienceDirect, ACM Digital Library, 

IEEE Xplore, Springer and ABI/Inform. The literature search process began with the 

creation of criteria to identify the articles to be included in, or excluded from, the analysis. 
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Following Ngai et al. (2009), Ngai et al. (2011) and Frost and Choo (2017), four criteria were 

set: the article must (1) be published in a peer-reviewed academic research journal, (2) be 

written in English, (3) be published between 2007 and 2018 and (4) have its full text 

available in at least one of the five databases. 

To achieve a more effective and comprehensive search strategy, Boolean expressions 

were used to combine three terms: ‘graph’, ‘anomaly detection’, and ‘fraud detection’ (i.e. 

‘graph’ AND ‘anomaly detection’ AND ‘fraud detection’). A total of 585 papers met the 

inclusion criteria. Then, the papers were pruned through a two-step process. The first step 

(‘Abstract Reading and Skimming’) involved reading titles and abstracts, which resulted in 

the elimination of 428 unrelated papers, white papers and tutorials, 12 duplicated titles and 

80 literature review articles. The remaining 65 papers underwent second-level pruning, 

accomplished by ‘Reading the Whole Article’. This process eliminated another group of 26 

unrelated papers, leaving 39 papers for the final analysis.  

For the final ‘classification and analysis’ phase, a series of guided questions were applied 

to sort the 39 papers, similar to the approach adopted by Chan et al. (2017). To ensure the 

reliability of the classification, each paper was independently reviewed by two authors. 

Classification discrepancies (e.g. incompatibility in the type of detected anomaly or nature 

of the input network (see Table 2.3)) were resolved by having the third author read the 

paper. The guided questions used were as follows: 

      1. What were the study trends and focus? 

2. How did the availability of existing labelled data influence the choice of anomaly 

detection techniques used in different studies? 

3. What were the types of analysed networks? 

4. What were the types of detected anomalies? 

5. What were the principal graph-based methods used? 

6. What were the representation methods used? 

7. What were the available research data samples? 

8. What were the measures used to evaluate the findings? 
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9. What were the contributions of the studies, challenges faced during the research and 

possible future directions? 

The first six questions provide six distinct levels of analysis set within the data samples 

available for experimental studies (Question 7) and the range of measures used for 

evaluating the findings (Question 8). The eight questions are structured into a hierarchical 

classification framework to systematically categorise the 39 papers chosen for review (see 

Figure 2.2). The last question, Question 9, does not constitute part of the classification 

framework. It is included to remind us to compile the challenges identified by the review 

studies, including the suggested directions for future research. The next section elucidates 

the classification framework developed based on the above-proposed questions. 

2.2 Classification Framework 

Along with the sequence of the nine guiding questions presented in Section 2.1, the 

proposed classification framework begins with the identification of the domain of interest 

(i.e. study trends and focus). The other five components of this framework (Questions 2–6) 

are described below. 

 

2.2.1 Availability of Data Labels 

Depending on the available data labels, anomaly detection approaches are classified 

into three broad categories: (i) supervised, (ii) unsupervised and (iii) semi-supervised 

(Chandola et al. 2009). Table 2.1 presents the comparison of the characteristics of the three 

approaches. 
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Table 2.1. Characteristics of the anomaly detection approaches based on the available data labels 

Supervised (Bhattacharyya et al. 2011; Bolton and 
Hand 2002) 

Unsupervised (Abdallah et al. 
2016) 

Semi-supervised (Abdallah et al. 2016) 

 Require labelled data samples of legitimate and 
fraudulent samples  

 Build models based on the patterns revealed in 
existing data samples  

 Unable to detect unseen suspicious activities 

 Do not need labelled data 
samples  

 Able to detect unseen 
suspicious activities 

 Use both labelled and unlabelled 
samples 

 Requires a few instances of labelled 
samples  

 Able to detect unseen suspicious 
activities 

 

 

 
Figure 2.2. Framework for the literature analysis and classification of GBAD fraud detection 

papers (the numbers refer to the different sections of this chapter). 

2.2.2 Nature of the Input Network 

With the GBAD approaches, the nature of the input network can influence the process of 

anomaly detection and the design of the algorithm. As outlined in Table 2.2, these features 

include the followings: (i) information propagation in the network (such as the direction of 

links and the time the links were established), (ii) node characteristics (such as node types 

and node attributes) and (iii) peer influences (such as link structures and link attributes) 

(Agrawal et al. 2012). 
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Table 2.2. Characteristics of the different types of input networks 

Type of the Input Network Characteristics 

Simple (Kaveh 2013)  
vs. 
Bipartite (Kaveh 2013) 

- One subset of nodes 

 
-Two disjoint subsets of nodes 

Homogeneous* (Kaveh 2013)  
vs. 
Heterogeneous** (Lee et al. 2013) 

- One type of node or link 
 

- Different types of nodes or links 
- Difficult to detect suspicious activities (Fakhraei et al. 2015) 

Directed (Kaveh 2013)  
vs. 
Undirected (Kaveh 2013) 

- Symmetric relations between nodes 
 

- Asymmetric relations between nodes 

Static (Akoglu et al. 2015; Ranshous et al. 2015)  
vs. 
Dynamic (Akoglu et al. 2015; Ranshous et al. 
2015) 

- A single snapshot of a network (Bindu and Thilagam 2016) 
 
 

- Structure constantly changing over time (Akoglu et al. 2015) 
- More difficult to analyse anomalies (Akoglu et al. 2015; Bindu and Thilagam 
2016; Ranshous et al. 2015) 

Attributed (Akoglu et al. 2015; Bindu and 
Thilagam 2016; Ranshous et al. 2015)  
vs. 
Unattributed 

- Nodes or links with attributes 
- Attributes revealing considerable amount of information regarding the network 
entities and their interactions (Shah et al. 2016) 
 

- No attribute assigned to either nodes or links 

Note: 
 * also called simple, simplex or monoplex 
 ** also called multiplex or multilayer networks 

 

2.2.3 Types of Anomalies 

Various GBAD approaches have been designed to detect different anomalies. These 

methods (Bindu and Thilagam 2016; Ranshous et al. 2015) detect anomalies in various 

networks, such as dynamic or static graphs (attributed or unattributed), by capturing (a) 

anomalous nodes, (b) edges, (c) sub-graphs and (d) events. Therefore, the type of anomaly 

is a critical characteristic of the proposed classification framework. 

Anomalous nodes are a subset of nodes; every node in the subset has an irregular 

feature in comparison with the other nodes in the graph. Typically, each node is assigned 

an anomaly score based on its characteristics (e.g. the ratio of input/output degree and ego 

net density) (Bindu and Thilagam 2016; Ranshous et al. 2015). Similar to anomalous nodes, 

anomalous edges are a subset of edges; every edge exhibits an abnormal behaviour, i.e. 

having scores higher than a specific threshold. This characteristic, in turn, indicates the 

existence of an anomaly, such as anomalous nodes. Contrarily, the approach to finding an 

irregular sub-graph is quite different. Typically, sub-graphs are first identified using 

community detection methods (see Section 2.2.4), and then each sub-graph is assigned an 
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anomaly score based on intra-graph comparisons (see Noble and Cook (2003) for more 

information). The last anomaly type is event and change detection. This type of anomaly is 

exclusively detected in dynamic networks and designed to locate the specific time period(s) 

in which activities are significantly different from those in the rest of the periods (Ranshous 

et al. 2015). 

2.2.4 Graph Methods 

Graph methods include the machine learning algorithm(s) applied to the networks to 

detect different types of anomalies. Depending on the available data labels, nature of the 

input network and types of anomalies that are to be discovered in a network, prior studies 

have captured different anomalies across five approaches, as described in Figure 2.3. 

Community-based approaches aim to find densely connected groups of nodes in a 

graph (usually by analysing their interconnection) and identify nodes and edges that have 

inter-connections with those communities or clusters. Such nodes act as a ‘bridge’ between 

different clusters, and their behaviour exhibits a significant deviation from those of the 

members of a specific cluster or community (Akoglu et al. 2015; Bindu and Thilagam 2016).  

Probabilistic-based methods use the basic concept of probability theory, probability 

distribution and scan statistics to construct a model of normal behaviour; any deviation from 

this normal distribution is flagged as an anomaly (Akoglu et al. 2015; Bindu and Thilagam 

2016).  

Structure-based methods are also useful methods for detecting a community of 

fraudsters (Hooi et al. 2017; Jiang et al. 2014). Structure-based approaches mainly aim to 

find special substructures that rarely occur in a graph. These approaches usually exploit a 

graph topological structure and node/edge attributes (if available) to detect the anomalies 

(Akoglu et al. 2015; Bindu and Thilagam 2016).  

Compression-based approaches are based on minimum description length (MDL) 

principle. These approaches exploit patterns and regularity in the data to achieve a compact 
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graph representation by rearranging the network adjacency matrix to minimise the 

adjacency matrix entropy. In these approaches, anomalies are defined as sub-graphs, 

edges or nodes that inhibit compressibility (Ranshous et al. 2015).  

Decomposition-based approaches have been used to detect suspicious activities in 

dynamic networks by representing the set of graphs as a tensor like a multidimensional 

array. Similar to compression-based approaches, decomposition techniques also search 

for patterns or regularities in data to exploit (Ranshous et al. 2015). 

 
Figure 2.3. Five different types of GBAD. 

2.2.5 Structural Representation 

The success of GBAD methods depends on the choice of data representation being used 

(Cresci et al. 2015; Goyal and Ferrara 2018). Generally, feature engineering and graph 

representation learning (also called graph embedding) techniques aim to embed the 

structural representation of a graph into a vector space (or feature space), in which the 

machine learning models are then built (Goyal and Ferrara 2018). Therefore, the definition 

of measures that can best map a network structure into a vector space is highly important. 

This method helps preserve the topological and structural characteristics of nodes and 

network information, which can then be more explicitly analysed using machine learning 

methods to detect anomalies (Goyal and Ferrara 2018). 
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Feature engineering is a useful way of capturing human ingenuity and prior knowledge 

(Bengio et al. 2013). In this technique, features are designed based on analysts’ 

foreknowledge with regard to the network entities and known suspicious activities. These 

features range from simple attributes, such as in-degree1, out-degree2 and reciprocity, to 

more complex ones, such as clustering coefficients3 (Bhat and Abulaish 2013). Thus, the 

learning algorithms in feature engineering are highly dependent on human intervention, 

creating scalability problems. In recent years, GBAD researchers have started to develop 

new methods, such as graph representation learning or graph embedding techniques (Cai 

et al. 2017), that aim to build graph structures without any human intervention. These 

techniques use different methods, such as deep learning (Goyal and Ferrara 2018; Zhong 

et al. 2016), to quickly construct models and reveal hidden explanatory factors previously 

unknown to security experts.  

2.3 Findings and Discussions 

Using the proposed classification framework (Figure 2.1), the 39 reviewed papers are 

catalogued into five areas, namely, graph methods, application areas, data label availability, 

input network and types of anomalies (see Table 2.3). This cataloguing aims to increase 

the understanding of a particular type of GBAD method while dealing with certain application 

areas as well as support researchers in exploring which approach or paper to focus on 

when detecting specific types of anomalies in accordance with the nature of their input 

network and availability of their data labels. The findings of the review are discussed based 

on the guiding questions presented in Section 2.1.  

 

                                                           
1 For a vertex 𝑣 in a graph, the number of edges adjacent 𝑣 is called the in-degree. 
2 For a vertex 𝑣 in a graph, the number of edges leaving 𝑣 is called the out-degree. 
3 The clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together. 
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Table 2.3. Cataloguing of graph-based fraud detection ● 

Graph 
Methods 

Applicati
on Areas 

Reference 
Availability 
of Data 
Labels 

Nature of the Input Network 
Types of 
Anomalies 

S
tr

u
c
tu

re
-b

a
s
e
d

 

OSN 
 

(Jiang et al. 2014) US SH ST D A SG 

(Hooi et al. 2017) US BH ST UD UA SG 

(Manjunatha and 
Mohanasundaram 
2018) 

US SH DY UD UA N 

Insurance 
 

(Branting et al. 2016) S SH ST D A N 

(Seo and 
Mendelevitch 2017) 

US SH ST UD A N 

AML (Bershtein and 
Tselykh 2013) 

US SH ST D A SG 

(Fronzetti Colladon 
and Remondi 2017) 

US SH ST D A N 

C
o

m
m

u
n

it
y
-b

a
s
e
d

 

OSN 
 

(Tian et al. 2015), (Ye 
and Akoglu 2015), 
(Wang et al. 2018) 

US BH ST UD A SG 

(Giatsoglou et al. 
2015)  

US SH DY D A SG 

(Bindu et al. 2018) US SH ST D A SG 

AML (Novikova and 
Kotenko 2014) 

US SH ST D A SG 

Banking (Molloy et al. 2017) SS SH ST D A SG 

Trading (Li et al. 2012) US SH ST D A SG 

IOF (Gamachchi and 
Boztaş 2015)  

US SH ST UD UA SG 

Online 
Auction 

(Liang et al. 2010) US BH ST UD A SG 

(Bangcharoensap et 
al. 2015) 

SS BH ST UD A SG 

Telecom (Nan et al. 2012) US SH ST UD UA SG 

(Yan et al. 2018) S BH DY UD A SG 

Retail 
Holding 

(Tselykh et al. 2016) US SH ST D A SG 

D
e
c
o

m
p

o
s
it

i
o

n
-b

a
s
e
d

 

OSN 
 

(Moriano and Finke 
2014), (Liu et al. 
2017b) 

US SH DY D A SG 

(Shin et al. 2017) US SH DY D A N 

(Lamba et al. 2017) US SH DY D A N, SG 

C
o

m
p

re
s
s
io

n
- 

b
a

s
e
d

 

Trading (Eberle and Holder 
2009), (Eberle and 
Holder 2007) 

US SH ST D/UD A/UA SG 

OSN (Shah et al. 2016) US BH/SH ST UD A N 

Insurance
, AML, 
Banking, 
Trading 

(Huang et al. 2018) US BH/SH ST UD/D A N 

P
ro

b
a

b
il
is

ti
c

-b
a

s
e
d

 

Insurance 
 

(Carvalho et al. 2017) US BH ST UD A N 

(Subelj et al. 2011) US SH ST D A/UA N, SG 

OSN 
 

(Dai et al. 2012)  US BH ST UD A N 

(Wu et al. 2017) US BH DY UD UA N 

(Shehnepoor et al. 
2017b) 

US, SS BH ST UD A N 

(Dang et al. 2017) US SH DY D A SG 

Online 
auction 

(Tsang et al. 2014) US BH ST UD A SG 

OCA (Phua et al. 2009) US SH DY D A E 

IOF (McGlohon et al. 2009) US SH ST D A N 

(Bhattacharjee et al. 
2017) 

US SH DY D A SG 

● Note: 
(1) Graph representation learning was only used in decomposition-based methods in the study by Moriano and Finke 
(2014) and Shin et al. (2017).  
(2) Studies that model the input network as a bipartite graph are heterogeneous networks with different types of nodes, 
and the rest of the studies are homogeneous networks. 
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(3) None of the reviewed studies worked on anomalous event detection. 
Legends: 
SH, simple and homogenous; BH, bipartite and heterogeneous;  
DY, dynamic; ST, static;  
D, directed; UD, undirected;  
A, attributed; UA, unattributed;  
S, supervised; U, unsupervised; SS, semi-supervised;  
N, node; SG, sub-graph; E, edge; EV, event; 
OSN, online social network; AML, anti-money laundering; IOF, internal organisational fraud; OCA, online credit 
application 

 

2.3.1 Research Trends and Focus 

Figure 2.4 presents the distribution of the 39 studies analysed from 2007 to 2018 (none 

of the 39 papers reviewed were published in 2007 and 2008). This finding indicates a 

growing trend in the application of the GBAD techniques for fraud detection.  

 

 
Figure 2.4. Distribution of papers reviewed, 2009–2018. 

The analysis suggests that studies using the GBAD methods to detect fraudulent 

activities generally fall into two major streams: traditional and OSN (Figure 2.5). The 

traditional stream, with applications in insurance (Carvalho et al. 2017; Molloy et al. 2017; 

Seo and Mendelevitch 2017), telecommunication (Nan et al. 2012), banking (Molloy et al. 

2017; Novikova and Kotenko 2014), online credit applications (OCA) (Phua et al. 2009), 

anti-money laundering (AML) (Bershtein and Tselykh 2013), retail holding (Tselykh et al. 

2016), trading (Li et al. 2012) and internal organisational fraud (IOF) (Bhattacharjee et al. 

2017; McGlohon et al. 2009), has heavily relied on GBAD methods to analyse its data. 
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However, the data utilised in these studies were not explicitly linked together. These studies 

have used graph data to detect fraud by inferring the links within the data. This growing 

trend is becoming significant and demonstrates the applicability and importance of the 

GBAD methods for fraud detection in various applications. 

 

 
Figure 2.5. Data nature and application areas of the GBAD techniques for fraud detection. 

Although research studies using the GBAD methods are still sparse, the efforts devoted 

to detecting frauds in insurance and banking applications have become prevalent since 

2017. Figure 2.6 presents the diversity of research studies employing the GBAD techniques 

on fraud detection by research area during the selected period. Since 2014, the analysis of 

OSNs where data are inherently linked to one another in networks (Lima and Pereira 2015; 

Meng et al. 2016; Moriano and Finke 2014) has also become an emerging stream. This 

finding indicates the increasing popularity of online social activities. As businesses turn to 

social media to promote their products and services, they also create an additional 

opportunity and a fertile channel for fraudsters to conduct malicious activities (Rahman et 

al. 2017). For example, fake reviewers can earn between $0.5 and $3 for each fake review 

(Rahman et al. 2017) by demoting or promoting a product, service or business. As the range 

of online social activities increases, the possibility of different types of fraud occurring in 
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such networks also increases; thus, filtering any suspicious behaviour is necessary to 

mitigate the consequences.  

 

 
Figure 2.6. Distribution of research studies using the GBAD techniques for fraud detection, 2009–

2018. 

2.3.2 Availability of Data Labels 

From the perspective of data label, approximately 87.2% of the reviewed research 

studies have exclusively created their models using unsupervised learning techniques. The 

reason is that data labels are often in short supply or non-existent in many real-world 

problems, such as fraud detection (Abdallah et al. 2016). Consequently, unsupervised 

learning techniques have been the focus of many research studies. However, there are 

exceptions, such as Shehnepoor et al.’s (Shehnepoor et al. 2017b) work, which can be 

applied in unsupervised and semi-supervised settings (2.6%), as well as the works of 

Bangcharoensap et al. (2015) and Molloy et al. (2017), which both exclusively used a semi-

supervised-based approach. From the review, only 5.1% of the studies used supervised 

learning methods.  

The shortcomings related to supervised and semi-supervised learning techniques, as 

outlined in Section 2.2.1, may hinder the use of the GBAD approaches in some cases. 

These methods are among the least commonly used methods found in this review. 
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2.3.3 Nature of the Input Network 

The nature of the input network is a fundamental feature of the GBAD approaches. 

Therefore, they are unpacked into several units of analysis, which are described in this 

section. 

2.3.3.1 Simple vs. Bipartite 

Among the papers that modelled the input network as a bipartite graph, the most 

represented application is OSN with 20.5% (8 of the 39 papers). The other applications are 

insurance (5.1%; two papers), auction (7.7%; three papers) and telecommunication fraud 

detection (2.6%; one paper). This finding can be explained based on the nature of the above 

application areas, where the connections between users and products or services should 

be analysed to detect suspicious behaviours (e.g. the number of parties bidding a seller’s 

product in auction fraud, number of ratings to a product in online business websites and 

claims submitted by a specific insurance provider). The remaining 25 papers analysed user-

to-user connections (e.g. the number of messages sent by a specific user to others) to 

detect suspicious activities, thus modelling their input network as simple graphs.  

2.3.3.2 Homogeneous vs. Heterogeneous 

The reviewed research papers on OSNs, insurance and auction frauds have extensively 

considered the analysis of suspicious activities in bipartite networks. These studies model 

bipartite networks using two different sets of nodes, mainly users and products or users and 

services. These networks are considered to be heterogeneous networks with different types 

of nodes (Table 2.3). Among the studies, only two (Bindu et al. 2018; Shah et al. 2016) have 

considered different types of activities (e.g. different types of links). However, in the study 

by Bindu et al. (2018), each type of relationship was simulated as a simple network and 

analysed separately. Another study by Shah et al. (2016) also simulated the input network 

as a heterogeneous bipartite network. As mentioned in Section 2.3.3.1, 25 papers 

investigated users’ behaviours on simplex networks; they only considered one type of user 
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activity, thus ignoring the inherent multiplex nature of human interactions in their analysis 

(Fakhraei et al. 2015). These studies did not consider different types of users’ activities in 

the network to detect suspicious activities (see Section 2.2.2). 

2.3.3.3 Directed vs. Undirected 

As indicated by the information summarised in Table 2.3, approximately 48.7% of the 

research studies are solely applied to directed networks, 43.6% are practiced only on 

undirected networks, and the remaining 7.7% are applied to directed and undirected 

networks.  

Studies modelling their input network as an undirected network mainly explore user-to-

product or user-to-service relationships and are mostly bipartite networks (14 of the 

reviewed papers employed bipartite networks).  

2.3.3.4 Static vs. Dynamic 

In recent years, dynamic networks have increased in popularity owing to their 

applications in social networks, insurance and online banking (Bhattacharjee et al. 2017; 

Moriano and Finke 2014; Phua et al. 2009; Shin et al. 2017). The relentless growth of social 

networks, in particular, has provided opportunities for fraudsters to infiltrate these networks 

and spread their illusive activities by frequently establishing new connections with other 

users or changing their relations with existing users (Pourhabibi et al. 2019). In other words, 

fraudsters can easily evade current detection mechanisms. Although the importance of 

analysing dynamic networks for suspected fraud has surged, it is still a promising research 

area (Bhattacharjee et al. 2017; Moriano and Finke 2014; Phua et al. 2009; Shin et al. 

2017). Of the papers reviewed, only 28.2% focused on fraud detection in dynamic networks; 

the remaining 71.8% (28/39) merely searched for suspicious activities in static networks. 

2.3.3.5 Attributed vs. Unattributed 

The link and node attributes are essential elements for differentiating users’ behaviours 

in a communication network (Shah et al. 2016). They provide useful information for the 
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detection of anomalies in a network. Table 2.3 demonstrates that only five papers that were 

reviewed (12.8%) ignored the importance of attributes. Among those that used attributes to 

distinguish suspicious activities (87.2%), most employed link attributes, such as interaction 

strength.  

2.3.4 Graph Methods and Types of Anomalies Detected 

Depending on the available data labels and nature of the input network, five different 

GBAD methods were used to detect different types of anomalies in the network among the 

39 papers reviewed. Community-based approaches were the most widely used (35.9%), 

with probabilistic-based methods as the second-most popular approach (25.6%). Around 

17.9% of the studies used structural-based techniques, whereas compression-based 

(10.3% of the studies) and decomposition-based (10.3% of studies) approaches were 

among the least-used methods (see Figure 2.7). 

 

 
Figure 2.7. Spread of different GBAD methods in the papers reviewed. 

Fraud is characteristically manifested as a collective behaviour in networks, as fraudsters 

attempt to coordinate their behaviours as a group (Pourhabibi et al. 2019). The detection of 

such illusive user communities (also referred to as groups or clusters) has become a key 

focus. Table 2.3 demonstrates that around two-thirds of the research studies focused on 

the identification of anomalous sub-graphs. Among them, the top two GBAD methods, 

community-based and probabilistic-based methods, exhibited the highest share. Contrarily, 
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the other three GBAD methods were mostly used to detect the most suspicious nodes or 

edges within the network. 

2.3.5 Dataset 

Most of the research studies on fraud detection have used real-world data as their test 

platforms (Nettleton 2016; West and Bhattacharya 2016). Many have also used synthetic 

data to simulate specific scenarios (Nettleton 2016; West and Bhattacharya 2016). Owing 

to privacy considerations, organisations and stakeholders are reluctant to share their fraud 

information (West and Bhattacharya 2016). This hinders research and affects the 

reproducibility of the conducted experiments. One possible solution is to use synthetically 

created data (Nettleton 2016). However, the generation of a realistic dataset presents 

enormous challenges in terms of topologies, attribute values of nodes and edges, 

community structures, data distributions and correlations (Nettleton 2016). Furthermore, the 

similarity between synthetically generated networks and original networks extracted from 

human behaviour remains unanswered.  

Table 2.4 presents an overview of the different publicly available data and datasets used 

by the studies reviewed. It shows that 87.2% of the studies tested their approach using real-

world data (34/39), of which 41.0% are publicly available for research studies (16/39). A 

third of the 39 studies used synthetic data. Among the studies using publicly available 

datasets, 81.3% used OSN data (13/16), reflecting their broad availability for anomaly 

detection research. 

Table 2.4. Mapping catalogue for the types of datasets, public data used and evaluation measures 

Graph 
Method

s 

Application 
Areas 

Reference 
Availability of 
Data Labels 

Types of Dataset 
Types of Evaluation 
Measures 

S
tr

u
c
tu

re
-b

a
s
e
d

 

OSN 
 

(Jiang et al. 2014) US P (Twitter, Tencent Weibo), SY, RW PR curve, run-time, 
accuracy 

(Hooi et al. 2017) US P (Amazon, TripAdvisor, Epinions, 
WikiVote), SY, RW 

F-measure, run-time 

(Manjunatha and 
Mohanasundaram 
2018) 

US RW PR, F-measure 

Insurance 
 

(Branting et al. 
2016) 

S RW F-measure, ROC 
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(Seo and 
Mendelevitch 2017) 

US P (Medicare-B), RW Case study 

AML (Bershtein and 
Tselykh 2013) 

US No experimental data No experimental study 

(Fronzetti Colladon 
and Remondi 2017) 

US RW Pearson’s correlation of 
features 

C
o

m
m

u
n

it
y
-b

a
s
e
d

 

OSN (Tian et al. 2015) US SY, RW  Run-time, recall, 
convergence time 

(Ye and Akoglu 
2015) 

US P, SY, RW (Amazon, iTunes) AUC of PR, NMI 

(Wang et al. 2018) US P, RW (Amazon, Yelp) precision, F-measure, CDF  

(Giatsoglou et al. 
2015)  

US P, RW (Twitter) Power-law analysis 

 (Bindu et al. 2018) US P, RW (Twitter Honeypot) TPR, FPR, PR, F-measure 

AML (Novikova and 
Kotenko 2014) 

US SY Visual analytics 

Banking (Molloy et al. 2017) SS RW ROC 

Trading (Li et al. 2012) US RW (Roget, Stock) Run-time, case study 

IOF (Gamachchi and 
Boztaş 2015)  

US P, RW (CERT) Case study 

Online 
Auction 

(Liang et al. 2010) US RW NDCG 

(Bangcharoensap et 
al. 2015) 

SS RW NDCG 

Telecom (Nan et al. 2012) US RW CDF 

(Yan et al. 2018) S RW PR, F-measure, ROC 

Retail 
Holding 

(Tselykh et al. 2016) US RW Case study 

D
e
c
o

m
p

o
s
it

io
n

-

b
a

s
e
d

 

OSN (Moriano and Finke 
2014) 

US SY ROC 

(Liu et al. 2017b) US P, RW (Yelp, Amazon, 
BeerAdvocate) 

F-measure, ROC 

(Shin et al. 2017) US P, RW (Yelp, Android, YahooM, 
KoWiki, ENWiki, YouTube) 

ROC, detection time 

(Lamba et al. 2017) US P, SY, RW (Software Marketplace, 
Reddit) 

PR, F-measure 

C
o

m
p

re
s
s
io

n
- 

b
a

s
e
d

 Trading (Eberle and Holder 
2009) 

US SY Case study 

(Eberle and Holder 
2007) 

US SY, RW Case study 

OSN  (Shah et al. 2016) US P, RW (Flipkart) Precision 

Insurance, 
AML, 
Banking, 
Trading 

(Huang et al. 2018) US P, SY, RW (German Credit Card, ICIJ 
Offshore Leaks, COIL2000 
insurance) 

Accuracy 

P
ro

b
a

b
il
is

ti
c
-b

a
s
e
d

 

Insurance 
 

(Carvalho et al. 
2017) 

US RW Case study 

(Subelj et al. 2011) US RW AUC 

OSN (Dai et al. 2012)  US P, SY, RW (Goodreads, Buzzcity) Precision 

(Wu et al. 2017) US P, RW (Yelp) PR, F-measure, accuracy, 
AP, ROC 

(Shehnepoor et al. 
2017b) 

US, SS P, RW (Yelp) AP, AUC 

(Dang et al. 2017) US RW PR, F-measure, accuracy 

Online 
auction 

(Tsang et al. 2014) US SY AUC, TPR, FPR 

OCA (Phua et al. 2009) US RW Hit rate, TPR 

IOF (McGlohon et al. 
2009) 

US SY, RW Accuracy, ROC 

(Bhattacharjee et al. 
2017) 

US SY, RW (CMU-CERT Insider Threat) AUC, ROC 

Legends: 
S, supervised; U, unsupervised; SS, semi-supervised; 
P, public datasets; SY, synthetic datasets; RW, real-world datasets; 
PR, precision–recall; ROC, receiver operating characteristics; AP, average precision; NMI, normalised mutual information; TPR, true-
positive rate; FPR, false-positive rate; 
CDF, cumulative distribution function; 
NDCG, normalised discounted cumulative gain 
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2.3.6 Evaluation Measures 

As presented in Table 2.4, research studies have employed different mathematical 

measures to evaluate the outcome of their proposed algorithms. For those with sufficiently 

available labelled data, the classical criteria based on ROC curve or precision–recall (PR) 

curve have been used to analyse the performance of the proposed algorithms. ROC curves 

are commonly used to present the results for binary decision problems in machine learning 

(Davis and Goadrich 2006; Jeni et al. 2013). However, with highly skewed datasets, ROC 

does not provide much insight into the data, and PR curves tend to provide a more 

informative picture of an algorithm’s performance. In anomaly detection, the number of 

negative samples significantly exceeds that of positive examples. Consequently, a 

substantial change in the number of false positives (FPs) can lead to a small change in the 

FP rate (FPR) used in the ROC analysis (Davis and Goadrich 2006; Jeni et al. 2013).  

Furthermore, precision captures the effect of many negative examples on the algorithm’s 

performance by comparing FPs with true positives rather than with true negatives (Davis 

and Goadrich 2006; Jeni et al. 2013). F-measure is the second-most commonly used 

performance measure. This preference over the next measure, i.e. accuracy, comes as no 

surprise given the nature of fraud problems. Accuracy favours true negative, which is 

inconsequential in anomaly detection. Instead, a measure that weighs higher on false 

negative (FN) and FP is of better value in an uneven class distribution. In such cases, the 

F-measure is preferred as it balances precision and recall, resulting in a better evaluation 

of an anomaly detection model. Moreover, it is observed that accuracy is only used in five 

studies (Bhattacharjee et al. 2017; Huang et al. 2018; McGlohon et al. 2009; Tsang et al. 

2014; Wu et al. 2017) (see Table 2.4).  

Although some measures are preferred over others, no measure is perfect; they can only 

serve as an approximation to a technique’s performance on a specific dataset. Ideally, the 

evaluation is checked against authentic data sourced from the specific problem, for which 
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the anomaly detection technique is designed. However, in practice, authentic labelled 

datasets are in short supply or non-existent (Abdallah et al. 2016). This limitation is further 

complicated by the need for expert knowledge to create a labelled dataset or evaluate 

results during model development, which is a time-consuming and expensive process. As 

a compromise, numerous studies have used a case study analysis on data samples as a 

proxy of a technique’s true capability. Nevertheless, evaluating the performance of anomaly 

detection algorithms will always be a problem due to insufficient data samples and 

scenarios. An alternative is to use an ensemble of anomaly detectors along with computer-

based knowledge sources (Fanaee and Gama 2014). Lastly, a recent study (Goix 2016) 

discussed two new approaches, called excess-mass (EM) and mass–volume (MV) curves, 

to evaluate the performance of anomaly detection approaches on dimensional data without 

data labels. However, based on the analysis on this chapter, the two approaches have not 

been employed in anomaly detection on graph data. 
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Table 2.5. Domain of interest, highlights of the research, challenges faced and future directions 

Graph 
Methods 

Application 
Areas 

Reference Focus of Analysis Highlights of Approach and Detection Improvements Challenges (C) and Future directions (D) 

S
tr

u
c
tu

ra
l-

b
a

s
e
d

 

 
 
 
 
 
OSN 
 

(Jiang et al. 2014) Detecting synchronised behaviour 
(suspicious nodes that have an extremely 
similar behavioural pattern) and rare 
behaviour (nodes with connectivity patterns 
very different from the majority) to spot fake 
followers and fake accounts 

- Effectiveness: high accuracy in spotting synchronised behaviours 
and catching suspicious source-target groups 
- Scalability: linear complexity with the number of edges 
- Parameter-free 
- Oblivious side information  

D: Incorporate temporal information and 
other additional features 
 

(Hooi et al. 2017) Spotting fraudsters in the presence of 
camouflage or hijacked accounts to detect 
fake followers and fake accounts 

- Effectiveness: using sufficient condition to detect fraudsters 
perfectly (e.g. 100% precision and recall) 
- Scalability: linear complexity with the number of edges 

D: Incorporate temporal information  

(Manjunatha and 
Mohanasundaram 
2018) 

Spotting suspicious behaviours in online 
social communities 

- Scalability: scalable to a large volume of data using big data in-
memory cluster computing  

C: Dependent on a user-selected similarity 
threshold. 

 
Insurance 
 

(Branting et al. 2016) Assessing healthcare fraud risk to detect 
fraudulent providers 

- Effectiveness: F-measure of 0.919 and an ROC area of 0.960 C: Lack of providers known to have 
committed healthcare fraud  
D: Include additional types of information 
relevant to healthcare fraud prediction 

(Seo and 
Mendelevitch 2017) 

Analysing healthcare fraud to detect 
fraudulent insurance claims 

- Effectiveness: detecting previously unreported anomalies C: Model fuzzy graphs  

 
 
AML 

(Bershtein and 
Tselykh 2013) 

Detecting patterns of money laundering and 
financing terrorism 

- Incorporating fuzzy concepts C: Use user-defined parameters based on 
data from past events 
D: Analyse bigger data samples  
D: Include additional control variables, such 
as age and size of the companies 

(Fronzetti Colladon 
and Remondi 2017) 

Detecting patterns of money laundering to 
assess risk profiles of clients involved in the 
factoring business 

- Introducing a predictive, rather than just a detective, model for AML 
- Using a visual analysis of network data for any suspiciousness 
detection 

C: Use user-defined parameters that 
depend on data from past events  

C
o

m
m

u
n

it
y

-b
a

s
e
d

 

 
 
 
 
 
 
OSN 

(Tian et al. 2015) Detecting fraud in Internet advertising for 
crowd fraud detection 

- Requiring nearly no human interaction 
- Scalability: scalable to a large volume of data 
- Effectiveness: accuracy of over 90% 

C: Capture fraud from a vast number of 
attack sources with low fraudulent traffic  

(Ye and Akoglu 2015) Detecting opinion spammer groups in the 
existence of camouflage 

- Effectiveness: NMI of over 0.94 for various settings and over 0.95 
AUC of PR curve on synthetic data and high accuracy on real-world 
data 
- Robustness: robust with a variety of parameters, so it requires 
almost no tweaking of parameters to work correctly 

 

(Wang et al. 2018) Detecting product review spammers  - Effectiveness: outperforming baselines over all databases used in 
experiments 

C: Evaluate the annotation of a huge 
volume of review data manually 
C: Sloppiness in user evaluation  

(Giatsoglou et al. 
2015)  

Analysing re-tweeting to find fake users in the 
presence of camouflage 

- Introducing RTGEN, a scalable realistic synthetic data generator  C: Spot long-term spam activities in the 
presence of camouflage 

(Bindu et al. 2018) Analysing tweeting activities for spamming 
community detection 

- Effectiveness: outperforming baseline methods with a precision, 
recall, F-measure and TP rate of over 0.85 and FP rate of 0.132 

D: Evaluate the approach based on more 
realistic data 
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AML (Novikova and 
Kotenko 2014) 

Analysing mobile payments to detect money 
laundering  

- Introducing an interactive visualisation application C: Use limited visualization techniques 

Banking (Molloy et al. 2017) Analysing payment transactions for cross-
channel frauds 

- Effectiveness: reducing FPR by 63%  

Trading (Li et al. 2012) Analysing trading ring patterns to discover 
cross-account collaborative fraud for market 
manipulation 

- Scalability: several orders of magnitude faster than the baseline C: Correlate user behaviours across 
multiple trading accounts 

IOF (Gamachchi and 
Boztaş 2015)  

Analysing enterprise users’ web access 
pattern to detect insider threats 

- Introducing an interactive visualisation application 
 

C: Rely on some user-defined threshold 
parameter that should be refined 

Online Auction (Liang et al. 2010) Analysing the social graph of online auction 
users to detect auction fraud  

- Effectiveness: detects suspicious nodes as the compared baseline  

(Bangcharoensap et 
al. 2015) 

Analysing the social graph of online auction 
users to detect auction fraud 

- Effectiveness: outperforming baseline with 5.3% in NDCG 
- Scalability: parallelise in MapReduce 

C: Detect the homophilic behaviour of 
auction fraudsters who frequently bid in 
auctions hosted by a seller(s) working in the 
same collusion group 

Telecom (Nan et al. 2012) Analysing voice calls to detect fraud in a 
cellular network 

- Effectiveness: detecting 85% of all the victims and the root cause 
of 78% of fraud calls  

D: Apply additional (expensive) 
approaches, e.g. incorporating billing 
information, manual investigation, user 
calls history and instant user fraud reports 
to analyse the detection results to further 
confirm the fraud activities 

(Yan et al. 2018) Detecting telecom fraud  - Effectiveness: outperforming baseline methods with a precision, 
AUC and F-measure of over 0.80 and recall of over 0.74 

C: Analyse varieties of callers’ and callees’ 
behaviours in the telecom network to 
capture all types of telecom fraud 

Retail Holding (Tselykh et al. 2016) Detecting fraudulent transfer pricing when 
two subsidiaries agree to overprice imports or 
underprice exports to declare less profit to 
pay less tax 

- Using data visualisation to find hotspots for fraud C: Rely on data quality and availability to 
reveal internal relations between 
companies and their affiliated domain users 
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 OSN (Moriano and Finke 
2014) 

Detecting random link attackers - Effectiveness: low false negatives C: Rely on some historical data for further 
analysis 

(Liu et al. 2017b) Detecting suspicious spikes of bursts and 
drops in the existence of camouflage 

- Scalability: sub-quadratic time complexity 
- Effectiveness: achieving higher accuracy than the competitors 

C: Aggregate suspiciousness signals from 
different attributes 

(Shin et al. 2017) Analysing stream changes in tensors for fake 
rating detection 

- Scalability: a million times faster 
- Effectiveness: detecting previously unreported anomalies 

 

(Lamba et al. 2017) Analysing dense blocks in tensors to detect 
bot-like behaviours 

- Scalability: linearly scalable with the size of the data 
- Generalisability: being applied to a variety of domains 
- Effectiveness: scoring the suspicious entities with high accuracy 
and detected previously unreported anomalies 
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Trading (Eberle and Holder 
2009), (Eberle and 
Holder 2007) 

Analysing business transactions and 
processes to detect deceptive orders 

- Effectiveness: minimum or no false positives C: Find anomalies in graph-based data 
where the anomalous substructure in a 
graph is part of, or attached to or missing 
from, a non-anomalous substructure or the 
normative substructure 

OSN (Shah et al. 2016) Analysing user-product ratings to detect 
rating fraud 

- Effectiveness: 0.87 precision over the top 100 results 
- Scalability: logarithmic scalability with the number of nodes and 
linear to the number of edges 

C: Granularity in user behaviour (e.g. 
different users may rate products in 
different ways) 
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Insurance, 
AML, Banking, 
Trading 

(Huang et al. 2018) Analysing financial and trading transaction to 
detect financial fraud 

- Effectiveness: better detection results on sparse graphs 
- Ability to trace the origin of suspicious activities 

D: Incorporate temporal information 

P
ro

b
a

b
il
is

ti
c

-b
a

s
e
d

 

 
 
Insurance 

(Carvalho et al. 2017)  Analysing the relations between providers 
(hospitals) and consumers (cities) to detect 
healthcare fraud committed by hospitals 

- Effectiveness: detecting previously unreported anomalies 
- Visual analysis and manual labelling 

D: Detect anomalies in big cities with 
distributed anomalies  
D: Use more precise evaluations because 
of the limitations of evaluation using visual 
analysis and manual labelling  

(Subelj et al. 2011) Detecting automobile insurance fraud  - No requirement for the availability of large data 
- The imputation of the domain expert’s knowledge 
- Adopted to new types of fraud as soon as they are noticed 

C: Rely on some user-defined 
threshold/factor parameters that should be 
refined 

 
 
 
 
OSN 

(Dai et al. 2012)  Detecting opinion spammers - Effectiveness: significant performance gains compared with the 
baselines 

C: Make a clear split between opinion 
groups 

(Wu et al. 2017) Analysing online reviews for fake review 
detection 

- Robustness: robust to data sparsity  
- Effectiveness: highly outperforms the baselines  
- Model parameters are refined through a learning algorithm 

C: Model the distributions of objects’ 
reviews and users’ credibility from sparse 
review data 

(Shehnepoor et al. 
2017b) 

Analysing online reviews for spam review 
detection 

- Effectiveness: outperforming the existing methods in AUC and AP 
- Scalability: linearly scalable with the number of edges 

D: Incorporate product feature for spammer 
detection 
D: Incorporate meta-path concept for group 
spammer detection 

(Dang et al. 2017) Detecting organised spammers in micro-
blogging 

- Effectiveness: accuracy of 93.6% for all the topics and an F1-score 
of 82.1% for anomalous topics 

C: Detect anomalous topics hijacked by 
spammer groups from numerous trending 
topics 
C: Detect the hijacked long-term topics that 
lasted for days  
C: Scalability issue on large data 
D: Detect new evolving types of spammers 

Online Auction (Tsang et al. 2014) Analysing the social graph of online auction 
users and detect auction fraud, including 
shilling fraud, reputation manipulation and 
non-delivery fraud 

- Effectiveness: ability to detect all three types of fraud (with an AUC 
of over 0.98, TPR of over 0.97 and FPR of 0.05) that may happen 
in an auction, whereas the existing methods are tuned to detect just 
one of those types each  
- Scalability: linearly scalable with the number of bids 

C/D: Rely on some user-defined 
parameters that should be refined 

OCA (Phua et al. 2009) Analysing transaction data for credit 
application fraud detection 

- Real-time scoring of incoming transaction streams 
- Effectiveness: low false alarm rates and achievement of consistent 
hit rates 

C: Scalability is a major limitation as there 
is a trade-off between efficiency (rapid 
detection time and high scalability) and 
effectiveness (high hit and low false alarm 
rates) 

IOF (McGlohon et al. 
2009) 

Analysing companies’ general ledger to find 
accounting fraud  

- Scalable: linearly scalable with the number of edges 
- Robustness: robust with a variety of parameters, so it requires 
almost no tweaking of parameters to work correctly 
- Effectiveness: high labelling accuracy of up to 97% compared with 
spectral clustering  
- Generalisability: can be applied to a variety of domains 

C: Rely on experts to assess fraudulent 
behaviours based on the associated risk of 
each account 

(Bhattacharjee et al. 
2017) 

Detecting insider threats in a company - Effectiveness: AUC of 0.9520, 6% improvement of ROC over the 
best-performing baselines 
 

C: Make more genuine alarms over a user 
profile that usually undergoes some 
continuous changes over time 
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2.3.7 Existing Challenges  

Table 2.5 presents the main contributions and specific types of fraud across the 39 

research studies. It emphasises their problem focus, approaches to finding solutions, 

challenges faced in the process and recommended directions for future studies. This 

table provides a quick guide to relevant works using the GBAD approaches to 

investigate frauds in networks, informing researchers of the range and nature of 

application problems faced, GBAD baseline approaches to consider and unsettled 

areas for further investigations. In the preparation of Table 2.5, four key challenges 

are further identified. This chapter proposes some recommendations and 

considerations to serve as a scaffold for the future design of fraud detection 

mechanisms to address these challenges.  

2.3.7.1 Dealing with Unavailability of Data 

Fraud is a highly sensitive topic, and many stakeholders are reluctant to share their 

information on fraud. One of the major challenges in data sharing in various application 

areas, such as healthcare, insurance and banking, are regulations that prohibit the 

transmission and distribution of highly confidential personal and financial data. This 

challenge poses a major obstacle in fraud detection research in sectors where data 

contain confidential information. Consequently, numerous fraud detection algorithms 

resort to mathematical evaluation measures, which appear to be the best in situations 

where only a few databases are available for research. This issue has also prompted 

researchers to resort to the use of synthetic datasets with different characteristics to 

test their solutions. Synthetic network generators generally duplicate a small subset of 

the original network’s properties for specific applications, such as community detection 

(Akoglu and Faloutsos 2009). Some sets of abnormal samples are usually injected 

into a predefined normal distribution of data (e.g. power-law networks) to generate 
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synthetic data for fraud or anomaly detection (Akoglu and Faloutsos 2009). 

Considering that the proposed algorithm is evaluated over mathematical measures, 

the overall reliability of the empirical evaluation of a fraud detection model using such 

synthetically generated data may not reflect well the actual problem and case used 

(Akoglu and Faloutsos 2009; Awrad Mohammed 2014; Nettleton 2016).  

The main challenge in the production of synthetic datasets is to make the generated 

networks mimic various aspects of human behaviour, including noise and 

randomness, as how these characteristics are incorporated will determine the realism 

of the simulated networks (Nettleton 2016). With synthetic data, the dataset 

characteristics can impact the performance of any new methods developed. When 

designing new algorithm to detect fraud, attention should be directed to ensure that 

the simulated data reflect the actual network within which the new algorithm is 

designed to detect suspicious activities (Awrad Mohammed 2014; Nettleton 2016). 

Otherwise, the performance of the algorithm evaluated within simulated environments 

will not reflect real-world networks (Awrad Mohammed 2014).  

On real-world datasets, the studies published to support the research community 

are not without their own challenges. This review notes that some real-world datasets 

have missing elements or that only part of the dataset is made publicly available. 

These issues make it challenging for the community to effectively evaluate any new 

methods developed against a published piece of work that used the full dataset. 

Without the means to adequately benchmark new algorithms, the progress of research 

in this area will be slow or limited (Awrad Mohammed 2014). 

Data anonymisation can address this issue by hiding confidential information while 

maintaining the analytical utility of the data (Eze and Peyton 2015). This technique 

enables data scientists and organisations to engage in a win–win collaboration. Data 
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scientists will have the chance to analyse data in different areas and share their 

discoveries with businesses. In turn, businesses can be equipped with new fraud 

detection methodologies. 

However, in some cases, even anonymised data have business value for the party 

owning them. Unauthorised disclosure of such data may damage the party owning 

them or other parties affected by their disclosure (Ohm 2009). Here, data 

confidentiality still matters even after data anonymisation, as clever adversaries can 

reidentify or deanonymise the information hidden in anonymised data by linking 

anonymised data to outside information to unearth the true identity of the data subjects 

(Ohm 2009). While it has not been suggested that all anonymisation techniques fail to 

protect privacy, some techniques have proven to be difficult to reverse (Ohm 2009). 

Some researchers reject anonymisation as a privacy-protecting panacea (Ohm 2009).  

Nevertheless, this challenge should motivate us to continue exploring, or 

reexamining, the possibility of adapting synthetic data as an alternative to alleviate the 

data privacy issue. Synthetic network generators offer a common benchmark, enabling 

multiple groups of researchers to evaluate their research on the same dataset. 

However, many algorithms that perform well on synthetically generated networks may 

perform poorly in real applications (Awrad Mohammed 2014) as real data are often 

messy, possessing isolated nodes, strange degree distributions and unbalanced class 

distributions. Thus, many challenges related to synthetically generated networks 

remain. While it is important to continue developing new and better algorithms, there 

should also be research on areas that answer the following questions: How good or 

realistic are the synthetically generated networks? Should there be a measure, or are 

there other ways to gauge this? How can noise and randomness be incorporated in a 

synthetically generated networks so that the generated network is close to the type of 
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network that the designed fraud detection algorithms would be dealing with (Nettleton 

2016)? How can the efficiency of different synthetic network generators be evaluated? 

2.3.7.2 Keeping Track of Network User Activities Over Different Timestamps 

Most real-world networks evolve, and fraudsters leverage their dynamics to evade 

detection by spreading and altering their activities over time, thus camouflaging their 

real intent, i.e. their fraudulent activities (Ye and Akoglu 2015). This characteristic 

renders the detection of fraudsters’ behaviours even more challenging. Therefore, 

core criminal behaviour that can withstand such changes over time should be 

understood (Ye and Akoglu 2015). 

This literature review demonstrates that research on fraud detection in dynamic 

networks is scarce (see Section 2.3.3.4), leaving a research gap that needs to be 

urgently filled, particularly with the prevalence of OSNs. This suggests that the future 

design of fraud detection solutions should consider the use of a time-evolving network 

structure to continuously track suspicious activities across different time-based 

snapshots.  

Dealing with these time-evolving network structures requires several key 

considerations (see Table 2.5), one of which is that their solutions need to be scalable 

to balance the trade-off between efficiency (rapid detection time and high scalability) 

and effectiveness (high hit and low false alarm rates) (Phua et al. 2009). It is also 

necessary to ensure that the solution is robust as a time-evolving network structure 

has data sparsity issues (Wu et al. 2017). Hence, suspicious activities from different 

attributes and times of evolving network structures should be aggregated (Liu et al. 

2017b). As a result, the algorithms developed for such networks need to consider new 

data characteristics.   
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2.3.7.3 Investigating the Inherent Multiplex Behaviour of Network Users 

This review also finds that many current studies do not consider the intrinsic 

multiplex nature of human interactions. They tend to investigate users’ behaviours in 

simplex social networks, focusing on just one type of activity. However, capturing 

different aspects of relations and activities among the same individuals can give more 

clues to detect suspicious activities (e.g. individuals may have different kinds of 

activities within an online social media platform, such as making friends, sending 

messages, reviewing profiles, liking posts and poking). This points to the need to 

analyse all kinds of activities pertaining to the same individual to uncover any 

suspicious activity (Fakhraei et al. 2015).  

A multiplex network contains multiple layers that share the same sets of nodes, with 

each layer representing one type of communication among entities. To detect 

anomalies and suspicious activities in multiplex networks, it is important to study the 

rich information hidden in individual network layers (Pourhabibi et al. 2019). Analysing 

just one mode of interaction cannot provide a complete picture of the relationships 

among network users. Thus, it will be inadequate, if not unrealistic, to focus on a 

singular view using simplex social networks to detect fraudulent activities. Yet, 

detecting suspicious activities in multiplex networks remains a relatively unexplored 

research area.  

Given that social interactions in communities comprise different and multiple types 

of relationship (Fakhraei et al. 2015; Pourhabibi et al. 2019), a pragmatic fraud 

detection solution or algorithm should acknowledge and consider the varieties and 

abundance of human interactions that multiplex networks better capture. Neglecting 

such a multiplicity of human interactions can lead to information loss and may obscure 

important information from being discovered (Fakhraei et al. 2015; Pourhabibi et al. 
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2019). Furthermore, such interactions in multiplex networks are digital footprints of 

potential fraudsters that need to be holistically represented and extracted as important 

evidence for combating frauds and possibly crimes (Fakhraei et al. 2015; Pourhabibi 

et al. 2019). Consequently, feature engineering and graph representation learning 

(also called graph embedding) are reported as the two main families of approaches 

for extracting and representing the structural features or characteristics of multiplex 

networks (see Section 2.2.5).  

2.3.7.4 Eliminating Human Intervention in Structural Information Extraction  

Recently, there has been a surge towards the use of graph representation learning 

(or graph embedding) techniques to automatically encode the structural information 

about the network (Cai et al. 2017). The key idea behind these approaches is to learn 

the mapping of embedded nodes, links or the entire network and transform them into 

a lower-dimensional vector space to extract important hidden structural features. This 

is different from traditional approaches, such as feature engineering, which relies on 

prior knowledge of domain experts to hand-engineer features (e.g. degrees, clustering 

coefficients). In large and time-evolving networks, feature engineering is time-

consuming, expensive and, ultimately, lack scalability as detection models will need 

to be regularly updated to reflect the fraudster’s altered behaviour and activities 

(Hamilton et al. 2017).  

It has been shown that graph representation learning techniques extract structural 

information from networks without the need for knowledge experts and can be adopted 

to learn and capture the structural information of time-evolving multiplex networks. As 

a result of recent developments in deep learning methods (Goyal and Ferrara 2018; 

Zhong et al. 2016), numerous graph representation learning techniques have been 

developed to deal with massive network data. These techniques include graph 
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convolutional networks (Schlichtkrull et al. 2018b), graph attention networks 

(Veličković et al. 2017) and recurrent networks (Palm et al. 2018). Another reason to 

consider graph representation learning is that in many of the reviewed literatures, 

subsequent stages of fraud detection require the topological and structural 

characteristics of the network to be preserved. For example, many solutions include 

an anomaly detection stage that uses machine learning tasks (e.g. clustering and 

classifications), requiring this structural and topological information to operate.   

Despite all said, the role of human experts is irreplaceable for the time being. Any 

detected anomaly will still require the assessment of domain knowledge to make 

adjustments based on the given complex situations of an application domain. As far 

as automation goes, algorithms can assist with scoring to create blocking mechanisms 

(Phua et al. 2009) and block any suspicious fraudulent activities or behaviours by 

having regular expert input to improve the detection capability (Bhattacharjee et al. 

2017).  

2.3.7.5 Relation to Criminological Theories 

 There is a theoretical void among current studies applying the GBAD technique in 

fraud detection. None of the reviewed studies have made explicit reference to some 

of the core principles of criminological theories, e.g. differential association theory 

(Sutherland 1939) and social disorganisation theory (Shaw and McKay 1942), to 

support their proposed algorithms for the detection of ‘suspicious’ activities or ‘bad’ 

communities in social networks. Applying principles of criminological theories to 

substantiate assumptions about criminal behaviours or crime commitment patterns 

when developing fraud detection algorithms give validity to the techniques in informing 

appropriate prevention and intervention strategies (Payne et al. 2019). Therefore, this 

thesis draws on the tenets of criminological theories to develop fraud detection 
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algorithms based on theoretically substantiated concepts and empirically 

demonstrated findings. 

2.4 Chapter Summary 

This chapter sets out to identify, analyse and synthesise various GBAD approaches 

employed in the research of fraud detection. Using eight questions that separately 

probe a specific aspect of GBAD-based fraud detection studies to develop a 

classification framework, this chapter systematically analyses 39 academic papers 

identified through a systematic literature search. The systematic review unearths three 

major issues. 

First, the current research on GBAD has not drawn on principles from core 

criminological theories, such as differential association theory (Sutherland 1939) and 

social disorganisation theory (Shaw and McKay 1942), to detect criminal activities in 

social networks. Second, the existing literature has not sufficiently addressed the 

connectivity patterns in time-evolving networks and multi-layer networks when 

extracting structural features to represent network characteristics and differentiate 

suspicious from normal users. Third, the learning algorithms in feature engineering are 

highly dependent on human intervention, which may lead to scalability problems and 

loss of accuracy in the proposed algorithms. This point is especially important when 

attempting to detect criminals who form co-offending groups to commit collaborative 

criminal activities that pose a continuous threat to global society by causing harm to 

social, technological, environmental and political infrastructure. Members of such 

covert groups try to hide their actual networking activities by engaging in different 

‘cover-up’ activities to reduce the possibility of being identified (Erickson 1981; Warnke 

2016). These kinds of cover-up activities render the process of a manual analysis of 

the network and the design of features by experts more difficult and complicated. Such 
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a complexity is caused by the fact that the design of features depends on leveraging 

human intuition to interpret implicit suspicious signals within the network, which 

requires technical expertise to brainstorm the ideas and implement them, and is limited 

by creativity, expertise and time. Moreover, the designed features may not be able to 

single out the suspicious behaviours, leading to a reduced accuracy (Zhu 2019). They 

may also not be scalable for large networks owing to the complexity of their design, 

implementation, and extraction (Keikha et al. 2019).  

In developing fraud detection algorithms to answer the research questions using 

the GBAD approach, this research directly addresses the three issues (Table 2.6). 

First, it analyses the commitment of crime from the perspective of five criminological 

theories to determine how criminologists approach crime problems and introduce 

solutions to detect or prevent them. They provide the theoretical foundation for the 

proposed algorithms presented in Chapters 4–6. Second, to capture the connectivity 

patterns in time-evolving networks and multi-layer networks, this research uses feature 

engineering to extract scalable attributes that can preserve network structure to detect 

deviant users and anomalous activities (See Chapter 4). Third, to reduce dependence 

on human expert interventions in using feature engineering, two other techniques are 

used to automatically extract structural characteristics to detect suspicious criminal 

activities (see Chapters 5 and 6). 

Table 2.6. Summary of issues and contribution of this thesis to address them 

Issue Contribution of this thesis Chapter discussed 

Extant GBAD research lacks theoretical foundations for 
criminal activities detection 

Develops the theoretical foundation of the proposed 
GBAD algorithms 

Chapter 3 

Connectivity patterns in time-evolving and multi-layer 
networks insufficiently addressed in extant literature 
when extracting structural features 

All the algorithms developed in this thesis are 
applicable both in multi-layer networks and monoplex 
networks 

Chapters 4-6 

Extant research using GBAD approaches to detect 
anomalies in networks does not keep track of Network 
User Activities Over Different Timestamps 

human-engineered features or feature engineering of 
deviant characteristics within a time-evolving network 
are proposed 

Chapter 4 

High dependency of learning algorithms in feature 
engineering on human intervention, resulting in 
scalability problems and loss of accuracy 

Two algorithms are introduced to automatically 
extract structural features from social networks 
without human intervention 

Chapters 5-6 
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3 Chapter 3—Theoretical Background  

Criminological theories explain crimes and criminal behaviours by posing questions 

that dig into different aspects of crime commitment, such as causes, patterns and 

crime prevention: What are the factors contributing to crime occurrence? Why do 

people commit crime? Why is the likelihood of crime incidence higher in specific 

suburbs or some specific periods? Why are some people frequently victimised? How 

could crime and criminals be detected and deviant behaviour prevented? These 

questions call for an understanding of criminals’ motivations and behaviours, crime 

drivers and commitment patterns, formed by the complexity of criminal events, and 

target characteristics exhibited in a specific environment (Brantingham et al. 2016; 

Wortley and Mazerolle 2009; Wortley and Townsley 2016). Criminologists explore 

responses to such theoretical questions through empirical studies to derive ‘rules’ and 

‘theories’ that ultimately lead to strategies for crime detection and prevention (Wortley 

and Mazerolle 2009).  

These ultimate crime analysis strategies provide information about crime patterns 

and trends on which law enforcement agencies could rely to conduct criminal 

investigations, develop methods and plan preventive and detective strategies (Emig 

et al. 1980). One possible approach for such analytical practices to explain crime 

patterns is to analyse environmental and social influences (Wortley and Mazerolle 

2009) using SNA. 

SNA, a method of examining social structures and processes using networks and 

graph theory (Wilson 1986), is becoming an essential component in criminal 

intelligence analysis (Bouchard and Malm 2016). The reason is that crime is relevant 

to the behaviour of individuals who interact with others within a social system (Bichler 

and Malm 2015). Social networks reveal the relational patterns among the social units 
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(individuals or organisations) and the implications displayed by such patterns 

(Sarnecki 2001). Given the importance of the social environments and social 

influences in the aetiology of crime and delinquency, network methods are becoming 

increasingly used to analyse crimes and criminal behaviours (Bouchard and Malm 

2016).  

This chapter first presents different criminological theories that have been adopted 

to explain crime, crime drivers and criminal behaviour. These theories broaden 

insights into how criminologists approach a crime-related problem through the lenses 

of the criminological theories when applied to different crime contexts. Because this 

thesis aims to develop algorithms for detecting a deviant behaviour within social 

networks, this chapter introduces SNA. Including models rooted in the GBAD 

techniques, SNA provides tactical and strategic detective methods based on theories 

that explain ‘how’ to detect a deviant behaviour. Using these theoretical foundations 

and the tactics explored by SNA, the next three chapters are devoted to developing 

algorithms using GBAD techniques for detecting a deviant behaviour within social 

networks. 

3.1 Crime Analysis: Criminological Perspective 

Criminological theories have provided substantive knowledge on criminals’ 

motivations and behaviours: why people commit crimes, what conditions should be 

met and where and when a crime is more likely to happen and how crimes could be 

controlled, prevented and detected (Gilmour 2016) (Figure 3.1).  
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Figure 3.1. Crime analysis: why, what, where and when and how. 

Criminological theories are essential facilitators in identifying the viable causes of 

crime and supporting the detective or preventive mechanisms (Gilmour 2016). This 

research adopts five theoretical perspectives that are linked to answering the why, 

what, where and when and how of criminal motivations and behaviours: 

 Rational choice theory (why) (Cornish and Clarke 2014),  

 Routine activity theory (what) (Cohen and Felson 1979),  

 Crime pattern theory (where and when) (Brantingham and Brantingham 

1993),  

 Differential association theory (Sutherland 1939) and social disorganisation 

theory (Shaw and McKay 1942) (how).  

The aforementioned theories form the theoretical foundation of this research. This 

research raises understanding about crime and its motivators using the first three 

theories (why, what, where and when); by focusing on the last two, it finds strategic 

solutions on how to detect a criminal act. In the following sections, each of these 

theories is first explained from the perspective of criminology. The discussion then 

moves to examine SNA as a crime analysis tool and how to detect crime under the 
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tenets of differential association and social disorganisation theories with the help of 

SNA.  

3.1.1 Why: Rational Choice Theory  

The rational choice perspective is a utility-based theory in criminology that is aligned 

with cost–benefit analysis. Rational choice theory (Cornish and Clarke 2014) has 

different features (Paternoster and Simpson 1993). First, it views the decision to 

commit a crime as a rational choice, trading off the probable costs and benefits of the 

action (Paternoster and Simpson 1993). While the rewards of crime can vary from 

obtaining specific status in the covert community (Perry and Hasisi 2015), fame or 

honour among criminals (Orehek et al. 2009; Perry and Hasisi 2015), increase in 

financial utility and religious rewards to regime change or social revolution (Davis and 

Cragin 2009; Nemeth 2017; van Um 2011), the cost of criminal activity includes, but 

is not limited to, the possibility and severity of formal and informal legal sanctions, 

moral costs, loss of legal alternatives to action and loss of self-respect (Paternoster 

and Simpson 1993).  

Second, because the perceptions of the risks and rewards of crime differ, and the 

kind of information required and used by offenders to commit a crime varies across 

different crimes, rational choice models of offending are crime-specific (Paternoster 

and Simpson 1993; Thomas et al. 2020). For example, criminals may have the 

tendency to specialise in certain types of crime (e.g. property crimes vs. robbery) 

(Thomas et al. 2020).  

Third, the offending decisions in a specific criminal event are influenced by the 

contextual features of the crime (Paternoster and Simpson 1993). In street crime, for 

example, the offending decision is influenced by various circumstances, such as 

vulnerability of the target, ease of escape, existence of security devices or probability 
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of meeting an armed or resisting victim (Akers 1990; Johnson 2014; Paternoster and 

Simpson 1993).  

On the premises of the rational choice theory, many studies (see, e.g. (Arsovska 

and Kostakos 2008; Holmes 2009; Kao 2014; Pizarro et al. 2020)) have introduced a 

rational choice model of criminal activities to delve into different aspects of crimes. For 

example, by applying rational choice theory, Carson et al. (2020) unveiled the 

behaviour of eco-movement radicals and their motives. Using this theory, the authors 

investigated the trade-off between cost and benefit in radical eco-movements: whether 

the arrest of the activists or environment-threatening (i.e. cost) or environment-

protecting actions (i.e. benefit) of the US federal government impact the risk of radical 

incidents. As a whole, they found that when government actions increase the costs of 

perpetration, radical movements decline, and when government actions allow benefits 

to be gained, more eco-incidents occur. Arsovska and Kostakos (2008) examined the 

rationality of getting involved in illicit arm trafficking. They found that individuals 

engaged in arm smuggling according to specific needs, and based on those needs, 

they set specific goals, which can vary from making profit to gaining power. 

Accordingly, they search for the opportunities, including illegal means, to achieve their 

goals. These interpretations depend on the person’s prior history, not just a particular 

moment. Moreover, arms can provide individuals with a choice to spare or take lives. 

Holmes (2009) also found that corporations got involved in corporate crime because, 

relative to the value of the gains, the punishments meted out to them are minor in 

comparison. Therefore, relative to the risk taken by corporations, the rewards are 

bigger (Holms, 2009). 

In sum, rational choice theory attempts to establish the motives for criminal acts 

and answer the question ‘why people commit a crime’. It argues that the rationality 
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behind any criminal decisions weighs the costs lower than the risks involved. Within 

the scope of this research, people get involved in cybercrime as compared with the 

high benefits (e.g. opportunity for sexual abuse, child pornography and phishing), the 

risk of being caught is low due to the lack of policing in cyber space (Hu et al. 2014). 

The formation of criminal organisations is also rational, motivated by maximising a 

utility (e.g. financial, religious and power) (van Um 2011), since the risk of getting 

caught by local security force and police is typically low (Masucci 2013). 

3.1.2 What: Routine Activity Theory 

An extension of the rational choice theory is the routine activity theory (Cohen and 

Felson 1979). Routine activity theory seeks to explain the occurrence of crime by 

primarily focusing on three elements required for a crime to occur (Figure 3.2): i) a 

motivated offender with criminal intentions, ii) the presence of a suitable target or 

victim and ii) the absence of a capable guardian governance in the same time and 

place (Cohen and Felson 1979).  

This theory links the patterns of offensive activities to everyday patterns of social 

interactions (Brantingham 2010). It suggests that criminals find their potential targets 

at the intersections of their routine activities with those of their victims (Cohen and 

Felson 1979). Along their routine activities, people develop strong awareness about 

their activity space. These activity spaces denote the areas people are most familiar 

with (Brantingham 2010). This feature indicates that crime is more likely to happen 

among normal activities and near awareness space (Bichler et al. 2017). Therefore, 

routine activities of potential criminals generally provide a clue to the location where, 

and the times when, a crime is more likely to happen.  
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Figure 3.2. Routine activity theory: three factors for a crime to occur (Modified from source: 

(Abt 2017, p. 270)). 

Among many research studies analysing crimes using this theory, those of Choi et 

al. (2019), Marcum et al. (2010) and Hutchings and Hayes (2009), for example, 

demonstrated that routine activity theory is a feasible theoretical framework when 

applied to cybercrime investigation. One of the findings from these research studies 

indicates that individuals who extensively use the computer and the Internet in their 

daily routine activities make suitable cybercrime targets and are more likely to be 

attacked by motivated cyber offenders. This victimisation is due to the absence of a 

capable guardian (e.g. the amount of monitoring by a respondent, self-protective 

measures and law enforcement). This finding supports the tenets of the routine activity 

theory. Murphy (2019), who studied the dynamics of terrorism and trafficking in South 

Asia, also found that poor young people are suitable targets of opportunist traffickers 

and terrorist activists due to poor governance and weak economic structure in South 

Asia. 

Therefore, empirical evidence supports routine activity theory: social and 

environmental factors make some segments of the population more vulnerable to 

criminal activities compared with others. The theory prompts criminologists and law-

makers to explore the question ‘what conditions would make an ideal breeding ground 

for a crime to occur’. Cybercriminals are drawn to OSNs, an activity space in the cyber 
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world with no or minimal policing, so they could easily reach their potential targets (e.g. 

female, youngsters) and commit their deviant behaviours (Conradt 2012; Karmen 

1984; Pourhabibi et al. 2019). Criminal networks also grow due to the lack of 

guardianships by local security force. Active criminals (i.e. motivated offenders) could 

easily reach their target accomplices, i.e. criminal counterparts selected from the same 

awareness or activity space (e.g. those with similar ethnic background, friendship or 

kinship groups) (Blau 1977).  

3.1.3 Where and When: Crime Pattern Theory 

Research on environmental criminology suggests that crime is not randomly or 

evenly distributed in space (Higgins and Swartz 2018). Rather, it tends to occur in 

clusters and hotspots, in specific locations and time following specific patterns (Higgins 

and Swartz 2018). Criminology defines these clusters or hotspots as predictable areas 

where the frequency of occurrence of crime is high (Courtney 2018). Extending from 

routine activity theory’s three elements for a crime to occur, crime pattern theory 

(Brantingham and Brantingham 1993) focuses on where and when criminal events 

occur. Crime pattern theory suggests that offenses typically occur in areas that are 

already known to criminals. As a consequence of engaging in their routine activities 

(Cohen and Felson 1979), criminals grow their awareness spaces (also known as 

activity space) (e.g. their home, places of work and recreation and people they know) 

(Brantingham and Brantingham 1993) and create patterns (in time and space) of their 

covert activities around their awareness spaces (Eck and Weisburd 1995). Therefore, 

crimes are more likely to occur in areas where suitable targets overlap the offenders’ 

awareness space (Eck and Weisburd 1995).  

 Hewitt et al. (2018), for example, used this theory to analyse the characteristics of 

the places that sex-related crimes are more likely to occur. They found that in 
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geographical areas with a high percentage of adult females (potential victims), young 

adult males (motivated offenders) and single individuals (absence of capable 

guardianship) high rates of sexual crimes were reported. Interestingly, their finding 

was also in agreement with routine activity theory. Drawing on the realm of this theory, 

Paraskevas and Brookes (2018) studied human trafficking in the tourism industry. 

They confirmed that tourist activities are incubators of labour and sexual exploitation 

in human trafficking, where hotels serve as the activity spaces where offenders and 

their potential victims converge with hotel employees and managers functioning as the 

guardians.  

Crime pattern theory, therefore, helps increase our understanding of location and 

time choices of offenders for committing their crime, thus answering the question 

‘where and when crimes occur’. Within an online dating social network, cyberspace 

acts as a virtual space where a crime happens. Within this space, criminals converge 

with their targets and create patterns through virtual communication with them (Miró-

Llinares and Moneva 2020). In forming criminal organisations, these patterns are 

formed among people who tend to co-offend in the form of clusters within their network 

(Brantingham and Brantingham 1993; Miró-Llinares and Moneva 2020). 

3.1.4 How: Differential Association Theory 

Sutherland’s (1939) differential association theory in criminology is perhaps the first 

criminological theory closest to network analytical thought. Sutherland’s theory of 

differential association posits that individuals learn the techniques of committing 

crimes and acquire the motives, rationalisations and attitudes for criminal behaviour 

through interactions with others, principally delinquent peers or deviant parents 

(Hawdon 2012; Levin et al. 2012; Sarnecki 2001). The important features of this theory 

for explaining criminal activity are the frequency, intensity and durability of interactions, 
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which can be attributed to links between network members (Hawdon 2012; Levin et 

al. 2012; Sarnecki 2001). ‘A person becomes delinquent because of an excess of 

definitions favourable to violation of law over definitions unfavourable to violation of 

law’ (Sutherland et al. 1992, pp. 6–7). These definitions are consolidated when high-

profile criminals’ contacts with other individuals are established (Sarnecki 2001). 

Therefore, connections presented more frequently, with longer exposure periods, 

linked to a more prestigious source or more intense relationships, would receive more 

weight under the realm of this theory (Matsueda 1988). As presented in Sutherland’s 

theory (1939), this notion implies that powerful criminal members of a network are 

more likely those who are (Gallupe and Gravel 2018): i) highly connected, ii) have ties 

with others and iii) act as a link between disconnected groups. 

Drawing on the tenets of this theory, Klein and Cooper (2019), for example, 

analysed the interactions (e.g. number of sexual partners, frequency of sexual activity 

and frequency of masturbation) among college students to determine the intensity of 

cybersex activities. They found that peer associations have a strong influence on 

individuals’ engagement in deviant cybersex activities. The theory is also adopted to 

test the connection between drug use and youth crime by Trajtenberg and Menese 

(2019). In their analysis, they used three proxy measures, namely, presence, intensity 

and duration of involvement in the crime. They found that the use and exchange of 

illegal drugs is a key explanatory factor in crime and violence. 

In short, this theory posits that criminal behaviour is cultivated through interactions, 

and by analysing these interactions, criminologists could determine ‘how to detect 

criminal activities’. Accordingly, deviant behaviours within a social network can be 

detected by analysing the social interactions within the ego’s personal network through 
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a search for patterns of interaction frequency, duration, priority and intensity 

(Hanneman and Riddle 2011).  

3.1.5 How: Social Disorganisation Theory 

Social disorganisation theory hypothesises that a neighbourhood’s ecological 

characteristics (e.g. low economic status, ethnic/racial heterogeneity and residential 

inequality/mobility) have an important influence on social disorganisation in 

communities, which ultimately leads to higher crime rates (Parker and Stansfield 

2014). Social disorganisation is defined as ‘the inability of local communities to realise 

the common values of their residents or solve commonly experienced problems’ 

(Bursik 1988, p. 12). This indicates that poverty, residential mobility, ethnic 

heterogeneity and weak social ties would decrease a neighbourhood’s capacity to 

control crime and hence increase the likelihood of crime (Kubrin and Weitzer 2003). 

In turn, the development of formal and informal social ties, social capital (e.g. social 

cohesion (Kennedy et al. 1998)) and collective efficiency (e.g. mutual trust among 

people (Sampson et al. 1998)) promotes the ability of the community to socially control 

or impede delinquency (Parker and Stansfield 2014). Worrell et al. (2013) contend that 

growth in social control (i.e. strong ties among communities) will reduce crime and 

disorder, as presented in Figure 3.3. 
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Figure 3.3. Social control and crime as explained by social disorganisation theory (Source: 

(Worrell et al. 2013, p.133)).  

Carter et al. (2020), for example, adopted social disorganisation theory and routine 

activity theory to explore the role that different ecological and socio-demographic 

variables (e.g. median household income, renter percentage, multifamily housing 

count, homeownership and percentage of African-American residents) play in 

predicting patterns of property and vehicle crime incidents. Their findings reveal that 

the hotspots of crimes typically emerge in high-traffic areas (e.g. higher renter-

occupied housing, commercial areas and areas with high residential turnover) of the 

city bordering low-income areas. Another study by Kajeepeta et al. (2020) adopted the 

principles of this theory to prove that place-based interventions have an immense 

influence on reducing crime incidents in urban settings. They reported that in 

neighbourhoods with higher bar densities, the percentage of violence is higher. 

Therefore, by increasing social control or social awareness (e.g. through the increased 

presence of police or their neighbours) in such areas, it would be possible to reduce 

the occurrence of such crimes. 

Using the framework of this theory, criminologists can determine places or 

communities prone to persistent crime occurrences. This outcome can be a useful 
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theoretical foundation for the development of policing strategies to identify such crime-

prone communities or people and answer the question ‘how to detect criminal 

activities’. Within a dark network, the presence of dense portions is a sign that 

criminals are creating high-density social ties. The identification of those portions thus 

helps detect criminals and disrupt their criminal activities (Carrington 2011). 

3.2 Social Network Analysis as a Crime Analysis Strategy 

The criminological theories attempt to explain crime patterns and motives by 

analysing environmental and social influences (Wortley and Mazerolle 2009). Such 

analysis ultimately leads to the development of crime detection and prevention 

strategies (Emig et al. 1980), which could be applied in SNA. 

Network analysis was first introduced by Sparrow (1991) as a potential tool to assist 

law enforcement agencies in criminal investigations. However, it was almost a decade 

after Sparrow’s (1991) proposal that SNA started to become popular in criminal 

intelligence studies following Krebs’ (2002) investigation of the 9/11 attack using SNA.  

SNA includes a theoretical perspective and a set of methodological techniques 

(Carrington, 2005). As a theoretical perspective, it considers the interdependence and 

relations (e.g. trading patterns, friendship and co-offending) among social actors (e.g. 

individuals, organisations, websites, cities and neighbourhoods). SNA views the social 

world as patterns among the interacting units and the implications displayed by those 

patterns (Carrington, 2005). The relationships and interdependencies in the social 

world are reflective of the processes and consequences of interacting behaviours 

(Haynie and Soller 2014).  

From a methodological perspective, SNA refers to a class of techniques rooted in 

graph theory called GBAD approaches (Velampalli and Eberle 2017), which extends 
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to other models, including statistical, algebraic, simulation and agent-based models, 

and has been used extensively in studying relational patterns (Carrington, 2005).  

In criminal investigations, SNA has significantly contributed to understanding the 

root causes of deviant behaviour and crime. For example, it has been widely used for 

profiling organised crimes (Basu and Sen 2021; Calderoni et al. 2020; Duijn and Sloot 

2015; Saidi et al. 2017), financial crimes (Didimo et al. 2014) and cybercrimes (Han et 

al. 2019; Singh et al. 2020) as well as identifying key players in criminal events (Lee 

et al. 2020), among others. Essentially, the utility of SNA to law enforcement comes 

from the fact that knowing who a person is associated with can aid in predicting that 

person’s future decisions (Overland Park 2018). Therefore, SNA provides practical 

guidance for crime prevention and detection efforts (Overland Park 2018).  

The next two sections present two principal tenets of SNA analysis applied to crime 

and deviant behaviour (Carrington 2011): i) peer influence and ii) co-offending. Under 

each principle, this chapter further elaborates how network analysis strategies are 

drawn from the principles of criminological theories to explain ‘how criminal acts can 

be detected’ (see Sections 3.1.4 and 3.1.5). 

3.2.1 Peer Influence On Delinquency  

One of the most popular uses of SNA in criminology is analysing the influences that 

personal networks have on adults’ delinquency, which is called peer influence 

(Carrington 2011). Many criminological studies have focused on the analysis of social 

relationships to examine the roles that peers play in criminal activities (see e.g. 

(Eriksson et al. 2016; Lee et al. 2020; Liu et al. 2014; Philippe 2017; Stevenson 2017)). 

Peers can be defined as friends (Lee et al. 2020; Liu et al. 2014), family members 

(Eriksson et al. 2016), people that spend time together in prison (Stevenson 2017) and 

co-offenders (Philippe 2017). The scope for peer influences and the underlying 
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influence mechanisms may also vary by crime type (Lindquist and Zenou 2019). 

However, the common element among these studies is that they all have 

demonstrated that peer influence and becoming delinquent stemming from repeated 

contacts with close peers, an inherently social phenomenon, imply a process of social 

interaction. They also suggest that the source of crime and delinquency is located 

within the very intimate social networks of individuals (Baerveldt et al. 2008; Gallupe 

et al. 2015; Gerstner and Oberwittler 2018; Grund and Densley 2014; Haynie 2001; 

Haynie et al. 2014; Haynie and Osgood 2005; Jose et al. 2016; Kreager et al. 2011; 

Rees and Pogarsky 2011; Sarnecki 1990; Schaefer 2012; Weerman 2011; Young 

2011). Carrington (2011) argues that these social communications can be investigated 

using SNA. Baerveldt et al.(2008), for example, analyses a friendship network to 

demonstrate that one of the best predictors of crime involvement among adolescents 

is exposure to delinquent peers. Gallupe et al. (2015) suggest that adolescents who 

exhibit a high capacity for delinquency have higher social status and are more popular 

(i.e. have high centrality). Gerstner and Oberwittler (2018) also employed network data 

analysis to determine the extent to which adolescents get involved in delinquent 

activities in the absence of adult supervision and how dependent this behaviour is on 

the delinquent inclinations of their peers.  

The theories of delinquency, such as differential association theory (Sutherland 

1939), are rooted in a framework in which the interactions between individuals and 

their social environment are a key component in analysing crime and delinquency. As 

explained in Section 3.1.4, differential association theory focuses on the frequency, 

strength and intensity of social interactions with others and contends that delinquency 

is learned within close relationships (Bouchard and Malm 2016; Haynie and Soller 

2014): the more cohesive the network, the more robust the association between peers 
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and delinquency (Bouchard and Malm 2016; Haynie and Soller 2014). This theory 

states that the behaviour of one’s personal network affects one’s ego’s behaviour and 

attitudes, and these effects can be depicted by the characteristics of the network. The 

concepts advanced by this theory can be operationalised using the SNA method. ‘The 

intimate personal groups’ (Carrington 2011, p. 237), in which crime is learned, are 

simple ego’s personal network which can be measured using various metrics, such as 

frequency, duration, priority and intensity (Hanneman and Riddle 2011). Further, ego’s 

social integration, which is defined as the social cohesion among the neighbours along 

with their inclination to involve in a common good, can be measured by modularity or 

density within a group (i.e. discovering partitions of the network with higher density or 

partitioning the network into clusters where members in each cluster have the 

maximum number of interactions with each other but minimum connections with 

members in other clusters (Luan et al. 2019)) or the average degree between a pair 

(Carrington 2011). 

3.2.2 Co-offending: Crime as a Group Activity 

Crime is an inherent group activity (Gravel and Tita 2017), and co-offending is the 

actual involvement of an individual in an illegal behaviour with others (Reiss and 

Farrington 1991, p. 361). A large portion of very serious criminal activities is 

perpetrated by co-offending individuals as organised groups of criminals (Lindquist 

and Zenou 2019), including street gangs (Grund and Densley 2012; McGloin 2005; 

Papachristos 2009; Sierra-Arévalo and Papachristos 2015), secret societies (Erickson 

1981), criminal enterprises (Campana and Varese 2012; Morselli 2009), illegal drug 

market (Berlusconi et al. 2017; Malm and Bichler 2011; Morselli et al. 2017; Natarajan 

2006) and terrorist groups (Krebs 2002).  
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Co-offenders tend to engage in collective activities with ‘similar’ others 

(Papachristos 2013). This homophily feature, reflective of the idiom ‘birds of a feather 

stick together’ (Glueck and Glueck 1950, p. 361), can be explained in a criminal 

context in two different ways (Grund and Densley 2014). 

The first explanation is that individuals tend to form social relationships with similar 

others. As such, the literature on co-offending demonstrates that co-offenders exhibit 

strong propensities towards homophily characteristics, e.g. age (Carrington 2014b; 

Sarnecki 2001), gender (Carrington 2011; Sarnecki 2001; van Mastrigt and Carrington 

2014), place of residency, criminal experience and ethic homophily (Grund and 

Densley 2014; Sarnecki 2001).  

These similarities lead to the second explanation: there is a psychological 

preference for criminals to select similar people as accomplices or co-offenders to 

achieve a common illegal goal (Carrington 2014a; Faust and Tita 2019; Grund and 

Densley 2014). Offenders’ selection of co-offenders is not a random process (Cornish 

and Clarke 2014) but follows a rational decision-making process where co-offenders 

are systematically selected from a large pool of potential accomplices (Tremblay 

1993). In addition, most of the offenders already know their co-offenders from the 

conjunction of their routine activity space, as the routine activity theory indicates 

(Cohen and Felson 1979). Therefore, Tremblay’s (1993) extension of routine activity 

theory explicitly connects co-offending selection to SNA (Carrington 2014a), which is 

the offenders’ desire to connect to similar other with whom they can form i) the 

strongest possible ties (who looks to be more trustworthy) (Carrington 2014a) and ii) 

‘weak but useful ties so as to increase the scope and value of crime opportunities’ 

(Tremblay 1993, p. 26). In other words, co-offending decisions are networked 

decisions (Bouchard and Malm 2016), and the emergence of the network paradigm in 
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criminology had a great impact on the way law enforcement agencies and 

criminologists approached organised crime, gangs and illicit networks. Once each 

offender is mapped to a pool of potential accomplices as a social network, the analyst 

can start understanding the selection mechanisms, and the flow of the influences 

among co-offenders more precisely (Bouchard and Malm 2016).  

Among the criminological theories, social disorganisation theory (Shaw and McKay 

1942), which explains the formation of criminal communities, hypothesises that 

community structures characterised by instability and heterogeneity, contrary to 

similarity and homophily (first explanation) and weak social ties (second explanation), 

can foster illicit activities and crime (Shaw and McKay 1942) (see section 3.1.5). Co-

offending groups having a similar nature in that sparse and unstable networks are 

composed of weak connections, which implies that co-offenders have a tendency to 

evade detection (Tremblay 1993). Furthermore, as hypothesised by social 

disorganisation theory, the absence of a regulatory system reduces the ability to 

formally or informally control the behaviour of individuals. This may increase the 

opportunities for individuals to engage in deviant activities (Shaw and McKay 1942). 

Due to the lack of regulation and monitoring by local law enforcement agencies, 

individuals within co-offending groups may influence their network to engage in deviant 

behaviours (Monk et al. 2018). Reiss (1986), however, raised a paradox: high crime 

groups often seem to be both organised and disorganised simultaneously. In other 

words, due to their deliberate attempts to form weak ties with peers, which results in 

a sparse network (disorganised), criminal groups also exhibit a high density of social 

ties in some parts of the network (organised) due to their failure to conceal their covert 

activities (Waring and Weisburd 2000). The presence of such covert communities 
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(dense portions) within a network can be measured by modularity or density within a 

group (Carrington 2011).  

3.3 Chapter Summary 

This chapter reviews different aspects of criminal activities through the perspective 

of five criminological theories to discuss why people engage in deviant behaviours 

(rational choice theory), what conditions are conducive for a crime to occur (routine 

active theory), where and when a crime is more likely to happen (crime pattern theory) 

and how law enforcement agencies can detect, prevent and control a criminal event 

(differential association theory and social disorganisation theory).  

Since this research uses SNA rooted in graph theory (GBAD techniques) as an 

approach to develop fraud detection algorithms and detect a deviant behaviour, the 

discussion also extends to two principal concepts of SNA in crime detection and 

elaborates on theories that explain ‘how’ to detect a deviant behaviour using SNA. 

More specifically, it highlights how differential association theory explains the influence 

of criminal peers on their intimate network, followed by a discussion on how social 

disorganisation theory helps explain the formation of criminal groups in social 

networks. In short, this chapter has raised an understanding about different aspects 

of crime analysis and how criminologists analyse a deviant behaviour and introduce 

solutions to detect or prevent crime. In addition, it explains how these theories are 

related to the scope of this research and demonstrates that the basic tenets of 

differential association theory and social disorganisation theory are closely linked to 

SNA. Drawing upon the premises of these two theories, this thesis develops fraud 

detective strategies using the GBAD techniques in the next three chapters.  
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4 Chapter 4—Discovering Spammers in an Online Dating Social 

Network: A Feature Extraction Approach a 

The increasing popularity of social networks has offered opportunities to collect a 

huge amount of information about their users, such as their characteristics, habits and 

friends (Stringhini et al. 2010). This valuable information and ease of access to other 

users within social networks provide a platform for delinquent users, also known as 

‘spammers’, to behave maliciously and cause inconvenience to others (Fakhraei et al. 

2015; Hu et al. 2014). Particularly, spammers frequently attempt to reach their 

prospective victims by sending unsolicited messages. Spammers usually mimic some 

patterns of legitimate users’ behaviour, making the process of spotting them very 

difficult (Fakhraei et al. 2015; Hu et al. 2014). Furthermore, a growing number of social 

networking websites have provided their users with different types of interactions (e.g. 

tweets, mention, like, wink and poke), resulting in a multiplex network of interactions 

(Fakhraei et al. 2015). In these networks, malicious users evade detection by 

frequently changing the nature of their activities (e.g. message passing, sending 

friendship requests, poke and Like) (Fakhraei et al. 2015). This feature makes it 

challenging to analyse users’ interactions to capture anomalous behaviours.  

Many studies on the detection of spamming activities, e.g. (Benevenuto et al. 2010; 

Gao et al. 2010; Shehnepoor et al. 2017a; Wang 2010; Yang et al. 2013; Zheng et al. 

2015), do not consider the intrinsic multiplex nature of human interactions. They tend 

to investigate users’ behaviours in simplex social networks by focusing on one type of 

activity and the content of their messages to detect and filter spammers. Sophisticated 

                                                           
a A conference paper developed based on the information presented in this chapter was published: Pourhabibi, 
T., Boo, Y. L., Ong, K. L., Kam, B., & Zhang, X. (2019), ‘Behavioral Analysis of Users for Spammer Detection 
in a Multiplex Social Network’, AUSDM 2018, Springer Singapore, viewed 16 February 2019,  
<https://doi.org/10.1007/978-981-13-6661-1_18>. 
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spammers may cleverly manipulate their spam messages to bypass traditional 

content-based spam filters but would find it difficult to hide their interactions in a 

network to avoid detection (Fakhraei et al. 2015; Hooi et al. 2017).  

The detection and characterisation of these cybercriminals have a significant 

influence on the quality of user experiences and could promote the healthy use and 

development of OSNs (Hu et al. 2014). As discussed in Chapter 1, one approach to 

detect and analyse suspicious activities in a network is to use manual feature 

engineering. With this technique, data scientists could choose sets of features to 

differentiate normal and suspicious activities in a network based on the problem 

domain (Varol et al. 2017).  

Drawing on the principles of the criminological theories discussed in Chapter 3, this 

chapter first analyses crime (i.e. spamming activities) in an online dating website. 

Through the tenets of differential association theory, it then introduces four different 

sets of human-engineered features to detect a suspicious behaviour in a time-evolving 

multiplex dating social network. As explained in Section1.4, this chapter follows the 

proposed framework in Figure 1.2, which is adapted from Hevner et al.’s (2004) IS 

framework (Figure 1.1) to address the first and last proposed sub-research questions: 

 SRQ 1. What set of features can be defined and extracted from a network to 

capture anomalous activities? 

 SRQ 3. How can users’ anomalous activities be captured in a time-evolving 

network?  

The following sections describe the proposed approach following the sequence of 

Hevner et al.’s (2004) IS framework in Figure 1.1 (see Section1.4).  

4.1 Background Theories: Crime Analysis  

This section explores the spamming activities in an online social dating website as 

a cybercrime act from the perspective of criminological theories. It discusses why 
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people get involved in cybercrime and, in particular, spamming activities in online 

dating social networks? What are the required conditions for spammers to reach their 

potential victims and commit a crime? Where and when spammers commit their 

criminal acts? And finally, it goes through the criminological theories that help answer 

how to detect criminal activities? 

Why. Rational choice theory (Cornish and Clarke 2014) postulates that offenders 

make rational decisions that lead them to perceive more benefits when engaged in 

particular criminal activities against the risks arising from their behaviours (Paternoster 

and Simpson 1993). 

 With regard to spamming activities in online dating social networks, there may be 

several primary benefits for cybercriminals. For example, sexual predators attempt to 

interact with potentially vulnerable victims to find their targets online and abuse them 

(Savage et al. 2014). There are also special types of spammers who launch various 

attacks, such as spreading ads to generate sales, disseminating child pornography, 

phishing and befriending victims to grab their victims’ personal information (Hu et al. 

2014). While the benefits associated with trying to reach new victims by sending 

unsolicited messages in OSNs are high, the risk of being detected and caught is 

relatively low (Pourhabibi et al. 2019). 

As OSNs provide their users with different types of interactions, offenders are more 

likely to evade the filtering security measures by frequently changing the nature of their 

interactions (Agrawal et al. 2014). Furthermore, offenders can continue their online 

offensive activities anonymously without any apprehension of being identified in OSNs 

(Pourhabibi et al. 2019). There are also inconsistencies in the application of laws 

against cybercriminals (Choi 2008; Hinduja and Schafer 2009). Further, the behaviour 

of victims themselves is also an important factor that reduces the risk that spammers 
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perceive (Choi 2008; McQuade 2006). In OSNs, victims consider themselves partially 

responsible and fear to look stupid for being victimised; therefore, they do not report 

their victimisation to police (Choi 2008; McQuade 2006). Given the low risk of being 

detected coupled with significant benefits, the behaviour of spammers in OSN 

supports the tenets of rational choice theory (Choi 2008; McQuade 2006). 

What. Routine activity theory (Cohen and Felson 1979) contends that crime 

happens in the intersection of shared activity spaces of offenders and potential targets 

under a lack of guardianship (McQuade 2006). According to this theory (see 

Section 3.1.2), exposure to motivated offenders, deviant behaviour, and access to the 

potential target increase the risk of committing crime. Contrarily, the presence of 

guardianship acts as a preventive factor (Spano and Freilich 2009).  

The ‘deviant place factor’ concept could be applied to ‘cyberspace’ when a 

cybercrime occurs (Conradt 2012; Karmen 1984). Although cyberspace lacks a 

physical location (Conradt 2012; Karmen 1984), offenders and their potential victims 

temporarily intersect within a network which acts as a proxy for physical activity space 

(Reyns et al. 2016). Motivated offenders (e.g. cybercriminals) are drawn to OSNs 

because of two major reasons (Conradt 2012; Karmen 1984; Pourhabibi et al. 2019): 

prevalence of potential targets (e.g. youngsters or females willing to meet people 

online (Yar 2005)) and absence of guardianship (e.g. OSNs allow users to create 

multiple accounts, continue their activities anonymously or easily get away and 

disappear from the virtual environment (Yar 2005)). Therefore, victims who are looking 

for love expose themselves to potential cybercriminals in online dating social networks 

that lack guardianships, furnishing conducive conditions for cybercrime to occur 

according to routine activity theory (Conradt 2012; Karmen 1984) (see Figure 4.1). 
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Figure 4.1. Routine activity theory: three factors for cybercrime in online dating social 

networks. 

Where and When. Crime pattern theory (Brantingham and Brantingham 1993) 

assumes that crimes usually occur in specific patterns, at particular times and places 

(Hartel et al. 2010; Park et al. 2012). This theory suggests that crimes are dependent 

on the ‘nodes’ and ‘paths’ commonly used by the offender (Benson et al. 2009). In a 

spamming offense in an online dating social network, the nodes are the users seeking 

to find online friends and even other cybercriminals looking for potential targets. The 

paths used to navigate between these nodes include the procedures (e.g. message 

passing, like, and poke) and networks (e.g. friendship) used to establish connections 

with these users. Cybercriminals create patterns of their movement and activities while 

navigating through these paths to reach their victims (at the course of their routine 

activities) (Hartel et al. 2010). In short, crimes do not randomly or uniformly occur in 

time and space. They happen in clusters and hotspots which are the anomalous 

concentration of excessive deviant behaviours in specific places and at specific time 

periods; these are repeat offenders and victims (Brantingham and Brantingham 1993; 

Miró-Llinares and Moneva 2020). Therefore, online dating social networks are viewed 

as cyberspace where normal users or criminals converge (Miró-Llinares and Moneva 

2020). Within this space, users are linked through virtual connections (e.g. message 

passing, friendship and followership), and cybercrime is concentrated among certain 
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users (nodes) and in certain time intervals (Miró-Llinares and Moneva 2020). 

Knowledge of such malicious users in the social network, when publicised, can alert 

users to spot suspected offenders who are out to prey on easy targets (Hartel et al. 

2010; Park et al. 2012).  

How. Differential association theory (Sutherland 1939) states that an excess 

exposure to a deviant behaviour by prestigious criminals may lead to learning and 

involvement in a crime. The focus of this theory is, therefore, to find patterns of 

frequency, intensity and durability of interactions within a network (Herath and D'Arcy 

2015). Therefore, from the lens of differential association theory, criminals are most 

likely to be highly connected owing to their goals to influence more individuals and get 

involved with others for longer periods of time or more frequently (Gallupe and Gravel 

2018). The type of relationships and the activities individuals engage in significantly 

influence the likelihood of crime (Choi et al. 2017). As such, searching and finding 

such patterns in social communications could lead to the detection of criminals.  

In an online dating social network, spamming activities are exerted through 

connections (e.g. message passing, friendship request) that cybercriminals make with 

others (Herath and D'Arcy 2015; Venkatesh and Brown 2001). This chapter introduces 

an approach on how to detect cybercriminals within an online social dating website. 

Accordingly, to find cybercriminals, this chapter introduces four sets of mathematical 

features to rate the intensity of users’ activity patterns within their ‘intimate personal 

groups’ (e.g. ego’s personal network) (Carrington 2011) quantitatively as suggested 

by differential association theory (see Section 3.2.1). This leads to finding potential 

delinquents who persistently attempt to influence other criminals (e.g. by transferring 

the skills of cybercrimes) and harass their victims.  
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4.2 Problem Formulation 

Multiplex networks are usually defined in different distinct layers, such that each 

layer exhibits a different kind of relationship between a common set of network nodes 

(Liu et al. 2016). In each layer, underlying nodes share the same relationship type (Liu 

et al. 2016). Therefore, to distinguish different types of edges between each pair of 

nodes and simulate different layers in a network, a ‘relation type’ label is assigned to 

each edge. This label denotes the type of relationship between each pair of nodes (Liu 

et al. 2016). Figure 4.2 presents a sketch of a multiplex network with two different 

types of relations presented by layers a and b, whereas the two layers share the same 

sets of nodes.  

Any directed time-stamped multiplex social network is denoted as graph 𝐺 where 

𝐺 = ⋃ 𝐺𝑖  𝑅
𝑖=1 , where 𝑖 ∈ 𝑅 is a relation type and 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖 , 𝑅𝑖, 𝑇𝑖) is a sub-graph of 𝐺. 

For each sub-graph 𝐺𝑖, 𝐸𝑖 denotes a directed relation of type 𝑅𝑖 created between each 

pair of vertices from the vertex set 𝑉𝑖 at timestamp 𝑇𝑖 (Fakhraei et al. 2015; Schlichtkrull 

et al. 2018a). 

The problem of finding potential delinquents is to predict if any user in a multiplex 

social network, denoted by vertices in graph 𝐺, is a normal user or spammer, 

considering his/her interactions in multiple layers of the network. For this purpose, this 

chapter aims to investigate each user’s behaviour in his/her neighbourhood graph by 

extracting some features and then mapping all users to a class from [Spammer, 

Normal] set. 
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Figure 4.2. Sketch of a multiplex network with two different types of links, each shown in a 

separate layer, a and b (Modified from source: (Liu et al. 2016, p. 4)). 

4.3 Algorithm Development 

The proposed approach to detect spammers in a large time-evolving multiplex 

social network relied on the interactions of users in the network. As discussed in 

Section 4.1, drawing on the principles of differential association theory, this chapter 

defines four sets of easy-to-calculate features to find patterns of intensity, durability 

and frequency to detect spammers: profile-based features, behaviour-based features, 

bursty features and sequence-based features. Profile-based features are user 

demographic information usually obtainable from their registration with a social 

network. These features look for similar demographic patterns in the connections. The 

other three feature sets designed to detect any suspicious activities within the intimate 

personal connections are described below. 

4.3.1 Behaviour-Based Features 

To extract the behavioural characteristics of users in their interaction network, the 

proposed algorithm relies on the premise that spammers can usually control their 

activities to easily evade detection systems (Karim and Zilles 2014). However, it would 

be much more difficult for spammers to control their neighbours’ activities. The quality 

of the neighbourhood, therefore, is considered as a key factor for the identification of 

spammers and non-spammers (Karim and Zilles 2014).  
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For this purpose, the proposed approach relied on the analysis of spammers’ 

behaviour in the popular social media, mainly Twitter, and extracted a set of behaviour-

based features to capture the community structure (collusive behaviour) of spammers. 

These features were inspired by follower–followee and friendship relationships in 

Twitter to find patterns of frequency and intensity. By mapping the follower–followee 

pattern, a set of easy-to-calculate behaviour-based features are extracted to find the 

patterns of frequency within the intimate personal connections as follows:  

 Bidirectional link ratio (Bhat and Abulaish 2013; Yang et al. 2013) is the total 

number of users who are in a bidirectional relation with a user to his total friends: 

𝑏𝑖𝑙𝑖𝑛𝑘 =
𝑁𝑏𝑖𝑙𝑖𝑛𝑘

𝑁𝑓𝑟𝑖𝑒𝑛𝑑𝑠
 (4-1) 

 Average Neighbours’ Followers (Yang et al. 2013) is the total number of friends’ 

followers to the total number of friends:  

𝐴𝑣𝑔𝑛𝑒𝑖𝑔 =
𝑁𝑓𝑟𝑖𝑒𝑛𝑑𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠

𝑁𝑓𝑟𝑖𝑒𝑛𝑑𝑠
 (4-2) 

 Followings to Median Neighbours’ Followers (Yang et al. 2011, 2013) is the 

number of total friends to the median of friends’ followers:  

𝑓 =
𝑁𝑓𝑟𝑖𝑒𝑛𝑑𝑠

𝑀𝑒𝑑𝑖𝑎𝑛(𝑁𝑓𝑖𝑟𝑒𝑛𝑑𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠)
 (4-3) 

 Average activities of friends (Chu et al. 2012) is the total number of friends to 

the total number of friends’ relations: 

𝑎𝑣𝑔𝑓𝑟𝑛𝑑𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑠
=

𝑁𝑓𝑟𝑖𝑒𝑛𝑑𝑠 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑓𝑟𝑒𝑖𝑛𝑑𝑠 
 (4-4) 

 Follower to Following Ratio (FoF) (Chu et al. 2012) is the total number of a 

user’s followers to the total number of his/her friends: 

𝑓𝑜𝑓 =
𝑁𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠

𝑁𝑓𝑟𝑖𝑒𝑛𝑑𝑠
 (4-5) 

 Total follow in/out ratio (Yang et al. 2011) is the number of total relations made 

with a user to the total relations a user makes: 

𝑖𝑜 =
𝑁𝑖𝑛− 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑜𝑢𝑡−𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠
 (4-6) 

 Spamicity (Eom et al. 2016; Karim and Zilles 2014) is thus computed as:  
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𝑆𝑃 =
1 + 𝑁𝑜𝑢𝑡− 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠

 1 + (𝑁𝑖𝑛−𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠+𝑁𝑜𝑢𝑡−𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠)
 (4-7) 

 Reputation (Wang 2010) is expressed as:  

𝑅𝑒𝑝 =
1 + 𝑁𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠

1 + (𝑁𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠+𝑁𝑓𝑟𝑖𝑒𝑛𝑑𝑠)
 (4-8) 

 Average Neighbour Reputation (Karsai et al. 2018) is: 

𝑎𝑣𝑔𝑅𝑒𝑝 = 𝐴𝑣𝑔(𝑅𝑒𝑝𝑓𝑟𝑖𝑒𝑛𝑑𝑠) (4-9) 

4.3.2 Bursty Features 

Bursty behaviour or burstiness is defined as an intermittent increase or decrease in 

the frequency of events (García-Pérez et al. 2015). Within a social network, an event 

is defined as a social activity (i.e. any kind of interaction with other users) (Ubaldi et 

al. 2017). When social interactions happen in the form of a large number of very rapidly 

occurring interactions in a short period of time, it can be inferred that a burst of events 

is happening, which may be suspicious (Ubaldi et al. 2017). The following three 

measures are utilised to capture the burst of users’ activities, including their intensity, 

durability and frequency. Intensity and frequency can be measured using B-measure 

and median activity rate, whereas median activity time reflects the durability of user 

activities: 

 B-measure (Kim and Jo 2016) is calculated as: 

B =
δ − μ

δ + μ
 (4-10) 

where μ denotes the average number of user activities per day, and δ denotes 

the standard deviation of user activities. B ∈ [−1,1] correlates the burstiness, 

as B = 1 is the most burst signal, B = 0 is neutral, and B = −1 shows a 

completely regular signal.  

 Median activity rate (Bhat and Abulaish 2013; Bindu et al. 2018; Yang et al. 

2013) measures the median number of users’ interactions per day. This 

measure reflects the speed (i.e. frequency) at which a user interacts with others. 

 Median activity time is defined as the median of users’ inter-time activity (Bhat 

and Abulaish 2013; Bindu et al. 2018; Yang et al. 2013). This measure 
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evaluates the duration of interactions a user has with others and how often a 

user interacts with others. 

4.3.3 Sequence-Based Features 

In multiplex social networks, spammers are frequently switching between different 

relation types and sending spamming messages to different users (Jiang et al. 2016). 

Two different sets of sequence-based features are proposed to capture these patterns 

of temporal behaviour: relative abundance and distinct neighbourhood ratio. 

 Relative Abundance: 

Inspired from gene sequence analysis (Kariin and Burge 1995), for each user 

𝑢𝑖 who is creating a discrete sequence of n relations in timestamps 𝑇𝑖 (𝑖 =

1,2, … , 𝑛), relative abundance (𝑅𝐴𝑖𝑗 ∈ [0,1]) is defined as: 

𝑅𝐴𝑖𝑗 =
𝑃𝑖𝑗

𝑃𝑖𝑃𝑗
, (𝑖, 𝑗) ∈ 𝑛 (4-11) 

where 𝑃𝑖 and 𝑃𝑗 denote the frequency of the occurrence of activity 𝑖 and 𝑗, 

respectively, and 𝑃𝑖𝑗 denotes the joint probabilities of activity 𝑖 and 𝑗. If one 

sequence is completely stochastic and the activities are mutually independent, 

then theoretically, 𝑃𝑖𝑗 = 𝑃𝑖𝑃𝑗 and the value of 𝑅𝐴𝑖𝑗 is one. Spammers tend to 

frequently communicate with random users to find their potential victims (Jiang 

et al. 2016). Therefore, for spammers, the value of 𝑅𝐴𝑖𝑗 tends to one (𝑅𝐴𝑖𝑗 →

1). But normal users’ activities are not normally stochastic, 𝑅𝐴𝑖𝑗, and tend to 

zero (𝑅𝐴𝑖𝑗 → 0).  

 Distinct Neighbours Ratio: 

For each user 𝑢𝑖 who is sending messages to a discrete sequence of n users 

in timestamps 𝑇𝑖 (𝑖 = 1,2, … , 𝑛), the distinct neighbours ratio (𝐷𝑁𝑢𝑖
∈ [0,1]) is 

defined as: 

𝐷𝑁𝑢𝑖
=

𝑁𝐷𝑠

𝑆
 (4-12) 

where 𝑁𝐷𝑠 denotes the number of different users in user 𝑢𝑖 ’s neighbouring 

sequence, and 𝑆 denotes the total number of users in this sequence. If the 

neighbouring sequence of a user is completely stochastic and the users who a 

user is related to are mutually independent, then theoretically, 𝑁𝐷𝑠 = 𝑆 and the 
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value of 𝐷𝑁𝑢𝑖
 is one. Again, for spammers who randomly make connections 

with other users (Jiang et al. 2016), the value of 𝐷𝑁𝑢𝑖
 tends to one (𝐷𝑁𝑢𝑖

→ 1). 

While for normal users who normally communicate with a limited list of users 

(e.g. their friends), 𝐷𝑁𝑢𝑖
 tends to zero (𝐷𝑁𝑢𝑖

→ 0). 

4.3.4 Proposed Process Framework 

To speed up the process of feature extraction, data were collected cumulatively 

(e.g. in a daily manner and during night runs) to form different layers of the multiplex 

network. The process of behaviour and bursty feature set extraction is simulated in 

Microsoft SQLServer 2016. Most of the massive real-world network data are stored in 

relational data management system databases for easy updating and accessing 

(Jindal et al. 2015; Liu et al. 2010) (e.g. SQL, Oracle and Vertica). Therefore, 

implementing these features in SQLServer will be very helpful in the productivity and 

performance of the proposed approach (Jindal et al. 2015). Then, behaviour-based 

features (𝑓𝐵𝐻) and bursty features (𝑓𝐵) were extracted for each layer 𝑙 ∈ 𝐿 separately. 

The sequence-based features (𝑓𝑆) were also extracted in parallel with bursty and 

behaviour-based features using a designed Python engine. User demographic profile 

features (𝑓𝑃) were extracted from user profile information. Finally, all features were 

combined to form a feature vector 𝐹: 

𝐹 = [𝑓𝐵1, 𝑓𝐵2, … ,  𝑓𝐵𝑙 , 𝑓𝐵𝐻1, 𝑓𝐵𝐻2, … , 𝑓𝐵𝐻𝑙 , 𝑓𝑆, 𝑓𝑃] (4-13) 

Figure 4.3 presents the proposed framework for data storage, feature extraction 

and classification. 
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Figure 4.3. Process framework for the proposed approach. 

4.4 Knowledge Base 

4.4.1 Dataset Description 

The experimental data is presented in Table 4.1. This dataset is a labelled data 

collected from a social networking website called Tagged.com. It is a dating website 

that connects users through various methods (e.g. mention, like, dislike, wink and 

poke) to make new connections with other users. The original dataset was first used 

by Fakhraei et al. (2015) who published their data for research studies. However, due 

to security concerns, parts of relations from the original data were removed. Besides, 

the spammer labels have been updated with the release of the published data. The 

dataset includes over 5.6 million users, of which 336,953 are labelled as spammers. 

This imbalance distribution of fraudulent users compared with legitimate ones makes 

the process of classification challenging as common classification algorithms tend to 

produce more errors when the class distribution is imbalanced (Perera 2013). 
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Table 4.1. Dataset description 

Data Features Description 

Users 
Over 5.6 million labelled users 
5,270,494 normal users and 336,953 spammers 

Relations 
858,247,099 relations from 7 different type of relations anonymised 

to 𝑟𝑖 , 𝑖 ∈ [1,7]  

 

4.4.2 Baseline Methods 

This proposed algorithm adopted Fakhraei et al.’s (2015) approach as a baseline. 

Fakhraei et al. (2015) used a set of graph-based, profile-based and sequence-based 

features to detect spammers in a multiplex social network. Their graph-based features 

included PageRank (Page et al. 1999), graph colouring (Jensen and Toft 1994), 

number of connected components (Skiena 1990), number of triangles (Polak 2016) 

and k-core centrality measure (Alvarez-Hamelin et al. 2005), in-degrees and out-

degrees. 

In their sequence-based feature set, Fakhraei et al. (2015) used two different types 

of features. The first sequence-based feature was called sequential k-gram. To 

calculate this feature, they considered k = 2 and calculated the occurrence of any two 

different relation types in the sequence of users’ activities. The second sequence-

based feature was defined as a probability of spamicity for each user’s activity 

sequence. This spamicity was extracted using Tree Augmented Naive Bayes (Fei and 

Geoffrey 2010), relying on the label of the existing data. However, they found that this 

spamicity did not improve the accuracy of classification. Moreover, this feature relies 

on the availability of data labels. Nevertheless, the proposed algorithm in this chapter 

introduces features that do not rely on predefined data labels. Therefore, this spamicity 

feature is omitted from the sequence-based feature set of the baseline while 

accomplishing the experiments. The rest of the features, namely, graph-based, profile-
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based and sequence k-gram features, are extracted as described in the baseline study 

by Fakhraei et al. (2015). 

4.4.3 Classification Algorithms 

To calculate the performance of the extracted features in differentiating normal 

users from spammers, it is required to apply a classification algorithm on the extracted 

features. To do so, as suggested by Fakhraei et al. (2015), three different classification 

algorithms are employed to classify users into Spammers or Normal users: support 

vector machine (SVM) (Cortes and Vapnik 1995), random forest regression (Liaw and 

Wiener 2002) and gradient-boosted decision trees (Ye et al. 2009).  

SVM (Cortes and Vapnik 1995) is a classification machine learning model for 

separating the classes in the data domain by constructing the best decision 

boundaries within the data. Random forest regression (Liaw and Wiener 2002) is an 

ensemble learning technique that uses a combination of multiple decision trees and a 

technique called bagging to combine the classification results of multiple decision trees 

in the determination of the final output rather than just relying on the judgment of 

individual decision trees. Gradient-boosted decision trees (Ye et al. 2009) classifier is 

also similar to the random forest regression approach, which is built over a 

combination of several decision trees. The differences between the two approaches 

are the way that the decision trees are built and how the classification results are 

combined.  

4.4.4 Experimental Setup  

To execute the classification algorithms, a 10-fold cross validation approach is 

used. For SVM algorithm the maximum number of iterations is set to 10, penalty is set 

to 1.0 and the convergence threshold is 0.01. For gradient-boosted decision trees, the 
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number of iterations is set to 10 and for random forest regression algorithm maximum 

depth is 3 and number of iteration is set 10.  

4.5 Results and Discussion 

4.5.1 Comparison of Evaluation Metrics 

This section will discuss the performance of the proposed approach in terms of 

feature extraction time, performance and feature importance.  

Feature Extraction Time. Regardless of the difference between the type of 

features in this study and baseline, the implementation of features in relational 

databases is highly efficient as the features in this study took 2.25 (h) to be extracted. 

Compared with the baseline features implemented in a graph database and took 5.27 

(h) to be extracted in the proposed experimental setup, the proposed approach in this 

study has a higher productivity. Sequence-based features in both studies also require 

one pass through the whole relations.  

Performance. To calculate the performance of the proposed features in classifying 

users into two classes [Spammer, Normal], three different classification algorithms are 

used: SVM (Cortes and Vapnik 1995), random forest regression (Liaw and Wiener 

2002) and gradient-boosted decision trees (Ye et al. 2009).  

The three different classifiers are employed to classify data using a ten-fold cross-

validation method. To validate the performance of the classification algorithms on the 

different sets of features introduced in this chapter, the average results of the 

experiments are separately reported according to each distinct feature set as well as 

a combination of all features (see Figure 4.4(a–c)). 

The most appropriate metric for measuring the performance of the classifiers on the 

proposed features on this highly imbalanced dataset (i.e. the high ratio of fraudulent 

users compared with the legitimate ones in the dataset) is the PR curve (Saito and 
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Rehmsmeier 2015). A high precision relates to a low FPR, whereas a high recall 

relates to a low FN rate. Figure 4.4(a) presents the comparison of the average result 

of area under precision–recall curve (AUPR) of the three classifiers on different sets 

of features. Among all three classification algorithms, the gradient-boosted decision 

trees classifier yields the best results of AUPR when all feature sets are used for 

classification. This result indicates that gradient-boosted decision trees algorithm 

leads to better classification results (i.e. low FN and low FPR) when applied to a 

combination of all features. SVM has a high AUPR when profile-based or sequence-

based features were utilised, although it does not perform well when applied to bursty 

and behaviour-based features. Even when a combination of all features was used for 

classification, SVM performs worse than the other two classifiers. Random forest 

regression has a better performance on a combination of all features, although it could 

not classify data when each set of features were distinctively used.  

The other performance metric that indicates how much the features are capable of 

distinguishing between two classes is the area under the receiver operating 

characteristic curve (AUROC). A higher AUROC indicates that the classification 

algorithm can better categorise users using the extracted sets of features (Zou et al. 

2007): spammers are classified as spammer, whereas normal users are classified as 

normal. Figure 4.4(b) also demonstrates that the gradient-boosted decision trees 

classifier gives a better performance over the other three classification algorithms over 

each set of features alone as well as the combination of all features.  

Accuracy is also a measure that evaluates the closeness of the detected class and 

true class for each user in the dataset, yet it is a poor measure for imbalanced data 

(Trajković 2008). As presented in Figure 4.4(c), gradient-boosted decision trees and 

SVM exhibit higher accuracy values compared with the other feature sets. Although 
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accuracy is not alone a reliable measure here, referring to the results of AUPR and 

AUROC, among the three classification algorithms, the gradient-boosted decision 

trees algorithm is a better classifier in categorising users in the selected dataset using 

the proposed features. 

 Therefore, to compare the performance of the proposed features in differentiating 

users (i.e. normal users from spammers) against the features introduced by the 

baseline, the gradient-boosted decision trees algorithm is used as the reference 

classification algorithm. The results of the three performance metrics against the two 

methods are compared in Figure 4.4(c). The results indicate that the proposed sets of 

features in this chapter can better differentiate between the two classes of users when 

compared with the features proposed by the baseline method.  

 
Figure 4.4. (a–c) AUPR, AUROC and accuracy results of the three classifiers using different 

sets of features proposed in this chapter. (d) Average AUPR, AUROC and accuracy of a 

combination of all features compared with baseline features using the gradient-boosted 
decision trees classifier. 
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Feature Importance. To identify the key features and accumulate the 

dimensionality, an unsupervised Laplacian score (He et al. 2005) feature selection 

approach is applied to the full framework of features in this study. The Laplacian score 

is a feature selection approach that seeks the features in the dataset that best reflect 

the underlying manifold structure (He et al. 2005). This approach creates a nearest-

neighbour graph based on the similarities between each data point in the dataset and 

its k-nearest neighbours (𝑘 = 10). Each data point 𝑥𝑖 in the dataset is considered a 

node in this graph, and the weights between the nodes are calculated as: 

𝑤𝑖𝑗 = {𝑒
−||𝑥𝑖−𝑥𝑗||

2

𝑡 , 𝑖𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖, 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0              , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              

 

 

(4-14) 

For the 𝑟𝑡ℎ feature, 𝑓𝑟 = [𝑓𝑟1, 𝑓𝑟2, … , 𝑓𝑟𝑛] is the value of feature 𝑟 in 𝑛 data samples. 

The Laplacian score for the 𝑟𝑡ℎ feature is then calculated as: 

𝐿𝑟 =
𝑓𝑟

𝑇𝐿 𝑓𝑟̂

𝑓𝑟
𝑇𝐷 𝑓𝑟̂

 (4-15) 

𝑓𝑟̂ = 𝑓𝑟 −
𝑓𝑟

𝑇𝐷 𝟏

𝟏𝑇𝐷 𝟏
 (4-16) 

𝟏 = [1,1, … ,1]𝑇 (4-17) 

𝐷 = 𝑑𝑖𝑎𝑔(𝑊𝟏) (4-18) 

𝐿 = 𝐷 − 𝑊 (4-19) 

Once the Laplacian values of all the features are calculated, they are sorted in 

descending order, and features with maximum scores are selected as the final 

features. Figure 4.5(a) presents the overall Laplacian score value of different feature 

sets introduced in this chapter. This experiment highlights the importance of different 

sets introduced in this chapter and helps select the best features to reduce the 

dimensionality of feature space and training time of the classifiers. As presented in 

Figure 4.5(a), the proposed sequence-based features have the highest share of 
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Laplacian score, and bursty features are the second-most important sets of features, 

whereas the behaviour and profile features are the least important in this data. 

Figure 4.5(b) presents the comparison of the training time and AUPR for the selected 

features with different Laplacian score thresholds. The features with a Laplacian score 

larger than 0.005 have the least possible training time while keeping the near-

maximum AUPR. 

 

 
Figure 4.5. (a) Overall average Laplacian score of different feature sets. (b) Overall average 

AUPR and training time over selected features with various Laplacian score thresholds. 

4.6 Chapter Summary 

This chapter is devoted to finding spammers and cybercriminals in an online dating 

social network. Its main concern is to address the first and last proposed sub-research 

questions: What set of features can be defined and extracted from a network to 

capture anomalous activities? (SRQ 1). How can users’ anomalous activities be 

captured in a time-evolving network? (SRQ 3). It draws on the tenets of 

criminological theories to investigate the lifecycle of crime on online dating social 

networks. To identify cybercriminals, this chapter has introduced a feature 

engineering-based approach to find suspicious activities in a time-evolving multiplex 
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social network using four sets of features, which the differential association theory 

postulates as typical of criminal social interaction patterns: patterns of intensity, 

frequency and durability in the social relationships within the network. The proposed 

features included a set of profile-based features, a set of lightweight behaviour-based 

features, a set of bursty features and a set of sequence-based features inspired by 

gene sequence analysis. The experimental results further indicated that the proposed 

feature sets had empirically less time complexity while achieving higher AUPR and 

AUROC as well as Accuracy compared with the baseline approach. The behaviour-

based and bursty features can be easily captured in relational databases, which are 

used in their raw form by many real-world systems.  

The drawback of the feature engineering approach is that its dependence on human 

intervention may create scalability issues in real-world problems. This pitfall is an 

especially important issue to consider when criminals work together and form a 

criminal network to reach a ‘common good’. In such scenarios, criminals embrace 

secrecy and actively conceal their networking information by getting engaged in 

various activities to avoid being detected. Detecting such covert communities is a vital 

step in dismantling the threat of criminal groups. However, because criminals tend to 

conceal their activities, the design of features that are able to interpret the implicit 

signals of suspicious activities would be more complicated and more dependent on 

the analyst’s creativity and expertise. The process is also time-consuming. In some 

scenarios, the designed features are less able to identify suspicious activities or are 

not scalable to large-scale network, leading to accuracy and scalability issues. 

Therefore, the next two chapters are devoted to finding such criminal communities to 

address the second sub-research question: How can users’ anomalous activities 

be detected in a network without any manual feature engineering? (SRQ 2). In 
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each of the following two chapters, a new method of recently developed GBAD 

research is introduced to explore the relationships among the criminals and find the 

co-offending groups among them without any human interventions. 



 

97 
 

5 Chapter 5—Discovering Covert Communities in Criminal 

Networks: A Random Walk-Based Approach a  

Dark networks are covert social networks (Erickson 1981) that are usually 

incomplete as they are not easily observable (Duijn 2017). Members of these networks 

would actively conceal their network information by engaging in activities (e.g. 

friendship, kinship and economic transactions) that distract their true intentions, which 

prevents them from being discovered by law enforcement agents (Erickson 1981; 

Warnke 2016). They also hide their impermissible activities by disguising their 

interactions with people and events (Duijn 2017). As a result, the data on criminals 

and their networks are typically incomplete with missing links and nodes or contain 

incorrect information because of criminals’ fraud (e.g. fake identity), data entry error or 

inconsistent information sourced from different legal databases (Hosseinkhani et al. 

2012).  

Crossley et al. (2012) define a covert network as having individuals who (i) commit 

illegal acts that are kept secret until the crime has been committed and (ii) seek to 

remain anonymous afterwards. Given the different types of covert networks, definitions 

vary (Crossley et al. 2012; Erickson 1981). However, this chapter adopts Crossley et 

al.’s (2012) definition as it is well aligned with the application problem proposed here, 

i.e. terrorist networks, where the focus is on individuals and how they conceal their 

involvement in criminal acts (Broccatelli 2017).  

In terrorist networks, individuals are connected via different human interactions (Xu 

and Chen 2004), such as friendship, kinship and economic transactions. These 

                                                           
a A journal paper developed based on the information presented in this chapter was published: Pourhabibi, T., 
Ong, K.-L., Kam, B.H., Boo, Y.L., (2021), ‘DarkNetExplorer (DNE): Exploring Dark Multi-layer Networks beyond 
the Resolution Limit’, Decision Support Systems, no. 113537. 
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relationships can be easily captured as a multi-layer network (also known as multiplex 

network), where all layers share the same users (nodes) but have different edges for 

each relationship type (Pourhabibi et al. 2019). As a result, multi-layer networks 

contain rich topological information about individuals and their ties, but their complex 

structure renders discovering communities difficult (Pourhabibi et al. 2019), especially 

covert ones in dark multi-layer networks. As mentioned above, this is because these 

networks are incomplete or contain erroneous data. Therefore, in the case of terrorist 

networks, they lead to challenges in: (i) identifying key leaders in the network, (ii) 

understanding influence and relations, (iii) pinpointing vulnerabilities and (iv) disrupting 

and mitigating harmful activities (Saxena et al. 2018; Troncoso and Weber 2020).  

As criminals embrace secrecy and attempt to hide their networking information to 

evade being identified by law enforcement agencies, detecting covert communities is 

a vital step in dismantling the threat of criminal groups. This chapter first explores the 

formation of criminal networks under the premises of criminological theories 

elaborated in Chapter 3. Using the principles of social disorganisation theory, it then 

introduces a machine learning approach to investigate how covert communities within 

multi-layer criminal networks could be detected to address the second proposed sub-

research question:  

 SRQ 2. How can users’ anomalous activities be detected in a network 

without any manual feature engineering?  

The following sections describe the proposed approach in the context of Hevner et 

al.’s (2004) IS framework (see Figure 1.1 in Section 1.31.4).  

5.1 Background Theories: Crime Analysis  

This section explores the organisation of criminal networks from the perspective of 

criminological theories. It explains why people engage in collusive criminal activities 
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and form criminal networks? What are the required conditions for the establishment 

and growth of such networks? Where and when do criminal networks form? How to 

detect the collusive structures within criminal networks? 

Why. Criminals seek similar co-offenders to engage in collusive activities to reach 

a common goal (e.g. terrorist attack, arm and drug trafficking) (Papachristos 2013). As 

claimed by rational choice theory (Cornish and Clarke 2014), there is a rationality for 

the formation of co-offending groups, such as street gangs (Grund and Densley 2012; 

McGloin 2005; Papachristos 2009; Sierra-Arévalo and Papachristos 2015), secret 

societies (Erickson 1981), illegal drug market (Berlusconi et al. 2017; Malm and Bichler 

2011; Morselli et al. 2017; Natarajan 2006) and terrorist groups (Krebs 2002).  

Terrorists, for example, are instrumentally rational and politically motivated (van Um 

2011). They attempt to maximise their expected political utility (e.g. independent state, 

financial gain, religious reward, regime change or social revolution) regarding specific 

political grievances (Davis and Cragin 2009; Nemeth 2017; van Um 2011). Street 

gangs and drug traffickers are also rational beings: they attempt to maximise the utility 

of alternative actions by growing a criminal network. These utilities include collecting 

private information about their partner’s intentions and abilities (van Um 2011), access 

to illegal goods’ suppliers and or clients, such as drugs or gun, and illegal services, 

such as sex (Masucci 2013).  

Accordingly, considering the rationality and benefits behind the formation and 

growth of criminal networks, there is often very poor guardianship by local security 

forces, making the risk and cost of criminals getting caught low (Masucci 2013). 

Moreover, if actors involved in a criminal network were to be discovered, there would 

be a substantial risk for other members. Therefore, secrecy plays a significant role in 

covert networks, and network members attempt to maintain weak ties as much as 
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possible (Burt 2005). Keeping weak ties within the network forms a disorganised, 

sparse, unstable and heterogeneous network (Burt 2005), which amplifies the lack of 

regulation or monitoring by law enforcement agencies. Therefore, as stated by rational 

choice theory (Monk et al. 2018), criminal insurgencies take root and evolve gradually 

within such ungoverned space (Masucci 2013). 

What. Drawing onto Cohen and Felson’s (1979) routine activity theory, the 

convergence of three elements in time and space can have an influence on crime rate: 

motivated offenders, suitable targets and absence of capable guardians against a 

violent behaviour. 

Within criminal networks, the capable offenders are the ‘active’ criminals who are 

looking to host negative social, behavioural and cognitive outcomes (Peterson et al. 

2004), i.e. terrorists in a terrorist network and traffickers in a drug trafficking network. 

The guardians may be the ordinary citizens (Cohen and Felson (1979), police, military 

or counter-terrorism forces (Bigot 2017; Masucci 2013). Finally, the targets are the 

criminal counterparts who are selected from the same awareness or activity space, 

which is of the same ethnic background, friendship or kinship groups, studied in the 

same school, worked in the same organisation or served their sentence in the same 

prisons (Blau 1977). This selection mechanism results in opportunities for offenders 

to associate with like-minded individuals and connect and develop strong ties and high 

degrees of trust, thereby forming a network of criminals for committing deviant 

behaviours (Blau 1977).  
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Figure 5.1 Routine activity theory: Three factors for criminal network formation. 

Where and When. Environmental criminologists believe that there are patterns of 

crime and patterns within co-offending that would ultimately help law enforcement 

agencies to better predict, analyse and control the offenders, as and where the crime 

occurs (Bright et al. 2020). Criminals do not commit crime alone. They choose their 

co-offenders from a pool of people whom they already know through their routine 

activities (Cohen and Felson 1979), such as from a network of friends, family and 

acquaintances who influence their co-offending behaviour, decision-making and 

exposure to criminal opportunities (Bichler and Malm 2019). While offenders try to 

reach their network of familiar people within their awareness space in the co-offending 

selection procedure, they shape their linkage and relationship patterns.  

To examine the co-offending pattern within a criminal network from the perspective 

of crime pattern theory (Brantingham and Brantingham 1993), the focus would be on 

the population of the offenders who co-offend, their frequency of co-offending and 

persistent relation with specific offenders (Pourheidari and Croisdale 2010).  

How. Social disorganisation theory (Shaw and McKay 1942) proposes that the lack 

of governance on criminal networks increases the opportunity for criminals to recruit 

individuals to commit crime (Monk et al. 2018). As noted by Burt (2005), criminal 

networks have a disorganised structure that hinders focused monitoring by law 
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enforcement agencies. Engaging in deviant behaviour, however, may lead to the 

formation of cohesive social ties within the network (Waring and Weisburd 2000), 

which can be readily detected by searching linkage patterns within the network 

(Carrington 2011). This characteristic helps detect covert communities within criminal 

networks, which would enable law enforcement agencies to take appropriate actions 

to disrupt criminal organisations or select important targets for policing and 

interventions (Monk et al. 2018). 

Accordingly, to find the important targets for policing, this chapter introduces a 

machine learning algorithm to find portions of the criminal networks with higher 

densities of social ties.  

5.2 Problem Formulation 

The main focus of this chapter is to introduce a machine learning approach to 

identify criminal clusters within a dark multi-layer network. Jeub et al. (2017) argue 

that one way to discover the topological and dynamic properties of multi-layer 

networks, including covert communities, is to study the behaviour of a discrete-time 

random walk on the network. This is because a random walker that jumps from one 

node to another gets ‘trapped’ in denser regions of the network for longer periods, thus 

exposing anomalies and allowing the discovery of covert communities (Jeub et al. 

2017; Kuncheva and Montana 2015). This explanation resembles the principles of 

social disorganisation theory (Shaw and McKay 1942): engagement in deviant 

activities may lead to cohesive social ties within the network (Waring and Weisburd 

2000), which can be detected by an in-depth analysis of relational patterns within the 

network (Carrington 2011).  
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 This chapter takes advantage of this behaviour to explore (or ‘walk’ through) the 

network both within and between layers based on some pre-set transition probabilities 

(Kuncheva and Montana 2015), an approach called a ‘multiplex random walk’. The 

proposed approach aims to find clusters with nodes that mostly reside in the network 

hubs, which are known to play a key ‘brokerage’ role in (i) the flow of information and 

resources throughout the dark networks or in (ii) mediating between unconnected 

actors (Cunningham et al. 2013). According to Sageman (2004), these nodes in the 

hubs are where the leaders are usually located. If these nodes or hubs are disrupted, 

criminal activities are effectively dismantled. 

The proposed algorithm uses an adaptive centrality choice parameter to guide the 

random walker in a layer to move to the next neighbours based on their hub centrality 

score. To effectively operate on a large network, the proposed algorithm allows 

multiple independent parallel walks to speed up the expected time required to visit 

every node (at least once) in a graph (Alon et al. 2008). Because the goal of this 

algorithm is to find the ‘small’ and “good’ communities that reflect the characteristics 

of a terrorist network, a community detection model is also designed using the Jaccard 

correlation of walked sequences between each pair of nodes to maximise a resolution-

limit-free optimisation function. This function will enable the proposed approach to 

identify the ‘small’ and ‘good’ communities, thus allowing a list of suspects to be 

extracted for law enforcement agencies to start their investigation in a more targeted 

manner (Magalingam et al. 2015). 

Currently, most state-of-the-art research studies focus on partitioning networks by 

optimising a modularity-based optimisation function (Cherifi et al. 2019; Traag et al. 

2015). However, modularity fails to identify community structures below a certain 

characteristic scale (i.e. a resolution limit (Xiang et al. 2019)), and therefore, the ‘small’ 
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communities (relative to the network) slip through the detection process. In short, 

modularity-based methods yield dense sub-networks that are difficult and time-

consuming to analyse and miss the ‘small’ and ‘good’ communities of interest to law 

enforcement agencies (Fortunato and Barthelemy 2007). To overcome these limits, a 

statistical measure called AS is introduced. AS is a fitness function that can (i) 

outperform modularity-based methods (thus finding smaller communities) and also (ii) 

find lower-density communities (Traag et al. 2015).  

5.3 Algorithm Development 

This section begins with a brief description of multi-layer networks and the random 

walk algorithms before presenting the details of the proposed approach. 

5.3.1 Multi-layer Network Model 

Let graph 𝐺 denote a multi-layer network, where 𝐺 = ⋃ 𝐺𝑖 
𝐿
𝑖=1 , and 𝐿 ∈ 𝑅+ indicates 

different types of relationships in the network, and 𝐺𝑖 = (𝑉, 𝐸𝑖 , 𝐿𝑖) is a sub-graph of 𝐺. 

For each sub-graph 𝐺𝑖, 𝐸𝑖 denotes a list of relations of type 𝐿𝑖 between each pair of 

vertices from a vertex set 𝑉, which is common among all layers (Interdonato et al. 

2017; Pourhabibi et al. 2019). For each 𝐺𝑖 , the connectivity structure of a multi-layer 

network, including both intra-layer and inter-layer edges, can be encoded using an 

adjacency tensor 𝐴 as follows (Jeub et al. 2017): 

𝐴
𝑖𝛼

𝑗𝛽 = {
𝑤, (𝑖𝛼, 𝑗𝛽)𝜖 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (5-1) 

where 𝑖𝛼 ∈ 𝑉 denotes node 𝑖 ∈ 𝑉 in layer 𝛼 ∈ 𝐿, and (𝑖𝛼, 𝑗𝛽) denotes an edge from 

node 𝑖𝛼 to node 𝑗𝛽 with weight 𝑤 ∈ 𝑅+. 

5.3.2 Preliminaries on Random Walks on Multi-layer Network 

A random walker in a multi-layer network forms a Markov system by randomly 

selecting a sequence of vertices (Solé-Ribalta et al. 2016). Generally, a random walker 
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on a multi-layer network can exploit all the connections leaving the current node across 

all layers (Figure 5.2).  

 
Figure 5.2. Schematic of a walk (dotted trajectories) in a multi-layer network (Source: (Solé-

Ribalta et al. 2016, p. 75)). 

Following Jeub et al. (2017), a discrete-time random walk on a multi-layer network 

can be written as:  

𝑝𝑖𝛼(𝑡 + 1) = ∑ 𝑃𝑖𝛼
𝑗𝛽

𝑝𝑗𝛽(𝑡)

𝑗𝛽𝜖𝑉

 
(5-2) 

where 𝑝𝑗𝛽(𝑡) denotes the probability for a random walker to be at node 𝑗 in layer 𝛽 at 

time 𝑡, and 𝑃𝑖𝛼
𝑗𝛽

 denotes the probability for a random walker at node 𝑗 in layer β to 

transfer to node 𝑖 in layer 𝛼 in one time step. The transition transfer 𝑃 encodes both 

the intra-layer and inter-layer behaviours of a random walk. Classical random walk is 

the most direct way to generalise the concept of a random walk in a multi-layer 

network. This kind of random walk treats inter-layer and intra-layer edges as 

equivalent objects and is defined by the following transition probability, which denotes 

a biasing function:  

𝑃𝑖𝛼
𝑗𝛽

=
𝐴𝑖𝛼

𝑗𝛽

∑ 𝐴
𝑖𝛼
𝑗𝛽

𝑗𝛽𝜖𝑉

  (5-3) 

5.3.3 Proposed Approach 

Figure 5.3 presents the overall structure of the proposed algorithm, called the 

DarkNetExplorer (DNE), which comprises four stages. In Stage 1, multiple walkers 

begin random choice-based walks at each node of length 𝑙. For each node, sequences 
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of walks are integrated in Stage 2, and nodes that do not appear sufficiently often (e.g. 

less than a predefined threshold) in the integrated walk sequence are removed to 

prevent accidental moves to other communities. Then, in Stage 3, the Jaccard 

correlations (Satuluri et al. 2011) between each pair of nodes are calculated using 

minwise hashing. Finally, in Stage 4, agglomerative clustering is applied based on 

Jaccard similarities. An optimisation function is employed to maximise the AS (Nicolini 

et al. 2017) of the detected clusters to obtain the best partitions. This function helps 

prevent very dense and large clusters and overcome the resolution limit of the 

modularity-based approaches.  

The implementation of DNE is presented in Algorithm 5.1 and is discussed in the 

following subsections.  

 

 
Figure 5.3. Structure of DarkNetExplorer (DNE). 
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Algorithm 5.1. 𝐷𝑎𝑟𝑘𝑁𝑒𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟 (𝐷𝑁𝐸)
 

Input:       𝐴𝑖𝛼

𝑗𝛽
: multi-layer graph,  𝑊: no. of walks, 𝑙: walk length,  𝑊𝑎𝑙𝑘𝑒𝑟𝑠: no. of walkers 

Output:  𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠  

          

1 𝑛𝑜𝑑𝑒𝑠 ← 𝑆𝑖𝑧𝑒(𝐴) 

2  Class Mapper  

3       method MAP (𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒 n, 𝑊𝑎𝑙𝑘𝑒𝑟 𝑤𝑎𝑙𝑘𝑒𝑟) 

4           w←1 

5               While 𝑤 < 𝑊 do 

6              𝑠𝑒𝑞 ← ∅ 

7              𝐶𝑢𝑟𝑟 ← 𝑛 

8              While 𝑙𝑒𝑛(𝑠𝑒𝑞) < 𝑙 do 

9                   calculate the probability 𝑃𝑖𝛼
𝑗𝛽

 using Eq. 5-4 for 𝐶𝑢𝑟𝑟 node 

    10  𝑣 ← move 𝑤𝑎𝑙𝑘𝑒𝑟 to the next node with maximum 𝑃𝑖𝛼
𝑗𝛽

 

    11             𝑠𝑒𝑞[𝑤] ← 𝑠𝑒𝑞[𝑤] ∪ 𝑣 

    12                    𝐶𝑢𝑟𝑟 ← 𝑣 

    13              w← w+1 

    14   Return 𝑠𝑒𝑞 

    15   Class Reducer 

    16    method Reduce (𝑛𝑜𝑑𝑒 𝑛, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑠𝑒𝑞)  

    17       𝑓𝑖𝑛𝑎𝑙𝑠𝑒𝑞[𝑛] ← ∅ 

    18          For 𝑠 in 𝑠𝑒𝑞 do 

    19              𝑓𝑖𝑛𝑎𝑙𝑠𝑒𝑞[𝑛] ← 𝑓𝑖𝑛𝑎𝑙𝑠𝑒𝑞[𝑛] ∪ 𝑠                      

 20              𝜕 ← 𝑖𝑛𝑡(0.1 ∗ 𝑙𝑒𝑛(𝑓𝑖𝑛𝑎𝑙𝑠𝑒𝑞[𝑛])) 

 21            𝑓𝑖𝑛𝑎𝑙𝑠𝑒𝑞[𝑛] ← remove nodes from 𝑓𝑖𝑛𝑎𝑙𝑠𝑒𝑞[𝑛] with a count of less than 𝜕 

 22    Return 𝑓𝑖𝑛𝑎𝑙𝑠𝑒𝑞  

         

 

 

 

 

  

 

 

 23    Class Main() 

 24      𝑛𝑜𝑑𝑒𝑠 = 𝑠ℎ𝑢𝑓𝑓𝑙𝑒(𝑛𝑜𝑑𝑒𝑠)   

 25      While 𝐸𝑥𝑖𝑠𝑡𝑠𝑁𝑜𝑑𝑒𝑇𝑜𝑊𝑎𝑙𝑘𝑂𝑛()  do 

 26                For 𝑤𝑎𝑙𝑘𝑒𝑟 in 𝑊𝑎𝑙𝑘𝑒𝑟𝑠 do 

 27                     MAP (𝑛, 𝑤𝑎𝑙𝑘𝑒𝑟) 

     28                     Reduce (𝑛, 𝑠𝑒𝑞) 

 29                

     30       𝑆𝑖𝑚 ←Calculate 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 similarities for all pairs of nodes referring to (Satuluri et al. 2011) 

     31       𝑆𝑖𝑚=𝑆𝑜𝑟𝑡(𝑆𝑖𝑚, 𝑑𝑒𝑠𝑐) 

     32       𝑆𝑎 = −𝐼𝑛𝑓 

     33       𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = [𝑛 𝑓𝑜𝑟 𝑛 𝑖𝑛 𝑛𝑜𝑑𝑒𝑠] 
     34       While 𝑆𝑖𝑚 do 

     35              𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑛𝑒𝑤=Combine 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 using agglomerative clustering and 𝑆𝑖𝑚 matrix 

     36             𝑆𝑎_𝑛𝑒𝑤= Calculate 𝐴𝑆 of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑛𝑒𝑤 using Eq. 5-6  

     37             IF 𝑆𝑎_𝑛𝑒𝑤>= 𝑆𝑎 

     38                  Remove from 𝑆𝑖𝑚 the combined nodes value 

     39                  𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑛𝑒𝑤  

     40                  𝑆𝑎 = 𝑆𝑎_𝑛𝑒𝑤   
     41                  Go to 34          

     42             ELSE: 

     43                  Remove from 𝑆𝑖𝑚 the last uncombined nodes  

     44                  Go to 34          

     45    Return 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠       
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5.3.3.1 Choice-Based Walks 

To ensure that a random walker visits each node of a network (or the vertex of a 

graph) at least once, a stream of short random walks is introduced to extract 

information from the network. This approach has two advantages (Perozzi et al. 2014). 

First, several random walkers can simultaneously explore different parts of a network, 

allowing for a MapReduce parallel setup, as presented in Figure 5.3. This feature is 

essential on large networks, since 𝑘 parallel random walks reduce the cover time of a 

graph by 𝛺(𝑘) times compared with a single walk (Alon et al. 2008). The second 

advantage is that small changes in the structure of a graph can be quickly picked up 

with short random walks, leading to a shorter runtime performance (Alon et al. 2008). 

Thus, the proposed approach generates 𝑘 walkers to start independent biased random 

walks of length 𝑙 in parallel. 

Covert networks contain a high level of secrecy in their functions and operations. 

Thus, connections among the members of interest are sparse, i.e. the average node 

degree is low, the average degree of separation is high, and very few actors play the 

‘brokerage’ role (Memon 2012). Therefore, a random walker can choose (hence, 

choice-based walk) to move towards the key actors and form clusters around them. 

This feature helps destabilise the network by isolating or eliminating potential 

criminals. 

According to Sageman (2004), the discovery of hubs (nodes pointing to many 

critical nodes or nodes with a brokerage role) is useful for intelligence collection and 

law enforcement disruption efforts. By destroying the hubs, law enforcement agencies 

can break the dark network down into isolated nodes, thus incapacitating criminals 

from mounting sophisticated or large-scale operations (Everton 2008). By extension, 
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terrorist leaders are more likely hidden in hubs, which should be the focus to achieve 

the effect stated (Roberts and Everton 2016). 

To reflect Sageman’s (2004) heuristics, the transition probability of a random walker 

in a multi-layer network (Eq. 5-3) is transformed to Eq. 5-4 to guide the random walkers 

to move towards the nodes with higher hubs (ℎ) (see Algorithm 5.1, lines 8–11), as 

shown below: 

𝑃
𝑖𝛼

𝑗𝛽
=

𝐴
𝑖𝛼

𝑗𝛽

∑ 𝐴
𝑖𝛼

𝑗𝛽
𝑗𝛽∈𝑉

∗ ℎ𝑗  (5-4) 

where ℎ𝑗 denotes the normalised hub score of node 𝑗 (for calculating hub scores, refer 

to (Mirzal and Furukawa 2010)). Eq. 5-4 suggests that the higher the hub score of a 

neighbouring node (ℎ𝑗), the more likely a random walker moves towards node 𝑗.  

5.3.3.2 Node Integration and Reduction 

When random walkers finish walking through the network, the histories of all walked 

sequences for a particular node 𝑖 are combined into one unified sequence (Algorithm 

5.1, line 19). Nodes with a minimum occurrence threshold in a walked sequence are 

then eliminated in the Reduce function (Algorithm 5.1, lines 20–21). This feature 

accounts for the probability of a walker starting in a specific community and ending up 

moving into another community by ‘accident’. In this case, the number of visited nodes 

that may belong to other communities may be far less than the rest of the nodes in a 

unified sequence. These sets of nodes are considered as noise in the observed 

sequence and can thus be eliminated. 

5.3.3.3 Jaccard Correlation Calculation 

Similarities between nodes are estimated and sorted in a descending order based 

on the Jaccard correlation (Satuluri et al. 2011) between each pair of connected nodes 
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using their histories of walked sequences (Algorithm 5.1, line 30–31). The similarity is 

approximated by hashing via minwise hashing (Satuluri et al. 2011), which reduces 

the time complexity for the calculation of the similarity between all pairs of nodes in 

the graph from 𝑂(𝑛2) to a linear time of 𝑂(𝑛), where 𝑛 denotes the number of nodes in 

the graph (Satuluri et al. 2011). 

5.3.3.4 Resolution-Limit-Free Agglomerative Clustering  

Finally, an agglomerative cluster analysis (Sibson 1973) is employed to form the 

clusters based on similarities. As mentioned, the main focus of the proposed approach 

is to find ‘good’ and ‘small’ structural communities so that law enforcement agencies 

can easily identify a list of suspects to start an investigation (Magalingam et al. 2015). 

This objective sets the proposed approach apart from existing modularity-based 

optimisation techniques, which results in dense sub-networks that are difficult to 

analyse (Fortunato and Barthelemy 2007). To achieve the proposed objective, this 

chapter introduces the AS in the agglomerative clustering in place of the modularity 

measure. 

5.3.3.4.1 Asymptotic Surprise  

The discovery of an optimal cluster arrangement 𝑪 = [𝑐1, 𝑐2, … , 𝑐𝑁], where 𝑐𝑖 ∩ 𝑐𝑗 =

∅ and ⋃ 𝑐𝑖
𝑁
𝑖=1 = 𝑉, can be cast as an optimisation problem (Ser et al. 2016). As a 

quality measure rooted in probability theory, Surprise assumes a null model that links 

nodes in a graph uniformly drawn at random with 𝑛 nodes. It evaluates the departure 

of the observed partition from the expected distribution of nodes and links into 

communities given the null model. For binary networks, Surprise can be computed 

using a cumulative hypergeometric distribution (Aldecoa and Marín 2014): 



 

111 
 
 

 

𝑆(𝑪) = −𝑙𝑜𝑔 ∑
(𝑀

𝑗 )(𝐹−𝑀
𝑚−𝑗)

( 𝐹
𝑚)

𝑚𝑖𝑛 (𝑀,𝑚)
𝑗=𝑚𝜀

   (5-5) 

where F denotes the maximum possible number of links in the network; 𝑚, the 

actual number of links within the network; 𝑀, the maximum possible number of intra-

community links; and 𝑚𝜀, the actual number of links within communities.  

Eq. 5-5 is difficult to compute, especially in the case of large networks (Traag et al. 

2015). Hence, Surprise can be approximated by a binomial distribution, leading to Eq. 

5-6 called AS. This expanded version of Surprise assumes that when the graph grows, 

the relative number of internal edges and the related number of expected internal 

edges remain fixed (Traag et al. 2015). In information theory, AS represents the 

Kullback–Leibler (KL) (Eq. 5-7) divergence between the observed (𝑞) and expected 

fraction (<𝑞>) of intra-cluster edges. KL is a quasi-distance on probability distributions 

as it is always non-negative, non-symmetric and zero only when 𝑞 =< 𝑞 >, like binary 

Surprise (Nicolini et al. 2017): 

𝑆𝑎(𝐂) = 𝑚𝐷𝐾𝐿(𝑞|| < 𝑞 >)   (5-6) 

𝐷𝐾𝐿(𝑥||𝑦) = 𝑥𝑙𝑜𝑔 (
𝑥

𝑦
) + (1 − 𝑥)𝑙𝑜𝑔 (

1−𝑥

1−𝑦
)  (5-7) 

The formulation of AS is extended to a weighted directed version while keeping the 

same formulation in Eq. 5-6 and Eq. 5-7 (see Table 5.1) (Traag et al. 2015). A uniform 

distribution of weights across the graph in the random graph is assumed, and the 

expected weights are calculated as < 𝑤 >. The total possible internal weight is then 

< 𝑤 >∗ 𝑀, whereas the total possible weight is < 𝑤 >∗ 𝐹. Hence, < 𝑞 > remains 

unchanged (Traag et al. 2015).  

5.3.3.4.2 Hierarchical Clustering by Maximising AS 

The proposed approach uses a single-linkage agglomerative clustering (Sibson 

1973) to merge communities, which, in the worst case, has a time complexity of 𝑂(𝑛2). 
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While merging communities, the AS optimisation function is adopted to choose the 

best partitions. Two nominated communities are merged if the resulting combined 

community increases the AS value. The algorithm starts by assigning each node to its 

community (Algorithm 5.1, line 33). Then, it iteratively merges nodes based on the 

calculated Jaccard similarities to determine the optimal clustering 𝑪∗over the whole 𝐿-

layer network (Algorithm 5.1, lines 34–45):  

𝑪∗ = argmax
𝑐∈𝑐∆

∑ 𝑆𝑎(𝐺𝑖, 𝑪) 𝐿
𝑖=1   

(5-8) 

where 𝑐∆ denotes the set of all possible partitions.  

Table 5.1. Variable definition 

Variable Unweighted & 
undirected 

Weighted & 
directed 

Description 

𝐹 (
𝑛

2
) (𝑛

2
)

2
 

Maximum possible number of links in a graph 

𝑀 ∑ (
𝑛𝑐

2
)

𝑐∈𝑪

 ∑
(𝑛𝑐

2
)

2
𝑐∈𝑪

 
Total possible intra-community edges, where 𝑪 denotes 

the list of identified clusters, and 𝑛𝑐 denotes the number 
of nodes in a specific cluster 𝒄 

𝑚 ∑ 𝐴𝑖𝑗

𝑖,𝑗

 ∑ 𝑤𝑖𝑗

𝑖,𝑗

  Total edges (if the graph is weighted, it indicates total 
internal weights) 

𝑚𝜀 ∑ 𝐴𝑖𝑗

𝑖,𝑗𝜖𝑛𝑐

 ∑ 𝑤𝑖𝑗

𝑖,𝑗𝜖𝑛𝑐

 Total internal weights/edges of a cluster 

𝑞 𝑚𝜀

𝑚
 _____ Observed fraction of internal edges 

< 𝑞 > 𝑀

𝐹
 

_____ Expected fraction of internal edges 

 

5.4 Knowledge Base 

5.4.1 Dataset Description 

This chapter uses three criminal networks–the Noordin Top Terrorist network, Boko 

Haram network and Caviar network–to evaluate the performance of the proposed 

approach. The structural characteristics of these networks are presented in Table 5.2. 
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Table 5.2. Network structural and interconnectedness features 

Dataset 
No. of 
Nodes 

No. of 
Links 

No. of 
Layers 

Network Features 
Network 
Density 

Network 
Average 
Degree 

No. of 
Louvain 
Clusters 

No. of 
InfoMap 
Clusters 

Noordin Top 
network 

78 1014 4 
Undirected, 
unweighted 

0.337 26 5 6 

Caviar network 107 651 11 Directed, weighted 0.057 6.08 8 9 

Boko Haram 
network 

44 82 3 
Undirected, 
weighted 

0.08 3.72 9 11 

 

5.4.1.1 Noordin Top Terrorist Network 

The Noordin Top Terrorist network is drawn from a terrorist network operating in 

Indonesia. Noordin Mohammad Top, from the Jemaah Islamiyah (JI) organisation, 

acted as a coordinator to reach out to young men from other jihadist organisations and 

some with no previous organisational affiliation. The actors in this terrorist network 

were responsible for various terrorist activities, including the Marriott Hotel bombing in 

Jakarta in August 2003, Australian embassy bombing in September 2004, Bali 

bombing I in October 2002 and Bali Bombing II in October 2005 (International Crisis 

Group 2006).  

The ties or links between actors represent one or more common affiliations or 

relationships. The network includes 78 actors (criminals) attending 45 different events, 

which are categorised into four to form a four-layer network: trust, operational, 

communication and business ties. The ties in each category are undirected and 

considered as a separate layer of the network. The trust layer is generated by the 

superposition of classmate, friendship, kinship and soul mate ties, whereas the 

operational layer is produced from four sub-layers: logistics, meetings, operations and 

trainings (Roberts and Everton 2011).  
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5.4.1.2 Boko Haram Network 

The Boko Haram Terrorist network contains the relationship information of 44 

terrorists belonging to an Islamic sect that has been operating primarily in Northern 

Nigeria since 2002. The group believes that the current Nigerian government is 

corrupted by false Muslims (Walker 2012). This network is remarkably sparse owing 

to its relatively young cell-like structure and the lack of collective leadership. 

Cunningham (2016) created this network using a variety of open-source documents. 

The available undirected ties are re-organised into edges to build a three-layer 

network: trust, communication and knowledge sharing. The trust layer includes 

colleagues, kinship, superior and supporter. The communication layer is formed by the 

superimposition of financial ties, communication and membership, and the knowledge-

sharing layer is built from shared events and collaboration (Gera et al. 2017). 

5.4.1.3 Caviar Network 

The Caviar dataset was created by Morselli (Morselli 2009) based on an 

investigation that targeted a hashish and cocaine network operating from Montreal 

between 1994 and 1996. The principal data source is the information submitted as 

evidence during the trials of 22 participants in the Caviar network in a series of hashish 

and cocaine distribution chains. It included 4,279 paragraphs of information (over 

1,000 pages) revealing electronically intercepted telephone conversations between 

network participants. The transcripts were utilised to create the overall matrix of the 

drug-trafficking operation’s communication system throughout the course of the 

investigation. The ties are a person-to-person relation of 110 participants related to 11 

different phases of the project drawn from information provided by law enforcement 

agencies (Morselli 2009). To hide the identity of individuals monitored during the 
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different phases of the project, these individuals are designated as nodes (e.g. Node 

1,…, Node 110) (Hmimida and Kanawati 2015). For the experiments in this chapter, 

the directed ties of each phase are considered as a separate layer in this dark network 

to form an 11-layer multiplex network.  

5.4.2 Baseline Methods 

To determine the effectiveness of the proposed algorithm, its performance is 

compared against two well-known community detection algorithms, which have been 

employed to detect covert communities. The first is the ‘multi-slice modularity’-based 

Louvain1 method (Liu et al. 2018), and the other is the multiplex InfoMap2 (De 

Domenico et al. 2015), where both methods attempt to find communities using all the 

structural information across the layers of the multiplex network (Liu et al. 2018). It is 

noted that there are only two comparable techniques, as the other techniques operate 

on monoplex networks. 

The Louvain method is a widely used modularity-based community detection 

algorithm (Bahulkar et al. 2018). It uses a bottom-up approach in the identification of 

communities by optimising the local modularity of communities. The drawback of the 

Louvain method is that the identified communities can be unstable, resulting from local 

modularity optimisation. This instability is further exacerbated by the limited 

connectivity between communities in a criminal network (Bahulkar et al. 2018). Like 

other modularity-based community detection approaches, the Louvain method suffers 

from a resolution limit that prevents it from detecting the small clusters (Fortunato and 

Barthelemy 2007) required in the use-case of terrorist network analysis. 

                                                           
1 Multiplex Louvain (https://louvain-igraph.readthedocs.io/en/latest/multiplex.html) 
2 Multiplex InfoMap (http://www.mapequation.org/code.html). 

http://www.mapequation.org/code.html
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From the benchmark by Lancichinetti et al. (Lancichinetti and Fortunato 2009), 

InfoMap is the best-performing community detection algorithm for large monoplex 

networks. The InfoMap clustering method identifies communities according to the flow 

of information in the network structure. Like the proposed approach, InfoMap uses a 

random walk-based approach to reveal the hierarchical structure of large networks as 

it agglomerates clusters into supernodes. As a result, InfoMap does not suffer from 

the resolution limit problem of modularity maximisation approaches like Louvain. This 

feature makes it a better candidate for finding small communities. With these two 

baseline methods explained, this chapter now turns to the discussion of the evaluation 

of the proposed algorithm against Louvain and InfoMap using three real-world 

multiplex dark network datasets.  

5.4.3 Experimental Setup  

To evaluate the baseline methods against these datasets, their default parameter 

settings are used. With the proposed algorithm, 40 random walkers are utilised to 

sample sequences of length 𝑙 = 5 from the neighbouring nodes of each node 𝑊 = 10 

times.  

5.5 Results and Discussion 

5.5.1 Cluster Analysis on the Noordin Top Network 

The Noordin Top dataset is drawn from a terrorist network operating in Indonesia. 

Noordin Mohammad Top from the JI organisation acted as a coordinator to reach out 

to young men from a variety of backgrounds. The actors were responsible for various 

terrorist activities, including the Marriott Hotel bombing in Jakarta in August 2003, the 

Australian embassy bombing in September 2004 and the Bali bombings in October 

2002 and 2005 (International Crisis Group 2006).  
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The ties between actors represent one or more common affiliations or relationships. 

The network includes 78 actors (criminals) attending 45 different events, which are 

categorised into four to form a four-layer network: trust, operational, communication 

and business ties. The ties in each category/layer are undirected. The trust layer is 

generated by the superposition of relationships, such as classmates, friendship, 

kinship and soul mates. Meanwhile, the operational layer is produced from four sub-

layers: logistics, meetings, operations and trainings (Roberts and Everton 2011).  

Figure 5.4(a–c) presents the results of running Louvain, InfoMap and DNE on the 

Noordin network. Compared with Louvain (five communities, 𝑆𝑎=127.835), in 

Figure 5.4(a), and InfoMap (six communities, 𝑆𝑎 = 203.922), in Figure 5.4(b), as shown 

in Figure 5.4(c), the proposed algorithm produced seven different non-singleton 

communities (i.e. communities with more than two participants). Here, it can be seen 

that the proposed algorithm yields better ‘good’ communities compared with InfoMap 

and Louvain, i.e. the clusters are lower in density as reflected by a higher AS 

(𝑆𝑎=242.683). Beyond what the AS measure suggests, the quality of the communities 

discovered by the different algorithms is confirmed by looking into the dataset. 

According to the (International Crisis Group 2006), there are seven different groups to 

which the actors in the network can belong. Each group provides us with some ground 

truth that can be utilised to check how well each algorithm performs, which are 

described below. 

Developing Darul Islam (DI). The result of cluster C1 is identical in InfoMap and 

DNE, whereas Louvain was not able to detect this cluster. Both InfoMap and DNE 

picked up the relation among Node 1, Node 9 and Node 16. Having this relation in the 

output is important as it is noted from the ground truth that Node 16 was the younger 
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brother of Node 1. He was involved in training DI, the Islamic group that fought for the 

establishment of an Islamic state in Indonesia, whereas his older brother was involved 

in sending DI recruits to the Philippines.  

Bali Bomb II. In this group, the small cluster C2 detected by InfoMap and DNE 

revealed some interesting information. Nodes 18 and 64 in C2 both trained together 

as suicide bombers in Bali Bomb II in 2005, whereas Node 69 was suspected of 

making a video of the suicide bombers’ last testaments and went on to become 

Noordin’s courier and coordinator (International Crisis Group 2006). With regard to the 

previous category, Louvain did not pick up this small cluster, and while InfoMap and 

DNE both did, the proposed algorithm performed better. In the case of InfoMap, it 

included Node 50 in this cluster, whereas the proposed algorithm, DNE, did not. 

Against the ground truth, Node 50 was killed in the first Bali bombing in October 2002; 

thus, it should not appear as an actor in this category (Bali Bomb II in October 2005). 

JI Group and Marriott Bombing. Cluster C3 includes two principal leaders and 

planners of the Noordin network, namely, Node 59 and Node 23. Most of the actors in 

C3 are from the same organisation, namely, JI, a transnational Southeast Asian 

militant Islamist terrorist organisation linked to Al-Qaeda mainly responsible for either 

educating suicide bombers or engaging in the bombing in Marriott. Again, the outputs 

of InfoMap and DNE for C3 are highly similar, except that DNE is better at excluding 

the less critical or singleton communities, leading to a lower-density C3 that is better 

for interpretability. These exclusions make sense when they are matched with the 

ground truth information. For example, the DNE algorithm excluded Node 15, the 

leader of DI, from C3, which InfoMap did not. Given the DI affiliation, it is noted that 

this node should not be in C3. This result indicates that DNE is better than InfoMap at 
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categorising members based on their specific characteristics and communication 

patterns.  

Hiding Noordin (Jan 2005). In cluster C4, the proposed algorithm produced a 

similar community structure as InfoMap with both accurately including all those 

involved in finding a hiding place for Noordin in January 2005. Conversely, Louvain 

miscategorised four members (Nodes 3, 5, 6 and 31) into this community (marked as 

C1 in Louvain’s output) when they should be in C3.  

JI Group. Members of cluster C5 are from the JI group. Except for non-critical 

members (Nodes 14, 49, 57 and 79) categorised as singletons in DNE, the proposed 

algorithm and InfoMap yielded identical results. With Louvain, members from other 

communities were found here, leading to a dense cluster (e.g. Nodes 1, 9 and 16 from 

C1; Nodes 35 and 42 from C7; and Node 28 from C4). 

Disposal of Bali Bombings Leftovers. Nodes 62 and 32 in cluster C6 

(Figure 5.4(c)) were two influential members of the Ring Banten group. They were 

responsible for finding a safe house for the two leaders of the Noordin Top network 

(Nodes 59 and 23) and helped dispose of the leftover explosives from the Bali 

bombings. Both Louvain and InfoMap were not able to identify this cluster. 

Embassy Bombing in 2004. Cluster C7 in Figure 5.4(c) includes the actors 

involved in the Australian embassy bombing in September 2004. Node 45 was the 

field commander, and Node 66 was Node 45’s uncle who was the military instructor 

for the suicide bombers. Other members of this cluster, including Nodes 68, 73, 77, 

74, 24 and 43, were also trainers to the suicide bombers. Node 35 helped with the 

recruitment, Node 38 studied bombing with Node 23, and together, they helped 

assemble the bomb. The ground truth also confirmed that Node 41 was involved in 
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getting the detonating cord used in the bombing. Nodes 10, 12, 19, 25 and 37 were 

also found to be suicide bombers in this event. It can be noted that C7 in DNE is 

identical to C6 in InfoMap, as presented in Figure 5.4(b); however, the proposed 

algorithm was able to exclude Node 11, who was killed in Bali Bombing I, as well as 

the nodes of lesser influence (e.g. Node 70, who was the courier) (see Figure 5.4(c)). 

The corresponding Louvain community C5, which C7 is compared with, has not 

included these actors and has also incorrectly included Nodes 11 and 78 in the cluster. 

These two actors were involved in the Marriot bombing rather than the embassy 

bombing in 2004. 

The discussion of nodes in their correct place confirms the practical utility of the 

proposed algorithm. More importantly, the proposed algorithm detected C6 and C7 

that are covert communities, which would not be apparent with InfoMap or Louvain–

the two state-of-the-art techniques. In addition, with better precision of nodes and a 

lower density in each community, the proposed algorithm will enable a better utilisation 

of enforcement resources than ever before. 

 

 
Figure 5.4. Simulation results of different clustering algorithms on Noordin Top network. (a) 

Multiplex Louvain with 5 communities, C1 to C5 (𝑺𝒂= 127.835). (b) Multiplex InfoMap with 6 

communities, C1 to C6 (𝑺𝒂= 203.922). (c) DNE with 7 non-singleton communities, C1 to C7 
(for better resolution, singleton clusters are not included, 𝑺𝒂= 242.683). 
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5.5.2 Cluster Analysis on the Boko Haram Network 

The second dataset that the proposed algorithm is tested against is the Boko Haram 

Terrorist network. This dataset, created by Cunningham (2016) from a variety of open-

source documents, contains network information of 44 terrorists from an Islamic sect 

that has been operating primarily in Northern Nigeria since 2002. Unlike the Noordin 

Top dataset, this dataset is remarkably sparse owing to its young cell-like structure 

and the lack of collective leadership. From the undirected ties, a three-layer network 

is constructed: trust, communication and knowledge sharing. The trust layer captures 

relationships such as colleagues, kinship, superior and supporter. The communication 

layer is formed by the superimposition of financial ties, communication and 

membership. Lastly, the knowledge-sharing layer is built from shared events and 

collaboration (Gera et al. 2017) among the actors. 

As presented in Figure 5.5(c), the proposed algorithm finds 12 non-singleton 

communities. For better resolution, the additional five resulting singleton communities 

are not included in this figure. Contrarily, Louvain in Figure 5.5(a) and InfoMap in 

Figure 5.5(b) with AS value of 𝑆𝑎= 46.565 and 52.242 only discovered 9 and 11 non-

singleton communities, respectively. When the clusters among the three algorithms 

are compared, their performances are almost identical in terms of the detection of 

small clusters. The DNE algorithm performs better in breaking down the larger clusters 

detected by InfoMap and Louvain into smaller clusters, improving the interpretability 

of the results for law enforcement agencies. As with the Noordin Top dataset, the 

outputs of each cluster against the ground truth are discussed below.  

Different Terrorist Activities. This was a single large cluster, marked as C9 in 

Louvain. However, it was broken down into two smaller clusters, namely, C10 and C1, 
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by InfoMap. With DNE, cluster C9 in Louvain was discovered as three clusters, 

namely, C1, C2 and C3, which made it easier to establish a hierarchical relationship. 

Similarly, cluster C8 from Louvain which has 11 actors was split into two smaller 

clusters, namely, C11 and C12, using the DNE algorithm. At the same time, the 

proposed algorithm also removed actors who were not involved in terrorist activities 

(Nodes 10, 44, 62, 75 and 79). In turn, this helped reveal the hidden hierarchical 

structure among actors, making it easier for law enforcement agencies to undertake 

their investigation. 

Mauritania Bombing 2006. Cluster C7 in Louvain and cluster C8 in InfoMap are 

identical, but DNE has pruned this cluster by eliminating inactive actors while keeping 

the active and important ones. The ground truth about this event is limited. But 

according to (International Crisis Group 2006), Node 69 was the superior of Nodes 66 

and 68, and Node 66 was the superior of Node 67 who was a courier and responsible 

for sending orders to Node 87, a Nigerian member of Boko Haram who killed 10 

Mauritanian soldiers in 2006 (Cunningham et al. 2016). From the ground truth 

information, it is also noted that both Nodes 67 and 69 were involved in the Mauritanian 

attack. These five actors (Nodes 66–69 and 87) were in one cluster in Louvain and 

InfoMap, whereas in the DNE algorithm, the inactive actors are pruned with the active 

actors put into cluster C10 (including Nodes 66, 67 and 69). 
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Figure 5.5. Simulation results of different clustering algorithms on Boko Haram network. (a) 

Multiplex Louvain with 9 communities, C1 to C9 (𝑺𝒂= 46.565). (b) Multiplex InfoMap with 11 

communities, C1 to C11 (𝑺𝒂= 52.242). (c) DNE with 12 non-singleton communities, C1 to 
C12 (for better resolution, singleton clusters are excluded) (𝑺𝒂= 55.392). 

5.5.3 Cluster Analysis on the Caviar Network 

The Caviar dataset was created by Morselli (Morselli 2009) based on an 

investigation targeting a hashish and cocaine network operating in Montreal between 

1994 and 1996. The principal data source is the information submitted as evidence 

during the trials of 22 participants in the Caviar network. It included over 1,000 pages 

of information revealing intercepted phone conversations among actors in the network. 

The transcripts were used to create the matrix of the drug-trafficking operation’s 

communication system during the investigation. The ties are a person-to-person 

relation of 110 participants involved in 11 different phases of the investigation drawn 

from information provided by law enforcement agencies (Morselli 2009). To conceal 

the identity of individuals, they are designated as nodes (e.g. Node 1,…, Node 110) 

(Morselli 2009). For experiments, the directed ties of each phase are considered as a 

separate layer in this dark network, providing us with an 11-layer multiplex network.  
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Figure 5.6. Simulation results of different clustering algorithms on Caviar network. (a) 

Multiplex Louvain with 8 communities, C1 to C8 (𝑺𝒂= 990.533). (b) Multiplex InfoMap with 9 

non-singleton communities, C1 to C9 (𝑺𝒂= 1114.52). (c) DNE with 6 non-singleton 
communities, C1 to C6 (for conciseness, singleton clusters are excluded, 𝑺𝒂= 3075.41). 

Figure 5.6(a) presents the communities discovered by Louvain with a maximum AS 

value of 𝑆𝑎 = 990.533. The non-singleton communities identified by InfoMap are 

presented in Figure 5.6(b), including nine different communities with a maximum AS 

value of 𝑆𝑎 = 1114.52. For conciseness, two singleton communities are not presented. 

As expected, InfoMap better identifies smaller communities compared with Louvain, 

but the DNE algorithm again outperforms the two baselines with a higher AS value, 

𝑆𝑎=3075.41, when comparing the non-singleton communities. As can be seen from 

Figure 5.6(b), the communities discovered by InfoMap are still very dense. Among the 

three methods, DNE is the better choice in terms of the identification of hubs and key 

actors in different communities. Using ground truth information from (Morselli and 

Giguere 2006), the results are briefly discussed within the five clusters in this network 

below. 

Hashish Trafficking. Cluster C1 of DNE includes Node 1, the central participant 

targeted by law enforcement agencies as the principal coordinator for hashish. It also 

comprises of a subset of other nodes with potential roles within the network. These 

nodes include: (i) two key traffickers (Nodes 3 and 76) who had pivotal roles in making 

links with various non-traffickers, (ii) actors with operational roles (Nodes 85, 87 and 
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89) and (iii) actors serving as legitimate guises for the operation who were also 

couriers (Nodes 83, 86 and 88). This cluster appeared as C8 in Louvain and C4 in 

InfoMap, which both were dense, rendering the investigation difficult. Contrarily, the 

DNE algorithm significantly pruned this cluster, as presented in Figure 5.6(c), retaining 

only the important actors. 

Traffickers/Non-traffickers. Similarly, DNE has reduced the membership of 

cluster C1 of Louvain into cluster C6 with only a list of key traffickers and non-

traffickers. 

Cocaine Importations. Here, Node 12 of cluster C5 in the DNE algorithm was the 

principal coordinator for cocaine importations. This cluster is identical to C2 in Louvain, 

but again, DNE managed to correctly prune the non-traffickers, retaining only actors 

with more crucial roles. 

Trafficking Operations. In this cluster, DNE has similar results to the baseline 

methods, except that Node 107 in cluster C2 in DNE was singled out as the link in the 

trafficking operations (Morselli 2009). 

Legitimate Importers. For this group, both clusters C5 and C6 in Louvain were 

denser than the outputs of DNE in clusters C4 and C3, respectively. Nevertheless, the 

proposed algorithm proves to be capable of retaining the important nodes. Node 101 

was retained in C4 in DNE, and Node 96 was retained in C3 in DNE, as these nodes 

acted as a legitimate importer but rendered traffickers services. 

In summary, the comparative analysis of DNE with the two baseline methods using 

these three datasets emphasises how the use of the AS measure has helped us yield 

meaningful results for the application problem in this thesis. Specifically, the proposed 

DNE algorithm performs better in terms of precision (i.e. crucial actors, relations and 
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events are detected) despite a more concise (i.e. ‘small’ and low-density communities 

that are easy to analyse are identified) output compared with the baseline methods. 

This is further supported by the analysis in Table 5.3 on key actors, roles and clusters 

in each of these three datasets. 
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Table 5.3. Analysis of potential actors within detected clusters based on the centrality measures and their role for further disruption (Cluster IDs 
are according to DNE). 

Dataset Top 10 Actors Detected Clusters  Disruption Analysis 

N
o
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Degree Hub Betweenness Closeness 
Node 23 {C3} 
(0.610) 
 

Node 23 {C3} 

(0.310) 

Node 23 {C3} 

(0.168) 

Node 23 {C3} 

(0.681) 

Node 59 {C3} 

(0.428) 
 

Node 24 {C3} 

(0.245) 

Node 59 {C3} 

(0.115) 

Node 59 {C3} 

(0.636) 

Node 24 {C7} 
(0.415) 
 

Node 59 {C3} 
(0.235) 

Node 4 {C5} 
(0.103) 

Node 24 {C7} 
(0.592) 

Node 5 {C3} 
(0.377) 
 

Node 5 {C3} 

(0.198) 

Node 28 {C3} 

(0.072) 

Node 28 {C3} 

(0.579) 

Node 4 {C5} 

(0.325) 
 

Node 38 {C7} 

(0.194) 

Node 13 {C4} 

(0.072) 

Node 5 {C3} 

(0.570) 

Node 28 {C3} 
(0.312) 
 

Node 8 {C7} 
(0.185) 

Node 5 {C3} 
(0.069) 

Node 13 {C4} 
(0.566) 

Node 45 {C7} 
(0.312) 
 

Node 45 {C7} 

(0.184) 

Node 24 {C7} 

(0.054) 

Node 35 {C7} 

(0.562) 

Node 35 {C7} 

(0.299) 
 

Node 10 {C7} 

(0.182) 

Node 16 {C1} 

(0.052) 

Node 4 {C5} 

(0.558) 

Node 8 {C7} 
(0.299) 

Node 35 {C7} 
(0.182) 

Node 35 {C7} 
(0.041) 

Node 73 {C7} 
(0.558) 

Developing DI 
  

In cluster C1, Node 16 has a high betweenness centrality reflecting his 
brokerage role within the network. To disrupt the network, such actors should 
be targeted because their removal could destabilise the network or even cause 
it to fall apart (Ferrara et al. 2014). 

Bali Bomb II Cluster C2 is an important clique to be considered for more investigation, 
which was not detected by Louvain. Members of this cluster could easily avoid 
from being identified because of keeping a minimum communication with 
others (as it can be seen, they are not among the top 10 actors of the Noordin 
Top network). 

JI Group and Marriott 
Bombing 

Actors involved in community C3 are of high importance: they play a brokerage 
role (high betweenness centrality), hold potentially advantageous positions 
within the network (high degree and hub centrality) (Bright et al. 2017) and are 
close to other members (high closeness centrality) through both direct and 
indirect paths (Strang 2014). The arrest of these individuals could destabilise 
or even dismantle the network. 

Hiding Noordin (Jan 2005) Node 13 of cluster C4 has high betweenness centrality and high closeness 
centrality and was a conduit in the flow of information. 

JI Group In cluster C5, Node 4 acts as a connection point (high betweenness centrality). 

Dispose of Bali bombings 
leftovers  

Members of C6 are not among those with high centrality values. Their arrest 
would have a minimum impact on the disintegration of the network. 

Embassy bombing in 2004 Members of this cluster (marked as C7) play a brokerage role. By having high 
degree and hub centralities, they are among the highly positioned actors. 
Disrupting this cluster could potentially destabilise the network.  
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Degree Hub Betweenness Closeness 

Node 6 {C12} 

(0.0.302) 

Node 16 {C3} 

(0.432) 

Node 6 {C 12} 

(0.323) 

Node 35 {C7} 

(1.0) 

Node 16 {C3} 
(0.280) 

Node 13 {C 12 
(0.341) 

Node 16 {C 3} 
(0.178) 

Node 97 {C6} 
(1.0) 

Node 13 {C12} 
(0.255) 

Node 6 {C 12} 
(0.282) 

Node 13 {C 12} 
(0.128) 

Node 88 {C6 
(1.0) 

Node 12 {C1} 

(0.162) 

Node 12 {C1} 

(0.279) 

Node 15 {C3} 

(0.090) 

Node 2 {C5} 

(1.0) 

Different terrorist activities DNE divides a large cluster C9 of Louvain into smaller clusters C1, C2 and C3, 
which are easier to analyse. Such a breakdown uncovers the hidden relations 
that these small clusters have with other members within the network. Clusters 
C1, C2 and C3 of DNE include members with potentially important roles as they 
have high degree and hub centrality values. C2 and C3 include members that 
play brokerage roles (high betweenness); their arrest leads to the disintegration 
of the network. With the same analysis, cluster C12 includes important members 
whose arrest is vital in the investigation. 
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Node 85 {C1},84 {C1},15 
{C3},11 {C3} 
(0.140) 

Node 85,84 {C1} 

(0.251) 

Node 61 {C4} 

(0.086) 

Node 1 {C5} 

(1.0) 

Node 47 {C1},29 {C2}, 86 
{C1},17 {C12} 

(0.116) 

Node 11 {C3} 
(0.247) 

Node 30 {C2} 
(0.045) 

Node 94 {C9} 
(1.0) 

Node 61 {C4}, 56 {C12}, 63 
{C12}, 14 {C1} 

(0.093) 

Node 47,86 {C1} 

(0.223) 

Node 5 {C8} 

(0.043) 

Node 80 {C9} 

(1.0) 

Node 30 {C2},82 
{C3},67{C10},21 {C3},69 
{C10} 

(0.069) 

Node 29 {C2} 
(0.208) 

Node 29 {C2} 
(0.038) 

Node 67 {C10} 
(0.800) 

Node 35 {C7}, 66 {C10}, 5 
{C8},75 {C11}, 59 {C11} 
(0.046) 

Node 15 {C3} 

(0.190) 

Node 11 {C3} 

(0.014) 

Node 69 {C10} 

(0.800) 
 

Mauritania Bombing 2006 DNE has pruned cluster C7 (Louvain) or C8 (InfoMap) to a less-dense cluster, 
C10. Members of cluster C10 are close to other members within the network 
(high closeness centrality) and are also actors with key role within this network 
who have high degree centrality. 
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In-degree Out-degree Hub Betweenness Closeness 

Node 1 {C1} 
(0.355) 

Node 1 {C1} 
(0.486) 

Node 1 {C1} 
(0.649) 

Node 1 {C1} 
(0.397) 

Node 107 {C2} 
(1) 

Node 3 {C1} 

(0.187) 

Node 3 {C1} 

(0.224) 

Node 3 {C1} 

(0.395) 

Node 12 {C5} 

(0.186) 

Node 1 {C1} 

(0.676) 

Node 12 {C5} 

(0.177) 

Node 12 {C5} 

(0.187) 

Node 87 {C1} 

(0.213) 

Node 76 {C1} 

(0.097) 

Node 3 {C1} 

(0.553) 

Node 76 {C1} 

(0.084) 

Node 87 {C1} 

(0.149) 

Node 12 {C5} 

(0.207) 

Node 3 {C1} 

(0.092) 

Node 12 {C5} 

(0.5) 

Node 9 {C1} 
(0.084) 

Node 76 {C1} 
(0.121) 

Node 76 {C1} 
(0.180) 

Node 87 {C1} 
(0.063) 

Node 87 {C1} 
(0.489) 

Node 83 {C1} 
 (0.075) 

Node 83 {C1} 
(0.093) 

Node 83 {C1} 
(0.162) 

Node 37 {C6} 
(0.052) 

Node 76 {C1} 
(0.47) 

Node 87 {C1} 
(0.065) 

Node 37 {C6} 
(0.084) 

Node 85 {C1} 
 (0.149) 

Node 79 {C4} 
(0.038) 

Node 37 {C6} 
(0.452) 

Node 37 {C6} 

(0.065) 

Node 41 {C6} 

(0.065) 

Node 8 {C1} 

(0.132) 

Node 78 {C1} 

(0.032) 

Node 14 {C5} 

(0.444) 

Node 85 {C1} 

(0.065) 

Node 96 {C3} 

(0.065) 

Node 88 {C1} 

(0.125) 

Node 41 {C6} 

(0.029)  
 

Hashish Trafficking Cluster C1 of DNE includes very important members; they have high degree 
and hub centralities, act as coordinators between different clusters (high 
betweenness) and are very close to other members within the network. 

Traffickers/Non-traffickers DNE shows a list of key actors within the network: Nodes 37 and 46 of cluster 
C6 are highly positioned members, and Node 37 also acts as a broker. 

Cocaine Importations DNE keeps a list of key actors within the network: Node 12 of cluster C5 was 
the principal coordinator of cocaine trafficking and also has a high 
betweenness and high degree centrality values. 

Trafficking Operations Node 107 of this cluster has a close relation (high closeness value) with others 
and had a linkage role within the network. 

Legitimate Importers DNE reduces the clusters to keep only the most potential actors within the 
network. Node 79 of cluster C4 was a link between this cluster and others.  
Node 96 of cluster C3 has a high degree centrality and acts as a potential key 
member within this cluster, as verified by its role in several important 
operations. 
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5.5.4 Comparison of Evaluation Metrics 

As the objective of this chapter is to increase AS rather than modularity, measures 

that are independent of modularity-based metrics are required to evaluate the 

statistical quality of the detected communities to further support the value of the 

proposed empirical observations. On this account, additional metrics are presented in 

this section for further comparison: multiplex-modularity, Surprise value, number of 

non-singleton clusters, Significance, Performance, internal density, conductance and 

scalability.  

Multiplex-Modularity. Didier et al. (2018) define the multiplex-modularity of 

multiplex networks as the average of modularities over various network layers. As 

expected, Table 5.4 demonstrates that Louvain has the highest modularity among all 

datasets as it results in larger-sized communities. The maximisation of modularity 

leads to fewer and denser clusters, such as the case in Louvain. As discussed, this 

slows down the investigation. Contrarily, the maximisation of AS may reduce 

modularity, but in practice, the produced communities better match what security 

analysts need for a faster and more accurate detection. 

Surprise Value and Number of Non-singleton Clusters. In practice, law 

enforcement agencies would want to arrest the least number of actors for disrupting a 

network. As such, the maximisation of AS to overcome the resolution limit helps move 

insignificant actors into singleton clusters, leading to lower-density non-singleton 

communities that are easier to interpret by analysts. While this means that there are 

more clusters driven in part by the singleton clusters, the non-singleton clusters benefit 

from lower memberships to the key actors that support faster and more accurate 
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analysis in practice. As presented in Figure 5.7, the DNE algorithm managed to 

achieve the highest AS on the test data. 

Significance (Traag et al. 2013) is a recently introduced objective function to 

evaluate the quality of the community structure similar to Surprise (Traag et al. 2015). 

It demonstrates how ‘real’ a detected community structure is and that the results are 

not because of chance (Traag et al. 2013). Surprise describes how likely it is to 

observe internal links in communities. Conversely, Significance looks at how likely 

such dense communities appear in a random graph. When the number of communities 

is large or the network is dense, Significance will be more discriminative than AS 

(Traag et al. 2013). In the accomplished experiments, the proposed algorithm has the 

highest Significance score, indicating that criminals are not clustered by chance but 

by their close communication within the network.  

 

 

 
Figure 5.7. Comparison of AS in different community detection methods over different 

datasets. 
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Table 5.4. Community metrics over different datasets using three community detection 
methods  
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DNE 7 0.29 0.50 11.41 379.99 0.84 

InfoMap 6 0.37 0.41 8.71 304.00 0.77 

Louvain 5 0.40 0.45 5.80 210.65 0.78 

B
o
o
k
o
 

H
a
ra

m
 

DNE 12 0.30 0.52 11.9 66.21 0.94 

InfoMap 11 0.38 0.80 9.57 53.30 0.87 

Louvain 9 0.40 0.89 7.18 40.45 0.83 

C
a
v
ia

r 

DNE 6 0.17 0.59 65.74 4398.25 0.98 

InfoMap 9 0.23 0.22 32.23 2459.50 0.86 

Louvain 8 0.25 0.23 32.21 2327.16 0.86 

 

Performance. The performance of a cluster is defined as the number of ‘correctly 

interpreted pairs of nodes’ in a graph (Brandes et al. 2003; Gaertler 2005). It indicates 

how well connected the actors are within a cluster (Brandes et al. 2003; Gaertler 2005) 

and can be used to determine the density of a cluster. If a cluster is dense, each pair 

of actors in a cluster is highly connected; however, they may have few connections 

with actors in other clusters (Brandes et al. 2003; Gaertler 2005). Therefore, a higher 

Performance value indicates that criminals within a cluster may not survive the 

disruption within a cluster from law enforcement agents as they will not be able to 

transfer their covert activities to another community in the network (Galvan and 

Agarwal 2018). As presented in Table 5.4, DNE has the best performance among the 

three datasets tested in this chapter. 

Internal Density. This measure provides a reflection of the internal structure within 

a community (Liu et al. 2009; Song and Bressan 2013), so that the parts of highly 

interconnected dark networks can be identified. An increase in the internal connectivity 
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of a community reduces the possibility of using neighbouring external nodes to bridge 

any internal disruption. With the DNE algorithm, the detected clusters will yield a higher 

total weighted internal density (Liu et al. 2009), as presented in Table 5.4. Because 

the DNE algorithm prunes less-important actors from the clusters, disrupting every 

community can potentially ensure the failure of the entire network. 

Conductance. The conductance of a set of vertices S is defined as 
𝑐𝑠

2𝑚𝑠+𝑐𝑠
 (Almeida 

et al. 2011), where 𝑐𝑠 = |(𝑢, 𝑣)  ∈  𝐸: 𝑢 ∈  𝑆, 𝑣/∈  𝑆| denotes the number of edges with 

one end in the set and the other end outside, and 𝑚𝑠 =  |(𝑢, 𝑣)  ∈  𝐸: 𝑢 ∈  𝑆, 𝑣 ∈  𝑆| 

denotes the number of edges in S. A higher conductance in a cluster indicates that it 

is more isolated from other clusters in the network. Hence, conductance measures the 

connectedness of a set of nodes to the rest of the graph. The sets of nodes that have 

fewer connections to the rest of the graph make good communities. This is because 

such communities reduce the possibility of using neighbouring nodes within other 

clusters to bridge an internal disruption attempt by law enforcement agencies (Galvan 

and Agarwal 2018). In the Noordin Top and Caviar datasets, the proposed approach 

has the highest conductance score, whereas in the Boko Haram data, Louvain 

achieves the highest conductance score (Table 5.4). In the Boko Haram network, the 

DNE algorithm’s low conductance rate can be attributed to the fact that DNE breaks 

down larger clusters into smaller ones that may be internally related. This trade-off 

may be acceptable as several smaller clusters are less challenging to analyse 

compared with a few large dense clusters.  
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Figure 5.8. Scalability: different numbers of walkers and various walk lengths. 

Scalability. Figure 5.8 presents the elapsed time for a set of different numbers of 

random walkers to traverse over the network from each and every node. The more 

walkers used, the faster the entire network is traversed until the number of walkers 

used reaches about 20, where any further increase does not seem to lead to further 

speedup. This is attributed to the settings of the server utilised in the experiments that 

has a configuration of 8 GB RAM and a 2.40 GHs CPU with 32 cores. The 

programming environment prohibits the commencement of a new walker thread until 

an existing walker thread completes its task once every CPU core has a walker thread 

running. 

5.6 Chapter Summary 

In this chapter, a community detection algorithm, called DNE, is developed to find 

‘small’ and ‘good’ communities in dark multi-layer networks. On account of the premise 

that criminals hide in network hubs, the proposed approach involves the use of random 

walkers to move towards nodes with higher hub centrality scores. The approach also 

employs minwise hashing to speed up the Jaccard correlation calculations in order to 

hasten the hierarchical agglomerative clustering procedure. The proposed clustering 

procedure is also unique as it creates clusters to maximise AS instead of modularity. 
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This helps in the identification of small and lower-density clusters, making the results 

easier to interpret by law enforcement agencies. Analysis using three real-world dark 

multi-layer networks demonstrates that the proposed approach outperforms two state-

of-the-art techniques. Specifically, this performance is achieved by finding clusters that 

easily yield the key actors and relations while pruning other actors of lower importance 

to keep each cluster small and low in density.  

One major problem in machine learning on networks is finding a way to incorporate 

the rich topological information of a network into a machine learning model. For 

example, in this chapter, such information is extracted using the Jaccard correlation 

values of walked sequences between nodes, and they are fed into the hierarchical 

clustering algorithm to further detect the clusters. However, the Jaccard correlations 

are calculated once and may not be optimised during the learning process, thus 

leading to the inaccurate identification of clusters. Recently, there has been a surge 

towards a new paradigm of graph-based techniques called network embedding 

(Bengio et al. 2013; Hamilton et al. 2017; Pourhabibi et al. 2020; Zhong et al. 2016). 

The idea behind these techniques is to map the rich topological structure of networks 

(e.g. nodes, entire graph or sub-graph) into a low-dimensional space which is also 

called feature space. The next chapter of this thesis investigates the application of 

these approaches in the detection of covert communities within a criminal network to 

probe further into the second sub-research question: How can users’ anomalous 

activities be detected in a network without any manual feature engineering? 

(SRQ 2). 
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6 Chapter 6—Discovering Covert Communities in Dark Multi-layer 

Networks: An Embedding Approach a  

The detection of community structures in social networks plays a significant role in 

understanding the functions of complex networks. A common technique to detect 

communities is graph clustering, where the nodes in a graph (or network) are 

partitioned into disjoint groups. Numerous clustering techniques are used in graph 

clustering, such as hierarchical clustering, cut-based partitioning and Girvan–Newman 

algorithm (Fortunato 2010). The proposed approach in Chapter 5 also falls in this 

category of community detection approaches. The major challenge in the use of the 

graph clustering techniques is how the structural information of networks can be 

translated into a suitable set of features for machine learning (Hamilton et al. 2017). 

To overcome this drawback, recent studies have turned to ‘network embedding’ (also 

known as representation learning) techniques to extract features that demonstrate 

improvements in classification/prediction results (Bengio et al. 2013; Hamilton et al. 

2017; Pourhabibi et al. 2020; Zhong et al. 2016). Network embedding enables us to 

transform the rich structural information of networks into a low-dimensional vector 

space that can be subsequently utilised for different machine learning tasks, such as 

node classification, node clustering, regression and link prediction (Goyal and Ferrara 

2018; Li et al. 2018; Salim et al. 2020). 

This chapter investigates how network embedding can be applied in the detection 

of covert communities in multi-layer criminal networks. Using network embedding, 

                                                           
a A journal paper developed based on the information presented in this chapter was published: Pourhabibi, T., 
Ong, K.-L., Boo, Y.L., Kam, B.H., (2021), ‘Detecting covert communities in multi-layer networks: A network 
embedding approach’, Future Generation Computer Systems, vol. 124, pp. 467–479’. 
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while the structural characteristics of criminals’ network are extracted and learned, the 

covert communities are also extracted. This chapter attempts to cover the second sub-

research question using embedding methods:  

 RQ 2. How can users’ anomalous activities be detected in a network 

without any manual feature engineering?  

The proposed approach is again motivated by social disorganisation theory; the 

applicability of this theory in the detection of covert networks has been discussed in 

Chapter 5 (see Section 5.1). The following sections directly explore the proposed 

approach using Hevner et al.’s (2004) IS framework (see Figure 1.1 in Section1.4).  

6.1 Problem Formulation 

In most of the studies, the network embedding technique focused on the existence 

of edges between nodes and ignored the different edge types in the network 

(Pourhabibi et al. 2020). This feature is akin to recognising the existence of a 

transportation route (edge) between two towns (nodes) but ignoring the distance or 

route type (i.e. road or railway). In detecting communities in social networks, this focus 

could lead to information loss and may prevent the discovery of important information 

(De Domenico et al. 2015; Rosvall et al. 2014). In reality, social interactions among 

communities comprise multiple types of relationships, a feature that recent works have 

increasingly recognised by steering towards analysing multi-layer networks with nodes 

connected by different edge types (i.e. relationships) (De Domenico et al. 2015; 

Rosvall et al. 2014). Multi-layer networks are known by different names, depending on 

the context. With reference to Kivelä et al. (2014), ‘multi-layer network’, ‘multi-graph 

network’, ‘multiplex network’, ‘multi-relational network’, ‘multi-slice network’ and ‘multi-

level network’ are ‘multi-layer networks’ on the basis of their similar network structure. 
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Current works that employ network embedding to detect communities typically 

involve a two-step approach (Chun et al. 2019; Rozemberczki et al. 2019). The first 

step is network representation learning, and the second is the application of a 

clustering algorithm (e.g. a classical k-means) to identify communities from the learned 

features. The drawback of this approach is that these representations may not be the 

best fit for the preservation of social communities (Chun et al. 2019). Therefore, a goal-

directed training framework is required to manipulate the learned representations 

according to the clustering result to identify more accurate communities.  

Research on multi-layer network analysis has led to many new solutions in various 

application domains. However, as researchers may not have access to the data of 

networks in some domains, not every domain has received the same level of attention. 

One of these domains is the dark network or covert social network problems, where 

very little data are available (Pourhabibi et al. 2020).  

The analysis of dark or covert networks involving illicit activities, such as drug or 

arm trafficking and terrorist activities (Erickson 1981), is especially problematic. 

Members of these networks tend to actively hide their actual network information by 

engaging in a range of ‘diversion’ or ‘cover-up’ activities to reduce the chances of being 

caught by the authorities (Erickson 1981; Warnke 2016). They would attempt to remain 

anonymous by exhibiting different ties (e.g. friendship and kinship) and engaging in 

activities that distract or divert attention from their real intent, e.g. distributing illegal 

drugs (Erickson 1981).  

The current state-of-the-art studies of community detection in multi-layer networks, 

such as those by (Berlingerio et al. 2011; Berlingerio et al. 2013; Dickison et al. 2016; 

Rocklin and Pinar 2011), have not been successful in discovering the actual 
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organisation (De Domenico et al. 2015) when applied to dark networks. In some cases, 

it was observed that the proposed approaches yielded distorted insights into the 

network topology and its embedded dynamics (Rosvall et al. 2014). According to 

Robins (2009), finding covert communities within a dark multi-layer network requires 

law enforcement agencies to understand individuals’ behaviours and qualities, 

psychological predispositions and network effects. To effectively do this, the algorithm 

must accurately capture the position of actors within the covert network as this is the 

salient feature from which the above information can be derived. Without accurate 

insights into covert network activities, it would remain challenging for law enforcement 

agencies to disrupt dark network operations. The better law enforcement agencies can 

understand the interactions and relationships within covert communities, the more 

efficient and effective they would be in disrupting criminal activities and inhibiting the 

cascade of influence from one community to another in the network (Moscato et al. 

2019; Saxena et al. 2018). 

Through a systematic literature review, Pourhabibi et al. (2020) found that network 

embedding has not been employed to discover covert communities in multi-layer 

networks, specifically crime and terror-related activities. Network embedding has the 

potential to find covert communities within a dark multi-layer network, including the 

position of actors within a covert network to reveal not only their standing but also how 

they communicate with other members within the network, as demonstrated by 

Robbins (2009). To capture such structural characteristics, this chapter uses a log-

bilinear (LBL) model, which is a type of network embedding that can be applied to the 

sequences of nodes randomly sampled from the neighbourhood of each node in the 

network. LBL is able to preserve the structural information related to the different types 
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of relations in multi-layer networks using relation-specific matrices (Liu et al. 2017a). 

The context-specific matrices also enable the LBL model to preserve the structural 

position of the actors within the network (Liu et al. 2017a). 

This chapter investigates how network embedding can be employed to detect covert 

multi-layer networks to overcome some of the abovementioned challenges. 

Specifically, it aims to find all covert communities within a dark multi-layer network. 

6.2 Algorithm Development 

The proposed solution, as outlined in Algorithm 6.1, discovers covert communities 

while learning node representations. It consists of two major mutually beneficial 

components, namely, (a) network embedding and (b) self-clustering. These 

components are described below. 

6.2.1 Network Embedding 

This chapter uses an LBL model (Mnih and Hinton 2007) to learn the representation 

of the nodes. The LBL model is used as a sequence-based network embedding 

algorithm to preserve the nodes’ positional information about their neighbouring 

nodes. This objective is achieved by using a random walk to eliminate the need to 

store the entire neighbourhoods that can be expensive in a large graph (Rozemberczki 

and Sarkar 2018). This sequence-based approach helps discover covertness among 

the nodes of interest, as each random walk reveals a specific sequence starting from 

the node of interest (Rallapalli et al. 2019). In this implementation, the structural 

information is preserved via a position-specific transition matrix. In parallel, a similar 

matrix is used to capture the properties of multiple relationship types using a relation-

specific matrix. This setup is suitable for learning representations from multi-layer 

networks, as noted by (Liu et al. 2017a). As can be seen in Algorithm 6.1, the 
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neighbourhood of a node is randomly explored to sample sets of nodes and their 

relationships with the neighbouring nodes. The LBL model is then applied to the 

sampled anchor-sets to extract the structural features in order to capture the rich 

structural information related to the relationship types by incorporating relation-specific 

matrices. While learning the representations of the nodes, the cluster centroids are 

also jointly learned to find the best cluster fit for the learned representations. 

Algorithm 6.1. 𝐿𝐵𝐿𝑆𝑒𝑙𝑓𝐽𝑜𝑖𝑛𝑡𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝐶𝑙𝑢𝑠𝑡 
 

Input:       𝐺: Multi-layer graph,  

𝑑: Embedding dimension,  

𝐶: No of clusters, 

𝐼𝑡𝑒𝑟: No of iterations,  

𝑙: Walk length, 

𝑤𝑎𝑙𝑘: No of walks, 

𝐵: Batch size, 

𝑤: Window size  

Output:   Node Embeddings, 

                  Cluster Centroids 

 

1  𝑛 = 𝐺. 𝑛𝑜𝑑𝑒𝑠(). 𝐶𝑜𝑢𝑛𝑡() 

       /* Initialise 𝜃: Softmax parameter and μ: cluster centroids*/ 

2  Initialise 𝜃 

3  Initialise cluster centroid matrix μ ⊆ 𝑅𝐶×2𝑑 

       /* As nodes are sampled, the layer from which they are sampled is also recorded */ 

4  𝑊𝑎𝑙𝑘𝑠, 𝐿𝑎𝑦𝑒𝑟𝑠 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑀𝑢𝑙𝑡𝑖𝐿𝑎𝑦𝑒𝑟𝑊𝑎𝑙𝑘𝑠𝑇𝑜𝑤𝑎𝑟𝑑𝑠𝐻𝑢𝑏𝑠(𝐺, 𝑙, 𝑤𝑎𝑙𝑘) 

5  While 𝐼𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡<𝐼𝑡𝑒𝑟 do 

6  While True do 

7        Update 𝛽, 𝛾 using Eq. 6-11 

                /* 𝐵 anchor-sets of size 𝑤 are taken and the respective layers for each anchor-set are recorded */ 

8        𝑆, 𝐿 =  𝑇𝑎𝑘𝑒𝑁𝑒𝑥𝑡𝐴𝑛𝑐ℎ𝑜𝑟𝑆𝑒𝑡(𝑊𝑎𝑙𝑘𝑠, 𝐿𝑎𝑦𝑒𝑟𝑠, 𝑤, 𝐵) 

9        For 𝑠, 𝑙 ∈  𝑆, 𝐿 do 

10            Calculate 𝑉𝑠̂ using Eq. 6-2 

11            Calculate 𝐿𝑙𝑜𝑠𝑠 using Eq. 6-9 

12               Update 𝜃, μ to reduce 𝐿𝑙𝑜𝑠𝑠 

 

13  𝑉 = 𝑇𝑎𝑘𝑒𝑆𝑜𝑢𝑟𝑐𝑒𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠𝐹𝑟𝑜𝑚(𝜃) 

14  𝑉′ = 𝑇𝑎𝑘𝑒𝑇𝑎𝑟𝑔𝑒𝑡𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠𝐹𝑟𝑜𝑚(𝜃) 

15  Return [𝑉: 𝑉′], μ 

 

6.2.1.1 Anchor-Set Selection 

To extract the sequences of nodes in the network, a random walk on the multi-layer 

network is conducted to extract anchor-sets {𝑆𝑖}, a sampling approach representing 
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the multi-layer network proposed by Grover and Leskovec (2016), as demonstrated in 

Algorithm 6.1, line 4. The anchor-set {𝑆𝑖} includes all the sequences sampled from the 

neighbourhood of node 𝑖.This sampling approach has two benefits.  

First, random walks in a multi-layer network can capture the mutual influence 

between layers and their topological properties as the random characteristics ensure 

that a walk is not stuck within a ‘local minimum’ (Jeub et al. 2017). Consequently, 

random walkers are more likely to traverse between layers of a multi-layer network, 

thus capturing more nodes and their respective relationship types (Liu et al. 2017c). 

Second, the proposed random walk is designed with a heuristic derived from 

(Sageman 2004) who states that criminals mostly lay in network hubs. As a result, the 

random walkers in this algorithm are designed to sample the anchor-sets while moving 

towards network hubs (Grover and Leskovec 2016), making the approach appropriate 

for finding covert communities. 

Following Liu et al. (2017c), given the fact that a random walker is on node 𝑗 in layer 

β, the probability to transfer to node 𝑖 in layer 𝛼 is given by:  

P(𝑐𝑡+1 = 𝑣𝑖
𝛼|𝑐𝑡 = 𝑣𝑗

𝛽
) ∝

𝑤𝑗𝛽
𝑖𝛼

∑ 𝑤𝑗𝛽
𝑖𝛼

𝑖𝛼𝜖𝑉

 (6-1) 

where 𝑤𝑗𝛽
𝑖𝛼 denotes the weight of the link between node 𝑗 in layer β and node i in layer 

𝛼. If the network is unweighted, 𝑤𝑗𝛽
𝑖𝛼 = 1. If the network is directed, 𝑤𝑗𝛽

𝑖𝛼 ≠ 𝑤𝑖𝛼
𝑗𝛽

, the 

random walkers walk directly; otherwise, they walk indirectly. When random walkers 

jump to the next neighbour with the probability P(𝑐𝑡+1 = 𝑣𝑖
𝛼|𝑐𝑡 = 𝑣𝑗

𝛽
), they sample from 

the nodes and layers they traverse. This sampling process generates long sequences 

of length 𝑙, starting from each node, and records the layers from which the node is 

sampled (Algorithm 1, line 4) (Rozemberczki and Sarkar 2018). In next step, a group 
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of 𝐵 anchor-sets are generated using the sliding window size 𝑤 (Algorithm 1, line 8) 

and then fed into LBL for representation learning (Rozemberczki and Sarkar 2018).  

6.2.1.2 LBL Embedding: Multiple Relationship Types 

In deep learning applications, LBL is viewed as a single-layer feed-forward neural 

network (Liu et al. 2017a) and is usually used for sequential prediction problem. To 

use LBL, the final predicted representation (𝑉̂𝑠) of a given sequence 𝑠 = 𝑢1, … , 𝑢𝑛 is 

calculated using a linear combination of the input items 𝑢𝑖 and the transition matrices 

at each position: 

𝑉̂𝑠 = ∑ 𝑃𝑖
𝑛−1
𝑖=0 𝑉𝑢𝑖

  (6-2) 

where 𝑃𝑖 ∈ 𝑅𝑑×𝑑 denotes the transition matrix for the corresponding position in a 

sequence; 𝑛, the number of elements in a sequence and 𝑉𝑢𝑖
, the representation of item 

𝑢𝑖 in the sequence.  

As Eq. 6-2 demonstrates, LBL represents the position of each item in a sequence 

with a specific matrix. Therefore, it can model the complex situations of a local context 

(i.e. neighbouring items in the sequences). To model multiple relations between nodes 

and capture the impact of the different types of relationships, a relation-specific matrix 

𝑀 is defined, where 𝑀 ∈ 𝑅𝑟×𝑑 models the corresponding relationship of the 𝑖-th item 

in a sequence (𝑢𝑖−1

𝑟𝑖
→ 𝑢𝑖) to determine the properties of multiple types of relationships. 

This feature can then be modelled by Eq. 6-3 as (Algorithm 6.1, line 10): 

𝑉̂𝑠 = ∑ 𝑃𝑖𝑀𝑖
𝑛−1
𝑖=0 𝑉𝑢𝑖

   (6-3) 

To learn the node representation, the conditional likelihood of target node 𝑣 

generated by an anchor-set 𝑠 {𝑠 = [𝑢1, … , 𝑢𝑛, 𝑣] ∈ 𝑆} is defined based on the following 

Softmax function (Takase et al. 2016; Yuan et al. 2017): 
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𝑝(𝑣|𝑠, 𝜃) =
exp(𝑓(𝑣,𝑠))

∑ exp(𝑓(𝑣′,𝑠))𝑣′∈𝑁𝑣
𝑠

  (6-4) 

𝑓(𝑣, 𝑠) =  𝑉̂𝑠
𝑇

𝑉′𝑣 + 𝑏𝑣 (6-5) 

where 𝜃 = [𝑉𝑢𝑖
, 𝑉′

𝑣, 𝑀, 𝑃, 𝑏𝑣] denotes the Softmax parameter; 𝑓, the similarity function 

between the predicted representation 𝑉̂𝑠 and the actual representation 𝑉′𝑣 of the target 

node 𝑣 (Song et al. 2019); 𝑁𝑣
𝑠, the list of neighbouring nodes of the target node 𝑣 in 

anchor-set 𝑠 ∈ 𝑆 and 𝑏𝑣, a bias term. The representation of each node 𝑣𝑖 is defined as 

[𝑉̂𝑣𝑖
: 𝑉̂𝑣𝑖

′
] ∈ 𝑅2∗𝑑, where source 𝑉̂𝑣𝑖

∈ 𝑅𝑑 denotes the source representation; 𝑉̂𝑣𝑖

′
∈ 𝑅𝑑, 

the representation of its target and (:), the concatenation function (Yuan et al. 2017). 

Lastly, to learn the structural representation, the proposed algorithm minimises the 

negative log-likelihood of Eq. 6-6. The idea is that the likelihood of observing a node 

is independent of observing other nodes in a given sequence starting from the source 

node (Yuan et al. 2017). Minimising Eq. 6-6 maximises the likelihood of observing the 

target node 𝑣 in sequence 𝑠 starting from the source node: 

𝐿𝑒𝑚𝑏𝑑 = ∑ −log 𝑝(𝑣|𝑠, 𝜃) 𝑣∈𝑉    (6-6) 

The proposed algorithm also minimises the reconstruction error by calculating the loss 

between the original network’s adjacency matrix (𝐴) and the reconstructed structure 

(Chun et al. 2019): 

𝐴̂ = {
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑉̂𝑇𝑉̂) 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑒𝑡𝑒𝑑;       

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑉̂𝑠
𝑇𝑉̂𝑡)  𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑.             

   
(6-7) 

𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑐𝑡 = 𝑙𝑜𝑠𝑠(𝐴, 𝐴̂)   (6-8) 

where 𝑉̂ denotes the resulting matrix of all node representations; 𝑉̂𝑠, the 

representations of source nodes; 𝑉̂𝑡, the representations of targets and 𝐴̂, the 

adjacency matrix of the reconstructed network. In directed networks, as the adjacency 

matrix 𝐴̂ is not symmetric, the use of the asymmetric reconstruction is required (Salha 
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et al. 2019). The aim is to make the reconstructed network similar to the original one. 

Because multi-layer networks are used in this chapter, to evaluate the reconstruction 

loss, the adjacency matrix 𝐴 of the original multi-layer network is extracted by creating 

an aggregated weighted network using an aggregation of all 𝐿 layers (∑ 𝑤𝑖𝑗
𝛼𝐿

𝛼=1 ). 

6.2.2 Self-Clustering  

The major challenge in community detection is that the nodes’ representations are 

usually learned, and a classic clustering (e.g. k-means) is then applied to the learned 

representations (Chun et al. 2019). The nodes are then assigned to specific clusters 

according to the distance of their representations to the cluster centres (Chun et al. 

2019). As mentioned above, this two-step process produced less-accurate 

communities as the nodes’ representations are not optimised according to their cluster 

centres (Rozemberczki et al. 2019). To overcome this issue, a cluster-optimiser 

module is developed to optimise cluster centres according to the nodes’ 

representations using an unsupervised regularisation term. This module minimises a 

cost function using a similar approach to k-means. Here, the similarity between the 

extracted representation of node 𝑖 and the cluster center 𝜇𝑐, is measured using the 

following objective function (Rozemberczki et al. 2019):  

𝐿𝑐𝑙𝑢𝑠𝑡 = ∑ min
𝑐∈𝐶

||𝑉̂𝑣 − 𝜇̂𝑐||2𝑣∈𝑉    (6-9) 

In Eq. 6-8, there are 𝐶 disjoint cluster centres where 𝜇̂𝑐 ∈ 𝑅2∗𝑑 denotes the mean 

value of the 𝑐𝑡ℎ cluster in the embedding space, and 𝑉̂𝑣 denotes the resulting 

representation of node 𝑣 ∈ 𝑉. The objective is to minimise the distance from each node 

to its nearest cluster center and update the nodes’ representations accordingly 

(Algorithm 6.1, line 11).  
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6.2.3 Joint Optimisation 

A key feature of the proposed solution is that the proposed approach jointly 

optimises the nodes' representations and cluster centroids to identify more accurate 

communities. To do this, the total loss values defined in the previous sections are 

minimised as the overall objective function (see Algorithm 6.1, lines 11 and 12) as 

follows: 

𝐿𝑙𝑜𝑠𝑠 = 𝐿𝑒𝑚𝑏𝑑 + 𝛾𝐿𝑐𝑙𝑢𝑠𝑡 + 𝛽𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑐𝑡    (6-10) 

where 𝛾, 𝛽 ≥ 0 are coefficients to control the balance between loss values. Variables 

𝛾 and 𝛽 are set according to an exponential annealing rule proposed by Rozemberczki 

et al. (2019) (Algorithm 1, line 7): 

𝜑𝑡+1 = 𝜑𝑡. (10
−𝑡.𝑙𝑜𝑔10 𝜑0 

𝑤.𝑙.𝑛.𝑤𝑎𝑙𝑘 ) (𝜑𝑓𝑖𝑛𝑎𝑙 − 𝜑0) + 𝜑0, 𝜑0, 𝜑𝑓𝑖𝑛𝑎𝑙 ∈ [0,1]  (6-11) 

where 𝑤 denotes the context window size; 𝑙, the walk length; 𝑛, the number of nodes 

in the network and 𝑤𝑎𝑙𝑘, the number of sampled sequences per node.  

The algorithm continues to minimise the overall loss value until a specific criterion, 

e.g. some predefined number of iterations, is satisfied (Algorithm 6.1, line 5). In sum, 

minimising the costs related to the nodes’ structural representations (𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑐𝑡 , 𝐿𝑒𝑚𝑏𝑑) 

in line with clustering cost (𝐿𝑐𝑙𝑢𝑠𝑡) helps LBL manipulate the embedding space and 

scatter embedding points to obtain higher clustering performance and, therefore, more 

distinct communities. 

6.3 Knowledge Base 

6.3.1 Dataset Description 

This chapter uses four real-world multi-layer dark networks and also one synthetic 

network to evaluate the effectiveness of the proposed algorithm compared with the 
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baseline models. The following sections describe the details of the datasets (see 

Table 6.1).  

6.3.1.1 Noordin Top Terrorist Network 

The Noordin Top Terrorist network is a dataset reflecting the terrorist network 

operating in Indonesia. The actors in this network were responsible for various terrorist 

activities (International Crisis Group 2006). The network includes 78 actors (criminals) 

attending 45 different events, which are categorised into four to form a four-layer 

network: trust, operational, communication and business ties. The ties in each 

category are undirected and considered as a separate layer of the network. The trust 

layer is generated by the superposition of classmate, friendship, kinship and soul mate 

ties, whereas the operational layer is produced from four sub-layers: logistics, 

meetings, operations and trainings (Roberts and Everton 2011). 

6.3.1.2 Boko Haram Network 

The Boko Haram Terrorist network contains the relationship information of 44 

terrorists belonging to an Islamic sect that has been operating primarily in Northern 

Nigeria since 2002. The group believes that the current Nigerian government is 

corrupted by false Muslims (Cunningham et al. 2016). This network is created by 

Cunningham (2016) using a variety of open-source documents. The undirected ties 

are re-organised into edges to create a three-layer network: trust, communication and 

knowledge sharing. The trust layer includes colleagues, kinship, superior and 

supporter. The communication layer is formed by the superimposition of financial ties, 

communication and membership, whereas the knowledge-sharing layer is formed 

from shared events and collaboration (Gera et al. 2017). 
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6.3.1.3 FARC Terrorist Network 

The FARC Terrorist network includes the relationship information of the terrorist 

group known as the Revolutionary Armed Forces of Colombia that has been operating 

primarily in Columbia and Venezuela since 1964 (Saxena et al. 2018). According to 

Weimann (2006), the organisation believes in the Marxist ideology and seeks to 

overthrow the Colombian government. The network is sparse for most layers, but 

being a social media network, it has a well-documented hierarchical structural layer 

(Weimann 2006). This network dataset was created by Cunningham et al. (2013) using 

a variety of open-source documents. Similarly, the undirected relationship data is re-

organised into a three-layer network (Gera et al. 2017): trust, communication and 

knowledge sharing. The trust layer can be categorised into six sub-layers: friendship, 

kinship, superior, colleagues, co-workers and radicalisers. A combination of 

communications, meetings and shared organisations forms the communication layer. 

The knowledge-sharing layer includes collaboration ties in this network. Since the 

superior relationships were directed, the whole network was created as a directed 

network by adding parallel links to any pair of connected individuals. 

6.3.1.4 LFR Network 

The LFR network is a synthetic network generated using the mLFR benchmark 

(Bródka and Grecki 2016; Lancichinetti et al. 2008). Since most of the publicly 

available covert networks are small in scale, this synthetic network is utilised to provide 

the scalability evidence for the proposed approach on a larger scale. To generate the 

network, the mLFR parameters are set to mimic the behaviour of criminals in covert 

networks: low degrees (average degree = 10, maximum degree = 15) and intention to 

create small communities (minimum community = 50, maximum community = 500). 
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The number of layers is set to two. The other main parameter within this benchmark 

is mixing parameter ([0 1]), which controls the amount of noise by adding additional 

edges between the planted communities and the rest of the network to hide the 

community structure to make it difficult for the community detection algorithms to 

discover the communities. When this parameter is set to zero, the community structure 

is very evident and when it gets larger than 0.5, the structure starts to disappear 

(Bródka and Grecki 2016). Setting this parameter to 0.5 resulted in the creation of a 

two-layer network with 1500 nodes and 22725 undirected links with an overall 

modularity of 0.422 and 20 distinct clusters.  

Table 6.1. Dataset characteristics 

Dataset 
No. of 
Nodes 

No. of 
Links 

No. of 
Layers 

Features No. of Clusters 

Noordin Top 78 1014 4 Undirected, unweighted 5 

Boko Haram 44 198 3 Undirected, weighted 9 

FARC 294 1013 3 Directed, unweighted 26 

LFR 1500 22725 2 Undirected, unweighted 20 

 

6.3.2 Baseline Methods 

As with any empirical evaluations, the first step is to establish the baseline. Because 

the proposed solution in this chapter is sequence-based embedding, six state-of-the-

art sequence-based embedding methods were identified as the baseline for 

comparative analysis. Perozzi et al. (2014) developed DeepWalk, which is a random 

walk-based approach transplanted by Skip-gram and hierarchical Softmax to 

represent social relationships. Node2vec, which was developed by Grover and 

Leskovec (2016), is similar to DeepWalk; it introduces biased depth-first and breadth-

first random walk strategies based on DeepWalk. Struc2vec, which was developed by 

Ribeiro et al. (2017), is another type of node embedding strategy that also uses 
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random walk to find similar representations on nodes that are structurally similar. 

Conversely, LINE, developed by Tang et al. (2015), learns node presentations on 

large-scale networks by preserving first-order and second-order proximities (Hamilton 

et al. 2017). ComE, which was developed by Cavallari et al. (2017) assumes that 

communities fit a Gaussian structure in the embedding space. It also employs a 

Gaussian mixture model to random walks on monoplex networks to learn node 

embedding and clusters jointly. These methods, although proven to be useful in 

monoplex network analysis (i.e. networks with one type of relationship), have ignored 

relationship multiplicity.  

Motivated by the importance of multiplicity and multi-layer networks, recent works 

have steered towards learning representations of nodes in a multi-layer network. 

Principled Multilayer Network Embedding (PMNE) (Hongming Zhang et al. 2018) 

extended the idea of Node2vec to multi-layer networks and introduced three different 

network embeddings for nodes in a multi-layer network. The first is a similar approach 

to Node2vec, where the representations are extracted from the aggregated network 

(PMNE-n). The second one is a linear aggregation of the result of the representations 

in each layer of the network (PMNE-r). The third one is a network co-analysis method 

(PMNE-c). In this approach, the random walker can not only traverse on nodes of a 

layer but also be transported to the same node in another layer of the network using 

a jumping factor. In the end, the algorithms would have numerous sequences of visited 

nodes generated from all layers that can serve as an input to the Softmax classifier 

used in Node2vec.  

Another work that studied node embedding in a multi-layer network is Scalable 

Multiplex Network Embedding (SMNE) (Liu et al. 2017c). This work proposed a high-
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dimensional common representation for nodes and a low-dimensional additional 

representation for each type of relation by learning the representations of each layer. 

Once the representations of one layer are learned, they are used as the inputs of 

Softmax to learn the representations of other layers (Hajiseyedjavadi et al. 2019).  

Multigraph2Vec, a recent algorithm developed by Roy et al. (2020) for finding 

communities in multi-graphs, also introduces a novel random walk-based strategy 

using Lévy flight, followed by the Skip-gram, to generate the node embeddings. Using 

the Lévy flight random walk strategy, the random walkers can traverse across multiple 

layers and reach far-off nodes in a single step. In Multigraph2Vec, the transition 

probabilities are learned in a supervised procedure using node attributes (e.g. node 

metadata or their network structure). 

These aforementioned approaches have two significant drawbacks. First, the 

learned representations may not be the best fit for the subsequent graph clustering 

task. Second, some of these methods (e.g. DeepWalk, Node2Vec, Struct2Vec, LINE, 

PMNE-n and ComE) can only be applied in monoplex networks, which means that 

they only consider the existence of connections between nodes and ignore the types 

of relationships.  

6.3.3 Experimental Setup  

To evaluate the performance of the baseline methods, the parameter settings used 

in the published papers are followed. The parameters (𝛾, 𝛽) of the proposed algorithm 

are initially set to 0.1, and their value is increased through an annealing process while 

training the model up to a maximum value of 0.5 as proposed by (Rozemberczki et al. 

2019). Because there is no ground truth provided for the membership of each node in 

the datasets used in this study, this chapter adopted the suggestion of (Alzahrani and 
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Horadam 2014; Canu et al. 2015) and used the number of clusters obtained using the 

‘multi-slice modularity’-based Louvain1 method (Liu et al. 2018) as metadata ground 

truth, which are reported in Table 6.1. For the generated synthetic network, the number 

of clusters is derived from the mLFR benchmark (Bródka and Grecki 2016). 

To generate the anchor-sets, following Rozemberczki and Sarkar (2018), five 

sequences (𝑤𝑎𝑙𝑘 = 5) of random walks are sampled from each node with a length of 

40 (𝑙 = 40). The anchor-sets are then created by sliding over the generated walks 

using a window size 𝑤 = 5. The generated anchor-sets are then grouped into batches 

𝐵 = 10 to learn representations with an embedding dimension 𝑑 = 15.  

6.4 Results and Discussion 

6.4.1 Time Complexity Analysis 

Given the number of random walks (𝑛𝑤𝑎𝑙𝑘), walk length (𝑙), context window size (𝑤), 

representation size (𝑑), number of layers (𝑀) and number of clusters (𝑛𝑐), the time 

complexity of the algorithm is dominated by training time of the Softmax model, which 

is linear with the number of nodes 𝑂(𝑀𝑛𝑤𝑎𝑙𝑘|𝑉|𝑙𝑤(𝑑 + 𝑛𝑐)). As shown in Table 6.2, 

our linear complexity puts our approach in a competitive position compared to other 

methods when applied to multi-layer networks. Our method yields better results in 

terms of accurate community detection than methods that are very similar to our 

algorithmic approach, e.g., SMNE. As we will show in the next section, on similar level 

of time complexity, our method delivers more accurate representation of covert 

communities and is more capable of finding ones that others missed.  

                                                           
1 Multiplex Louvain (https://louvain-igraph.readthedocs.io/en/latest/multiplex.html) 
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Table 6.2. Comparison of complexity with related work*. 

Approach Type of Network Complexity 

DeepWalk Monoplex O(𝑛𝑤𝑎𝑙𝑘𝑙𝑤|V|(𝑑+𝑑log|V|)) 

Node2Vec Monoplex O(𝑛𝑤𝑎𝑙𝑘𝑙𝑤|V|𝑎2) 

PMNE (n) Multi-layer O(𝑛𝑤𝑎𝑙𝑘𝑙|V|𝑎2 +M|V|) 

PMNE (r) Multi-layer O(M((𝑛𝑤𝑎𝑙𝑘𝑙𝑤|V|𝑎2)) 

PMNE (c) Multi-layer O(𝑛𝑤𝑎𝑙𝑘𝑙𝑑𝑤|V|𝑎2)) 

SMNE Multi-layer O(𝑀𝑛𝑤𝑎𝑙𝑘𝑙𝑤|𝑉|) 

ComE Monoplex O(|V|+|E|) 

Mutigraph2Vec Multi-layer O(|S||V|3) 

Our approach Multi-layer O(𝑀𝑛𝑤𝑎𝑙𝑘|𝑉|𝑙𝑤(𝑑 + 𝑛𝑐)) 

* Note:  

𝑎 is the average degree of the network 
E is the set of all edges in the network 

   S is the set of all source nodes in the network 

   

6.4.2 Experimental Results on Clustering 

The results of the five experiments on the four datasets are presented in Tables 

6.3–6.6. In both tables, the value for the best-performing approach on each metric is 

presented in bold. Given the absence of a gold-standard ground truth, the following 

measures are proposed to evaluate the quality of the detected communities. 

Multiplex-Modularity (Didier et al. 2018). First, a competent algorithm for the 

proposed problem must be able to find distinct communities within a network, 

particularly the small and less-obvious ones, as they are likely to be the terrorist groups 

in the network (Sageman 2004). Technically, a good community is the one with a 

higher similarity of nodes within it, i.e. the nodes inside the community have a minimum 

similarity to the ones outside it (Luan et al. 2019). The proposed modularity measure 

evaluates this quality with a high value indicating the detection of a more distinct 

community.  

By analysing each distinct community, law enforcement agencies can determine 

the viral effect of covert activities within the community (Pinheiro 2012). They will know 

what happens with other communities or other members of a specific community after 
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a particular member commits covert activities at a point in time (Pinheiro 2012). This 

viral influence of covert activities can be inhibited by disrupting a community within the 

covert organisation, leading to a cascading disruption of other communities (Saxena 

et al. 2018). 

As presented in Tables 6.3–6.6, the proposed approach achieves a higher 

modularity than all the other baseline algorithms. Because modularity is a measure of 

the effectiveness of the community detection process, the results indicate that the 

proposed algorithm outperforms the other baseline methods in terms of finding distinct 

communities within covert networks.  

Surprise (Traag et al. 2015). While multiplex-modularity helps identify the 

communities within the network, from Sageman (2004) it can be inferred that terrorist 

networks tend to be small; thus, a measure to help find such small but well-formed 

communities (high modularity) is required. This characteristic can be measured by 

Surprise. A high Surprise value indicates that an algorithm can identify smaller cliques 

and clusters that would be more valuable in the proposed application problem and yet 

are not easily identifiable given the elusiveness of such communities. As such, the 

extraction of small communities from a network that embodies the relationships of a 

list of suspects is an important starting point in an investigation (Magalingam et al. 

2015). The Surprise values presented in Tables 6.3–6.6 indicate that the proposed 

algorithm is more capable than the other baseline methods in detecting small 

communities that reveal the hidden hierarchical structures among the criminals.  

Internal Density and Cut-Ratio. Internal density (Liu et al. 2009; Song and 

Bressan 2013) estimates the density of a cluster: the higher the internal density, the 
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more connected are the nodes within a cluster. Hence, it indicates how well connected 

a given community is. 

Contrarily, the cut-ratio (Song and Bressan 2013) is a cluster quality measure that 

estimates the number of edges between two communities. A good community is one 

with a low cut value but a high internal density.  

A high internal density and a minimum cut-ratio in a community structure reduce 

the possibility of using neighbouring nodes in other clusters to bridge any internal 

disruption by law enforcement agencies (Galvan and Agarwal 2018). The introduced 

algorithm achieves a lower internal density on the Noordin Top and Boko Haram 

networks compared with the baseline methods (see Tables 6.3–6.6). Moreover, it does 

not hit the lowest cut-ratio on the Noordin Top, Boko Haram and FARC networks. This 

feature is attributable to the ability of the proposed approach to break down the 

network into smaller and more intelligible clusters, which resulted in a higher Surprise 

value, to reveal the hierarchical structure hidden among the criminals. This 

characteristic reduces the density but increases the cut-ratio as the clusters get 

smaller, which may be internally related to each other. However, smaller clusters are 

less challenging to analyse compared with large high-density clusters. 

Significance (Traag et al. 2013). A recently introduced objective function for 

evaluating the community structure quality, Significance presents an approach similar 

to Surprise (Traag et al. 2015). It is a measure for evaluating how real a detected  
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Table 6.3. Experimental results on the Noordin Top dataset 

 Modularity Cut-Ratio 
Internal 
Density 

Surprise Significance 

Deep Walk 
+ K-means 

0.219 
±(0.038) 

0.176 
±(0.024) 

4.711 
±(0.531) 

117.854 
±(14.340) 

192.912 
± (30.617) 

Node2Vec 
+ K-means 

0.312 
±(0.052) 

0.170 
± 0.005) 

5.334 
± (1.295) 

142.992 
±(21.422) 

211.759 
±(17.297) 

PMNE (n) + 
K-means 

0.263 
±(0.006) 

0.170 

±(0.152) 
4.556 
±(0.0685) 

133.892 
±(5.306) 

208.909 
±(26.335) 

PMNE (r) + 
K-means 

0.311 
±(0.014) 

0.224 
±(0.026) 

4.810 
±(0.336) 

80.044 
±(14.191) 

154.025 
±(11.698) 

PMNE (c) + 
K-means 

0.345 
±(0.032) 

0.186 
±(0.034) 

5.513 
±(1.293) 

131.308 
±(33.480) 

195.835 
±(63.488) 

SMNE+ 
K-means 

0.235 
±(0.010) 

0.189 
±(0.006) 

9.603 

±(0.031) 
111.965 
±(5.326) 

146.824 
±(3.902) 

ComE 
0.285 
±(0.003) 

0.179 
±(0.001) 

4.417 
±(0.025) 

131.519 
±(4.022) 

213.702 
±(0.008) 

Multigraph2Vec 
+ K-means 

0.204 
±(0.003) 

0.202 
±(0.008) 

4.701 
±(1.208) 

105.698 
±(2.598) 

160.306 
±(53.148) 

Proposed approach 
0.3894 
±(0.007) 

0.2111 
±(0.063) 

4.53 
±(0.877) 

149.078 
± (8.948) 

277.164 
±(11.657) 

 

Table 6.4. Experimental results on the Boko Haram dataset 

 Modularity Cut-Ratio 
Internal 
Density 

Surprise Significance 

Deep Walk 
+ K-means 

0.2483 
±(0.008) 

0.2125 
±(0.0312) 

6.284 
±(0.774) 

28.346 
± (3.949) 

38.539 
±(5.959) 

Node2Vec 
+ K-means 

0.267 
±(0.026) 

0.0984 

±(0.0111) 
6.201 
±(0.298) 

26.543 
± (2.506) 

26.288 
±(3.940) 

PMNE (n) + 
K-means 

0.287 
±(0.022) 

0.101 
±(0.027) 

6.570 
±(0.257) 

31.613 
± (2.839) 

37.042 
±(8.365) 

PMNE (r) + 
K-means 

0.077 
±(0.010) 

0.325 
±(0.183) 

5.307 
±(1.074) 

15.068 
± (1.882) 

28.494 
±(3.014) 

PMNE (c) + 
K-means 

0.2744 
±(0.0075) 

0.2998 
±(0.542) 

7.905 
±(0.373) 

30.398 
±(1.765) 

55.222 
±(9.060) 

SMNE+ 
K-means 

0.080 
±(0.044) 

0.120 
±(0.010) 

6.0937 
±(0.327) 

22.833 
± (2.706) 

23.783 
± (2.555) 

ComE 
0.292 
±(0.017) 

0.134 
±(0.012) 

5.903 
±(0.013) 

39.052 
±(4.022) 

61.689 

±(2.458) 

Multigraph2Vec 
+ K-means 

0.174 
±(0.014) 

0.131 
±(0.008) 

6.330 
±(0.142) 

30.630 
±(9.085) 

42.366 
±(10.289) 

Proposed approach 
0.353 
±(0.0200) 

0.137 
±(0.017) 

5.746 
±(0.070) 

39.887 
±(4.069) 

38.539 
±(7.306) 

 

Table 6.5. Experimental results on the FARC dataset 

 Modularity Cut-Ratio 
Internal 
Density 

Surprise Significance 

Deep Walk 
+ K-means 

0.650 
±(0.024) 

0.054 
±(0.006) 

9.705 
±(0.822) 

671.080 
±(37.739) 

716.430 
±(37.276) 

Node2Vec 
+ K-means 

0.645 
±(0.019) 

0.055 
±(0.004) 

9.623 
±(0.642) 

648.480 
±(43.743) 

700.071 
±(27.038) 

PMNE (n) + 
K-means 

0.663 
±(0.010) 

0.603 
±(0.013) 

9.728 
±(0.163) 

697.865 
±(25.578) 

726.782 
±(15.401) 

PMNE (r) + 
K-means 

0.392 
±(0.029) 

0.188 
±(0.015) 

10.733 
±(1.421) 

218.093 
±(56.880) 

413.714 
±(75.018) 

PMNE (c) + 
K-means 

0.566 
±(0.006) 

0.833 
±(0.006) 

9.521 
±(1.283) 

421.511 
±(8.121) 

513.526 
±(22.119) 

SMNE+ 
K-means 

0.686 
±(0.018) 

0.501 
±(0.007) 

10.383 
±(0.252) 

783.706 
±(35.803) 

733.355 
±(30.385) 

ComE 
0.617 
±(0.015) 

0.585 
±(0.004) 

10.850 
±(0.211) 

561.733 
±(62.974) 

698.005 
±(7.944) 

Multigraph2Vec 
+ K-means 

0.524 
±(0.031) 

0.099 
±(0.002) 

10.846 
±(0.383) 

436.47 
±(42.522) 

520.973 
±(21.658) 

Proposed approach 
0.694 
±(0.018) 

0.545 
±(0.003) 

10.983 
±(0.142) 

791.312 
±(31.453) 

763.341 
±(29.187) 

 

Table 6.6. Experimental results on the mLFR dataset 

 Modularity Cut-Ratio 
Internal 
Density 

Surprise Significance 

Deep Walk 
+ K-means 

0.377 
±(0.014) 

0.141 
±(0.003) 

4.756 
±(0.104) 

5760.823 
±(55.213) 

5721.295 
±(130.319) 

Node2Vec 
+ K-means 

0.381 
±(0.021) 

0.141 
±(0.009) 

4.677 
±(0.109) 

5842.342 
±(63.824) 

5759.637 
±(217.423) 

PMNE (n) + 
K-means 

0.380 
±(0.011) 

0.141 
±(0.010) 

4.538 
±(0.221) 

5800.783 
±(13.923) 

5813.743 
±(69.245) 

PMNE (r) + 
K-means 

0.378 
±(0.030) 

0.143 
±(0.012) 

5.037 
±(0.340) 

5766.494 
±(9.250) 

5756.706 
±(83.487) 

PMNE (c) + 
K-means 

0.379 
±(0.013) 

0.141 
±(0.001) 

5.159 
±(0.105) 

5710.359 
±(10.210) 

5737.253 
±(73.907) 

SMNE+ 
K-means 

0.231 
±(0.016) 

0.150 
±(0.003) 

2.492 
±(0.085) 

2892.497 
±(77.719) 

2800.402 
±(113.076) 

ComE 
0.389 
±(0.012) 

0.1445 
±(0.023) 

5.438 
±(0.485) 

5533.329 
±(36.927) 

5778.825 
±(87.376) 

Multigraph2Vec 
+ K-means 

   0.294 
    ±(0.015) 

0.1459 
±(0.003) 

3.549 
±(0.013) 

4094.916 
±(48.210) 

4077.6811 
±(135.295) 

Proposed approach 
       0.406 

±(0.0110) 
0.1399 
±(0.014) 

6.597 
±(0.215) 

6121.962 
±(21.439) 

6200.239 
±(61.395) 
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community structure is and whether the results are due to chance alone (Traag et al. 

2013). In sparse networks, such as criminal networks, without an explicit community 

structure, the ‘significance’ of a cluster is a more discriminative measure compared 

with Surprise for evaluating the quality of the detected clusters (Traag et al. 2013). A 

high Significance value indicates that criminals are not categorised into their 

respective clusters by chance but are put in the clusters according to their close 

connections within the network. Compared with the other baseline methods, the 

proposed approach attains a high Significance value in the Noordin Top Terrorist 

network, FARC and LFR. However, in the Boko Haram network, which is sparse, the 

proposed approach has the second-highest Significance value following PMNE (c). 

Normalised Mutual Information (NMI) (Emmons et al. 2016). For the LFR 

synthetic network, the clusters derived from the mLFR benchmark are used as a 

ground truth. Since there is no ground truth provided for the membership of each node 

in the selected real-world datasets, the clustering result of the ‘multi-slice modularity’-

based Louvain method (Liu et al. 2018) is used as metadata ground truth (Alzahrani 

and Horadam 2014; Canu et al. 2015). Figure 6.1 presents the average NMI, a 

measure of mutual dependence between two clusters. In all datasets, the proposed 

approach tops the NMI value.  

Impact of the Number of Dimensions. Finally, the impact of the number of 

embedding dimensions in the accuracy of the proposed approach is analysed. 

Figure 6.2 presents the average modularity values of the experiments using different 

dimensions on the four datasets. The best average result on the Noordin Top, Boko 

Haram and FARC networks is achieved when the embedding dimension is set to d = 

15. As the dimension of node embedding exceeds 30, the modularity value decreases. 
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On the LFR, the behaviour is slightly different, as the modularity does not change 

much when the embedding dimension is set to d = 60. However, there is no clear 

explanation for this behaviour, which may be because the loss value is influenced by 

the number of embedding dimensions (Yin and Shen 2018), thus impacting the final 

embeddings, cluster centroids and, therefore, modularity. As observed by Arora 

(2016), there is always a sweet spot for the optimal dimensionality: neither too small 

nor too large.  

 
Figure 6.1. NMI values of clustering result over the four datasets in this chapter.  

 

 
Figure 6.2. Modularity values of the proposed approach over the four datasets using 

different embedding dimensions. 
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6.4.3 Experimental Results on Link Prediction 

Missing information is one of the main challenges in the criminal network analysis, 

given how the actors and their activities are predominantly covert. The growing 

attention paid by law enforcement agencies to the intelligent analysis of data in 

organised crimes since the mid-1907s has created great strides on recovering missing 

connections among the actors of criminal networks (Berlusconi et al. 2016). These 

connections are likely to exist but have not been reported due to the criminals’ anti-

detection strategies (Berlusconi et al. 2016; Calderoni 2014; Lim et al. 2020; Lim et al. 

2019; Moradabadi and Meybodi 2018). In this context, link analysis and link prediction 

have been employed to ‘establish the relationships that exist among individuals and 

organisations from bits and pieces of available evidence’ (Harper and Harris 1975).  

Figure 6.3 presents the comparison of the AUC result of the link prediction 

generated by different methods over the two networks using the k-fold (𝑘 = 5) cross-

validation and Hadamard link prediction metric (Grover and Leskovec 2016): 

𝑒𝑢𝑣 = 𝑒𝑢 ∗ 𝑒𝑣   (6-12) 

The overall AUC is the average result of AUC for each relation type; a higher value 

indicates that an algorithm was able to find more hidden links. For DeepWalk, 

Node2Vec and ComE, which are applicable to just monoplex networks, a separate 

embedding is learned for each relation type, and the trained model is utilised to predict 

links of the corresponding network layer.  

For the baseline methods that consider the importance of relationship types among 

actors in the network, the experiments demonstrate that they all return a higher AUC 

value. This result is expected as techniques considering different relationship types in 

multi-layer networks are more likely to capture the hidden structural information of the 
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network with higher accuracy (De Domenico et al. 2015; Rosvall et al. 2014). The 

exception here is Multigraph2Vec, which did not perform well in either of the datasets. 

The other exceptions are ComE with a low AUC value (AUC <= 0.50) in all datasets, 

Node2Vec and DeepWalk, which could not accurately predict the unreported links 

(AUC < 0.60) in the sparse Boko Haram and FARC dark networks. These two 

algorithms, however, performed better in the Noordin Top and LFR networks as they 

have a denser structural topology. In the case of PMNE(r), the algorithm did not 

perform well in the Boko Haram and Noordin Top networks, suggesting that the 

structural topology could not be accurately trained using this algorithm. However, 

PMNE(r) performs better on the FARC and LFR networks. Contrarily, the proposed 

approach performs well in recovering missing information and predicting unreported 

links, with an accuracy of over 0.80 (AUC > 0.80) on all networks. 

 
Figure 6.3. AUC result of link prediction over the two datasets obtained from the different 

methods in this study. 

6.4.4 Experimental Results on Network Disruption 

The purpose of finding covert communities in a network is to facilitate an 

intervention by law enforcement agencies to prevent terror-related communications, 

activities and ideologies from spreading within that network. Any effective attempt to 

disrupt a network is known as ‘network disruption’, which lies in the ability of an 
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algorithm to find these communities. According to Morone and Makse (2015), the most 

influential nodes are those forming the minimal set that guarantees a global connection 

of the network. If the nodes are randomly removed, the network undergoes a structural 

collapse, leading to the reduction of the collective influence (CI) of the network 

(Morone and Makse 2015; Teng et al. 2016). CI measures the influence of nodes in a 

criminal network, considering the degree of the nodes’ neighbours at a given distance. 

The total CI of a given network with 𝑁 nodes is defined as (Morone and Makse 2015): 

𝐶𝐼𝑙 = ∑ 𝐶𝐼𝑙(𝑖)𝑁
𝑖=1    (6-13) 

𝐶𝐼𝑙(𝑖) = (𝑘𝑖 − 𝑚𝑖𝑛(𝑖,𝑗)𝜖𝐸 𝑤𝑖𝑗) ∑ (𝑘𝑗 − 𝑚𝑖𝑛(𝑗,𝑠)𝜖𝐸 𝑤𝑗𝑠)

𝑗∈𝜎𝐵(𝑖,𝑙)

 (6-14) 

where 𝑘𝑖 denotes the degree of node 𝑖; 𝐵(𝑖, 𝑙), the ball of radius 𝑙 (𝑙 = 2) centred 

on node 𝑖 and 𝜎𝐵(𝑖, 𝑙), the frontier of the ball, which is the set of nodes at distance 𝑙 

from 𝑖. For a weighted network, the degree 𝑘 of a node should be substituted by its 

weighted degree (∑ 𝑤𝑖𝑗(𝑖,𝑗)𝜖𝐸 , 𝐸 is the list of edges). 

Instead of randomly removing nodes from the network, the block removal method 

is simulated to mimic a police raid scenario (Cavallaro et al. 2020) using the detected 

clusters in different methods in this study. In the block removal scenario, each 

community is considered as a sub-network (or supernode) (Figure 6.4), and the total 

collective influence (𝐶𝐼𝑙) of the community structure (𝐶𝐼𝑙
𝑐) is evaluated using Eq. 6-13 

(Kobayashi and Masuda 2016). The resulting values are then sorted, and in each 

iteration of block removal, the cluster with the highest 𝐶𝐼𝑙
𝑐 is eliminated. Figure 6.5 

demonstrates how the removal of communities, including the most influential nodes, 

affects the dismantling of the network in terms of the total network CI, which is the 

overall influence of all criminals within the network to retain the network as a giant 
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connected component. 

 
Figure 6.4. Community structure: each community is considered as a sub-network. 

As can be seen from Figure 6.5, the community structure detected by the proposed 

approach leads to a lower (𝐶𝐼𝑙
𝑐), indicating that the detected community structure tends 

to form smaller connected components. This means that the use of the proposed 

algorithm in this chapter leads to the creation of a community structure that minimises 

the overall influence of important criminals in the entire network (Teng et al. 2016). 

This result indicates that by attacking one community, the criminals within that 

community would not be able to transfer their covert activities to another community 

in the network (Galvan and Agarwal 2018). Furthermore, as illustrated in Figure 6.5, 

the community structures detected by the proposed approach are less resistant to 

network disruption: more reduction in 𝐶𝐼𝑙
𝑐 as the communities are removed. 
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Figure 6.5. Block removal attack: the impact of eliminating each community in the reduction 

of the log values of 𝑪𝑰𝒍
𝒄, leading to network disruption. 

6.5 Chapter Summary 

The detection of communities within criminal networks is an important step for law 

enforcement agencies to disrupt criminal organisations. Law enforcement agencies 

can benefit from understanding the inter-relationships between communities and the 

operations of criminal organisations. Furthermore, the disruption of one community of 
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the organisation can lead to a cascading disruption of other communities. In this 

chapter, a network embedding algorithm using an LBL model is proposed to jointly 

perform graph clustering and learn graph embedding on multi-layer networks in a 

unified framework. Using an LBL model, the proposed solution incorporated: (i) the 

nodes’ positional information about the other neighbouring nodes and (ii) the type of 

relations that connects the nodes. The result is a network embedding algorithm that is 

well suited to clustering tasks, rendering the proposed algorithm applicable in finding 

covert communities, which are less resistant to network disruption effort. Moreover, 

this algorithm predicts missing links in dark multi-layer networks with high accuracy. A 

comparison of the experimental results achieved using various state-of-the-art 

methods validates the superiority of the proposed approach to others in finding high-

quality clusters and predicting missing links among the network actors, with an 

accuracy of over 80%. 
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7 Chapter 7—Thesis Restatement and Conclusion  

This thesis introduces GBAD-based machine learning algorithms to detect deviant 

behaviours in social networks using two main approaches, namely, feature 

engineering and graph embedding. The proposed approaches provide the opportunity 

to reveal and study the topological structure and properties of social networks to 

identify suspected criminals attempting to evade detection using a range of cover-up 

activities, which lead to the formation of multi-layer networks and time-evolving 

networks. Moreover, to improve the validity of the proposed algorithms, the GBAD 

algorithms developed in this research are guided by the basic tenets of criminological 

theories.  

7.1 Conclusion and Contributions 

The work presented in this thesis highlights several methods and applications of 

the GBAD techniques in detecting deviant behaviours. It contributes to both the theory 

and practice of identifying suspicious behaviours in social networks in several ways. 

Through a systematic literature review of current research studies of fraud detection 

using the GBAD techniques, Chapter 2 facilitates the identification of the key issues 

and possible improvement opportunities in recent research studies. It develops a 

classification framework to facilitate the analysis and comprehension of current 

research studies on fraud detection using the GBAD techniques.  

The proposed classification framework provides an analytical platform for 

synthesising existing work from various aspects. In addition to offering researchers an 

insightful understanding of the application of the GBAD techniques in fraud detection, 

this classification framework provides practitioners and researchers a roadmap to 



 

165 
 
 

 

perceive the correspondence between the nature of their network, different types of 

anomalies and appropriate graph-based methods that match their needs to their 

application areas. 

Chapter 3 develops the theoretical foundation of the proposed GBAD algorithms in 

this research. Using five different criminological theories, this chapter attempts to 

provide insights into the causes and consequences of crime by answering the why 

(i.e. rational choice theory), what (i.e. routine activity theory), where and when (i.e. 

crime pattern theory) and how (i.e. differential association theory and social 

disorganisation theory) questions pertaining to criminal motivations and behaviours. It 

explicitly translates the principles of criminological theories into SNA methodologies 

for implementation using the GBAD techniques. It also sheds light on the methods and 

strategies used by criminologists and gives contextual knowledge when it comes to 

develop and design GBAD algorithms aimed to support criminologists. Further, 

applying the basic tenets of criminological theories to substantiate the logic for 

developing algorithms gives validity to the techniques, leading to the design of robust 

algorithms.  

Chapter 4 focuses on the development of human-engineered features or feature 

engineering of deviant characteristics within a time-evolving multi-layer online social 

dating website. It addresses the need for developing algorithms capable of detecting 

suspicious behaviours when criminals evade detection by spreading their devious 

activities over different timestamps or getting involved in multiple types of activities to 

divert attention. Four different sets of features are introduced based on the principles 

of differential association theory: a set of profile-based features, a set of lightweight 
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behaviour-based features, a set of bursty features and a set of sequence-based 

features.  

The four designed features are novel creations derived from other research areas 

(e.g. gene analysis, Twitter) and brought together to enable the detection of deviant 

cybercrimes within a time-evolving multi-layer network by analysing the frequency, 

intensity and durability of interactions. One of the strengths of the designed features 

in this chapter is its accuracy in differentiating criminals from normal users compared 

with the baseline method in terms of the AUPR curve, AUROC curve and Accuracy. 

In practice, the combination of the gradient-boosted decision trees classifier and the 

proposed features results in a single model that could be applied in an OSN to prevent 

any harmful consequence on the legitimate users. This model provides high-precision 

classification for spamming accounts within a social network. These accounts, which 

are relatively rare and are likely owned by potential criminals, are automatically 

blocked without affecting the majority of normal users. The other merit of the proposed 

algorithm is that the designed features are scalable to large networks as the extraction 

of features using the proposed processing framework (see Figure 4.3) leads to a lower 

extraction time compared with the baseline method. 

Human-designed features are not always able to accurately identify suspicious 

activities. Extracting them from large-scale networks may also be too complex, thus 

leading to scalability issues. In addition, designing accurate features would be very 

dependent on human creativity and expertise and is also time-consuming. To 

overcome such issues of the feature engineering approaches, and drawing on 

criminological theories, Chapters 5 and 6 introduce novel rigorous algorithms, which 

can extract features from multi-layer criminal networks without human interventions.  
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Chapter 5 introduces a random walk-based approach combined with hierarchical 

clustering to automatically extract features from communication among criminals 

involved in a covert network to find the respective communities to which they belong. 

Using the extracted features (i.e. Jaccard similarities), the algorithm searches for more 

cohesive portions of the multi-layer criminal networks using a hierarchical clustering 

method. The proposed clustering procedure creates clusters to maximise AS instead 

of modularity, which helps identify small and lower-density clusters of key actors while 

pruning other actors of lower importance, making it easier for law enforcement 

agencies to interpret the results.  

The most important implication of the proposed algorithm for the practitioner is, 

therefore, the ease of interpretation of the detected clusters. For law enforcement 

agencies, early detection and disruption of covert networks are crucial to the disruption 

of criminal activities. Regardless of the number of available resources, law 

enforcement agencies are always limited by the window of opportunities they have 

before the occurrence of a serious incident. As such, algorithms that can analyse 

large-scale networks and detect covert communities and their activities are always 

important for security agencies to quickly and accurately conduct their investigations. 

Thus, the developed algorithms should be precise (i.e. create a list of crucial actors, 

relations and events) and concise (i.e. identify ‘small’ and low-density communities 

that are easy to interpret).  

Given this objective, compared with current methods that focus on modularity 

maximisation, the design of the proposed algorithm focused on optimising the AS. The 

first implication of this algorithm in research begins with the use of a different set of 

measures, which are motivated by the use-case and the heuristics included from other 
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research areas (e.g. criminology). The aim is to deliver a solution that aligns with the 

needs of the stakeholders, i.e. security agencies. As indicated by the results, the use 

of AS over modularity has led to easily interpretable communities. 

The proposed algorithm also manages to bring together different components from 

the existing methods in a way that achieves multiplex navigation in covert multi-layered 

networks. Thus, the key contribution of the proposed algorithm lies in the way these 

components are brought together for the specific purpose of detecting covert 

communities. 

Because the features, i.e. Jaccard correlations, are calculated once and then a 

clustering method is applied to them to detect the respective communities to which 

each criminal belongs, the features are not optimised during the clustering process. 

Therefore, the accuracy of the detected communities may decline, especially when 

the network is very sparse or large. This issue leads to the design of the final algorithm 

in Chapter 6. 

In Chapter 6, a network embedding algorithm using an LBL model is proposed to 

categorise criminals into their respective clusters while learning and optimising the 

features on multi-layer networks. The experiments in this chapter demonstrate how 

the proposed algorithm leads to more accurate clusters compared with those obtained 

from the eight state-of-the-art techniques. The novelty of the proposed algorithm is 

that it is well suited to clustering tasks in multi-layer networks, enabling the detection 

of covert communities without human intervention. Compared with the results yielded 

by the eight state-of-the-art methods examined in Chapter 6, the resulting communities 

detected by the proposed algorithm are less resistant to network disruption efforts. 
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The proposed algorithm also exhibits high accuracy in identifying missing links in terms 

of the AUC.  

 The purpose of finding covert communities is to facilitate the disruption of 

illegitimate communication, activities and the spread of illegal ideologies within the 

network. As such, the main contribution of this algorithm is its ability to find covert 

communities that are less resistant to disruption efforts, enabling security agencies to 

disrupt the covert network with the suspected criminals having no chance to transfer 

their covert activities to other communities within the network. The second contribution 

of the proposed approach in Chapter 6 is its high accuracy in identifying missing links 

in dark multi-layer networks. The identification of missing information and links, which 

exist among criminals but are not reported owing to their use of a variety of cover-up 

activities to avoid detection, is also very significant in criminal investigations. It enables 

law enforcement agencies to sniff out actors with a large likelihood of co-participating 

in illegal activities, ultimately helping to destabilise the network, particularly if the actors 

are playing significant roles within the network. 

7.2 Recommendations for Future Research 

Like all scientific research, this thesis has a number of limitations. First, the 

systematic literature review, though extensive, may have omitted some relevant 

studies due to the content limitations of the scientific databases used, specific 

keywords utilised in the search and timeframe selected for the review. Furthermore, 

the GBAD techniques have been widely employed for fraud detection in the OSN area, 

which covers a wide range of applications, such as e-commerce, online shopping, 

dating, online recommendation and social media websites. Each application may be 

under the threat of different types of fraud (e.g. spam, deception and fake reviews, 
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fake opinions, ‘Like’ farms, advertising fraud and cyberbullying), which may have been 

inadvertently excluded from the review due to the choice of keywords in the search. 

Therefore, a detailed analysis of the different types of fraudulent activities in OSNs 

where the GBAD approaches have been employed to detect such activities can be 

conducted in future review studies. Furthermore, the literatures reviewed were 

exclusively selected from academic journals. Future work will benefit by including non-

academic sources where the application of GBAD techniques is reported. 

Second, although the heuristics and principles of the algorithms developed in this 

research are grounded on validated criminological theories, future studies would be 

very much strengthened by drawing from theories beyond criminology, such as human 

psychology and cognitive science, which could be turned into heuristics to help design 

meaningful and effective measures to further enhance the techniques to detect 

illegitimate activities.  

Third, as pointed out earlier, the major issue in fraud detection and crime analysis 

is data availability. This research is also not exempted from this challenge. All the real-

world datasets utilised in the experiments in Chapters 5 and 6 were relatively small in 

scale. Although Chapter 6 has used a large synthetic network to increase the validity 

of the experiments (as explained in Section 2.3.7.1), there are problems with the use 

of such network in experimental analysis. Therefore, future research should consider 

the development of strategies for collecting rich crime-related data from available 

resources, such as rapidly expanding social media that surrounds the criminal 

activities of interest.  

Forth, the task of identifying communities in a network will always be a challenging 

one, especially if the network contains covert communities. No one knows for sure 
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how many communities there are in a real-world network. The proposed algorithm in 

Chapter 6 shares this limitation. It requires the number of communities to be specified 

by a domain expert. Therefore, the next step is to explore ways to remove the need 

for this specification. One possibility in future work is to derive the optimal number of 

clusters while learning representations in the algorithm. 

Fifth, the dimensionality of the feature space (i.e. the number of features) are also 

defined by domain experts, which (as explained in Sections 4.5.1 and 6.4.2) affects 

the accuracy of the results. Therefore, introducing a method to search through the 

feature space for selecting the optimal features can be considered for future work.   

Finally, the spread of criminal activities can lead to serious social issues. Therefore, 

identifying the sources of crime and analysing the spreading influence of crimes within 

social networks can help stop the consequences, opening a wide range of future 

research.  
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