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                                SUMMARY 
 

Over the last four decades, much attention has been paid to nonlinear 

studies on exact travelling wave solutions for some nonlinear physical 

systems such as ion-acoustic waves, incompressible magnetohydrodynamics 

(MHD) waves, and isothermal magnetostatic atmospheres. It is not 

surprising then that exact travelling solution-based techniques have become 

important in the study of nonlinear physical systems.  

Nonlinear evolution equations are commonly used as models for explaining 

complex physical processes in different fields of sciences, especially in fluid 

mechanics, solid state physics, plasma physics and chemical physics. Given a 

nonlinear partial differential equation (NLPDE), there is no general way of 

knowing whether it has soliton solutions or not, or how the soliton solutions 

can be found. In order to gain a better understanding of the underlying 

phenomena as well as their further applications in practical life, it is 

important to seek their exact solutions.  

Analytical solutions to NLPDEs play an important role in nonlinear science, 

especially in nonlinear physical science since they can provide more insight 

into the physical aspects of the problem and thus lead to further 
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applications. Moreover, new exact solutions may help researchers to find 

new phenomena [1-11]. In various science and engineering fields, nonlinear 

wave phenomena arise, such as in fluid mechanics, plasma physics, optical 

fibers, biology, solid state physics, chemical physics and geochemistry. In the 

theory of nonlinear wave dispersion, dissipation, diffusion, reaction and 

convection, nonlinear wave phenomena are very common [12-22]. 

 This thesis consists of a summary and seven chapters as detailed below. 

Chapters 1, 2 and  3  are Introductory chapters dealing with the historical 

discussions of solitons and travelling wave solutions. This is followed by a 

brief survey of how mathematicians and physicists began to work on certain 

problems of mutual interest. This is followed by a brief survey of MHD and 

ion-acoustic waves. In addition these chapters provide the background 

material used in this thesis. They covers the fundamental concepts of known 

results concerning our works to make this thesis somewhat self-contained. 

 Chapters 4,5 and 6 are primarily focused on finding travelling wave solutions 

in certain plasma physics problems. In chapter 4 we address acoustic waves 

of ions, which are the variation of sound waves in plasma physics. Such waves 

spread as more mobile electrons protect the electrical field from the ions and 
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set up their own field to move the ions in a tenuous plasma. These waves 

could be excited, but there are infrequent collisions between the electrons 

and ions. In these waves the natural magnetic field is zero. However, the 

solutions in chapter 5 for a three-dimensional incompressible MHD system 

are obtained using the sine – cosine method and the Riccati auxiliary 

equation. This chapter obtains soliton solutions with the aid of the software 

Mathematica. 

 In chapter 6, the Bäcklund Transformations (BTs) method is proposed to look 

for exact solutions for the nonlinear differential equations resulting from 

solar MHD. The BTs methodology is applicable to search for exact solutions 

from magnetostatic equations in solar physics to the sinh-Poisson equations.  

Finally, chapter 7 provides a brief conclusion and considerations for possible 

future work in these areas. 
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                                      Chapter 1 

                                 Introduction 
1.1 Overview 

This thesis provides a brief survey of how mathematicians and physicists 

discovered and began working on some mutually interesting issues. The 

origin of non-linear differential partial equations (PDEs) is very old, but many 

advances happened in the latter half of the 20th century. One of the key 

reasons for researching non-linear PDEs was to explore propagation issues in 

non-linear waves. Similar problems exist in various fields of applied 

mathematics, engineering and fluid dynamics, non-linear effects in optics, 

solid mechanics, plasma physics and the quantum field theory.  

Nonlinear wave equations generally given rise to numerous types of new 

solutions which differ considerably from solutions generated from linear 

approximations. Shock waves, heat waves and discrete waves are the best-

known examples. 

Nonlinear waves and solitons have, however, undergone a revolution in 

recent decades. Many extraordinary and surprising events during this 

transition were also noticed in natural, chemical, and biological processes. 



2 
 

There were many significant achievements including the discovery of soliton 

interactions, the inverse dispersion method to find effective exact solutions 

for several PDEs, and the evaluation of asymptotic interference in the study 

of non-linear evolution equations [23-27]. Equations of nonlinear design are 

often used as models in various fields of science to assist in the 

understanding of complex physical processes.  

There is no general way of knowing, given a nonlinear PDE, whether soliton 

solutions exist and if they should be considered. It is essential to look at their 

exact solutions to understand the underlying phenomena and their further 

applications in practical life. Analytical solutions for nonlinear PDEs play an 

important role in nonlinear science, particularly in nonlinear plasma physics, 

because they provide a lot of physical insights that could lead to further 

applications. Indeed, new approaches can help investigators find new 

phenomena. Exact solutions of nonlinear PDEs, if available, allow a 

verification of results arising from numerical simulations and help to analyze 

solution stability [28-35]. 

In computational biology, the impulses visible in nerve fibers are seen as 

moveable waves [37]. Studies of ion-acoustic waves with superthermal 
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particle distributions are critical for the understanding of space plasma 

observations.  

The studies mentioned in the previous section focused primarily on the 

distribution of Maxwellian electrons or distributions of the Cairns type. In the 

case of superthermal plasmas, there have been a few studies that have 

attempted to analyse ion-acoustic solitary structures. Chuang and Hau [21] 

studied the dynamics of low amplitude ion-acoustic solitons. Saini et al. [84] 

researched the characteristics of the life for two-component ion-acoustic 

solitons. 

Saini and Kourakis [83] investigated the presence of arbitrary ion-acoustic 

solitary waves in an unmagnetized plasma made up of ions and excess 

superthermal electrons (modelled by a kappa-type distribution). 

Sultana et al. [102] recently studied magnetised ion-acoustic solitary waves 

in a two component plasma, with kappa-distributed electrons and fluid-cool 

ions. They used Sagdeev’s pseudopotential approach under a quasi-

neutrality condition to study the effects of solitary ion-acoustic waves on the 

obliqueness and superthermality of electrons. By studying obliquely 

propagating linear and nonlinear ion-acoustic waves in an electron-ion 
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magnetised plasma [41-50], the influence of superthermal electrons 

modelled by the Lorentzian velocity distribution was examined.  

They also used the theory of small amplitude waves to study ion-acoustic 

nonlinear waves. Nevertheless, in each of the aforementioned studies the 

impact of finite ion temperature on solitary structures was not considered. 

We can observe magnetic fields in nature as well as in industrial processes 

that influence the behaviour of fluids and flows. Magnetic fields are used for 

stirring, pumping, levitating, and heating liquid metals in the metallurgical 

industry.  

The earth's magnetic field is created by the movement of the liquid core of 

the earth, shielding the ground from deadly radiation. The solar magnetic 

field produces sunspots and solar flares while the galactic magnetic fields 

drives star formation from interstellar gas clouds produce sunspots and solar 

flares. As a result of massive interactions between galaxies and the 

intracluster gas, these intracluster magnetic fields are likely generated by 

turbulent gas motion. They directly impact thermal conduction in galaxy 

clusters and consequently their evolution, but these are reviewed elsewhere 

(e.g. Saini et al. 2009; Saini and Kourakis 2010) [83,84].  

https://aip.scitation.org/author/Saini%2C+N+S
https://aip.scitation.org/author/Saini%2C+N+S
https://aip.scitation.org/author/Kourakis%2C+I
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In all these cases, the phenomena are investigated using the MHD 

approximation, where there is an electrically conductive or non- magnetic 

substance, such as a liquid metal or a hot ionized gase (plasma), or solid 

electrolytes [33-40].  

1.2 Motivations and Research questions 

The aim of this thesis is the investigation of travelling wave solutions for 

nonlinear partial differential equations that play an important role in the 

study of nonlinear physical phenomena. Nonlinear wave phenomena appear 

in various scientific and engineering fields, such as fluid mechanics, plasma 

physics, optical fibers, biology, solid state physics, chemical kinematics, 

chemical physics and geochemistry. Nonlinear wave phenomena of 

dispersion, dissipation, diffusion, reaction and convection are very important 

in nonlinear wave equations.  In the past several decades, new exact 

solutions may help to explore new phenomena. 

In this thesis, the natural questions to ask are as follows: 

RQ 1: What is the significance of the research? 

RQ 2: What is the travelling wave solution? 

RQ 3: What methods are used to solve travelling wave problems? 
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RQ 4: What are the results in this research by using this method? 

RQ 5: What are the different types of travelling wave solutions? 

RQ 6: How to find new exact travelling wave solutions of the nonlinear 

equations arising in physical models? 

RQ  7: What are the physical models and their importance? 

1.3 Contributions and objectives of the research 

One of the cornerstones in the study of both linear and nonlinear PDEs is 

wave propagation. A wave is a recognizable signal which is transferred from 

one part of the medium to another part with a recognizable speed of 

propagation. Energy is often transferred as the wave propagates, but matter 

may not be. We mention here a few areas where wave propagation is of 

fundamental importance. 

• Fluid mechanics (water waves, aerodynamics) 

• Acoustics (sound waves in air and liquids) 

• Elasticity (stress waves, earthquakes) 

• Electromagnetic theory (optics, electromagnetic waves, 

magnetohydrodynamics (MHD)) 

• Biology (epizootic waves) 
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• Chemistry (combustion and detonation waves)  

In this research, a brief description of nonlinear phenomena and a survey on 

some nonlinear models is presented. We also discuss solitons solutions and 

various other types of travelling wave solutions. A brief account of some 

important and widely used analytic methods to obtain exact solutions of a 

variety of nonlinear PDEs relevant to physical problems is also given.  

In this thesis we will find exact soliton solutions to some higher order 

nonlinear physical model equations. The obtained solutions with arbitrary 

parameters may be significant. The obtained solutions may be useful help in 

understanding the mechanisms behind the complicated nonlinear physical 

phenomena which are related to wave propagation in higher order nonlinear 

physical model equations. 

Generally, nonlinear physical models are difficult to solve. So for the last few 

decades, a great deal of attention has been directed towards the solution 

(both exact and numerical) of these problems. During this project, our key 

research objectives will be: 

The important mathematical preliminaries and the general basic 

consideration for the models considered in this thesis.   
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This work explains the basis of travelling wave solutions and develops a 

method to obtain analytical solutions for nonlinear physical models. We then 

find exact travelling wave solutions for some nonlinear physical models in    

(a) Three dimensional incompressible MHD equations. 

(b) Isothermal magnetostatic atmospheres equations. 

(c) Some important equations of ion-acoustic waves. 

        The thesis consists of a summary and seven chapters, organized as 

follows: 

Chapter 1: Introduction: 

The introduction includes a short historical discussion of the early   solitons ' 

ideas on travelling wave solutions, followed by a brief survey of how 

mathematicians and physicists noticed and began to work on certain 

problems of mutual interest. This is followed by a brief survey of MHD and  

ion-acoustic waves. 

Chapter 2: literature review 

This chapter consist of a short historical discussion of the early solitons ' ideas 

on travelling wave solutions, followed by a brief survey of how 

mathematicians and physicists noticed and began to work on certain 

problems of mutual interest. This is followed by a brief survey of MHD and  

ion-acoustic waves. 

Chapter 3: Equations of motion  
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This chapter provides the background material used in this thesis. It covers 

the fundamental concepts of known results concerning our work to make 

this thesis somewhat self-contained. 

Chapter 4: Ion acoustic waves in plasma and soliton solutions 

In this chapter we address acoustic waves of ions, which are the variation of 

sound waves in plasma physics. Such waves spread as more mobile electrons 

protect the electrical field from the ion and set up their own field to move 

the ions in a tenuous plasma. Such waves could be excited, but there are 

infrequent collisions between the electrons and ions. In these waves the 

natural magnetic field is zero.  

The equation of the Korteweg-de Vries (KdV) and modified Korteweg-de 

Vries (mKdV) were derived and analytically examined. The main components 

of KdV and mKdV solitons have been analyzed. It has been observed that the 

plasma system being considered supports the propagation of solitons 

obtained from the solutions of KdV and mKdV equations.  We point out here 

that the results of this chapter are published in the Second International 

Conference of Mathematics, Statistics and Information Technology that was 

held in the Faculty of Science, Tanta University, December, 18 -20, 2018. 
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Chapter 5: Travelling wave solutions for three-dimensional incompressible 

MHD equations                                                                                                     

In this chapter solutions for a three-dimensional incompressible MHD system 

are obtained using the sine – cosine method and the Riccati auxiliary 

equation. This chapter obtains soliton solutions with the aid of the software 

Mathematica. We point out here that the results of this chapter are 

published in the Journal of Applied Mathematics and Physics, 6(2018)114-

121. 

Chapter 6: Analytical solutions for isothermal magnetostatic atmospheres 

equations  

In this chapter, the Bäcklund Transformations (BTs) method is proposed to 

look for exact solutions for the nonlinear differential equations resulting 

from Solar MHD. The BTs methodology is applicable to search for exact 

solutions from magnetostatic equations in solar physics to the sinh-Poisson 

equations.  Under a gravitational field, the equations of magnetohydrostatic 

equilibria for plasma are also investigated analytically. The analysis of a 

family of isothermal magnetostatic atmospheres is carried out in a plane 

geometry with one ignorable coordinate corresponding to a uniform 
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gravitational field.  The distributed current 𝑱 is guided along the 𝑥 −axis 

where  𝑥  is the negligible horizontal coordinate. for the magnetic vector 

potential u These equations transform into a single nonlinear elliptic 

equation.  This equation depends on a given arbitrary function of 𝑢.  

We point out here that the results of this chapter have been submitted to 

(Journal of Computational and Applied Mathematics). 

Chapter 7: Conclusion and further research 

This chapter provides a brief conclusion and considerations for possible 

future work in these areas. 
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Chapter 2 

                          Literature Review 
 

Nonlinear partial differential equations are used to model a large number of 

problems in physics, mathematics, and engineering. Analyzing the exact 

solutions to these nonlinear equations plays a very important role in the 

theory of solitons since they provide much knowledge about the physical 

system in question.  

Various effective methods for constructing precise travelling wave solutions 

for nonlinear partial differential equations can be used. Such methods 

include the inverse scattering transformation [4]; the Bäcklund 

transformation [87-91]; the Darboux transformation [4]; the Hirota bilinear 

method [5]; the tanh-function method [65,66]; the sine-cosine method [8]; 

the expansion method [9]; the generalized Riccati equation [10]; the 

homogeneous equilibrium method [11]; the first integral method [12,13]; 

and the 𝐆//𝐆 method of expansion [14-19].  

Due to the availability of symbolic computation packages such as Maple and 

Mathematica, direct methods for building accurate NLPDE solutions have 
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become increasingly attractive in recent years as all the tedious and complex 

calculations can be performed by a computer. This thesis aims to use a 

powerful method called the sine-cosine method and Bäcklund transform 

method to obtain exact bright, dark and cnoidal wave soliton solutions to 

some higher-order nonlinear equations modelling different physical 

phenomena [30-40]. 

Many structures in solid mechanics are typically modelled as standing waves 

[8], so determining the dynamics of those solutions is important. On a similar 

note, the significance of evaluating the KdV and mKdV equations within this 

project emerge from a common principle. The travelling wave solution is 

obtained when the model corresponding to the physical system is resolved. 

These models generally take the form of partial differential equations (PDEs) 

in which the dynamics of the systems are exposed when solutions are found. 

Such solutions shall be expressed as  𝑢(𝑥;  𝑡) =  𝑈(𝑧),   where  𝑧 =  𝑥 − 𝑐𝑡.  

as 𝑥 and 𝑡  are spatial and time respectively with the wave speed given as 𝑐.   

Actually, we could classify the travelling waves into forms due to certain 

characteristics (Figure 2.1). A travelling wave that approaches a constant 

state is given by 𝑈(− ∞)  =  𝑢𝑙 and 𝑈( ∞)  =  𝑢𝑟, with 𝑢𝑙  ≠  𝑢𝑟 .  The 
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resulting wave is known as a pulse wave if the constant states 𝑢𝑙 = 𝑢𝑟, are 

identical.  If a wave shows regularity, it is considered a spatially periodic wave 

𝑈(𝑧 +  𝐹) =  𝑈(𝑧) where  𝐹 >  0 [92-112]. 

 

Figure 2.1: Forms of travelling waves: (a) wave front, (b) pulse and (c) 

spatially periodic travelling wave. 

 

𝑦 

𝑥 

𝑦 

𝑥 
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Figure 2.2: Different kinds of solitary wave solutions     

Plasma, also referred to as the "fourth state of matter," is an ionised gas that 

some claim to be the main constituents of 99 per cent of our visible universe.  

The stars, inter-galactic medium, nebulae and interstellar medium are all 

made up of plasma. The polar auroras, lightning and ionosphere are some 

examples near to our Sun.  

  A plasma that is a combination of neutral atoms, respectively positively and 

negatively ions, is a quasi-neutral liquid that is electrically conductive. Plasma 

can usually be achieved with electrical and magnetic fields due to these 

𝑥 

𝑦 
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properties, resulting in a wide range of waves and oscillations in the acoustic, 

radio and optical spectrum. 

For dispersive and nonlinear plasmas, nonlinearity can often compensate for 

the Dispersal Effects of a system, resulting in waves that can retain their 

original shape over large distances. Such stable waves [111-122] are called 

solitons. Typical examples are waves in shallow water and plasma waves, ion-

acoustic waves. Both types of waves are governed by a common nonlinear 

wave equation named KdV equation [1-17]. 

 Solitary waves act as particles just before they interact with one another 

and. because of their particle-like existence and their ability to maintain their 

identity over long distances, solitons are still a matter of study even today. 

Solitons can travel thousands of kilometres in optical fibres and can be used 

to transmit information. Chapter 2 explains in detail the background history 

of solitons and the fundamentals of solitons.  

The theory behind soliton propagation within an inhomogeneous plasma is 

well known, particularly when the electrons are considered to be isothermal 

and are defined by a Boltzmann distribution. When the density is 

inhomogeneous, the soliton's properties are modified. 
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 Existing theory does not explain soliton behavior when two-temperature 

electrons are present, or when the electrons are non-isothermal. Plasmas of 

trapped electrons may also be present in the auroral magnetosphere [132-

136] where the presence of hot and cold electrons may be caused by heating 

and injection. 

In space for example [3], the two-temperature electrons can be found in the 

E rings of Saturn. They are also present in the laboratory where, due to an 

external source and preferential heating of some electrons, both fast and 

slow components of electrons can occur.  

The findings from our theoretical analyses may also be relevant to the 

understanding of particle and field data received from various spacecraft 

missions in the Earth's auroral ionosphere and magnetosphere. 

Within galaxies, and indeed in many other astrophysical settings, the gas is 

partially or fully ionised and can carry electric currents which in turn generate 

magnetic fields. In general, the associated Lorentz force exerted on the 

ionised gas can no longer be neglected in the momentum equation for the 

gas. 



18 
 

Magneto-hydrodynamics (MHD) is the research of the magnetic field 

interaction and the plasma viewed as a fluid. In MHD we integrate Maxwell's 

electrodynamic equations with the fluid equations, including the Lorentz 

forces which arise from the electromagnetic field. 

 In uniform plasma [41-47], there are three categories of MHD waves : 

• Fast magnetoacoustic wave: Quasi-isotropic wave caused by plasma and 

magnetic pressure forces in concert. 

• Alfvén wave: Transverse (shear) perturbations following magnetic field, 

caused by magnetic tension force. 

• Slow magnetoacoustic wave: Anisotropic wave caused by pressure forces 

in opposition.  

Magnetohydrodynamic waves can becomes nonlinear when their 

amplitudes become significant. Some of the MHD waves observed a in solar 

flares and in the solar wind are nonlinear. 

The waves of Alfvén provide an exact solution for the nonlinear MHD 

equations. Nonlinearity often results in wave amplitude development and 
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steepening, just as an ocean wave undergoes these changes when it 

approaches the shoreline.  

Shock waves are nonlinear waves with profiles that, in the ideal case, have 

particularly sharp discontinuities and over which dissipative processes 

balance any nonlinearities. Conservation relationships (mass, total energy, 

momentum, etc.) are often used to assess a shock wave 's character [61-80]. 

Taking into account the presence of both slow and quick magnetoacoustic 

waves, slow shocks and quick shocks may occur. In photospheric flux tubes 

and in the solar wind, slow shocks can occur and are also invoked in theories 

of magnetic reconnection. Fast shocks may be present in observed blast 

waves produced by a solar flare. Theoretical grounds also exist for believing 

that solitons can occur in the Sun [58-75]. 
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                                                        Chapter 3 

                      Equations of motion  
 

This chapter presents some needed mathematics in the remaining chapters 

as well as some basic definitions of terms which will be used in this thesis.  

3.1  Some useful definitions 

Definition 3.1.1: Wave  

A wave is a physical phenomenon defined by wavelength, frequency and 

amplitude. Also wave is a physical disturbance that can propagate through a 

medium and transmit energy from one place to another. 

Definition 3.1.2: Dispersive wave  

A propagating wave, satisfying a dispersion relation  𝜔 =  𝜔(𝑛), such that 

𝜔/𝑛 is not a constant, where 𝜔 is the frequency and  𝑛   is the wave number, 

is called a dispersive wave. A dispersive wave is said to be nonlinear if the 

dispersion relation also depends on the amplitude of the wave, otherwise it 

is a linear dispersive wave.               

Definition 3.1.3: Non-dispersive wave 
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 Any propagating wave where the propagation speed is independent of the 

wavenumber, resulting in a wave that maintains its form.   

Definition 3.1.4: Solitary wave 

 A localised nonlinear wave that travels with no change in shape and speed. 

Definition 3.1.5: Soliton 

 A solitary wave which even after a collision with another solitary wave 

retains its identity.   

Definition 3.1.6: Dissipation 

A wave that loses amplitude is considered a dissipative wave due to the loss 

of energy over time. 

Definition 3.1.7: Travelling wave 

A travelling wave is a permanent type of wave that travels at a constant 

speed. Travelling wave solutions are typically obtained by reducing the 

nonlinear evolution equations to common ordinary differential equation 

associated with these.  This is mainly  done while using the ansatz 𝑢(𝑥, 𝑡) =

 𝑢(𝜉 ),where   𝜉 =  𝑥 − 𝑘𝑡 and  𝑘  is the wave speed.    This transforms the 
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PDE in 𝑥, 𝑡 to an ordinary differential equation in 𝜉 that could be solved by 

several suitable methods [1-11]. 

Definition 3.1.8: Partial differential equation 

 A partial differential equation is a differential equation that contains 

unknown multivariable functions and their partial derivatives. Partial 

differential equations are used to formulate problems involving functions of 

several variables. For example, 
𝑑2 𝑥

𝑑  𝑡2
+ 𝑡2  

𝑑 𝑥

𝑑𝑡
+ 2𝑥 = 0   is an ordinary 

differential equation, while   
𝜕2 𝑢

𝜕 𝑥2
+ 

𝜕2 𝑢

𝜕 𝑦2
= 0,   is  a partial differential 

equation.  

Definition 3.1.9: Linear and nonlinear partial differential equations:  

  Partial differential equations are graded as linear or nonlinear. If there are 

no products or powers between the dependent variable and its derivatives, 

then the partial differential equation is considered linear. Anything else 

would be called nonlinear. For example, the most general first-order linear 

PDE for 𝑢(𝑥, 𝑡) would be 𝑎(𝑥, 𝑡)
𝜕 𝑢

𝜕 𝑡
+ 𝑏(𝑥, 𝑡)

𝜕 𝑢

𝜕 𝑥
+ 𝑐(𝑥, 𝑡)𝑢 = 𝑑(𝑥, 𝑡),  

while  
𝜕 𝑢

𝜕 𝑡
+ 𝑣(𝑥, 𝑡)

𝜕2 𝑢

𝜕 𝑥2
+ 𝑢

𝜕𝑢

𝜕 𝑥
= 0,  is a nonlinear partial differential 

equation. 
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Definition 3.1.10: Nonlinear evolution equation (NLEEs)  

Typically, NLEEs are nonlinear partial differential equations with time 𝑡 being 

one of the independent variables. NLEE usually arise from the study of 

various physical structures such as water waves, plasma mechanics, 

harmonic lattices, and elastic rods. 

3.2  Solitons 

As per preliminary description, a soliton is a single, well-defined non-

dissipative wave that can travel long distances without any change in size or 

shape [1-3]. Solitary waves are localized waves that, given the dispersion and 

nonlinearity of the medium, maintain their shapes.  

One of the most startling features of nonlinear phenomena is the localised 

large-amplitude waves called solitons, which propagate without spreading 

and have particle-like properties. They have unique properties [12-19] as 

follows: 

• Nonlinear distributed structures moving with permanent form and 

constant speed.  
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• They can cross each other and preserve their identities after a pair-wise 

collision.  

Solitons are distinctive types of solitary waves. The vast group of nonlinear 

phenomena, commonly arising in various fields of applied mathematical 

sciences and physics such as condensed matter, plasma physique, turbulence 

theory, ocean dynamics, biophysics, fluid dynamics and star formation, solid-

state physics, optical fibres, chemical kinestics and star-formation, have 

played an important role in science since the discovery of isolation waves 

known as solitons (1965) by Zabusky and Kruskal [132].  

3.2.1 Formation of solitons 

Solitons are created by a delicate balance between a medium's nonlinearity 

and dispersion. In particular, linear waves in dispersive media are scattered 

and distributed over great distances because the phase speed is 

𝑘 −dependent.  

In most nonlinear media, nonlinear effects begin to occur when the 

amplitude of a wave is not high. Nonlinearities can also increase the 

steepness of a wave front, leading to the breaking of the wave. Figure 3.2.a 

displays the dispersion of a waveform, while figure 3.2.b displays the 
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steepening of the waveform induced by a nonlinearity.  Figure 3.2.c 

demonstrates how a stable structure called a soliton is formed by the 

combination of these two results.  

Although a plasma generally behaves like a nonlinear medium and almost all 

plasma waves are dispersed, solitons solutions are not necessarily present. 

However, nonlinear ion-acoustic waves can exhibit soliton behaviour and can 

be considered a typical example of plasma solitons. The linear dispersion 

relationship for ion-acoustic waves is obtained and the ion-acoustic velocity 

is discussed for the limiting cases of extremely dense or dilute systems [94-

99].  

The correct Korteweg-de Vries equation [49] for weakly nonlinear solutions 

is obtained using the reductive perturbation process, and the resulting 

propagation of the soliton is analysed. Depending on the value of the 

quantum parameter for the degenerate electrons, which influence the phase 

velocities in the dispersive medium, it is found that structures are created by 

the soliton hump and dip 
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Figure 3.2: Formation of a soliton. 

 a) Linear dispersive waves have phase speeds (𝑐 =  𝜔/𝑘 where 𝜔  is angular 

frequency and 𝑘  is wavenumber) that depend on their wavelengths. 

 b) Nonlinear wave: with the rise in amplitude, the wave steepens and has a 

tendency to break. 

  c) A Soliton. 

 

 

https://en.wikipedia.org/wiki/Angular_frequency
https://en.wikipedia.org/wiki/Angular_frequency
https://en.wikipedia.org/wiki/Wavenumber
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3.2.2 The discovery of solitons and the KdV equation 

  Nonlinear science is fundamentally interdisciplinary and has an influence on 

mathematics, traditional sciences and engineering, as well as on the social 

sciences, especially economics and demographics. Along with Fractals and 

Chaos, the theory of solitons is recognized as an important branch of 

nonlinear science and has evolved rapidly in recent decades.  

The theory of solitons is an important area in mathematical physics and 

applied mathematics that has grown rapidly since the sixties. Solitons act as 

particles as well as waves, and sometimes occur in nature. There are many 

important problems related to soliton theory in research fields such as 

nonlinear optics, plasma physics, fluid mechanics, quantum field theory and 

classical etc. The concept of a "soliton" has also become more widely 

understood over the last years [1]. 

Subsequently, many other scientists started researching this phenomenon, 

including Stokes, Airy, Boussinesq, and Rayleigh. Boussinesq and Rayleigh 

both obtained the solitary wave's approximate properties among these 

authors, and Boussinesq derived an equation for the one-dimensional 

propagation of solitons and found an analytical solution.  
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In 1895, while observing the journey of shallow water waves produced in a 

shallow stream, D. Korteweg and G. De Vries [49] obtained a new nonlinear 

one-dimensional formula describing these particular types of water waves. 

This equation is now known as the KdV equation [55-66], 

𝑢𝑡 + 𝛼 𝑢 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0.                                                                (3.1) 

In 1965, Zabusky and Kruskal [132] discovered some remarkable outcomes 

when studying the non-linear mechanism of collisions between solitary 

waves in a plasma. The results of their experiments were quite surprising 

after some numerical simulations on the computer. 

Soliton theory, however, offered some approaches for dealing with 

nonlinear problems. In particular, the inverse scattering method can be 

called the Fourier method for nonlinear problems in some context. In 

addition to the inverse dispersion approach, there are plenty of elegant and 

efficient methods to create exact solutions. 

Many mathematics branches like Classical and Functional Analysis, Lie 

Groups, Lie Algebras, Differential Geometry, Algebraic Geometry, Topology, 

Dynamic Systems, and Computational Mathematics are important tools for 

soliton research. On the other hand, the study of solitons also promotes the 
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development of these areas. For these reasons, both mathematicians and 

physicists pay much attention to soliton theory. This is a very active area of 

study and it encompasses an increasing variety of subjects. Several 

conferences on this field were held in each of the last ten years. A number of 

books have been published, and there are several articles in different 

journals on soliton theory.  

 A variety of methods have been developed to solve these equations which 

are now commonly used, such as the reverse scattering transformation, Lie 

symmetry analysis, Darboux transformation, Bäcklund transformation, 

Hirota bilinear method, and the Wronskian determinant method [38-48].  

Here we define the main characteristics of some of the widely used direct 

methods for solving nonlinear PDEs that are also used in this work. 

3.2.3 A sine–cosine method 

1. The wave variable 𝜉 = 𝑥 − 𝑐𝑡  where 𝑐 is a constant, transforms a 

nonlinear PDE in two independent variables (𝑥, 𝑡) 

𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥 , 𝑢3𝑥, …… . ) = 0,                                                  (3.2) 

where  𝑢(𝑥, 𝑡) is the travelling wave solution to a nonlinear ODE 
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𝑄(𝑢, 𝑢/ , 𝑢//, 𝑢///,⋯ ) = 0.                                                   (3.3) 

Notice that  

𝜕

𝜕 𝑡
=  −𝑐 

𝑑

𝑑𝜉
,   
𝜕2

𝜕 𝑡2
= 𝑐2  

𝑑2

𝑑𝜉2
,     

𝜕

𝜕 𝑥
=   

𝑑

𝑑𝜉
 ,

𝜕𝑛

𝜕 𝑥𝑛
=  

𝑑𝑛

𝑑𝜉𝑛
.         (3.4) 

Eq. (3.3) can then be integrated as long as all the terms encompass 

derivatives. 

2. The answers to many nonlinear equations can be stated in the cosine form 

𝑢(𝑥, 𝑡) =  𝜆  𝑐𝑜𝑠 𝑚 (𝜇 𝜉 ),         |𝜉| ≤  
𝜋

2 𝜇
                                                    (3.5) 

 or in the sine form 

𝑢(𝑥, 𝑡) =  𝜆  𝑠𝑖𝑛 𝑚 (𝜇 𝜉 ),          |𝜉| ≤  
𝜋

 𝜇
                                                      (3.6) 

 where 𝜆  and    𝑚    are parameters that will be determined,   𝜇   and  𝑐  are 

the wave number and the wave speed respectively.  We then utilise 

𝑢(𝜉) =  𝜆  𝑐𝑜𝑠 𝑚 (𝜇 𝜉 ),                                                                                    (3.7) 

to get 

𝑢/(𝜉) = −  𝜆 𝜇 𝑚  𝑐𝑜𝑠 𝑚−1 (𝜇 𝜉 ) sin(𝜇𝜉 ),                                                 (3.8) 
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𝑢//(𝜉) = −  𝜆 𝜇2 𝑚2  𝑐𝑜𝑠 𝑚 (𝜇 𝜉 ) +  𝜆 𝜇2 𝑚(𝑚 − 1) 𝑐𝑜𝑠 𝑚−2 (𝜇 𝜉 ).   (3.9) 

and for (3.6) we use 

𝑢(𝜉) =  𝜆  𝑠𝑖𝑛 𝑚 (𝜇 𝜉 ),                                                                                 (3.10) 

to get 

𝑢/(𝜉) =   𝜆 𝜇 𝑚  𝑠𝑖𝑛 𝑚−1 (𝜇 𝜉 ) cos (𝜇𝜉 ),                                                (3.11) 

𝑢//(𝜉) = −  𝜆 𝜇2 𝑚2  𝑠𝑖𝑛 𝑚 (𝜇 𝜉 ) +  𝜆 𝜇2 𝑚(𝑚 − 1) 𝑠𝑖𝑛 𝑚−2 (𝜇 𝜉 ). (3.12) 

and so on for other derivatives. 

 Substituting (3.7) – (3.9) or (3.10) – (3.12) into the reduced ODE gives an 

algebraic equation of 𝑐𝑜𝑠 𝑘  (𝜇 𝜉 ) or 𝑠𝑖𝑛 𝑘 (𝜇 𝜉 ) terms.  

The parameters are then calculated by first balancing the exponents of each 

pair of cosine or sine terms and collecting all terms with the same power and 

setting their coefficients to zero to obtain a system of algebraic equations 

among the unknown. The problem is now completely reduced to a system of 

algebraic equations that can be easily solved to determine the solutions 

proposed in (3.5) and in (3.6) [87-91]. 
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3.2.4 The AKNS System and BTs for NLEEs  

In this approach, the Bäcklund transformations (BTs) for nonlinear evolution 

equations (NLEEs) are constructed through Ablowitz et. al. and Ricatti’s form 

of the inverse method, as the following steps show [38-48]:  

Consider the following AKNS eigenvalues problem:  

                                     
,

,

=

=

Q

P

t

X                                                                  (3.13)                                                                            

where ,
2

1









=




P and Q are 2 × 2 null-trace matrices  

                               









−


=

r

q
P

, 









−
=

AC

BA
Q

                                          (3.14)                                                    

and   is a parameter independent of x and t , while q and r   are 

assumed to be functions of x  and  t . BA,  and C  are assumed to be 

functions of q, and r .  

From Eqs. (2.13) and (2.14 we get the subsequent scattering problem: 

21
1 ),( 


txq

x
=−



                                                        (3.15) 

12
2 ),( 


txr

x
=+



                                                                   (3.16) 



33 
 

in which the functions 
1   and 

2 evolve in time according to 

21
1 );,();,( 


txBtxA

t
+=



 ,                                                     (3.17) 

21
2 );,();,( 


txAtxC

t
−=



 ,                                                    (3.18) 

The integrability condition reads 

0=−+− QPPQQP xt                                                                     (3.19) 

 or in component form 

                           
0=−+− rBqCAx  

022 =+−− BAqBq xt                                                               (3.20) 

                         
022 =+−− ArCCr xt  

Consider the function  

2

1




=

                                                                                      (3.21) 

Differentiating Eqs. (3.21) with respect to x   and t , respectively , and using 

Eqs. (3.15), (3.16), (3.20), reduces Eqs. (3.13) to the Riccati equations: 
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                           22 −+=



rq

x
 , 

22 −+=



CAB

t
                                                                     (3.22) 

 We construct a transformation 
'  which satisfies the same equation as 

(3.22) with potential 𝑢′ (𝑥) where 

 ),,()()(' += Fxuxu                                                 (3.23) 

 is a new solution of the corresponding NLEE.  In chapter 6, the AKNS system 

and new forms for qCBA ,,, and r  for some NLEEs are illustrated. 

3.3  Ion-acoustic waves  

An ion acoustic wave is a form of longitudinal oscillation in a plasma which is 

identical to an acoustic wave of neutral gas. Since the waves propagate via 

positively charged ions, acoustic ion waves can interfere with their 

electromagnetic field. 

The ion-acoustic wave can occur in plasmas that are both collision-free and 

collisional. Physically, these waves are driven by electron pressure and ion 

inertia in a collisionless and non-isothermal plasma where the electron 

temperature is much higher than the ion temperature (Te ≫ Ti), while the 
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coupling between the species is achieved by the electrostatic forces. While 

the dispersion relationship remains close to the collisionless situation, the 

physics of ion-acoustic waves in a collision-dominated plasma is more 

complicated as both electrostatic and collision-dominated effects come into 

play [92-106]. 

3.3.1 Plasmas 

A Plasma is a state of matter in which many of the electrons freely wander 

between atom nuclei. The term plasma in physics designates a totally or 

partially ionised gas made up of electrons and ions. Through a 

phenomenological viewpoint, the definition of plasma as a new state of 

matter can be explained as the splitting of neutral atoms into electrons and 

ions at high temperatures is correlated with a new barrier of force, the 

ionisation force. The past 20 years have shown that plasma systems can 

reach liquid, gaseous and even solid phases. 

As an electrically conductive medium, the plasma state possesses a number 

of new properties which distinguish it from neutral gases and liquids. Here in 

a solar prominence one can think of the ragged form of a lightning discharge 

or the magnetically confined plasma. The bulk of visible matter in space is in 
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the state of plasma. This is definitely true as referring to the mass of planets, 

as the mass of stars. Dark matter will take the lead as opposed to plasmas if 

dark matter is exits. 

A significant number of electrons in plasma have such high levels of energy 

that they cannot be retained by any nucleus. The atom that has lost some of 

its electrons and thus gained an electrical charge is called an ion.  It is a 

particular type of ionized gas and is generally made up of: 

• positively charged ions (‘positive ions’),  

• electrons, and  

• neutrals (atoms, molecules, radicals).  

The plasma also may contain negative ions under special conditions, but this 

case will not be addressed. Positive ions may be packed or loaded 

individually. The ion population is sufficient to describe the ion density  𝑛𝑖  for 

a plasma, which contains only individually charged ions, 

𝑛𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
,         [𝑛𝑖]  =  𝑐𝑚

−3  𝑜𝑟     [𝑛𝑖]  =  𝑚
−3 .  (3.24)  
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Besides the ion density, electron density 𝑛𝑒  and the neutral density 𝑛𝑎 

characterize the plasma.  

The following are the array of dynamic ion-acoustic wave equations with the 

quantum hydrodynamic model. The continuity and momentum equations 

for the ion fluid are given by [111-116]: 

         
𝜕 𝑛𝑖

𝜕 𝑡
+ 

𝜕

𝜕 𝑥
 ( 𝑛𝑖  𝑢𝑖  ) = 0,                                                                         (3.25) 

𝜕 𝑢𝑖
𝜕 𝑡

+ 𝑢𝑖   
𝜕 𝑢𝑖  

𝜕 𝑥
 = − 

𝑒

𝑚𝑖
 
𝜕 ∅

𝜕 𝑥
 .                                                              (3.26) 

The dynamic equation for the inertialess electron quantum fluid is 

described by  

𝑒
𝜕 ∅

𝜕 𝑥
−
1

𝑛𝑒
 
𝜕 𝑝𝑒
𝜕 𝑥

+
ℎ2

2 𝑚𝑒
 
𝜕

𝜕 𝑥
 ( 

1

√𝑛𝑒
 
𝜕2

𝜕 𝑥2
  √𝑛𝑒) = 0.                           (3.27) 

The Poisson equation is written as 

𝜕2∅ 

𝜕 𝑥2
=
𝑒

∈0
  ( 𝑛𝑒  −  𝑛𝑖) = 0,                                                             (3.28)   

where ∅ is the electrostatic potential.  
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The density and velocity of the ion fluid are represented by 𝑛𝑖 and 𝑢𝑖 

respectively, while 𝑛𝑒  is the electron fluid density. Also, 𝑚𝑒 and 𝑚𝑖 are the 

electron and ion masses, −𝑒 is the electronic charge, ∈0   and  ℎ  are the 

dielectric and scaled Planck’s constants. In equilibrium, we have 𝑛𝑒0 =

 𝑛𝑖0 = 𝑛0. Here 𝑝𝑒  is the electron pressure and 𝑝𝑒  (𝑛𝑒 )  is found from the 

equation of state for the electron fluid [128-136]. 

3.4  Magnetohydrodynamics 

The most commonly used equations for the analysis of inhomogeneous 

plasmas are the fluid equations. Magnetohydrodynamics (MHD) is the 

science of electromagnetic field interaction and the movement of molten 

semiconductors, liquid metals, and plasmas.  

3.4.1 Governing equations for ideal MHD flows 

Set of equations, written in standard notation and SI units [100-102; 109; 

110], control the unstable-state ideal MHD flows:  

The momentum equation 

𝜌 (
𝜕 𝒗

𝜕 𝑡
+ (𝒗 ∙ 𝛁) 𝒗) = − 𝛁 𝑝 + 𝑱 ×  𝑩,                                         (3.29) 
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the continuity equation  

𝜕 𝜌

𝜕 𝑡
+  𝛁 ∙ (𝜌 𝒗) = 0,                                                            (3.30) 

Faraday's law  

𝛁 × 𝑬 =  − 
𝝏 𝑩

𝝏 𝒕
,                                                                             (3.31) 

Ampére's law  

𝛁 × 𝑩 =  𝝁  𝑱,                                                                             (3.32) 

the divergence-free Gauss law 

𝛁 ∙ 𝑩 =  𝟎,                                                                                  (3.33) 

and Ohm's law 

𝐄 +  𝒗 × 𝑩 =  𝟎,                                                                             (3.34) 

The symbols  𝜌, 𝒗, 𝑝, 𝑱, 𝑩, 𝑬 and  𝜇 denote the mass density, velocity 

field, pressure, electric current density, magnetic field, electric field and 

permeability constant, respectively. While there is no such thing as an 

incompressible fluid, we are using this concept whenever the shift in 

pressure density is so low that it is negligible.  
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In the incompressible case 
𝑑 𝜌

 𝑑 𝑡
= 0,  therefore, using the mass conservation 

Eq. (3.30) yields.      
𝑑 𝜌

𝑑 𝑡
+  𝜌 𝛁 ∙ 𝒗 = 0,      so that 

𝛁 ∙ 𝒗 = 𝟎.                                                                                 (3.35) 

3.4.2 Steady-state (Stationary) flows 

The steady-state ideal MHD equilibrium of plasma flows is governed by the 

following set of equations [27]: 

𝜌 (𝒗 ∙ 𝛁) 𝒗 = − ∇ 𝑝 + 𝑱 ×  𝑩,                                                     (3.36) 

𝛁 ∙ (𝜌 𝒗) = 0,                                                                                (3.37) 

𝛁 × 𝑬 =  0,                                                                                   (3.38) 

𝛁 × 𝑩 =  𝜇  𝑱,                                                                               (3.39) 

𝛁 ∙ 𝑩 =  0,                                                                                     (3.40) 

𝐄 +  𝒗 × 𝑩 =  0.                                                                           (3.41) 

The quantities 𝜌, 𝜇, 𝑝, 𝑬, 𝒗, 𝑱  and 𝑩 are the mass charge density, 

magnetic permeability, pressure, the electric field, velocity of the fluid, the 

current density, and the magnetic field respectively. 
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3.5  Isothermal magnetostatic atmospheres 

The magnetostatic equations were widely used to model the magnetic 

structure of the sun [27−31]. Construction of isothermal magnetostatic 

models of the solar atmosphere is of general interest. The magnetostatic 

equations describe magnetised plasma in which mechanical equilibrium 

consists of pressure, magnetic, and external forces. 

In solar physics, magnetostatic equations are used to model various 

phenomena, such as the slow evolution of solar flares, prominence 

formation, and magnetostatic support (the original model for the support of 

a plasma in a curved magnetic field against gravity) [32, 33]. In several cases 

[34 − 36], the problem of nonlinear equilibrium has been solved. Nonlinear 

evolution equations play a significant role in mathematical physics in various 

fields such as geochemistry, plasma physics, optical fibres, chemical 

kinematics, solid-state physics, chemical physics, and fluid mechanics. Wave 

dispersion, reaction, dissipation, diffusion, and convection phenomena are 

very common in the study of nonlinear waves [61-67]. 
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3.5.1 Magnetostatics 

Magnetostatics is the study of magnetic fields in systems with steady (not 

changing with time) currents. The magnetostatic field is a product of 

electrical current densities the way charging densities product just as the 

electrostatic field is. 

More precisely, when the origin of such fields are known a magnetostatic 

model aims to test magnetic fields. The two potential magnetic field sources 

are (i) coils that bear electrical currents, and (ii) permanent magnets. 

Maxwell's equations deduce the fundamental relations of magnetostatic by 

removing derivatives with respect to time. In these cases the electricity and 

magnetism equations are decoupled, leading to separate electrostatic and 

magnetostatic studies [59-61]. 

3.5.2 Basic equations 

The equations governing magnetohydrostatic equilibrium [61-63] consist of 

   𝐉 × 𝑩  =  𝜌 𝛁 𝜓 + 𝛁 𝑃,                                                       (3.42) 

which is coupled with Maxwells equations: 

 𝑱 =  
𝛁 ×𝑩

𝜇
,                                                                              (3.43) 
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𝛁 ∙ 𝑩 = 0,                                                                                    (3.44) 

where 𝜌, 𝜓, 𝜇  and 𝜓   are the mass density, the gravitational potential, the 

magnetic permeability and the gas pressure, respectively. It is assumed that 

the temperature is uniform in space and that the plasma is an ideal gas with 

state equation 𝑃 =  𝜌 𝑅0 𝑇0, where  𝑅0  is the gas constant and the 

temperature is  𝑇0. 
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                                         Chapter 4 

Soliton solutions for ion acoustic waves in plasmas 
 

4.1  Introduction 

A Plasma is a quasi-neutral gas of charged and neutral particles where 

interatomic and intermolecular forces are regulated by long-range 

electromagnetic interactions. About 99 per cent of the universe's known 

matter is in the plasma state.  

Even the earth’s atmosphere slowly transitions from an uncharged 

troposphere to a highly charged ionosphere at a height of about 80 km above 

the surface. This region is characterised by significant numbers of charged 

atoms and molecules, and free electrons. 

With a further increase in height, comes a further increase in the proportion 

of ionized matter. The magnetosphere and interplanetary space of the Earth 

are dominated by ionized particles that strongly interact with the magnetic 

field of the earth. 

In astrophysical, spatial and laboratory settings, plasmas are omnipresent 

[17-22]. The nearest natural regions dominated by plasmas is Earth’s 
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ionosphere and magnetosphere. Some characteristics such as density and 

temperature of different plasma regions in our solar system widely differ 

from each other. The physics of plasma sheaths is an intriguing subject in 

fundamental plasma physics and has been widely studied.  

Classical plasma physics has focused primarily on high temperature and low-

density environments, where no role is played by quantum mechanical 

effects. Nevertheless, recent advances in technology, such as the 

miniaturization of semiconductor devices and nanoscale artefacts, have 

made it possible to preview the application of plasma physics where the 

quantum effects may show up. Also, research on experiments under 

microgravity and optical trapping provide special conditions for plasmas to 

show complex behavior.  

The attention of plasma physicists has been captured by dusty and complex 

plasmas, especially in what concerns technological applications. In this study, 

we present the main features of quantum collision-free plasma modulation 

and an original attempt to modulate certain special oscillations in two-

dimensional dusty structures, recently reported in experimental and 

theoretical review papers.  
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Quantum plasma description is made through Wigner-Moyal formalism and 

equivalently through Schrödinger-like equations, both of which can be 

simplified to fluid equations [23-26]. The study of the oscillations in complex 

plasmas is suggested by defining a plasma form factor for the single Plasmon 

modes. 

We will be addressing ionic acoustic waves in this section, which are the 

equivalent of sound waves in plasmas. Such waves spread because in a 

tenuous plasma, the more mobile electrons protect the ion electric field and 

set up their own field to move the ions. Such waves may be excited, but there 

is infrequent collision between the electrons and ions.  For these waves, the 

external magnetic field is zero.   

The equations of KdV and mKdV are derived and analytically analysed. The 

basic features of the soliton solutions from the equations will then be 

analysed. It was found that the under consideration degenerate plasma 

system facilitates the propagation of the solitons obtained from KdV and 

mKdV equations solutions. 

In Sec. 4.2 of this chapter we will develop the appropriate plasma model.  In 

Section 4.3, we will derive the differential equations describing ion-acoustic 
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waves in plasmas and derive the KdV formula from a simplified PDE system 

describing ion-acoustic waves in plasma and effective solutions.  In Section 

4.4, we derive the KdV formula from a simplified model describing ion 

acoustic waves in a plasma. Precise solutions will be generated and analysed 

in Section 4.5. 

4.2  Plasma Model 

A plasma is an ionised fluid consists of positively charged ions and negatively 

charged electrons that interact and create electro-magnets. Plasmas 

produce waves similar to sound waves in pure compressible water, but these 

waves are scattered by the action of ions and electron oscillations.  

Here we look at a two-fluid plasma model that considers as separate fluids 

ions and electrons. The equations describing the plasma couples the fluid ion 

and electron motion equations with Maxwell’s electro-magnetic field 

equations. 

We must find relatively low frequency waves that include ion movement, 

and we presume that magnetic fields are not present. Let 𝑛𝑖  , 𝑛𝑒 denote the 

ion and electron particle numbers respectively,𝑢𝑖 , 𝑢𝑒 their velocities, 𝑝𝑖 , 𝑝𝑒  

their pressures, and 𝐸 the electrical field. The mass and momentum 
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conservation equations of the ion fluid for one spatial dimension [31] are 

given by 

𝑛𝑡
𝑖 + (𝑛𝑖𝑢𝑖)

𝑥
= 0,                                                                             (4.1) 

𝑚𝑖𝑛𝑖   (𝑢𝑡
𝑖 + 𝑢𝑖𝑢𝑥

𝑖 ) + 𝑝𝑥
𝑖 = 𝑒 𝑛𝑖  𝐸.                                                   (4.2) 

Where  𝑚𝑖  is the ion’s mass and 𝑒 is ion’s charge. We consider this for 

simplicity to be the same as charging an electron. It is understood that the 

ion-fluid is 'cold' which means we are neglecting its pressure. Setting 𝑝𝑖 =  0,  

we get [34-37] 

𝑛𝑡
𝑖 + (𝑛𝑖𝑢𝑖)

𝑥
= 0,                                                                             (4.3) 

𝑚𝑖    (𝑢𝑡
𝑖 + 𝑢𝑖𝑢𝑥

𝑖 ) = 𝑒  𝐸.                                                                   (4.4) 

The equations of conservation of mass and momentum for the electron fluid 

are 

𝑛𝑡
𝑒 + (𝑛𝑒𝑢𝑒)𝑥 = 0,                                                                             (4.5) 

𝑚𝑒𝑛𝑒   (𝑢𝑡
𝑒 + 𝑢𝑒𝑢𝑥

𝑒) + 𝑝𝑥
𝑒 = − 𝑒 𝑛𝑒  𝐸,                                                   (4.6) 
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Where 𝑚𝑒 is the electron’s mass and −𝑒   is charge of an electron. The 

electrons are also much lighter than the ions, so that their inertia can be 

ignored. Setting  𝑚𝑒  =  0,  we get 

𝑝𝑥
𝑒 = − 𝑒 𝑛𝑒  𝐸.                                                                          (4.7) 

This calculation offers the electron density equation 𝑛𝑒. Then the electron 

velocity 𝑢𝑒 is determined from the mass conservation equation and is 

uncoupled from the remaining variables so we will not have to consider it 

any further. 

 For the electron fluid, we assume an isothermal state equation, meaning 

𝑝𝑒 = 𝑘 𝑇 𝑛𝑒 ,                                                                                         (4.8) 

where  𝑘  is a constant of Boltzmann and temperature is 𝑇. Using (4.8) in (4.7) 

and writing   𝐸 =  −∅𝑥    in term of an electrostatic potential ∅,  we get 

𝑘 𝑇 𝑛𝑥
 𝑒 = 𝑒 𝑛𝑒∅𝑥 .                                                                             (4.9) 

This equation is implying that  𝑛𝑒  is given in term of  ∅   by 

𝑛𝑒 = 𝑛0 exp (
𝑒   ∅

𝑘  𝑇
) ,                                                                              (4.10) 

where the constant  𝑛0   is the electron number density at  ∅ = 0.   
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Maxwell’s equation generated by a charge density 𝜎  is  ∈0 ∇ ∙ 𝑬 =  𝜎       

where  ∈0  for the electrostatic field 𝑬 is a dielectric constant. This equation 

does imply that  

∈0 𝐸𝑥 =  𝑒 (𝑛
𝑖 − 𝑛𝑒).                                                                           (4.11) 

In term of the potential ∅, equation (4.11) will be 

− ∅𝑥𝑥 = 
𝑒

∈0
(𝑛𝑖 − 𝑛𝑒),                                                                           (4.12) 

Then, we may use (4.10) to eliminate 𝑛𝑒  from (4.12). Dropping the 𝑖-

superscript on the ion-variables (𝑛𝑖 , 𝑢𝑖), we can write the last equations for 

(𝑛, 𝑢, ∅) as 

𝑛𝑡 + (𝑛 𝑢)𝑥 = 0,                                                                             (4.13) 

𝑢𝑡 + 𝑢 𝑢𝑥 + 
𝑒

𝑚
∅𝑥 = 0,                                                                             (4.14) 

− ∅𝑥𝑥 + 
 𝑒 𝑛0
∈0

exp (
𝑒   ∅

𝑘  𝑇
) =  

𝑒

∈0
 𝑛.                                                           (4.15) 

This equation contains a pair of (𝑛, 𝑢) evolution equations coupled with a 

semi-linear elliptic equation for ∅. In order to nondimensionalize these 
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equations, we introduce the Debye length  𝜆0,  and the ion-acoustic speed of 

sound 𝑐0, defined by 

𝜆0
2 = 

∈0 𝑘 𝑇

𝑛0𝑒
2
,          𝑐0

2  =  
𝑘 𝑇

𝑚
 .                                                                (4.16) 

In different conditions, these parameters vary by order of magnitudes for 

plasmas. Such as, in a dense plasma in laboratory, might we have 𝑛0  ≈

  1020𝑚−3,  𝑇  ≈  60, 000𝐾 and 𝜆0  ≈   10
−6   𝑚 ;   in the wind of solar  

around the earth, we have 𝑛0  ≈   10
7𝑚−3, 𝜆0  ≈   10   𝑚 and 𝑇  ≈

 120, 000𝐾.   Introducing the dimensionless variables 

𝑥̅ =  𝜆0
−1 𝑥 , 𝑡 ̅ =  𝜆0

−1𝑐0 𝑡,   𝑛̅ =  
𝑛

𝑛0
,   𝑢̅ =  

𝑢

𝑛0
,                                

∅̅ =  
𝑒 ∅

𝑘  𝑇  
,                𝜌 = exp(∅)                                             (4.17) 

and drop the bars, we are getting the nondimensionalized equations 

𝑛𝑡 + (𝑛 𝑢)𝑥 = 0,                                                                             (4.18) 

𝑢𝑡 + 𝑢 𝑢𝑥 +  ∅𝑥 = 0,                                                                   (4.19) 

                    ∅𝑥𝑥 +  𝑛 =  𝜌.                                                                                 (4.20) 
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4.3  Derivation of the KdV equation and Soliton solutions 

In this section, we utilize the KdV equation to generate exact solutions for 

the simplified system (4.18) -(4.20) describing ion-acoustic waves in a 

plasma. This derivation illustrates the universal nature of the KdV equation, 

which applies to any wave motion with weak advective nonlinearity and 

weak long wave dispersion.  

To study the properties of soliton ion-acoustic waves in a plasma, we apply 

the reductive perturbation technique to the basic equations following 

Washimi and Taniuti [119]. 

Consequently, space and time coordinates are stretched over the following 

relations, 

𝜉 =  √𝜖(𝑥 − 𝜆 𝑡),       𝜏 =  √𝜖3  𝑡,                                            (4.21) 

where  ∈   is a small positive parameter and  𝜆 is the wave velocity. By using 

(4.21), equations (4.18)-(4.20) become 

−𝜆𝑛𝜉 + (𝑛  𝑢)𝜉  + ∈  𝑛𝜏 = 0,                                                           (4.22) 

− 𝜆 𝑢𝜉 +  ∅𝜉 + 𝑢 𝑢𝜉+ ∈  𝑢𝜏 = 0,                                                 (4.23) 
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𝜌 − ∈  ∅𝜉𝜉 =  𝑛.                                                                       (4.24) 

We look for asymptotic solutions for equations (4.22) – (4.24) of the form 

𝑛 = 1+∈ 𝑛1 +∈
2 𝑛2 +⋯,                                                             (4.25) 

𝑢 =∈ 𝑢1 +∈
2 𝑢2 +⋯,                                                                    (4.26) 

∅ =∈ ∅1 +∈
2 ∅2 +⋯,                                                                  (4.27) 

𝜌 = 𝑒∅ = 1+∈ ∅1 +∈
2 (∅2 + 

∅1
2

2
) +⋯.                                           (4.28)  

Using these expansions in (4.25) – (4.28), we obtain 

(𝑢1𝜉 − 𝜆𝑛1𝜉)  ∈  +(𝑢2𝜉 − 𝜆𝑛2𝜉 + (𝑛1𝑢1)𝜉  +   𝑛1𝜏) ∈
2+⋯ = 0, 

(− 𝜆 𝑢1𝜉 +  ∅1𝜉)  ∈  +(− 𝜆 𝑢2𝜉 +  ∅2𝜉 + 𝑢1𝑢1𝜉 +  𝑢1𝜏) ∈
2+⋯ = 0, 

(∅1 − 𝑛1)  ∈  +(∅2  −  𝑛2 +
1

2
∅1
2 − ∅1𝜉𝜉  ) ∈

2+⋯ = 0. 

 Equating coefficients of ∈  to  zero, we find that 

{

𝑢1𝜉 − 𝜆𝑛1𝜉 = 0,

− 𝜆 𝑢1𝜉 +  ∅1𝜉 = 0,                   

∅1 − 𝑛1 =  0.

                                                                   (4.29) 

Equating coefficients of  ∈2 to  zero, we find that 
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{
 

 
𝑢2𝜉 − 𝜆𝑛2𝜉 + (𝑛1𝑢1)𝜉  +   𝑛1𝜏 = 0,

− 𝜆 𝑢2𝜉 +  ∅2𝜉 + 𝑢1𝑢1𝜉 +  𝑢1𝜏 = 0,                  

∅2  −  𝑛2 +
1

2
∅1
2 − ∅1𝜉𝜉 =  0.

                        (4.30) 

Eliminating ∅1 from (4.29), we obtain  

{
𝑢1𝜉 − 𝜆𝑛1𝜉 = 0,

− 𝜆 𝑢1𝜉 +  𝑛1𝜉 = 0.
                                                                                       (4.31) 

From (4.31), we get a homogeneous linear system for (𝑛1, 𝑢1), 

(
−𝜆 1
1 −𝜆

) (
𝑛1
𝑢1
)
𝜉
= 0.                                                                               (4.32) 

This system has a nontrivial solution if 𝜆2 = 1. We assume that 𝜆 = 1   for 

definiteness, corresponding to a right-moving wave. Then 

(
𝑛1
𝑢1
) =  𝜓(𝜉, 𝜏) (

1
1
),        ∅1 =  𝜓(𝜉, 𝜏),                                               (4.33) 

where 𝜓(𝜉, 𝜏) is an arbitrary scalar-valued function. At the next order, after 

setting 𝜆 = 1 and eliminating ∅2 in (4.30), we obtain 

{
𝑢2𝜉 − 𝜆𝑛2𝜉 + (𝑛1𝑢1)𝜉  +   𝑛1𝜏 = 0,

− 𝜆 𝑢2𝜉 +  𝑛2𝜉   −  ∅1∅1𝜉 + ∅1𝜉𝜉𝜉 + 𝑢1𝑢1𝜉 +  𝑢1𝜏  = 0.
(4.34) 

From (4.34), we obtain a nonhomogeneous linear system for (𝑛2, 𝑢2), 
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(
−𝜆 1
1 −𝜆

) (
𝑛2
𝑢2
)
𝜉
+ (

(𝑛1𝑢1)𝜉  +   𝑛1𝜏
− ∅1∅1𝜉 + ∅1𝜉𝜉𝜉 + 𝑢1𝑢1𝜉 +  𝑢1𝜏

) = 0.    (4.35)  

This system is solvable for(𝑛2, 𝑢2) if and only if the nonhomogeneous term 

is orthogonal to the null-vector (1, 1). Using (4.35), we find that this 

condition implies that 𝜓(𝜉, 𝜏) satisfies a KdV equation 

𝜓𝜏 + 𝜓 𝜓𝜉 +
1

2
𝜓𝜉𝜉𝜉 = 0.                                                                     (4.36)   

Note that the linearized dispersion relation of this equation agrees with the 

long wave expansion of the linearized dispersion relation of the original 

system. If (4.36) satisfied, then we may solve (4.35) for(𝑛2, 𝑢2).  

The solution is the sum of a solution of the nonhomogeneous equations and 

an arbitrary multiple  𝜓2(𝜉, 𝜏) (
1
1
) of the solution of the homogeneous 

problem. We may compute higher-order terms in the asymptotic solution in 

a similar way. At the order  ∈𝑘, we obtain a nonhomogeneous linear equation 

for (𝑛𝑘, 𝑢𝑘) of the form 

(
−1 1
1 −1

) (
𝑛𝑘
𝑢𝑘
)
𝜉
+ (

𝑓𝑘−1
𝑔𝑘−1

) = 0,                                                 (4.37) 
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where 𝑓𝑘−1, 𝑔𝑘−1 depend only on (𝑛1, 𝑢1), ⋯ , (𝑛𝑘−1, 𝑢𝑘−1),   and ∅𝑘 may 

be expressed explicitly in terms of 𝑛1, . . . , 𝑛𝑘 .  

The condition that this equation is solvable for (𝑛𝑘, 𝑢𝑘) is 𝑓𝑘−1 + 𝑔𝑘−1 = 0 

and this condition is satisfied if 𝜓𝑘−1  satisfies a suitable equation. The 

solution for(𝑛𝑘, 𝑢𝑘)  then involves an arbitrary function of integration 𝜓𝑘  . 

An equation for 𝜓𝑘   follows from the solvability condition for the order 

(𝑘 +  1) equations.   

We find a travelling wave solution for the KdV equation (36) by using the 

sine-cosine method.  We first use the wave variable 𝜃 = 𝜉 − 𝑏 𝜏 where  𝑏  is 

a constant, to carry a PDE in two independent variables (36) into the 

following ordinary differential equation 

− 𝑏 𝜓/ +   𝜓𝜓/ +  
1

2
𝜓/// = 0,                                                           (4.38) 

where /  =
𝑑

𝑑𝜃
 .  Integrating (3.38) once, and considering the constants of 

integration as zero, we can find 

− 𝑏 𝜓 +  (
1

 2 
𝜓 2)  +  

1

2
𝜓// = 0,                                                     (4.39) 

We then take [88-91] 
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𝜓(𝜃) =  𝑎  𝑐𝑜𝑠 𝑚(𝜇 𝜃 ),                                                                     (4.40) 

𝜓/(𝜃) = −  𝑎 𝜇 𝑚  𝑐𝑜𝑠 𝑚−1(𝜇 𝜃 ) sin(𝜇 𝜃 ),                                      (4.41) 

𝜓//(𝜃) = −  𝑎 𝜇2𝑚2𝑐𝑜𝑠 𝑚(𝜇 𝜃 ) +  𝑎 𝜇2 𝑚(𝑚 − 1)𝑐𝑜𝑠 𝑚−2(𝜇 𝜃 ).  

(4.42) 

Substituting (4.40) – (4.42) into (4.39) yields 

−  ( 𝑎 𝑏 +  
1

2
 𝑎 𝜇2𝑚2) 𝑐𝑜𝑠 𝑚(𝜇 𝜃 ) + 

1

2
𝑎2𝑐𝑜𝑠  2𝑚(𝜇 𝜃 ) 

+
1

2
 𝑎 𝜇2 𝑚(𝑚 − 1)𝑐𝑜𝑠 𝑚−2(𝜇 𝜃 ) = 0.                                (4.43) 

Equating the exponents and the coefficients of each pair of the cosine 

functions, we find the following system of algebraic equations: 

𝑚 ≠ 0, 

2𝑚 = 𝑚 − 2, 

𝑎 𝑏 +
1

2
  𝑎 𝜇2𝑚2  = 0,                                            (4.44) 

1

2
𝑎2  +

1

2
 𝑎 𝜇2 𝑚(𝑚 − 1) = 0.                                                 

From system (4.44), we obtain  
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𝑚 = −2,           𝜇 = √
−𝑏

 2 
,        𝑎 = 3𝑏 .                                                 (4.45) 

Then, we obtain the formal solitary wave solutions for the equation (4.36) 

𝜓(𝜉, 𝜏) =  3𝑏  𝑠𝑒𝑐ℎ2
1

2
(√2𝑏  (𝜉 − 𝑏 𝜏) ),    𝑏 > 0                              (4.46) 

The steady state solution (4.46) of the KdV equation is obtained. The basic 

characteristics of the solitary waves as they evolve in time t have been 

obtained analytically and graphically (see Figures 4.1 & 4.2). 

It is found that the amplitude of the soliton does not depend on the external 

magnetic field but depends on the ion and electron temperature parameter. 

On the other hand, the width of the soliton depends on the strength of 

external magnetic field. 

 

Figure 4.1: Travelling wave solutions of eq.  (4.46) with  𝑡 =  0 (blue),

t =  1 (red)  and t =  2   (oily) 
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Figure 4.2: Bell − type wave solution of  eq. (4.46)   with    𝜆 = 1,

∈ =  1   and     b =  2    

For b <0 we get 

𝜓(𝜉, 𝜏) =  3𝑏 𝑠𝑒𝑐2
1

2
(√−2𝑏  (𝜉 − 𝑏 𝜏) ),    𝑏 < 0.                             (4.47) 

Figures 4.3 & 4.4 show how the different parameters play a key role in 

modifying the behavior of solitary waves in magnetized plasma system. It is 

evident that higher magnitudes of 𝑏  cause significant reductions in the 

amplitude of the solitary wave, but the soliton width increases as the width 

of b increases. 

𝜏 

𝜉 

𝜓(𝜉, 𝜏) 



60 
 

 

Figure 4.3: Solitary wave of bell types of eq.  (4.47) with  𝑡 =  0 (blue),

t =  1 (red)  and t =  2(oily) 

 

Figure 4.4: Dip and Hump soliton solution of  eq. (4.47)   with    𝜆 = 1,

∈ =  1   and     b =  −2    

We can now write the solution of the system (4.18) – (4.20) as 

(

𝑛
𝑢
∅
) =  (

1
0
0
) +  3𝑏 ∈  𝑠𝑒𝑐ℎ2

1

2
(√2𝑏 (𝜉 − 𝑏 𝜏))(

1
1
1
) + 𝑂(∈2)     (4.48) 
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if b>0,  and  

(

𝑛
𝑢
∅
) =  (

1
0
0
) +  3𝑏 ∈  𝑠𝑒𝑐2

1

2
(√−2𝑏(𝜉 − 𝑏 𝜏))(

1
1
1
) + 𝑂(∈2)     (4.49) 

if b<0. 

In nutshell, the leading-order asymptotic solution of (4.18) – (4.20) as ∈ →

 0+ is 

(

𝑛
𝑢
∅
) =  (

1
0
0
)+ ∈  𝜓 (√∈ (𝑥 − 𝑡), √∈3  𝑡) (

1
1
1
) + 𝑂(∈2)                 (4.50) 

We expect that this asymptotic solution is valid for long times of the order 

𝜏 = 𝑂(1)  𝑜𝑟   𝑡 = 𝑂 (𝜖
−3

2 ) 

4.4  Derivation of the mKdV equation and Soliton solutions 

In this section, we utilize the mKdV equation to generate solutions for the 

simplified system (3.18)-(3.20) describing ion-acoustic waves in plasmas. This 

derivation shows the universal nature of the mKdV formula, which applies to 

any wave movement with strong adventive nonlinearity and weak long wave 

dispersion.  
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Thus, space and time coordinates are stretched through the following 

relations, 

𝜉 = ∈   (𝑥 − 𝜆 𝑡),       𝜏 = ∈3   𝑡,                                            (4.51) 

where  ∈   is a small positive parameter and  𝜆 is the wave velocity. By using 

(4.51), equations (4.18)-(4.20) become  

−𝜆𝑛𝜉 + (𝑛  𝑢)𝜉  + ∈
2 𝑛𝜏 = 0,                                                           (4.52) 

− 𝜆 𝑢𝜉 +  ∅𝜉 + 𝑢 𝑢𝜉 + ∈
2 𝑢𝜏 = 0,                                                    (4.53) 

                𝜌 − ∈2  ∅𝜉𝜉 −  𝑛 = 0.                                                                      (4.54) 

We look for asymptotic solutions for (4.52) – (4.54) of the form 

𝑛 = 1+∈ 𝑛1 +∈
2 𝑛2 +∈

3 𝑛3 +⋯,                                                      (4.55)  

𝑢 =∈ 𝑢1 +∈
2 𝑢2 +∈

3 𝑢3 +⋯,                                                              (4.56)  

∅ =∈ ∅1 +∈
2 ∅2 +∈

3 ∅3 +⋯,                                                        (4.57)  

𝜌 = 1+∈ ∅1 +∈
2 (∅2 + 

∅1
2

2
) +∈3 (∅3 + ∅1∅2 +

∅1
3

6
) +⋯.       (4.58)  

Using these expansions in (4.55) – (4.58), and equating coefficients of ∈, we 

find that 
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𝑢1𝜉 − 𝜆𝑛1𝜉 = 0,                                                                             (4.59) 

− 𝜆 𝑢1𝜉 +  ∅1𝜉 = 0,                                                                     (4.60) 

                     ∅1 − 𝑛1 =  0.                                                                               (4.61) 

Equating coefficients of  ∈2, we find that 

𝑢2𝜉 − 𝜆𝑛2𝜉 + (𝑛1𝑢1)𝜉  = 0,                                                 (4.62) 

− 𝜆 𝑢2𝜉 +  ∅2𝜉 + 𝑢1𝑢1𝜉 = 0,                                                (4.63) 

 ∅2  −  𝑛2 +
1

2
∅1
2 =  0.                                                       (4.64) 

Equating coefficients of  ∈3, we find that 

𝑢3𝜉 − 𝜆𝑛3𝜉 + 𝑛1𝜏 + (𝑛1𝑢2)𝜉 + (𝑛2𝑢1)𝜉  = 0,                               (4.65) 

− 𝜆 𝑢3𝜉 +  ∅3𝜉 + 𝑢1𝜏 + (𝑢1𝑢2)𝜉 = 0,                                                  (4.66) 

         ∅3  −  𝑛3 + ∅1∅2 + 
1

6
∅1
3 − ∅1𝜉𝜉 =  0.                                              (4.67)   

Eliminating ∅1 from (4.59) – (4.61), we get a homogeneous linear system for 

(𝑛1, 𝑢1), 

(
−𝜆 1
1 −𝜆

) (
𝑛1
𝑢1
)
𝜉
= 0.                                                                   (4.68) 
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This system has a nontrivial solution if 𝜆2 = 1. We suppose that 𝜆 = 1   for 

definiteness, corresponding to a right-moving wave. Then 

(
𝑛1
𝑢1
) =  𝑔(𝜉, 𝜏) (

1
1
),        𝑢1 =  𝑔(𝜉, 𝜏),                                           (4.69) 

where 𝑔(𝜉, 𝜏) is an arbitrary scalar-valued function. At the next order, after 

setting 𝜆 = 1 and eliminating ∅2 in (4.62) – (4.64), we obtain a 

nonhomogeneous linear system for (𝑛2, 𝑢2), 

(
−𝜆 1
1 −𝜆

) (
𝑛2
𝑢2
)
𝜉
+ (

(𝑛1𝑢1)𝜉
− ∅1∅1𝜉 + 𝑢1𝑢1𝜉

) = 0.                                 (4.70) 

Again we suppose that 𝜆 = 1    for definiteness, corresponding to a right-

moving wave. Then 

∅1 = √3   𝑔(𝜉, 𝜏),    ∅2 = −𝑔
2(𝜉, 𝜏),     𝑛2 = − 𝑢2 =

𝑔2(𝜉, 𝜏)

2
.            (4.71) 

At the next order, after setting 𝜆 = 1 and eliminating ∅2 in (4.65) – (4.67), 

we obtain a nonhomogeneous linear system for (𝑛3, 𝑢3), 

(
−𝜆 1
1 −𝜆

) (
𝑛3
𝑢3
)
𝜉
+ (

𝑛1𝜏 + (𝑛1𝑢2)𝜉 + (𝑛2𝑢1)𝜉

∅1𝜉𝜉𝜉 − (∅1∅2)𝜉 −
∅1
2∅1𝜉

2
+ 𝑢1𝜏 + (𝑢1𝑢2)𝜉

) = 0. 

(4.72) 
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This system is solvable for (𝑛3, 𝑢3) if and only if the nonhomogeneous term 

is orthogonal to the null-vector (1, 1). Using (4.72), we find that this 

condition implies that 𝑔(𝜉, 𝜏) satisfies a mKdV equation 

𝑔𝜏 −  𝛼 𝑔
2𝑔𝜉 + 𝛽 𝑔𝜉𝜉𝜉 = 0,        where       𝛼 =  

3

4
,     𝛽 =

√3

2
.     (4.73)   

Note that the linearized dispersion relation of this equation agrees with the 

long wave expansion of the linearized dispersion relation of the original 

system.  

If (3.73) satisfied, then we may solve (3.72) for(𝑛3, 𝑢3). The solution is the 

sum of a solution of the nonhomogeneous equations and an arbitrary 

multiple  𝑔3(𝜉, 𝜏) (
1
1
)  of the solution of the homogeneous problem. We may 

compute higher-order terms in the asymptotic solution in a similar way. At 

the order  ∈𝑘, we obtain a nonhomogeneous linear equation for (𝑛𝑘, 𝑢𝑘) of 

the form 

(
−1 1
1 −1

) (
𝑛𝑘
𝑢𝑘
)
𝜉
+ (

𝑓𝑘−1
𝑔𝑘−1

) = 0,                                                 (4.74) 

where 𝑓𝑘−1, 𝑔𝑘−1 depend only on (𝑛1, 𝑢1), ⋯ , (𝑛𝑘−1, 𝑢𝑘−1),   and ∅𝑘 may 

be expressed explicitly in terms of 𝑛1, . . . , 𝑛𝑘 . The condition that this 
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equation is solvable for (𝑛𝑘, 𝑢𝑘) is 𝑓𝑘−1 + 𝑔𝑘−1 = 0, and this condition is 

satisfied if 𝑔𝑘−1  satisfies a suitable equation.  

The solution for (𝑛𝑘, 𝑢𝑘) then involves an arbitrary function of 

integration 𝑔 𝑘  . An equation for 𝑔𝑘   follows from the solvability condition 

for the order (𝑘 +  1) equations.  We can find a travelling wave solution for 

the mKdV equation (4.73) by using the sine-cosine method.   

We first use the wave variable   𝜃 = 𝜉 − 𝑏 𝜏   where  𝑏  is a constant, to 

reduce the PDE in two independent variables (4.73) into the following 

ordinary differential equation 

− 𝑏 𝑔/ − 𝛼  𝑔2𝑔/ +   𝛽 𝑔/// = 0,                                                         (4.75)     

where /  =
𝑑

𝑑𝜃
 .   Integrating (4.75) once, and considering the constants of 

integration as zero, we find that 

− 𝑏 𝑔 −   (
𝛼

 3 
𝑔 3)  +   𝛽 𝑔// = 0,                                                     (4.76) 

We then take [88-91 ] 

𝑔(𝜃) =  𝑎   𝑠𝑖𝑛 𝑚(𝜇 𝜃 ),                                                            (4.77) 

𝑔/(𝜃) = 𝑎  𝜇 𝑚  𝑠𝑖𝑛 𝑚−1(𝜇 𝜃 ) cos (𝜇 𝜃 ),                                                (4.78) 
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𝑔//(𝜃) = −  𝑎 𝜇2𝑚2𝑠𝑖𝑛 𝑚(𝜇 𝜃 ) +  𝑎 𝜇2 𝑚(𝑚 − 1)𝑠𝑖𝑛 𝑚−2(𝜇𝜃 ). (4.79) 

Substituting (3.77) – (3.79) into (3.76) yields 

− (𝑎 𝑏 +  𝛽 𝑎 𝜇2𝑚2)𝑠𝑖𝑛 𝑚(𝜇 𝜃 ) − 
𝛼

3
𝑎3𝑠𝑖𝑛  3𝑚(𝜇 𝜃 ) 

+𝛽 𝑎 𝜇2 𝑚(𝑚 − 1)𝑠𝑖𝑛 𝑚−2(𝜇 𝜃 ) = 0.                                (4.80) 

Equating the exponents and the coefficients of each pair of the sine 

functions, we find the following system of algebraic equations: 

𝑚 ≠ 0, 

3𝑚 = 𝑚 − 2, 

𝑎 𝑏 +  𝛽 𝑎 𝜇2𝑚2  = 0,                                         (4.81) 

− 𝛼

3
𝑎3  + 𝛽 𝑎 𝜇2 𝑚(𝑚 − 1) = 0.                                              

From this system (4.81), we obtain  

𝑚 = −1,           𝜇 = √
−𝑏

 𝛽 
,        𝑎 = √

− 6𝑏

𝛼
 .                                   (4.82) 

We can now write the formal solitary wave solutions for equation (4.73) as 
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𝑔(𝜉, 𝜏) =  √
6𝑏

𝛼
csch(√

𝑏

 𝛽 
 (𝜉 − 𝑏 𝜏)) ,   𝑏 > 0                                (4.83) 

The mKdV equation admits solitary type solutions given by equation (4.83) 

which has a csch(𝜇 𝜃 ) profile. The peak width and amplitude of these 

solitary waves are functions of several parameters. The presented Figures 

4.5 & 4.6  may help us to understanding the study of nonlinear waves in 

astrophysical plasmas. Comparing these results with other wave profiles can 

add to our knowledge of plasma physics. 

 

 

Figure 4.5: Travelling wave solutions of eq.  (4.83) with  𝑡 =  0 (blue),

t =  1 (red)  and t =  2   (oily) 
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Figure 4.6: Hump soliton solution of  eq. (4.83)   with    𝜆 = 1,

∈ =  1   and     b =  
√3

2
 

In Figure 4.6, the motion of curves is intimately related to the mKdV 

equation. This leads to the existence of soliton-like solutions in the motion 

of curves, as well as the existence of infinite number of conservation laws 

that can be put into relation with global geometric quantities. The purpose 

of the figures is to describe these relations for the two dimensional and 

three-dimensional cases. 

𝑔(𝜉, 𝜏) =  √
− 6𝑏

𝛼
csc(√

− 𝑏

 𝛽 
 (𝜉 − 𝑏 𝜏)) ,       𝑏 < 0.                    (4.84) 

𝜏 

𝜉 

𝑔(𝜉, 𝜏) 
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Although the mKdV equation is incapable of describing shock waves, it can 

however describe the asymptotic behavior of non-steady, low-amplitude 

wave trains.   

This means we have 2-soliton solutions of behavior and this is illustrated in 

Figures 4.7 & 4.8.  We see that for the mKdV equation we can obtain 

solutions travelling at different relative speeds to each other and so we 

assume this is possible for quite a range of speeds, although we  suspect that 

at some point the algebra might become too hard. 

 

Figure 4.7: Solitary wave of bell and valley types of eq.  (4.84) with  𝑡 

=  0 (blue), t =  1 (red)  and t =  2(oily) 

In Figure 4.7, we analyzed the solutions of the mKdV equation in various 

formulations used in theoretical and applied studies of equations with a 

similar structure. Some of the soliton solutions obtained were found to 

belong to well-known classes (breathers and kinks), while the others 
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represented new forms for the given equation, namely, wobblers, pair 

breathers, and oscillatory waves.  

 

Figure 4.8: Dip and Hump soliton solution of  eq. (4.84)   with    𝜆 = 1,

∈ =  1   and     b =  −
√3

2
 

In Figure 4.8, the soliton solutions covered all cases of double interactions 

and included triple interactions between breathers and kinks.  

Hence, we can write the solution of the system (4.18) – (4.20) as 

(

𝑛
𝑢
∅
) =  (

1
0
0
) + √

6𝑏

𝛼
 ∈    csch(√

𝑏

 𝛽 
(𝜉 − 𝑏 𝜏))(

1
1

√3

) + 𝑂(∈2)       (4.85) 

𝜉 

 

𝑔(𝜉, 𝜏) 

𝜏 
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(

𝑛
𝑢
∅
) =  (

1
0
0
) + √

− 6𝑏

𝛼
 ∈ csc(√

− 𝑏

 𝛽 
(𝜉 − 𝑏 𝜏))(

1
1

√3

) + 𝑂(∈2)        (4.86) 

4.5  Summary 

There has been considerable interest in new wave modes in plasmas recently 

and this is currently a rapidly growing area in plasma physics. The results 

indicate that the nonlinear evolution of charge fluctuations can have 

important effects on instabilities in plasmas that require further 

investigation. We have described a new simulation model that can be used 

for studying unique physical properties of waves in plasmas due to charging 

effects.  

We also have studied the system of PDEs that describes ion acoustic waves 

in plasmas and obtained exact soliton solutions. The corresponding KdV and 

mKdV equations were obtained using the reductive perturbation method. 

The solutions may have important applications in plasmas in which the 

plasma ions drift with respect to the electrons. Ion acoustic waves solutions 

may also be important for structures observed in numerous space and 

laboratory plasmas. 
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                                                            Chapter 5 

Travelling wave solutions for three-dimensional 

incompressible MHD 
 

5.1  Introduction 

The acronym MHD stands for three terms, magneto, indicating a magnetic 

field, hydro, referring to a liquid, and dynamics, meaning movement. The 

field of MHD is a fascinatingly rich field of physics and applied mathematics 

that considers the behavior of an electrically conducting fluid in the presence 

of an external electromagnetic field.  

Although interesting in its own right, MHD also has numerous engineering 

and scientific applications. This range from the pursuit of reliable energy 

sources such as nuclear fusion [100], to understanding near-earth plasmas 

such as solar wind [101] and the more exotic astrophysical objects such as 

stars, black holes, and the interstellar medium [102].  

Virtually in all of these areas, the phenomenon of turbulence and the role 

turbulence plays in engineering and scientific applications is certainly critical. 

As previously mentioned, MHD is concerned with the behavior of fluids in 

the presence of an external electromagnetic field. Of course, if the fluid does 
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not conduct electricity, then it will not influence, nor will it be influenced by, 

the external electromagnetic field. 

Since there is a vast amount of driving forces in MHD systems, there is a 

possibility for different types of waves that could propagate through the 

plasma. In incompressible MHD, we touch on the differences between ideal 

versus (visco-) resistive evolutions [110].  

The Elsasser formulation of the governing equations allows insights to be 

generalized from linear to nonlinear wave package behavior, which 

prominently appear in MHD turbulence theories. High resolution (pseudo-) 

spectral simulations give important clues to the anisotropic nature of MHD 

turbulence.  

We also discuss numerical evidence for a singular structure in incompressible 

MHD and for small-scale dynamo action by summarizing selected simulation-

based studies. We end this chapter with an introduction to compressible 

MHD, where the linear wave picture is richer and allows for wave steepening, 

paving the way for shock-dominated plasma behavior [128]. 

The MHD description governs the large-scale dynamics of plasmas and 

applies to many laboratories as well as astrophysical configurations. 
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Incompressible MHD has traditionally focused on topics like MHD 

turbulence, dynamo aspects, and singular structure formation. We 

investigate the type of waves that can exist by linearizing the MHD equations 

and then applying Fourier transforms.  

The field of incompressible MHD is a particularly rich subset of physics and 

applied mathematics. The challenges inherent in the equations provide a 

plethora of research opportunities. Aside from purely academic pursuits, 

MHD also plays an important role in the development of engineering 

technologies. Designing suitable engineering systems using electrically 

conducting fluids requires using computational techniques.  

One of the most prominent reasons for this difficulty is the phenomenon of 

fluid turbulence which again rears its head in MHD [133,134]. In addition to 

the velocity field displaying disordered behavior, the external 

electromagnetic field quantities also display such behavior [126]. The main 

aim of this chapter is to use the travelling wave method in the construction 

of exact soliton solutions for three-dimensional incompressible MHD 

equations. 
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This chapter is organized as follows. In section 5.1, we review the main 

governing equations of incompressible MHD. In section 5.2, the 𝑠𝑖𝑛(𝑘𝜉) −

𝑐𝑜𝑠(𝑘𝜉) method and the exact solutions for the incompressible MHD 

problem are presented. Finally, section 5.3 concludes the chapter. 

5.2  Travelling wave solutions 

We start with the equations of incompressible MHD,  

∇ ∙  𝑽  = ∇ ∙  𝑩   =  0,                                                                       (5.1) 

𝑽𝒕 + (𝑽 ∙  ∇)𝑽 − (𝑩 ∙  ∇)𝐁 + ∇(𝑃 +
1

2
|𝐁|2) 

−𝑣1𝑽𝑥𝑥 − 𝑣2𝑽𝑦𝑦 − 𝑣3𝑽𝑧𝑧 = 0,                                                   (5.2) 

𝑩𝑡 + (𝑽 ∙  ∇)𝑩 − (𝑩 ∙  ∇)𝑽 

−𝜂1𝑩𝑥𝑥 − 𝜂2𝑩𝑦𝑦 − 𝜂3𝑩𝑧𝑧 = 0 ,                                                  (5.3) 

where  

𝑽 = (𝑉1(𝑥, 𝑦, 𝑧, 𝑡), 𝑉2(𝑥, 𝑦, 𝑧, 𝑡), 𝑉3(𝑥, 𝑦, 𝑧, 𝑡))
𝑇 

𝑩 = (𝐵1(𝑥, 𝑦, 𝑧, 𝑡), 𝐵2(𝑥, 𝑦, 𝑧, 𝑡), 𝐵3(𝑥, 𝑦, 𝑥, 𝑡))
𝑇 

and                     𝑃 = 𝑃(𝑥, 𝑦, 𝑧, 𝑡) 
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represent the unknown velocity field, the magnetic field, and the pressure of 

the flow respectively, and 𝑣1, 𝑣2, 𝑣3, 𝜂1, 𝜂2, and 𝜂3 are the viscosity 

coefficients of the flow.  

In scalar form, the three-dimensional incompressible MHD system (5.1)-(5.3) 

is 

𝑉 1,𝑥 + 𝑉2,𝑦 + 𝑉3,𝑧 = 𝐵1,𝑥 + 𝐵2,𝑦 + 𝐵3,𝑧 = 0,                                      (5.4) 

𝑉1,𝑡 + 𝑉1𝑉1,𝑥 + 𝑉2𝑉1,𝑦 + 𝑉3𝑉1,𝑧 + 𝑃𝑥 + 𝐵2(𝐵2,𝑥 − 𝐵1,𝑦) 

+𝐵3(𝐵3,𝑥 − 𝐵1,𝑧) − 𝑣1𝑉1,𝑥𝑥 − 𝑣2𝑉1,𝑦𝑦 − 𝑣3𝑉1,𝑧𝑧 = 0,                        (5.5) 

𝑉2,𝑡 + 𝑉1𝑉2,𝑥 + 𝑉2𝑉2,𝑦 + 𝑉3𝑉2,𝑧 + 𝑃𝑦 + 𝐵1(𝐵1,𝑦 − 𝐵2,𝑥) 

+𝐵3(𝐵3,𝑦 − 𝐵2,𝑧) − 𝑉1𝑉2,𝑥𝑥 − 𝑉2𝑉2,𝑦𝑦 − 𝑉3𝑉2,𝑧𝑧 = 0,                      (5.6) 

𝑉3,𝑡 + 𝑉1𝑉3,𝑥 + 𝑉2𝑉3,𝑦 + 𝑉3𝑉3,𝑧 + 𝑃𝑧 + 𝐵1(𝐵1,𝑧 − 𝐵3,𝑥) 

+𝐵2(𝐵2,𝑧 − 𝐵3,,𝑦) − 𝑣1𝑉3,𝑥𝑥 − 𝑣2𝑉3,𝑦𝑦 − 𝑣3𝑉3,𝑧𝑧 = 0,                       (5.7) 

𝐵1,𝑡 + 𝑉1𝐵1,𝑥 + 𝑉2𝐵1,𝑦 + 𝑉3𝐵1,𝑧 − 𝐵1𝑉1,𝑥 − 𝐵2𝑉1,𝑦 − 𝐵3𝑉1,𝑧 

−𝜂1𝐵1,𝑥𝑥 − 𝜂2𝐵1,𝑦𝑦 − 𝜂3𝐵1,𝑧𝑧 = 0 ,                                                          (5.8) 

𝐵2,𝑡 + 𝑉1𝐵2,𝑥 + 𝑉2𝐵2,𝑦 + 𝑉3𝐵2,𝑧 − 𝐵1𝑉2,𝑥 − 𝐵2𝑉2,𝑦 − 𝐵2𝑉2,𝑧 
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−𝜂1𝐵2,𝑥𝑥 − 𝜂2𝐵2,𝑦𝑦 − 𝜂3𝐵2,𝑧𝑧 = 0 ,                                                          (5.9) 

𝐵3,𝑡 + 𝑉1𝐵3,𝑥 + 𝑉2𝐵3,𝑦 + 𝑉3𝐵3,𝑧 − 𝐵1𝑉3,𝑥 − 𝐵2𝑉3,𝑦 − 𝐵3𝑉3,𝑧 

−𝜂1𝐵3,𝑥𝑥 − 𝜂2𝐵3,𝑦𝑦 − 𝜂3𝐵3,𝑧𝑧 = 0 .                                                       (5.10) 

To find the travelling wave solution for equations (5.4)-(5.10), we take the 

transformation   

𝑉𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣𝑖(𝜉), 𝐵𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑏𝑖(𝜉),   

𝑃(𝑥, 𝑦, 𝑧, 𝑡) =  𝑝(𝜉), 𝑖 = 1,2,3                                              (5.11) 

where 𝜉 =  𝑥 +  𝑦 +  𝛼𝑧 +  𝛽𝑡; 

This reduces equations (5.4)-(5.10) into the following system of ordinary 

differential equations 

𝑣1
/
+ 𝑣2

/
+ 𝛼𝑣3

/
+ 𝑏1

/
+ 𝑏2

/
+ 𝛼𝑏3

/
= 0,                                         (5.12) 

(𝛽 + 𝑣1 + 𝑣2 +  𝛼𝑣3)𝑣1
/
+ 𝑝/ + 𝑏2(𝑏2

/
− 𝑏1

/
) + 

𝑏3(𝑏3
/
− 𝛼𝑏1

/
) − (𝑣1 + 𝑣2 + 𝛼

2𝑣3)𝑣1
//
= 0,                            (5.13) 

(𝛽 + 𝑣1 + 𝑣2 +  𝛼𝑣3)𝑣2
/
+ 𝑝/ + 𝑏1(𝑏1

/
− 𝑏2

/
) + 

𝑏3(𝑏3
/
− 𝛼𝑏2

/
) − (𝑣1 + 𝑣2 + 𝛼

2𝑣3)𝑣2
//
= 0,                            (5.14) 
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(𝛽 + 𝑣1 + 𝑣2 +  𝛼𝑣3)𝑣3
/
+  𝛼𝑝/ + 𝑏1(𝛼𝑏1

/
− 𝑏3

/
) + 

𝑏2(𝛼𝑏2
/
− 𝑏3

/
) − (𝑣1 + 𝑣2 + 𝛼

2𝑣3)𝑣3
//
= 0,                            (5.15) 

(𝛽 + 𝑣1 + 𝑣2 + 𝛼𝑣3)𝑏1
/
− (𝑏1 + 𝑏2 + 𝛼𝑏3)𝑣1

/
 

−(𝜂1 + 𝜂2 + 𝛼
2𝜂3)𝑏1

//
= 0 ,                                                    (5.16) 

(𝛽 + 𝑣1 + 𝑣2 + 𝛼𝑣3)𝑏2
/
− (𝑏1 + 𝑏2 + 𝛼𝑏3)𝑣2

/
 

−(𝜂1 + 𝜂2 + 𝛼
2𝜂3)𝑏2

//
= 0 ,                                                   (5.17) 

(𝛽 + 𝑣1 + 𝑣2 + 𝛼𝑣3)𝑏3
/
− (𝑏1 + 𝑏2 + 𝛼𝑏3)𝑣3

/
 

−(𝜂1 + 𝜂2 + 𝛼
2𝜂3)𝑏3

//
= 0 ,                                                         (5.18) 

where  / =
𝑑

𝑑𝜉
  Balancing the highest order of linear terms with nonlinear 

terms in systems (5.12) - (5.18) suggests the following ansatz 

𝑣1 = 𝛾1 + 𝛾2𝜓,      𝑣2 = 𝛾3 + 𝛾4𝜓,     𝑣3 = 𝛾5 + 𝛾6𝜓,          (5.19) 

𝑏1 = 𝛿1 + 𝛿2𝜓,      𝑏2 = 𝛿3 + 𝛿4𝜓,     𝑏3 = 𝛿5 + 𝛿6𝜓,          (5.20) 

𝑝 = 𝜌1 + 𝜌2𝜓 + 𝜌3𝜓
2,                                                  (5.21)          
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where 𝛾𝑖 , 𝛿𝑖 , 𝜌𝑖 , 𝛼 and 𝛽, are constants to be determined, and the function 𝜓  

satisfies the Riccati equation 

𝜓/ 2 + 𝜖𝑘2𝜓2 = 𝜖𝑘4, 𝑘 ≥ 0, 𝜖 = ±1,                         (5.22) 

There are three kinds of general solutions [134-136] 

𝜓 = 𝑘 sin 𝑘𝜉 , or       𝜓 = 𝑘 cos 𝑘𝜉 , when  𝜖 = 1     (5.23) 

𝜓 = constant,when          𝑘 = 0,                                           (5,24) 

and 

𝜓 = 𝑘 cos h 𝑘𝜉,      when         𝜖 = −1.                                (5.25)  

Substituting (5.19) -(5.21) into system (5.12) -(5.18) and using the Riccati  

equation (5.22), we obtain 

(𝛾2 + 𝛾4 + 𝛼𝛾6)𝜓
/ = (𝛿2 + 𝛿4 + 𝛼𝛿6)𝜓

/ = 0,                                 (5.26) 

(𝛾2𝛽)𝜓
/ + (𝛾1 + 𝛾2𝜓)(𝛾2𝜓

/) + (𝛾3 + 𝛾4𝜓)(𝛾2𝜓
/) 

+𝛼(𝛾5 + 𝛾6𝜓)(𝛾2𝜓
/) + (𝜌2𝜓

/) + (2𝜌3𝜓𝜓
/) + 

(𝛿3 + 𝛿4𝜓)(𝛿4 − 𝛿2)𝜓
/ + (𝛿5 + 𝛿6𝜓)(𝛿6 − 𝛼𝛿2)𝜓

/ 

−(𝑣1 + 𝑣2 + 𝛼
2𝑣3)(𝛾2𝜓

//) = 0,                                                 (5.27) 
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(𝛽 + 𝛾1 + 𝛾2𝜓 + 𝛾3 + 𝛾4𝜓 + 𝛼𝛾5 + 𝛼𝛾6𝜓)(𝛾4𝜓
/) + 

(𝜌2𝜓
/) + (2𝜌3𝜓𝜓

/) + (𝛿1 + 𝛿2𝜓)(𝛿2 − 𝛿4𝜓)𝜓
/ + 

(𝛿5 + 𝛿6𝜓)(𝛿6 − 𝛼𝛿4)𝜓
/ − 

(𝑣1 + 𝑣2 + 𝛼
2𝑣3)(𝛾4𝜓

//) = 0,                                                              (5.28) 

(𝛽 + 𝛾1 + 𝛾2𝜓 + 𝛾3 + 𝛾4𝜓 + 𝛼𝛾5 + 𝛼𝛾6𝜓)(𝛾6𝜓
/) + 

(𝛼𝜌2𝜓
/) + (2𝛼𝜌3𝜓𝜓

/) + (𝛿1 + 𝛿2𝜓)(𝛼𝛿2 − 𝛿6)𝜓
/ + 

(𝛿3 + 𝛿4𝜓)(𝛼𝛿4 − 𝛿6)𝜓
/ − 

(𝑣1 + 𝑣2 + 𝛼
2𝑣3)(𝛾6𝜓

//) = 0,                                                     (5.29) 

(𝛽 + 𝛾1 + 𝛾2𝜓 + 𝛾3 + 𝛾4𝜓 + 𝛼𝛾5 + 𝛼𝛾6𝜓)(𝛿2𝜓
/) 

−(𝛿1 + 𝛿2𝜓 + 𝛿3 + 𝛿4𝜓 + 𝛼𝛿5 + 𝛼𝛿6𝜓)(𝛾2𝜓
/) + 

−(𝜂1 + 𝜂2 + 𝛼
2𝜂3)(𝛿2𝜓

//) = 0,                                                 (5.30) 

(𝛽 + 𝛾1 + 𝛾2𝜓 + 𝛾3 + 𝛾4𝜓 + 𝛼𝛾5 + 𝛼𝛾6𝜓)(𝛿4𝜓
/) 

−(𝛿1 + 𝛿2𝜓 + 𝛿3 + 𝛿4𝜓 + 𝛼𝛿5 + 𝛼𝛿6𝜓)(𝛾4𝜓
/) + 

−(𝜂1 + 𝜂2 + 𝛼
2𝜂3)(𝛿4𝜓

//) = 0,                                                 (5.31) 

(𝛽 + 𝛾1 + 𝛾2𝜓 + 𝛾3 + 𝛾4𝜓 + 𝛼𝛾5 + 𝛼𝛾6𝜓)(𝛿6𝜓
/) 
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−(𝛿1 + 𝛿2𝜓 + 𝛿3 + 𝛿4𝜓 + 𝛼𝛿5 + 𝛼𝛿6𝜓)(𝛾6𝜓
/) + 

−(𝜂1 + 𝜂2 + 𝛼
2𝜂3)(𝛿6𝜓

//) = 0,                                                 (5.32) 

By setting the coefficients of all powers of 𝜓,𝜓/ 𝑎𝑛𝑑 𝜓𝜓/ to zero, we get a 

set of algebraic equations for the variables 𝛾𝑖 , 𝛿𝑖 , 𝜌𝑖 , 𝛼 and 𝛽. 

(𝛾2 + 𝛾4 + 𝛼𝛾6) = 0,     (𝛿2 + 𝛿4 + 𝛼𝛿6) = 0,                         (5.33) 

(𝑣1 + 𝑣2 + 𝛼
2𝑣3)(𝛾2𝑘

2) = 0,                                                       (5.34) 

𝛾2𝛽 + 𝛾1𝛾2 + 𝛾3𝛾2 + 𝛼𝛾5𝛾2 + 𝜌2 

+𝛿3𝛿4 − 𝛿3𝛿2 + 𝛿5𝛿6 − 𝛼𝛿5𝛿2 = 0,                                           (5.35) 

𝛾4
2 + 𝛾2𝛾4 + 𝛼𝛾6𝛾2 + 2𝜌3 + 𝛿4

2 − 𝛿4𝛿2 + 𝛿6
2 − 𝛼𝛿6𝛿2 = 0,           (5.36) 

(𝑣1 + 𝑣2 + 𝛼
2𝑣3)(𝛾4𝑘

2) = 0,                                                       (5.37) 

𝛾4𝛽 + 𝛾1𝛾4 + 𝛾3𝛾4 + 𝛼𝛾5𝛾4 + 𝜌2 

+𝛿1𝛿2 − 𝛿1𝛿4 + 𝛿5𝛿6 − 𝛼𝛿5𝛿4 = 0,                                           (5.38) 

𝛾4
2 + 𝛾2𝛾4 + 𝛼𝛾4𝛾6 + 2𝜌3 + 𝛿2

2 − 𝛿4𝛿2 + 𝛿6
2 − 𝛼𝛿6𝛿2 = 0,    (5.39) 

(𝑣1 + 𝑣2 + 𝛼
2𝑣3)(𝛾6𝑘

2) = 0,                                                       (5.40) 

𝛾6𝛽 + 𝛾1𝛾6 + 𝛾3𝛾6 + 𝛼𝛾5𝛾6 + 𝛼𝜌2 
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+𝛼𝛿1𝛿2 − 𝛿1𝛿6 + 𝛿3𝛿4 − 𝛼𝛿3𝛿6 = 0,                                        (5.41) 

𝛼𝛾6
2 + 𝛾2𝛾6 + 𝛾4𝛾6 + 2𝛼𝜌3 

+𝛼𝛿2
2 − 𝛿6𝛿2 + 𝛼𝛿4

2 − 𝛿6𝛿2 = 0,                                                (5.42) 

(𝜂1 + 𝜂2 + 𝛼
2𝜂3)(𝛿2𝑘

2) = 0,                                                       (5.43) 

𝛿2𝛽 + 𝛾1𝛿2 + 𝛾3𝛿2 + 𝛼𝛾5𝛿2 − 𝛾2𝛿1 − 𝛾2𝛿3 − 𝛼𝛿5𝛾2 = 0,                    (5.44) 

𝛾2𝛿2 + 𝛾4𝛿2 + 𝛼𝛾6𝛿2 − 𝛾2𝛿2 − 𝛿4𝛾2 − 𝛼𝛿6𝛾2 = 0,                (5.45) 

(𝜂1 + 𝜂2 + 𝛼
2𝜂3)(𝛿4𝑘

2) = 0,                                                       (5.46) 

𝛿4𝛽 + 𝛾1𝛿4 + 𝛾3𝛿4 + 𝛼𝛾5𝛿4 − 𝛾4𝛿1 − 𝛾4𝛿3 − 𝛼𝛿5𝛾4 = 0,                    (5.47) 

𝛾2𝛿4 + 𝛾4𝛿4 + 𝛼𝛾6𝛿4 − 𝛾4𝛿2 − 𝛿4𝛾4 − 𝛼𝛿6𝛾4 = 0,                                (5.48) 

(𝜂1 + 𝜂2 + 𝛼
2𝜂3)(𝛿6𝑘

2) = 0,                                                                       (5.49) 

𝛿6𝛽 + 𝛾1𝛿6 + 𝛾3𝛿6 + 𝛼𝛾5𝛿6 − 𝛾6𝛿1 − 𝛾6𝛿3 − 𝛼𝛿5𝛾6 = 0,                     (5.50) 

𝛾2𝛿6 + 𝛾4𝛿6 + 𝛼𝛾6𝛿6 − 𝛾6𝛿2 − 𝛿4𝛾6 − 𝛼𝛿6𝛾6 = 0,                (5.51) 

The solutions for these equations were generated using the symbolic 

software package Mathematica,  

𝑣1 = 𝑣2 = −2𝑣3, 𝜂1 = 𝜂2 = −2𝜂3, 
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𝛼 = 2, 𝛾2 = 𝛾4 = 𝛿2 = 𝛿4 = −𝛾6 = −𝛿6 = 𝑑0, 

𝜌3 =
−3

2
𝑑0
2, 𝜌2 = 𝑑0(3 − 𝑐0), 𝛽 = 𝑐0 − 𝑎0,             (5.52) 

where 

𝑎0 = 𝛾1 + 𝛾3 + 2𝛾5,       𝑐0 = 𝛿1 + 𝛿3 + 2𝛿5, 

and 𝑎0, 𝑐0, 𝜌2, 𝜌3, and k are arbitrary constants. Since 𝑘 is an arbitrary 

parameter, according to (5.19)-(5.21), (5.23)-(5.25) and (5.52), we obtain 

three kinds of travelling wave solutions for the new coupled MHD system 

(5.1)-(5.3), namely,  

(1) a periodic solution with 𝜖 = 1 

𝑉1 = 𝛾1 + 𝑘𝑑0 sin 𝑘𝜉 , 𝑉2 = 𝛾3 + 𝑘𝑑0 sin 𝑘𝜉, 

𝑉3 = 𝛾5 − 𝑘𝑑0 sin 𝑘𝜉 ,                                                                     (5.53) 

𝐵1 = 𝛿1 + 𝑘𝑑0 sin 𝑘𝜉 , 𝐵2 = 𝛿3 + 𝑘𝑑0 sin 𝑘𝜉, 

𝐵3 = 𝛿5 − 𝑘𝑑0 sin 𝑘𝜉 ,                                                                    (5.54) 

𝑃 = 𝜌1 + 𝑘𝑑0(3 − 𝑐0) sin 𝑘𝜉 −
3

2
𝑑0
2𝑘2 sin2 𝑘𝜉 ,                      (5.55) 

(2) a soliton solution with 𝜖 = −1 
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𝑉1 = 𝛾1 + 𝑘𝑑0 cos h 𝑘𝜉, 𝑉2 = 𝛾3 + 𝑘𝑑0 cos h 𝑘𝜉, 

𝑉3 = 𝛾5 − 𝑘𝑑0 cos h 𝑘𝜉 ,                                                                 (5.56) 

𝐵1 = 𝛿1 + 𝑘𝑑0 cos h 𝑘𝜉 , 𝐵2 = 𝛿3 + 𝑘𝑑0 cos h 𝑘𝜉, 

𝐵3 = 𝛿5 − 𝑘𝑑0 cos h 𝑘𝜉 ,                                                                (5.57) 

𝑃 = 𝜌1 + 𝑘𝑑0(3 − 𝑐0) cos h 𝑘𝜉 −
3

2
𝑑0
2𝑘2 cos h2 𝑘𝜉 ,              (5.58) 

(3) a constant solution with 𝑘 = 0k 

𝑉1 = 𝛾1, 𝑉2 = 𝛾3, 𝑉3 = 𝛾5,                                             (5.59) 

𝐵1 = 𝛿1, 𝐵2 = 𝛿3, 𝐵3 = 𝛿5,                                            (5.60) 

𝑃 = 𝜌1,                                                                                                (5.61) 

where           𝜉 =  𝑥 +  𝑦 +  2𝑧 + (𝑐0 + 𝑎0)𝑡. 

The MHD equations govern the dynamics of the velocity and magnetic field 

in electrically conducting fluids and reflect the basic laws of conservation in 

physics. These equations can be implemented to study various problems in  

plasma physics, liquid metals, saltwater, and astrophysics.  
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The MHD equations involve coupling between the incompressible Navier-

Stokes equations (when the magnetic field 𝐵 is identically equal to 0) 

governing the fluid and incompressible Euler equations for 

𝑩 = (0, 𝑣1, 𝑣2, 𝑣3)  =  0 

This chapter examines the soliton solutions for the three-dimensional 

incompressible MHD equations with only magnetic diffusion (without 

velocity dissipation). The magnetic field, which is present everywhere in the 

universe, generates a magnetic force and this force influences the dynamics 

of a moving electrically conducting fluid, potentially changing the geometry 

or strength of the magnetic field itself. It has been found that the difference 

in the phase may occur between speed and fluctuations of the magnetic field 

when the kinetic and magnetic Reynolds numbers are very large. Since the 

speed and fluctuations of the magnetic field are both circularly polarized, the 

phase difference makes them no longer parallel or anti-parallel like that in 

the incompressible MHD. 

5.3  Conclusions  

This chapter presents a stabilized exact soliton solution for the 

incompressible MHD equations. These stabilized soliton solutions are 
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focused at incompressible fluids and the main technological applications in 

mind are those related with material processing techniques.  

The flow considered here is incompressible and parallel to the magnetic field. 

Several classes of soliton solutions are obtained in three-dimensional 

Cartesian coordinates. Previously, Neukirch [72] obtained self-consistent 

three-dimensional exact solutions to the MHD equations and solved the 

basic nonlinear equations in terms of Jacobi elliptic functions. Petrie and 

Neukirch [73] used a transformation method to study the equilibria of MHD 

equations and solved one component of the problem of the vanishing 

magnetic field. Petrie et al. [74] obtained two-dimensional exact solutions of 

the MHD equations with application to solar prominences. Here, we 

obtained three-dimensional exact solutions in the presence of mass flow and 

with all three components of the magnetic field. 

The three kinds of travelling wave solutions for the new coupled MHD system 

include a periodic solution with = 1 , a soliton solution with 𝜖 = −1 and a 

constant solution with 𝑘 = 0.  
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Chapter 6 

Analytical solutions for isothermal       

magnetostatic atmospheres 

  
6.1  Introduction 

The Sun is an object of great beauty and fascination that has been studied 

with interest for thousands of years. During this century it has gradually 

become clear that much of the observed structure owes its existence to the 

Sun's magnetic field. The effects of the Sun's magnetic field in the solar 

atmosphere are pervasive and give rise to several anomalies throughout the 

solar atmosphere. On the photosphere, sunspots can be seen with the naked 

eye. During a total eclipse and with the aid of a coronagraph, wide arches 

and helmet streamers can be seen in the corona. Also, high-resolution 

observations of the Sun from the ground have revealed new features of the 

photosphere and chromosphere in fine detail. These have been 

complemented by satellite observations of the transition region and corona 

directly. The visible solar atmosphere consists of three regions with different 

physical properties. The lowest is an extremely thin layer of plasma, called 

the photosphere, which is relatively dense and opaque and emits most of the 



89 
 

solar radiation. Above it lies the rarer and more transparent chromosphere, 

while the corona extends from the top of a narrow transition region to the 

Earth and beyond. Hydrogen is almost wholly ionised in the upper 

chromosphere, but neutral hydrogen is important in the lower 

chromosphere and photosphere [92-97].  

The Sun is our nearest star. It is important for astronomy because many 

phenomena which can only be studied indirectly in other stars can be directly 

observed in the Sun (e.g. stellar rotation, starspots, the structure of the 

stellar surface). Our present picture of the Sun is based both on observations 

and on theoretical calculations. Some observations of the Sun disagree with 

the theoretical solar models. The details of the models will have to be 

changed, but the general picture should remain valid. 

Solar MHD is an important tool for understanding many solar phenomena. 

It also plays a crucial role in explaining the behaviour of more general 

cosmical magnetic fields and plasmas, since the Sun provides a natural 

laboratory in which such behaviour may be studied. While terrestrial 

experiments are invaluable in demonstrating general plasma properties, 

conclusions from them cannot be applied uncritically to solar plasmas and 
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have in the past given rise to misconceptions about solar magnetic field 

behaviour. 

The magnetostatic equations were widely used to model the magnetic 

structure of the solar atmosphere [41]. An investigation of a family of 

isothermal magnetostatic atmospheres with one ignorable coordinate 

corresponding to a uniform gravitational field in a plane geometry is carried 

out. The balance of force consists of the force between 𝑱 ∧  𝑩  (𝑩  is the 

induction of the magnetic field, 𝑱  is the strength of the electrical current), 

gravitational force, and gradient force of the gas pressure. However, in many 

models, the temperature distribution is defined a priori and any direct 

references to the energy equations are not taken into consideration. 

Magnetostatic equations in solar physics have been used to model many 

different phenomena, like the slow growth of solar flares or the 

magnetostatic support of prominence [43]. The nonlinear equilibrium 

problem for modelling astrophysical plasmas was resolved in several cases 

[44]. 

In this chapter, the problem of a plasma equilibrium in a gravitational field is 

identified. For the case of an isothermal atmosphere, the empirical nonlinear 
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periodic solutions of the corresponding elliptic equation are provided within 

a uniform gravitational field for various arbitrary function choices. Such 

solutions are derived using the sine–cosine and Bäcklund transformations. 

6.2  Basic equations 

The relevant magnetohydrostatic equations consist of the equilibrium 

equation [46, 47]:  

𝑱 𝛬 𝑩 − 𝜌∇𝛷 − ∇𝑃 = 0                                                        ( 6.1) 

and Maxwell’s equations:     

𝑱 =
𝛁 𝛬 𝑩

µ
,                                                                     (6.2) 

𝛁 . 𝑩 = 𝟎,                                                                       (6.3) 

where 𝑃, 𝜌 , µ = 4𝜋  and 𝛷 are the gas pressure, the mass density, the 

magnetic permeability and the gravitational potential, respectively. It is 

assumed that the temperature is uniform in space and that the plasma 

behaves as an ideal gas satisfying the equation of state 𝑝 = 𝜌 𝑅0𝑇0, where  

 𝑅0 is the gas constant and 𝑇0 is the temperature.  The magnetic field 𝑩 can 

be written as,  
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 𝑩 = 𝛁 𝑢(𝑦, 𝑧) 𝛬 𝒆𝒙 + 𝐵𝑥 𝒆𝒙 = (𝐵𝑥,
𝜕𝑢(𝑦,𝑧)

𝜕𝑧
,
−𝜕𝑢(𝑦,𝑧)

𝜕𝑦
),                          (6.4) 

where   𝑢 (𝑦, 𝑧),  𝐵𝑥 (𝑦, 𝑧)  are the magnetic flux function and 

𝑥 −component of  𝐵 .  The form of (6.4) for B ensures that  𝜵 ·  𝑩 =  0, and 

there is no mono pole or defect structure. Equation (6.1) requires the 

pressure and density be of the form [46]: 

𝑃(𝑦. 𝑧) = 𝑃(𝑢(𝑦, 𝑧))𝑒
− 𝑧
ℎ ,         𝜌(𝑦, 𝑧) =

1

(𝑔ℎ)
𝑃(𝑢(𝑦, 𝑧))𝑒

− 𝑧
ℎ                 (6.5) 

where ℎ =
𝑅𝑜𝑇𝑜

𝑔
  is the scale height. Substituting equations (6.2) – (6.5) in 

equation (6.1), we obtain 

∇2𝑢 + 𝑓(𝑢)𝑒
− 𝑧
ℎ = 0                                                                     (6.6) 

where 

𝑓(𝑢) = 4 𝜋
𝑑𝑃

𝑑𝑢
.                                                                             (6.7) 

Equation (6.7) gives 

𝑃(𝑢) = 𝑃0 +
1

 4𝜋
∫𝑓(𝑢)𝑑𝑢                                                         (6.8) 

Substituting equation (6.8) into equation (6.5), we obtain 
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𝑃(𝑦, 𝑧) = (𝑃0 +
1

4 𝜋
∫𝑓(𝑢)𝑑𝑢 ) 𝑒

− 𝑧
ℎ ,                                               (6.9) 

𝜌(𝑦, 𝑧) =
1

(𝑔ℎ)
(𝑃0 +

1

4 𝜋
∫𝑓(𝑢)𝑑𝑢)𝑒

− 𝑧
ℎ ,                               (6.10) 

where 𝑃0 is constant. Taking the transformations 

𝑥1 = 𝑒
− 𝑧
𝑙  𝑐𝑜𝑠 

𝑦

𝑙
,    𝑥2 = 𝑒

− 𝑧
𝑙  𝑠𝑖𝑛 

𝑦

𝑙
,     𝑥1 + 𝑖 𝑥2 = 𝑒

− 𝑧
𝑙 𝑒

𝑖𝑦
𝑙                (6.11) 

reduces (6.6) to 

𝜕2𝑢

𝜕𝑥1
2 +

𝜕2𝑢

𝜕 𝑥2
2 + 𝑙

2𝑓(𝑢)𝑒
(
2
𝑙
−
1
ℎ
)𝑧
= 0                                         (6.12) 

The above equations have been given in Khater et al. [43-47]. 

6.3  Liouville equation       

We will study the Liouville equation as special case of equation (6.12).  Let us 

assume 𝑓(𝑢) has the form [62]: 

𝑓(𝑢) = −𝛼2𝑢0𝑒
− 
𝑢
𝑢0 ,                                                            (6.13) 

where    𝑢0 and  𝛼2 are constants. Hence   

𝑃(𝑦, 𝑧) = (𝑃0 +
𝛼2𝑢0

2

8 𝜋
𝑒
−
2 𝑢
𝑢0 ) 𝑒

−𝑧
ℎ .                                        (6.14) 
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Inserting equation (6.13) into equation (6.12), we obtain 

∇2  𝑢 𝑢0 = 𝑙
2𝛼2𝑒

−2 𝑢
𝑢0

 + (
2
𝑙
−
1
ℎ
)𝑧

⁄  ,                                                 (6.15)   

where  ∇2 =
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 ,  

Let us set  

𝑢

𝑢0
=
𝑧

𝐿
+ 𝜙(𝑦, 𝑧),                                                                    (6.16) 

where 𝐿 is a constant. Then, equation (6.15) becomes 

∇2 𝜙 = 𝑙2𝛼2𝑒
−2 𝜙−(

2
𝐿
+
1
ℎ
−
2
𝑙
)𝑧
.                                                  (6.17) 

If  𝑙  is given by 

2

𝑙
=
2

𝐿
+
1

ℎ
,                                                                        (6.18) 

then inserting this into equation (6.17), we obtain a Liouville type equation 

∅𝑥𝑥 + ∅𝑡𝑡 − 𝛼
2𝑙2𝑒−2∅ = 0.                                                     (6.19) 

In order to apply the sine-cosine method, we first use the wave variable 𝜉 =

𝑥 − 𝑘 𝑡 where  𝑘  is a constant, to carry the PDE in two independent variables 

(5.19), into the following ordinary differential equation 
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( 1 + 𝑘2) 𝜙//  =  𝛼2𝑙2𝑒−2∅.                                                                        (6.20) 

Now we use the following transformation to find a solution of Liouville’s 

equation (6.20). If we let  

𝑣 = 𝑒−2∅,                                                          (6.21) 

then equation (6.20) becomes  

          𝑣 𝑣// −  (𝑣/)
2
  +   𝑏  𝑣3    = 0,         𝑤ℎ𝑒𝑟𝑒           𝑏 =

2 𝜶𝟐𝒍𝟐

( 1+𝑘2)
     (6.22) 

𝑣(𝜉) =  𝑎   𝑠𝑖𝑛 𝑛 (𝜇 𝜉 ),                                                            (6.23) 

𝑣/(𝜉) = 𝑎  𝜇 𝑛  𝑠𝑖𝑛 𝑛−1 (𝜇 𝜉 ) cos (𝜇 𝜉 ),                                                (6.24) 

𝑣//(𝜉) = −  𝑎 𝜇2 𝑛2  𝑠𝑖𝑛 𝑛 (𝜇 𝜉 ) +  𝑎 𝜇2 𝑛 (𝑛 − 1) 𝑠𝑖𝑛 𝑛−2 (𝜇𝜉 ). (6.25) 

Substituting (6.23) – (6.25)  into (6.22) yields 

𝑎2 𝜇2[𝑛(𝑛 − 1) − 𝑛2] 𝑠𝑖𝑛 2 𝑛−2 (𝜇 𝜉 )  + 𝑏 𝑎3 𝑠𝑖𝑛 3 𝑛 (𝜇 𝜉 ) = 0.      (6.25) 

Equating the exponents and the coefficients of each pair of the sine 

functions, we find the following system of algebraic equations: 

3𝑛 = 2 𝑛 − 2,       𝑏 𝑎 + 2 𝜇2  = 0,           𝑛 ≠ 0,                                 (6.26) 

From system (6.26), we obtain  
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𝑛 = −2,           𝜇 = 𝛼 𝑙   √
− 𝑎

 1 + 𝑘2 
 .                                             (6.27) 

which leads to the following formal solitary wave solutions to equation (6.22) 

𝑣(𝑥, 𝑡) =  𝑎  csch2 (𝛼 𝑙   √
𝑎

 1 + 𝑘2 
 (𝑥 − 𝑘  𝑡)) ,        𝑎 > 0             (6.28) 

From this we obtain the solution to equation (6.19)  

𝜙(𝑥, 𝑡) =
−1

2
 𝑙𝑛[𝑎  csch2 (𝛼 𝑙   √

𝑎

 1 + 𝑘2 
 (𝑥 − 𝑘  𝑡))] ,        𝑎 > 0    (6.29) 

This is a class of exact analytic solutions to the nonlinear Liouville equation 

(6.19).  

Figures 6.1 and 6.2 can be employed to describe isothermal magnetostatic 

atmosphere. When the parameters take on special values (𝛼 = 2, 𝑙 = 3,

k =  1   and     a =  2), the solitary wave solutions are obtained in the from 

of hyperbolic function. These exact solutions include the hyperbolic function 

solutions and trigonometric function solutions. 
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Figure 6.1: Th wave solution of  Liouville’s equation  with    𝛼 = 2, 𝑙 = 3,

k =  1   and     a =  2    

In the Figure 6.1, we have shown the wave solution results of Liouville's 

equation do indeed correspond to a completely integrable dynamical 

system. This system describes the isothermal magnetostatic atmosphere, 

and the construction of examples of such interactions even in three -

dimensional space-time is very helpful for studying general theoretical 

problems. 

 

 

𝑡 

𝑥 

𝜙(𝑥, 𝑡) 
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Figure 6.2: Travelling wave solutions of eq.  (6.29) with  𝑡 =  0,

𝛼 = 2, 𝑙 = 3, k =  1   and     a =  2  

In Figure 6.2, our result by no means contradicts the numerous formulations 

of the no-interaction theorem for relativistic particles, since in these 

formulations it is always assumed that the particle coordinates  𝑥  are 

included among the canonical variables.  

𝑜𝑟   

𝜙(𝑦, 𝑧) =
−1

2
 𝑙𝑛[𝑎  csch2 (𝛼 𝑙  √

𝑎

 1 + 𝑘2 
 𝑒
− 𝑧
𝑙 (cos

𝑦

𝑙
− 𝑘  sin

𝑦

𝑙
))] , (6.30) 

0.010 0.005 0.000 0.005 0.010

0.3480

0.3475

0.3470

𝑥 

𝜙(𝑥)  
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The exact results (6.30) are compared with the numerical results [41-47].  

The sine – cosine method has been successfully used to obtain some exact 

travelling wave solutions for the Liouville equation (see figures 6.3 and 6.4). 

 

Figure 6.3: Travelling wave solution of  eq. (6.30)   with    𝛼 = 2, 𝑙 = 1,

k =  1   and     a =  2    

Figure 6.3 shows the exact solution and travelling wave solution of eq. (6.30) 

for specific values of  𝛼, 𝑙, 𝑘 𝑎𝑛𝑑 𝑎. From the given graph, it can be observed 

that both the exact solution and numerical solution are in strong agreement 

with each other. 

 

𝑧 

𝑦 

𝜙(𝑦, 𝑧) 
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Figure 6.4: Travelling wave solution of eq.  (6.30) with  𝑧 =  0,

𝛼 = 2, 𝑙 = 3, k =  1   and     a =  2  

 

Figure 6.4 show the wave solution resulting from eq. (6.30) for various values 

of the distance term 𝑦, and for specific values of 𝑧, 𝛼, 𝑙, 𝑘 and 𝑎. 

 When 𝑃0 = 0,  then from (6.14) the plasma pressure is  

𝑃(𝑦, 𝑧) =
𝑎 𝛼2𝑢0 

2

8 𝜋
𝑒(
−2 𝑧
𝑙
 − 
𝑧
ℎ
) csch2 (𝛼 𝑙  √

𝑎

 1 + 𝑘2 
 𝑒
− 𝑧
𝑙 (cos

𝑦

𝑙
− 𝑘  sin

𝑦

𝑙
)) 

(6.31) 

The results for the pressure (6.31) are shown in Figures 6.5 & 6.6. These 

figures show the plasma pressure of the models calculated with different 

20 10 10 20

8

6

4

2

𝑦 

𝜙(𝑦) 
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values of the parameter( 𝛼, 𝑙, a, k ) , the rest of the parameters being the 

same.                

 The analytical solutions presented describe isothermal magnetostatic 

atmospheres in uniform gravity and  varying  in  three  Cartesian  dimensions. 

 

Figure 6.5: The  graph of plasma pressure  𝑃(𝑦, 𝑧)  

  with    𝛼 = 2, 𝑙 = 2, ℎ = 1, 𝑢0 = 1, k =  1   and     a =  2    

Figure 6.5 shows that the plasma pressure depends on many parameters ( 𝛼,

ℎ, 𝑙, a, k ). The solutions are adequate to describe an isothermal 

atmosphere in a uniform gravitational field showing parallel filaments of 

diffuse, magnetized plasma suspended horizontally in equilibrium. 

 

 

𝑧 

𝑦 

𝑃(𝑦, 𝑧) 
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Figure 6.6: The graph of plasma pressure 𝑃(𝑦, 𝑧)  

  with   𝑧 =  0, 𝛼 = 2, 𝑙 = 3,   𝑢0 = 1, k =  1   and     a =  2  

In Figure 6.6 shows the plasma pressure of eq. (6.31) for various values of 

the distance term 𝑦 and the variable 𝑧 = 0 for special values of the 

parameters   𝛼, ℎ, 𝑙, 𝑎, 𝑘 . 

6.4  Sinh – Poisson equation 

In this section, we find the sinh – Poisson equation which plays an important 

role in the soliton solutions model. This equation will be a special case of 

equation (6.12). If we assume 

60 40 20 20 40

500000

1.0 106

1.5 106
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𝑃(𝑦) 
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𝑓(𝑢) =  − 
𝑙

4
 
𝑢0
ℎ
 sinh𝜓,          where            𝜓 =

𝑢

ℎ 𝑢0 
                           (6.32) 

then from equations (6.9) and (6.33), we obtain 

𝑃(𝑦, 𝑧) = (𝑃0 −
𝑙 𝑢0

2

8 𝜋
𝑐𝑜𝑠ℎ 𝜓) 𝑒

−𝑧
ℎ .                                        (6.33) 

Substituting (6.32) into (6.12), we get  

𝜕2𝜓

𝜕𝑥1
2 +

𝜕2𝜓

𝜕 𝑥2
2 = 𝑙  𝑠𝑖𝑛ℎ 𝜓,             𝑤ℎ𝑒𝑟𝑒      𝑙 = 2ℎ.                                    (6.34) 

Equation (6.34) is a well-known equation and under the transformation  

𝑥 =
√𝑙

2
  ( 𝑥1 + 𝑖 𝑥2),    𝑡 =

√𝑙

2
  ( 𝑥1 − 𝑖 𝑥2),   𝑈(𝑥, 𝑡) =  𝜓(𝑥1, 𝑥2),      (6.35) 

we obtain the sinh – Poisson equation in the form 

𝑈𝑥 𝑡 = 𝑠𝑖𝑛ℎ ( 𝑈 ),                                                                 (6.36) 

We use the B𝑎̈cklund Transformations (BTs) approach to analytically solve 

equation (6.36). The BTs technique is one of the direct methods of 

generating a new nonlinear solution from a known solution (see, for 

example, [42]). Earlier, Konno and Wadati [48] had derived certain BTs for 

the Abowitz, Kaup, Newell and Segur (AKNS) class of Nonlinear Evolution 
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Equations (NLEEs). Informally, a BT is defined as a system of equations 

relating one solution of a given equation to another solution of the same 

equation, possibly with different values of the parameters, or to a solution 

of another equation. Thus, the problem of obtaining new solutions by BTs is 

equivalent to obtaining the wave function. 

It is known that many NEEs can be derived from the AKNS system 

𝛷𝑥 = 𝑃𝛷,                               𝛷𝑡 = 𝑄𝛷,                                     (6.37) 

where 

𝛷 = (
∅1
∅2
),                                                                 (6.38) 

and P and Q are the 2 × 2 null-trace matrices 

𝑃 = (
𝜂 𝑞
𝑟 −𝜂) ,            𝑄 = (

𝐴 𝐵
𝐶 −𝐴

)                                     (6.39) 

 Here η is a parameter which is independent of 𝑥 and 𝑡  while q and 𝑟 are 

functions of  𝑥 and  𝑡;    𝑃 and 𝑄 must satisfy the integrability condition 

𝑃𝑡 − 𝑄𝑥 + 𝑃𝑄 − 𝑄 𝑃 = 0,                                            (6.40) 

or, in component form 
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−𝐴𝑥 + 𝑞𝐶 − 𝑟𝐵 = 0,                                              (6.41) 

𝑞𝑡 − 𝐵𝑥 + 2𝜂𝐵 − 2𝑞𝐴 = 0,                                              (6.42) 

𝑟𝑡 − 𝐶𝑥 + 2𝑟𝐴 − 2𝜂𝐶 = 0.                                                (6.42) 

By a suitable choice of  𝑟, 𝐴, 𝐵,  and  C in (6.39) we can obtain NLEE which 

𝑞 must satisfy. Konno and Wadati [14] introduced the functions 

                          𝛤 = 𝜙1 𝜙2 ⁄        𝑎𝑛𝑑                                                              (6.43)  

𝑈′ = 𝑈 + 𝑓(𝛤, 𝜂),                                                                 (6.44) 

where  𝑈′   is the new solution created from the old solution 𝑈.  

From the above sinh-Poisson equation (6.36) 

𝑃 = (
𝜂

1

2
𝑈𝑥

1

2
𝑈𝑥 −𝜂

) ,             𝑄 =
1

4𝜂
(
cosh𝑈 − sinh𝑈
sinh𝑈 − cosh𝑈

 ),                   (6.45)   

𝛤 = 𝜙1 𝜙2 ⁄ ,                                                                                 (6.46) 

𝑈′ = 𝑈 − 4 tanh−1 𝛤.                                                                           (6.47) 

Now we select a known solution of the above NLEE and substitute this 

solution into the corresponding matrices 𝑃 and 𝑄. Next, we solve Eq (6.40) 
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for 𝜙1  and 𝜙2. Then, by (6.47) and the corresponding BT, we obtain a new 

solution of NEE [87]. 

The known solution is a constant  𝑈 = 𝑈0 

Substituting 𝑈0 = 𝑛 𝜋 𝑖,    𝑛 = 0,±1,±2,⋯  into the matrices P and Q in 

(6.45), then by (6.37), we have  

𝑑𝜙 = 𝜙𝑥  𝑑𝑥 + 𝜙𝑡 𝑑𝑡 = 𝑃 𝜙  𝑑 𝜃,       𝜃 = 𝑥 − 𝑘 𝑡,                    (6.48) 

where  

𝑃 = (
𝜂 0
0 − 𝜂

) ,             𝜃 = 𝑥 − 𝑘 𝑡,      𝑘 =  
(−1)𝑛−1

 4𝜂2
.            (6.49) 

The solution of equation (6.48) is 

𝜙 = 𝑒𝜃 𝑃𝜙0 = ( 𝐼 + 
𝜃 𝑃

1 !
+ 

𝜃2  𝑃2

2  !
+ 

𝜃3  𝑃3

3  !
+ ⋯) 𝜙0,                       (6.50)  

where  𝜙0  is a constant column vector. The solution of equation (6.50) is 

𝜙 =  (
cosh 𝜂 𝜃 + sinh 𝜂 𝜃     0

0 cosh 𝜂 𝜃 − sinh 𝜂 𝜃     
) 𝜙0.              (6.51) 

Now, we choose 𝜙0 = (
1
1
)  in (6.51), and get 

𝜙 = ( 𝑒
𝜂 𝜃

𝑒− 𝜂 𝜃
),                                                              (6.52)  
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Substitute (6.52) into (6.46), then by (6.47), we obtain the new solution of 

the sinh-Poisson equation (6.36) 

𝑈′ = 𝑛𝜋 𝑖 −  4 tanh−1(𝑒  2 𝜂 𝜃) ,         𝜃 = 𝑥 −
(−1)𝑛−1

 4𝜂2
𝑡,                (6.53) 

when 𝑛 = 0 

𝑈′(𝑥, 𝑡) = − 4 tanh−1(𝑒  2 𝜂 𝜃) ,         𝜃 = 𝑥 +
1

4 𝜂2
𝑡.                            (6.54) 

hence 

𝜓(𝑥1, 𝑥2) = − 4 tanh
−1(𝑒  2 𝜂 𝜃) ,   𝜃 =

√𝑙

2
[(1 +

1

4 𝜂2
) 𝑥1 + 𝑖 (1 −

1

4 𝜂2
) 𝑥2] 

(6.55) 

We have succeeded in establishing a method of generating a large class of 

exact periodic solutions for the sinh-Poisson equation which describe the 

equilibrium states of a two-dimensional guiding center plasma or a two-

dimensional line vortex systems in fluids. Figs. (6.7) and (6.8) show how the 

solution properties of the three modes change when  𝜂 =
1

2
  is varied while 

keeping other parameters unchanged.    
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Figure 6.7: The wave solution of  sinh –  Poisson equation  with    𝜂 =
1

2
 

The sinh-Poisson equation describes a stream function configuration of a 

stationary two-dimensional (2D) Euler flow. 

 

Figure 6.8: Travelling wave solution of eq.  (6.55) with  𝑡 =  0  

In Figure 6.8, the wave solution of the eq. (6.55) is displayed for various 

values of the variable𝑠 𝑥1 and 𝑥2 = 0, and for the special case of 𝜂 =
1

2
 . 
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When 𝜂 =  
𝑖

2
,   we have  2 𝜂 𝜃 = 𝑖 𝜃 = 𝑖 (𝑥 − 𝑡) =  √𝑙  𝑥2 = √𝑙 𝑒

− 𝑧

𝑙  𝑠𝑖𝑛 
𝑦

𝑙
  

The new solution of the sinh – Poisson equation (6.36) is  

𝜓(𝑦, 𝑧) = − 4 tanh−1 (𝑒  √𝑙 𝑒
− 𝑧
𝑙  𝑠𝑖𝑛 

𝑦
𝑙),                                                (6.56) 

Figure 6.9 shows a surface plot of the exact solution (6.56)  of sinh – 

Poisson equation at  𝑙 = 1.   The Bäcklund transformations method has 

been successfully used to obtain exact travelling wave solutions for the 

Sinh-Poisson equation. Figure 6.10 shows the same solution line plots as 

in Figure 6.9. The parameter values used in this plot are 𝑧 =  0 , 𝑙 = 1 

 

Figure 6.9: Travelling wave solution of  Eq. (6.56)   with    𝑙 = 1  

𝜓(𝑦, 𝑧) 

𝑦 

𝑧 
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Figure 6.9 shows the three dimensional plot of the exact solution (6.56)  of 

sinh – Poisson equation for the special case of  𝑙 = 1. 

 

Figure 6.10: Travelling wave solutions of Eq.  (6.56) with  𝑧 =  0 , 𝑙 = 1  

In Figure 6.10, the wave solution of eq. (6.56) is displayed for various values 

of the variable 𝑦, and with 𝑧 = 0 and  𝑙 = 1. When 𝑃0 = 0,  then from (6.33) 

the plasma pressure is  

𝑃(𝑦, 𝑧) = (−
𝑙 𝑢0

2

8 𝜋
𝑐𝑜𝑠ℎ [− 4 tanh−1 (𝑒  √𝑙 𝑒

− 𝑧
𝑙  𝑠𝑖𝑛 

𝑦
𝑙)]) 𝑒

−2 𝑧
𝑙 .               (6.57) 

The plasma pressure solution (6.57)   is a special geometric configuration of 

the previously described systems. An atmospheric pressure plasma jet is a 

nonthermal, glow discharge plasma functioning at atmospheric pressure and 

has found growing use in various applications like nanoscience and bio- 
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decontamination. The solutions obtained in Fig. 6.11 using the BTs are 

adequate for describing parallel filaments of diffuse, magnetized plasma 

pressure. Fig. 6.12 illustrates the deviation of the pressure from the 

background  when  𝑧 =  0 , 𝑙 = 𝑢0 = 1 . 

 

Figure 6.11: The  graph of plasma pressure 𝑃(𝑦. 𝑧)   

  with     𝑙 = 𝑢0 = 1  

In Figure 6.11 the Bäcklund transformations procedure has been developed to 

deduce the plasma pressure and anisotropy from the magnetic field model. 

Growing interest in microwave atmospheric pressure plasmas calls for efficient 

and flexible sources of such plasmas. 
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Figure 6.12: The graph of plasma pressure P(y, z)  

with    𝑧 =  0 , 𝑙 = 𝑢0 = 1  

Figure 6.12 shows the profile of plasma pressure (pressure enhancement) as 

a function of height 𝑦 for the plane-parallel special case of 𝑧 =  0. 

6.5  Conclusions 

In this chapter, we presented a family of solutions of magnetic fields and 

plasma distributions in equilibrium in a gravitational field. The usefulness of 

such simple analytic solutions is that they provide physical insight into more 

complicated real systems. The main focus of this chapter has been on two 

classes of nonlinear magnetostatic solutions that are obtained analytically by 

the sine–cosine and Bäcklund transformations, namely, the solutions 
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corresponding to the particular choice of the pressure profile, given in terms 

of the magnetic flux function.  

This study shows that the magnetic fields influence every aspect of coronal 

physics. We have presented a new, analytic family of solutions for isothermal 

magnetostatic atmospheres. Despite the many simplifications of our models, 

they provide a useful tool for understanding the physics of magnetostatic 

equilibrium. 
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                                       Chapter 7 

               Conclusion and further research 
 

7.1  Conclusions 

In the introductory chapter, a brief description of nonlinear phenomena and a 

survey on some nonlinear models was presented. We also discussed solitons 

and various types of travelling wave solutions. A brief account of some 

important and widely used analytic methods to obtain exact solutions for a 

variety of nonlinear PDEs relevant to physical problems was also given. 

 Chapter 3 introduced some important mathematical preliminaries, along with 

some basic considerations for the models considered in this thesis.  

In chapter 4, Sec. 4.2 we introduced our plasma model. In Sec. 4.3, we 

developed the system of PDEs that described ion acoustic waves in a plasma, 

and then we derived the KdV equation and obtained exact solutions from a 

simpler system of PDEs that described ion acoustic waves in a plasma.  In Sec. 

4.4, we derived the mKdV equation from a simpler system of PDEs that also 

described ion acoustic waves in a plasma and again obtained exact solutions. 

Finally, in Sec. 4.5, a summary of the results was presented. 
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In chapter 5, specifically section 5.1, we reviewed the main governing 

equations of incompressible MHD. In Section 5.2, the 𝑠𝑖𝑛 (𝑘𝜉 )  −  𝑐𝑜𝑠 (𝑘𝜉 ) 

method was applied to extract exact solutions for the incompressible MHD 

problem presented. Finally, Section 5.3 presented a summary of the results 

obtained in the preceding sections. 

In chapter 6, the equations describing the magnetohydrostatic equilibria for 

a plasma in a gravitational field were investigated analytically. For equilibria 

with one ignorable spatial coordinate, the equations reduce to a single 

nonlinear elliptic equation for the magnetic potential known as the Grad–

Shafranov equation. Specifying the arbitrary function in the latter equation 

yielded a nonlinear elliptic equation. Analytical nonlinear periodic solutions 

of this elliptic equation were obtained for the case of an isothermal 

atmosphere in a uniform gravitational field which can be useful for modelling 

the solar atmosphere.  
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7.2  Further research 

The present study can further be extended on the following fronts: 

• The above-described continuum plasma descriptions and MHD are 

currently the most widely used plasma models in theoretical 

investigations, experiments and modelling in astrophysics, 

thermonuclear fusion research, experimental chemistry, geological 

sciences, and other areas. However, as can be seen from this review, 

because of the complexity of these systems, knowledge of their 

analytical structure is very limited.  

• The general existence, uniqueness, and stability of solutions of initial 

and boundary value problems are unknown, and methods of 

construction of particular solutions have not been developed. Due to 

these reasons, most MHD modelling is currently done numerically, 

usually under dimensional reductions. Fully 3-dimensional dynamic 

MHD simulations have such a high degree of computational complexity 

that multiprocessor supercomputers are generally required.  

• In numerical simulations, the existence and uniqueness of solutions of 

interest are usually assumed, which generally might not be the case. 
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• The stability of soliton solutions is an important issue for practical 

problems. Thus, stability analysis of the obtained soliton solutions 

should be considered.  

• The problems solved analytically here can be solved numerically as well. 

Detailed numerical studies can often serve as a check to support the 

validity of assumptions made in generating analytic solutions. 

• One may also be able to generalize the (3+1) dimensional mKdV 

equation with saturable nonlinearities in order to investigate the 

dynamical behavior of solitons. 
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