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Abstract 

Three-dimensional (3D) image viewing is rapidly increasing the popularity of applications such 

as 3D videos, movies, computer games, and Virtual Reality (VR) environments. Several 

techniques related to 3D video have been developed, including stereoscopic video, multi-view 

video, autostereoscopic video and holography. This study focuses on stereoscopic 3D (S3D) 

video, which is used most widely in the movie industry and in 3D television (3DTV) 

broadcasting. This broadcasting services have been introduced in several countries in recent 

years, and video service providers have also offered S3D video services over the Internet. To 

cope with the market’s increasing need for high-quality 3D images, quality assessment of S3D 

video has been identified as an important area for research and development. 

This research proposes novel methods for both objective and subjective quality assessments of 

S3D video, with a view to extending these methods to the development of S3D quality metrics 

and multi-view 3D video technologies. The novel methods were verified with software 

simulations in objective quality assessments and experimental test validations in subjective 

quality assessments. Firstly, this study conducted objective and subjective assessments to 

investigate differences in the viewers’ Quality of Experience (QoE) between two-dimensional 

(2D) and S3D videos. Visually Induced Motion Sickness (VIMS) and visual attention were 

evaluated and verified against previous findings. Secondly, the study was extended to the 

assessment of the quality of experience of viewers who watched S3D videos in three viewing 

environments: a flat 3D screen, a panoramic screen and a VR headset. This experiment was 

performed to identify the effects of VIMS and to analyse 3D fatigue in the three viewing 

environments. Thirdly, eye-tracking experiments were conducted to obtain eye-gaze data and 

to develop human saliency maps for the investigation of human visual attention. Existing 
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human saliency maps and saliency prediction models are compared for benchmarking and 

validation. These results were evaluated to determine whether visual attention obtained from 

eye-tracking methods contribute to QoE assessments of S3D videos. Finally, the application of 

the objective quality metrics and subjective evaluation approaches is proposed as a practical 

use-case in video coding evaluation. 

Comparing the objective and subjective quality assessments between 2D and S3D videos, the 

findings show that S3D videos create more fatigue for the participants than the 2D video 

sequences. Also, there is more eye blinking movement when viewing 2D videos compared to 

S3D videos. When viewers watch S3D videos in three viewing environments, the findings 

show that the viewers who used a VR device to view the stereoscopic video sequences resulted 

in higher Simulator Sickness Questionnaire (SSQ) scores. For the panoramic screen, the 

participants reported the lowest SSQ scores and the highest enjoyment ratings. The difference 

in results experienced when viewing the same S3D video sequence on different screens reveal 

that the projection screen is an essential factor that influences the level of visual fatigue, QoE 

and VIMS. The content of the video sequence and the projection screen used are also key 

factors that affect the enjoyment rating of the S3D videos. In addition, it is found that eye-

tracking is a key method to obtain the visual attention of viewers. Existing saliency prediction 

models are not accurate enough to predict an actual visual attention model, especially for S3D 

video sequences. The application of the objective quality metrics and the subjective evaluation 

in a proposed video coding use-case of S3D video sequences show that a perceptual quality 

similar to that of uncompressed videos can be provided when the 3D effects are moderate and 

scenes are stable. 

The key contribution of this thesis is in providing more reliable and accurate objective and 

subjective quality assessments for S3D video, including the QoE, visual fatigue and visual 



 

3 

attention from the S3D video in different viewing environments. Finally, this thesis is 

concluded discussing the recommended future research work in extending into multi-view S3D 

video technology. 
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Chapter 1  Introduction 

 

The popularity of three-dimensional (3D) image viewing is rapidly increasing, and it has been 

extensively used in the production of 3D videos, movies, computer games and immersive 

multimedia experiences such as Virtual Reality (VR). Several techniques related to 3D video 

have been invented, including stereoscopic video, multi-view video, autostereoscopic video 

and holography. These 3D techniques involve the implementation of stereo vision techniques, 

in which two cameras are used to capture images. Stereoscopic video technology requires 

greater accuracy and the capacity to deal with the required (real-time) data rate [1]. Moreover, 

the high data rate can be used to present high resolution images such as medical and precision 

images [2]. 

This study focuses on stereoscopic 3D (S3D) videos, which is used most widely in the movie 

industry and in 3D television (3DTV) broadcasting. 3DTV broadcasting services have been 

introduced in several countries in recent years, and video service providers have offered S3D 

video services over the Internet. However, S3D videos contain a large amount of data, which 

require sufficient storage capacity and bandwidth for transmission. For instance, the data 

transmission rate of an uncompressed S3D video may be several Gb/s [3]. To cope with the 

market’s increasing need for high quality 3D images in practical applications, quality 

assessment of S3D has thus been identified as a key area for research and development. 
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1.1 Motivation 

In recent years, 3D video technologies have become popular in commercial markets for both 

consumer and industry applications. As the technologies in this field have matured, it has been 

extended to industries such as education, training, entertainment and medical imaging. Due to 

the breadth of potential applications, there is thus a need to understand and measure viewers’ 

Quality of Experience (QoE) with regard to 3D content. 

The most accurate method to assess video quality is a subjective assessment by viewers. 

However, it is not easily possible to conduct extensive subjective tests for each user due to time, 

cost, and the breadth of content and applications to be considered. An alternative approach is 

to develop a human visual system model with objective quality metrics and conduct a series of 

QoE experiments to predict a model to assess visual quality. Following this approach, many 

quality assessment models and techniques of two-dimensional (2D) images and videos have 

been proposed in recent years [4-8]. Objective and subjective quality assessments of 3D video 

are ongoing areas of research, including the launch of the 3DTV working group for the 

standardisation of 3D video format and coding and multi-view 3D video coding [9-14], and 

providing the guidelines of subjective methods for the assessment of 3D videos [15-18] as part 

of standardisation activities by two international organisations: Moving Picture Experts Group 

(MPEG) and International Telecommunication Union (ITU). Large-scale perceptual 

experiments have been conducted according to the standardisation activities to achieve better 

viewers’ experience when watching 3D video. 

These challenges have thus motivated the investigation in this thesis of novel objective and 

subjective assessments of 3D video to allow users to experience improved QoE with 3D videos. 
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1.2 Aims and Objectives 

The aim of this thesis is to investigate and propose novel techniques to enhance current 

objective and subjective quality evaluations of S3D video. The proposed approaches were 

evaluated by designing metrics, using software simulations for objective assessments, and 

implementing experimental validations for subjective assessments. 

1.2.1 Research questions 

The thesis investigates the following three research questions: 

Research Question 1: How to assess the visual fatigue of S3D video in both objective and 

subjective quality assessments? 

 Research Question 1(a): How to assess the viewers’ perceptual experience and 

visual attention when watching S3D video? 

 Research Question 1(b): How to evaluate the perceptual experience and visual 

attention of viewers whilst watching S3D video in different viewing environments? 

Research Question 2: How to assess the visual attention of viewers watching S3D video in 

relation to the quality of experience? 

Research Question 3: How are objective metrics and the quality of experience of viewers 

affected when implementing a video sequencing model for video coding as a practical 

application? 

The following research study areas and methodology are used to address the research questions 

and to achieve the objectives of this thesis. 
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There are three main areas of study in this thesis work: 

 Investigate Visually Induced Motion Sickness (VIMS) with Electroencephalography 

(EEG) signals to correlate 3D fatigue levels with VIMS in two different situations: 

1) Comparing 2D and S3D videos using a flat 3D screen; 2) Comparing S3D videos 

in three different viewing environments. 

 Investigate viewers’ visual attention using eye-tracking to predict S3D visual 

attention and develop a human saliency map model. 

 Apply the objective quality metrics and subjective evaluation approaches proposed 

in this thesis work to video coding applications as a practical use-case. 

As high-quality S3D video content has been well developed in recent years, the use of objective 

and subjective assessments was proposed to assess Visually Induced Motion Sickness (VIMS) 

[19-22] in participants who view S3D videos [23, 24]. Researchers have compared various 

subjective assessment methods suggested by ITU-R BT2021.1 standard [25] for S3D Video 

Quality Assessment (VQA) [26-28]. Chen et al. [29] verified five subjective assessment 

methods and proposed that the Degradation Category Rating (DCR) method was the most 

stable method for 3D fatigue assessment; however, the assessment of visual fatigue has not yet 

been fully investigated. In addition, few studies have investigated VIMS from 

Electroencephalography (EEG) signals using a high-quality video stimulus. 

The work in this thesis investigates potential causes of 3D fatigue from VIMS and extends this 

to QoE assessments of viewers who watched S3D videos in three different viewing 

environments: a flat 3D projection screen, a panoramic screen and a virtual reality (VR) headset. 

Most previous studies focused on the evaluation of the quality of the multimedia experience in 

a viewing environment with a single projection device; few studies have sought to evaluate the 

QoE in various environments with more than one projection device. Therefore, this study was 
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expanded to identify the effects of VIMS and to analyse 3D fatigue in the three different 

viewing environments. 

Further, researchers are currently focusing on multi-view 3D video technology [30] and the 

depth map rendering of two views [31-34] to be implemented for the evaluation of 3D multi-

view video [35]. For subjective assessments, few models yet exist to assess visual attention in 

relation to S3D video. Therefore, this thesis investigates viewers’ visual attention and improves 

prediction of S3D visual attention through eye-tracking experiments. The eye-gaze data was 

investigated to develop a human saliency map model. This model was compared with existing 

human saliency maps and commonly used saliency prediction models for analysis to evaluate 

how visual attention from eye-tracking can contribute to the QoE assessment of S3D video. 

 

1.3 Thesis Contributions 

The main contributions of this thesis and associated publications are listed as follows: 

 Propose objective and subjective quality evaluations to investigate differences in the 

viewers’ QoE and correlate 3D fatigue levels in two different approaches: 1) 

Comparing 2D and S3D videos viewed with a flat 3D screen; 2) Comparing the 

viewing of S3D videos in different viewing environments using EEG signals and 

associated algorithms, enjoyment levels and the use of Simulator Sickness 

Questionnaire (SSQ) to evaluate VIMS and visual fatigue (presented in Chapter 3 

and Chapter 4 with publications [36, 37]). 

 Apply objective quality metrics and subjective evaluations to measure the difference 

in the quality of two stereoscopic views in a proposed video coding approach as a 
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practical use-case for S3D video evaluation (presented in Chapter 5 with publication 

[38]). 

 Develop a human saliency map model for the human visual attention of S3D video 

to correlate with eye-gaze data by using eye-tracking equipment. This model is 

compared with existing human saliency maps and saliency prediction models from 

other researchers for benchmarking and validating these results. Results were 

evaluated to determine whether visual attention from the eye-tracking method 

contributes to the QoE assessment of S3D videos (presented in Chapter 6 ). 

1.3.1 List of publications 

 S.-M. Choy, E. Cheng, R. H. Wilkinson, I. Burnett and M. W. Austin, “Quality of 

experience comparison of stereoscopic 3D videos in different projection devices: Flat 

screen, panoramic screen and virtual reality headset,” IEEE Access, vol. 9, pp. 9584-

9594, 2021. 

 S.-M. Choy, E. Cheng and I. Burnett, “Hybrid sequencing of uncompressed and 

compressed 3D stereoscopic video: A preliminary quality evaluation,” In The 

International Conference on Electrical Engineering (ICEE), Okinawa, Japan, 2016, 

pp. 1-5. 

 S.-M. Choy, K.-H. Chiu, E. Cheng and I. Burnett, “3D fatigue from stereoscopic 3D 

video displays: Comparing objective and subjective tests using 

electroencephalography,” In TENCON IEEE Region 10 Conference, 2015, pp. 1-4. 
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1.4 Thesis Structure 

Chapter 2 reviews the literature relating to objective and subjective quality assessments in 3D 

video technologies. First, the background of human S3D perception is presented, then existing 

approaches to objective and subjective quality assessments are described. Finally, the 

evaluation of QoE for both objective metrics and subjective evaluation of S3D video are 

reviewed. 

Chapter 3 investigates 3D visual fatigue to identify the effects of VIMS, using both objective 

and subjective methods to compare the QoE of participants who watch both 2D and 3D videos 

of the same stimulus content. EEG measurements and a survey analysis using the Simulator 

Sickness Questionnaire (SSQ) of Kennedy et al. [39] were adopted to consider visual attention. 

This approach involves the measurement of EEG signals using the Absolute Category Rating 

(ACR) method to assess 3D fatigue. 

Chapter 4 explores the effect of different S3D viewing environments. The QoE is examined 

when viewing S3D videos comparing three viewing environments: a flat screen, a panoramic 

screen and a virtual reality headset. EEG detection, SSQ survey analysis and the participants’ 

enjoyment ratings of viewing 3D videos in the various environments were used to investigate 

the relationship between 3D visual fatigue and the effects of VIMS with the respective devices. 

Chapter 5 applies the objective metrics and subjective evaluation approaches to a video coding 

application as a practical use-case. Hybrid sequencing of uncompressed and compressed 

content within a single S3D video is proposed as a coding approach; however, such sequencing 

may affect the correlation between the left and right views required for depth perception in the 

stereoscopic videos, which may reduce the viewers’ QoE. Thus, the hybrid sequencing of 

stereoscopic video sequences was investigated with both objective and subjective quality 

evaluations. 
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Chapter 6 investigates how the human visual attention of S3D videos correlate to the QoE 

assessments. Existing saliency prediction models are studied, which include factors such as the 

visual discomfort level, the motion acceleration and the sparsity of the salient regions to ensure 

a high level of correlation with the eye-gaze data. The model is evaluated with eye-tracking 

experiments in which the participants viewed a series of S3D video sequences to obtain eye-

gaze data and develop human saliency maps for comparison and analysis. 

The thesis is concluded in Chapter 7 , summarising findings and contributions as well as 

discussing future work. In future, the approaches in this thesis may extend to the development 

of objective metrics and subjective evaluations of multi-view 3D video technologies. 
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Chapter 2  Literature Review 

 

This chapter reviews the literature on existing objective and subjective evaluations of 

Stereoscopic 3D Video (S3D), quality of experience of S3D, and eye-tracking techniques and 

analysis to develop human saliency maps and estimate saliency maps as applied in this research. 

2.1 Background 

2.1.1 Human stereoscopic vision 

Stereopsis is the formal term for depth perception; that is, the human visual perception of 

objects at various distances along one line of sight as the brain registers the 3D shapes and 

forms the visual representations [40]. The visual mechanism for depth sensing relies on the 

input from both eyes. 

The binocular geometry of stereopsis is shown in Figure 2.1 [41]. The human eyes create two 

different views due to the difference in their positions, where information from both eyes is 

important in the creation of stereoscopic vision. Physiologically, the light received by both eyes 

falls on the fovea – the back part of the eye with the highest acuity – when the eyes are fixed 

on the binocular point P. The point Q casts the image away in  degrees in one eye’s fovea and 

 degrees from the other eye’s fovea, and the binocular disparity is () degrees. When 

looking at a new object at a different distance, the point of fixation is altered. The ciliary 

muscles of both eyes move at the same time, either inward or outward, so that the image of the 

new object can be centred in the fovea. If the new object is closer, the eyes move inward in a 

process called convergence, whereas if the new object is further from the eyes, the eyes move 

outward in a process called divergence.  
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Figure 2.1: Binocular geometry of stereopsis [41]. 

 

Other than the binocular geometry of stereopsis, each eye has a single-lens optical system to 

focus on an object and form an image on the retina. Accommodation is defined as the process 

where the eye changes its optical power by the adjustment of the eye lens deformed by the 

ciliary muscles to maintain a clear image [42, 43]. Figure 2.2 (a)-(b) show the accommodation 

cues when the eye lens adjusts the focal length to focus on objects at different distances. 

Accommodation is irrelevant to stereoscopic vision, where each single eye is required to 

accommodate when viewing an object on an S3D screen. Each single eye has a depth of focus 

so it does not depend on stereoscopic vision. Vergence is a binocular cue to rotate both eyes at 

the same time in opposite directions around their vertical axis to fixate on the same point of an 

object [43], as shown in Figure 2.2 (c)-(d) at various distances. Figure 2.3 shows the 

accommodation and vergence in an S3D screen. Figure 2.3 (a) shows the differences of 

accommodation and vergence cues [42] i.e., how the eyes accommodate the S3D screen but 

the eyes also rotate to fix the apparent image at a different position. In Figure 2.3 (b), both eyes 

of the viewer converge at a distance away from the screen at the depth of an actual 3D point. 

Also, the S3D screen provides two different light paths perceived in each eye filtered by S3D 
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glasses. Therefore, each eye can observe a different 2D screen point [43]. The accommodation 

cues match the 2D screen point while the vergence cues approximately match the actual 3D 

point [44, 45], and the two depth details are contradictory. Therefore, there is a conflict when 

combining accommodation and vergence cues [44]. Wilkins [46] and Hoffman et al. [47] 

revealed that one of the possible causes for eye fatigue is this mismatch of accommodation and 

vergence. 

 

(a) Near                      (b) Far 

 

(c) Near                      (d) Far 

Figure 2.2: Accommodation (a)-(b) and vergence (c)-(d) cues when viewing an object at 

various distances [42]. 
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(a)                                   (b) 

Figure 2.3: Accommodation and vergence in an S3D screen (a) Differences between the two 

cues [42], (b) Vergence cues approximately match the actual 3D point [43]. 

 

Taking advantage of human binocular vision, S3D create the illusion of depth in moving images 

by displaying different images for each eye. S3D simulates generalised stereo vision, where 

the perception can vary between different people. Thus, there is a need to understand S3D QoE. 

2.1.2 Stereoscopic video 

Stereoscopic video is used in various media such as movies, 3DTV and games. Three-

dimensional (3D) gaming is increasing in popularity as several major companies, such as Cubix, 

Whimsy Games and Argentics, offer 3D gaming and video watching experiences [48]. In 2010, 

S3D was among the best-selling categories of mass consumer products. Other application fields 

in 3D technologies include 3D cinema, entertainment in theme parks, cultural heritage and 

medical surgery. Recently, the development of VR headsets such as Facebook Oculus Rift [49], 

HTC VIVE [50] and Sony PlayStation VR [51] include stereoscopic support as one of the 

features of their products. Multi-view video is also an extension of S3D video for future 

development [52]. 
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Companies who manufacture 3D consumer products and content producers are challenged to 

create a natural experience along with eye comfort for the audience [53]. Several tools and 

techniques are used for watching stereoscopic videos, and audiences in a cinema or a game 

room cannot perceive the 3D effect unless they wear the proper equipment for watching 3D. 

Special glasses are used to view S3D videos, including active lenses, passive polarised lenses 

and red-blue anaglyph 3D glasses, as shown in Figure 2.4 [54]. The display technology depends 

on the optical filter which filters the correct image for the left and right eyes and directs the 

light to each eye. In particular, passive glasses do not require electronics and batteries. These 

optical filters sort the correct image for each eye based on the polarisation of the light. In 

contrast, active shutter technology does require powered glasses and is generally used for LED 

and plasma televisions [55]. However, autostereoscopic display technology does not require 

the use of glasses to achieve the 3D effect. This technology likewise depends on an optical 

filter that divides the incoming light and directs the correct part of the light to each eye. These 

3D images then arise from the incoherence of the inputs to the left and right sides. However, 

regardless of the stereoscopic rendering technique, human visual perception can conflict with 

the limitations of display devices or content generation that can potentially cause viewer 

discomfort. 

 

Figure 2.4: Glasses to view S3D videos (left to right): red-blue anaglyph 3D glasses, passive 

polarised lenses, active lenses [54]. 
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Compared with 2DTV, S3D can cause more stress to the eyes and can be uncomfortable for 

prolonged watching for some viewers. However, the main benefit of 3DTV is greater depth 

perception, which leads to a better perception of sharper images and a sense of presence and 

naturalness. Surveys have shown that people are more likely to watch S3D images than 2D 

images [56]. In gaming, stereoscopy increases immersion and spatial presence. There are 

various advantages of stereoscopic videos and image systems. For example, in interactive 

environments, various actions are aided by stereo vision, such as throwing, catching or hitting 

a ball; driving or parking a car, and performing medical surgery [57] to improve the accuracy 

of depth judgment. 

 

2.1.3 Visual fatigue and visual discomfort in stereoscopic video 

Visual fatigue and visual discomfort are two different terms used in both psychological and 

subjective perception when viewers watch S3D videos. 

Visual fatigue is caused by the accumulation of excessive perceived visual effects, and 

generally disappears after taking a rest for a certain period of time. The severity of the visual 

fatigue depends on the intensity and temporal properties such as duration and appearance time 

[58]. It is a common phenomenon in adults and it might have a correlation with age and the 

decline of mobility, and increase in likelihood of falls. The fatigue can impact the peripheral 

and central parts of the brain. Objective fatigue is referred to as the decline of operational 

performance and attention of the viewer [59]. Subjective fatigue depends on the age, sex, 

mental state and health condition of the viewer [60].  Both the subjective and objective fatigue 

of the viewer can be measured with EEG as it is non-invasive to the participants [61]: the 

amplitude and wavelength of the EEG signals denotes the participants’ level of brain fatigue. 

Detailed EEG literature will be discussed further in Section 2.4.4. 
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Visual discomfort is a self-assessed physical and/or psychological state signalling a degree of 

annoyance when the viewer takes part in a visual task, or perceives negative sensation related 

to the task [58]. Generally, visual discomfort has a shorter rise and fall time than visual fatigue. 

Visual discomfort disappears when the visual task is either interrupted by other tasks or the 

task is completed. The main causes of visual discomfort are the Vergence-Accommodation 

conflict, disparity distribution, binocular distortion and the motion of the S3D video [58]. 

Visual discomfort can be measured by the visual evaluation reported by participants [62]. 

Generally, both visual fatigue and visual comfort can be assessed via questionnaires to collect 

the symptoms that have occurred [62]. 

 

2.1.4 Visual attention in relation to quality of experience (QoE) 

Visual attention involves perception mechanisms in the selection of the perceived stimuli in the 

human visual system when the participant views 3D content. For instance, the object of interest 

perceived from the 3D content is related to the depth-of-focus; the duration and the content to 

be perceived from the depth of 3D objects are relevant to the vergence load; and, salient objects 

are intended to be more easily perceived in the central vision area. Nevertheless, salient objects 

perceived when participants view an S3D video may be related to visual fatigue and visual 

discomfort [62]. Lambooij et al. [63] identified that visual discomfort is the counterpart of 

visual fatigue from subjective evaluations, where visual discomfort can reflect some functions 

of QoE. Sohn et al. [64] and Lee et al. [65] proposed models to investigate the correlation 

between 3D visual attention and visual discomfort. Each model contains a database providing 

3D content with different colours, motion and depth for analysis. Also, numerous researchers 

have adopted eye-tracking techniques and evaluation indicators of saliency map models to 

assess the visual attention of participants, which will be further discussed in Section 2.5. 
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2.2 Overview of Objective and Subjective Evaluations of 3D Video 

Image quality assessment is an approach to measure the quality of an image by combining the 

effects of image distortion, quantification and accumulation into a single score, and it can be 

either subjective or objective. Figure 2.5 shows various methods for the assessment of image 

quality. Objective quality assessment includes three categories: Full-reference [66] such as 

Peak Signal-to-Noise Ratio (PSNR) [67, 68] and Structural Similarity Index Measure (SSIM) 

[69], Reduced-reference [66], and No-reference [66] quality assessment methods. Subjective 

quality assessment includes two categories. The first one is called Single Stimulus method such 

as Absolute Category Rating (ACR) [70], SSCQE (Single Stimulus Continuous Quality 

Evaluation) [70] and SSIS (Single Stimulus Impairment Scale) [70] methods, whilst the second 

one is called Double Stimulus method including Degradation Category Rating (DCR) [7], 

DSCQE (Double Stimulus Continuous Quality Evaluation) [7] and DSIS (Double Stimulus 

Impairment Scale) [7] methods. Some methods will be discussed further in Sections 2.3 and 

2.4, respectively. Figure 2.5 highlights three objective and subjective evaluations adopted in 

the thesis, which are further discussed in Chapters 3-5. 

 

Figure 2.5: Image quality assessment methods. 
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Extending on image quality assessment methods, current objective and subjective techniques 

address various shortcomings in Video Quality Assessment (VQA) methods. Researchers have 

investigated various methods for subjective VQA [26, 27, 71]. Chen et al. [29] verified five 

subjective assessment methods and proposed that the Degradation Category Rating (DCR) 

method was the most stable for 3D fatigue assessment, but it has not yet been fully investigated. 

Several objective assessment techniques, such as detection of blocking artefacts [23], Just 

Noticeable Difference (JND) [72], and No reference Stereoscopic Parallax based Distortion 

Metric (NOSPDM) image quality metrics [73] have been applied to compare the video quality; 

however, they do not include the subjective assessment of 3D fatigue. Some researchers have 

investigated 3D fatigue by video frequency [74] and VIMS in 2D modelling [71], which is 

most closely related to the research presented in this thesis. 

2.3 Objective Evaluation of 3D Video 

Existing approaches for the objective evaluation of 3D videos have been identified. According 

to the literature, there are four major factors [33, 34, 70, 75] that affect the threshold of the 

stereo effect and determine the visual quality seen by viewers. These four factors are as follows: 

1. Temporal Masking: One of the characteristics of the Human Vision System (HVS) 

that is specific to watching videos. This effect causes the temporal distortion of 

visibility [33, 70]. 

2. Spatial Masking: An increase in the spatial non-uniformity of the background 

luminance causing a reduction in the visibility of the stimuli [34, 70]. 

3. Binocular Masking: One stimulus exerts an influence on the other stimulus when 

two monocular stimuli are viewed with the corresponding retinal locations of the 

two eyes [70]. 
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4. Luminance Contrast: Human visual perception is sensitive to luminance contrast 

rather than an absolute luminance value [70, 75]. 

2.3.1 Human stereo perception evaluation 

From the viewpoint of human stereo perception, the quality of stereoscopic images is affected 

by the degree to which the two images are distorted, and also by the experience of binocular 

perception. Most methods have focused on the correlation of stereoscopic image distortion and 

binocular perception, such as asymmetric assessment [23] and Just Noticeable Difference (JND) 

threshold measurement [72]. However, these assessment methods are mainly extensions from 

2D quality assessment methods. Quan et al. [74] showed that the size of the disparity between 

the left and right views of a stereoscopic image is more important in the determination of visual 

comfort. Although some researchers have studied stereoscopic display with respect to visual 

fatigue, research into 3D QoE is still ongoing. In particular, few of the methods suggested by 

Quan et al. [74] account for the disparity between the two views of a stereoscopic image pair. 

The properties of a stereoscopic image that are essential for QoE include statistical 

characteristics, such as global similarity and local discrepancy [76]. 

 

2.3.2 Objective metrics 

There are existing approaches for objective metrics including the detection of the difference of 

the video quality between the two stereoscopic views, detection of the blocking artefact and 

detection of blurring in the edge region [70, 77, 78]. 

The Peak Signal-to-Noise Ratio (PSNR) is the most widely used objective metric due to its low 

complexity and clear physical meaning [67, 68]. It quantifies the image (or video frame) quality 

by measuring the difference in the intensity between two images. 
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The PSNR is calculated as in Equations (2.1) and (2.2): 
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where the Mean Squared Error (MSE) measures the quality, m and n represents the image pixel, 

S(i, j) is the reference image, C(i, j) is the degraded image and MAXI is the maximum value of 

a pixel. If the pixels are represented at 8 bits per pixel, the MAXI value is 255. 

Another commonly used objective metric, the Structural Similarity Index Measure (SSIM) [69], 

assumes that the HVS is highly adapted to extract structural information from the field of view. 

However, the ability of the HVS to adapt to S3D imagery is still under study. Wang et al. [79] 

proposed another SSIM measure for depth map variation using Equation (2.3); where D  and 

'D  are the estimated and actual depth maps respectively, σD and σD’ are the variance of the 

estimated and actual depth maps respectively and c1, c2 are constants.  

Other than the objective metrics mentioned in this chapter, researchers have thus begun to focus 

on functional changes in the human body that may occur when viewing 3D stereoscopic images 

or videos [74, 80], such as subjective quality assessments and human perceptual terminologies. 
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2.4 Subjective Quality Assessments of 3D Video 

Several subjective quality assessment methods of 3D video have been developed. The 

International Telecommunication Union (ITU) has standardised some subjective methods for 

VQA. ITU-T Recommendation P.910 [81] standardises the subjective VQA methods for 

multimedia applications in evaluation procedures, experimental design, test methods and 

statistical analysis, such as the Double Stimulus Continuous Quality Scale (DSCQS), the Pair 

Comparison (PC) method, the Degradation Category Rating (DCR) method, the Absolute 

Category Rating (ACR) method and the ACR method with Hidden Reference (ACRHR), as 

previously shown in Figure 2.5 in Section 2.2. Various subjective methods have also been 

standardised in different voting sequences and testing requirements [27, 28]. Tominaga et al. 

[71] compared various subjective methods, such as the DSCQS, the ACR and the DCR. 

Researchers have compared various subjective assessment methods for 2D and 3D video 

quality [27-29] and have suggested that the ACR method is the most suitable for assessment 

stability and participants’ assessment time of 3D videos [28]. In the ACR method shown in 

Figure 2.6, a video is played once for 10 s, and a voter is required to assign a score from a 

discrete scale of five grades (excellent = 5, good = 4, fair = 3, poor = 2 and bad = 1). After 

watching the 10 s target video, the voter must award a grade within 5 s. Further studies in this 

thesis using the ACR method have identified the characteristics of 3D videos with variations 

in video quality [82]. 
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Figure 2.6: ACR method for QoE assessment. 

 

2.4.1 Specification of viewing angle and distance 

To provide a suitable viewing location for viewers, key parameters such as the viewing distance, 

screen width and viewing angle are considered. For research evaluations, MPEG and ITU 

international organisations provide viewing conditions for S3D video [16, 25]. Also, two main 

standards are used in the commercial environment for cinemas, the Society of Motion Picture 

and Television Engineers (SMPTE) [83] and the Tomlinson Holman Experiment (THX) [84] 

specifications. While most researchers are focused on the viewing conditions of S3D video 

defined in MPEG and ITU standards, few studies involve the investigation of the viewing 

conditions in the commercial environment [85], where watching 3D videos in cinema (or home 

theatre) environments is a common viewing environment for users. 

Figure 2.7 shows the viewing locations recommended by SMPTE and THX standards [86], 

where W and H are the width and height of the screen respectively, and the viewing angle is 

measured by the viewer who is located at the central position to watch the screen. THX 

specifications have been adopted in experiments to provide a better environment for visual 

fatigue tests [87]. In the THX specifications, to view an acceptable video quality, the maximum 

viewing angle is 36 and the maximum viewing distance is 1.54 times the screen width. 
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Figure 2.7: Requirements of viewing locations for two different cinema specifications: 

SMPTE and THX [86]. 

 

2.4.2 Visually Induced Motion Sickness (VIMS) evaluation 

Visually Induced Motion Sickness (VIMS) is a category of motion sickness. It is related to 

nausea, strain, disorientation, general discomfort, vertigo and more. It happens when a viewer 

gets a perception of being in motion whilst being in a stationary state. This condition stands as 

an obstacle in front of any gamer involved in a 3D and virtual reality gaming experience. VIMS 

can affect the participants and is uncomfortable for many users. VIMS can also be caused by 

watching many 3D movies. Viewers might have an increased risk of health problems like 

photosensitive epilepsy in the long run after excessive viewing of 3D movies [88]. The 

recovery of VIMS might vary from meditation to simple exercises. One of the techniques is 
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called natural delay in reducing VIMS. However, it can take up to a single day to fully eliminate 

symptoms. The alternative technique is a hand-eye coordination task. This technique is 

developed in an attempt to reduce the 3D illusion effect rapidly [89]. It involves a hand-eye 

coordination task which includes ocular focus and perception of body movement. The above 

two methods allow the user to reduce the VIMS effect. 

VIMS is a subjective evaluation that involves the widely used Simulator Sickness 

Questionnaire (SSQ) to assess motion sickness [72], which has 16 parameters for the 

assessment of 3D visual fatigue. Zou et al. [90] performed VIMS for viewers watching 3D 

movies, and the results indicated that viewers might have an increased risk of potential health 

problems, such as photosensitive epilepsy when watching an increasing number of 3D movies. 

 

2.4.3 Simulator Sickness Questionnaire (SSQ) 

The most common subjective evaluation of VIMS is the Simulator Sickness Questionnaire 

(SSQ) developed by Kennedy et al. [24, 39]. The SSQ was developed to assess motion sickness, 

with different ratings for a selection of 16 major symptoms as shown in Table 2.1. Each 

symptom item is rated on four levels: none (0), slight (1), moderate (2) and severe (3). Each 

sub-scale of a symptom item have a different rating; the rating scheme of the sub-scale 

weighting for the items was based on an analysis of simulator sickness experienced by 

American pilots using 10 different flight simulators [91]. The three sub-scales, Nausea (N), 

Oculomotor (O) and Disorientation (D), are based on the greatest varimax-rotated loading 

structure which the varimax factor used to indicate the presence of a general factor for 

identification [39]. The symptom items of each sub-scale have varimax loading factors of at 

least 0.3. Some items include more than one sub-scale factor, such as difficulty focusing, 

nausea, difficulty concentrating and blurred vision. The Total Severity (TS) score is then 
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computed as the weighted sum of the three sub-scales based on the types of symptoms and the 

scoring level, with a multiplication factor. 

Table 2.2 shows the potential score ranges of SSQ scores of each symptom level at three sub-

scales. For example, if all participants have “moderate” Oculomotor (O) symptoms, the 

resulting O score is 106.1. Another example is that if all participants have ‘‘slight’’ symptoms 

related to Disorientation (D), the resulting D score is 97.4. The total SSQ score, referred to as 

the TS score, can range from 0 to 235.6. Experiments conducted by Solimini et al. [92] 

examined VIMS in viewers watching 3D videos, and the results indicated that viewers might 

have an increased risk of potential health effects, such as photosensitive epilepsy when 

watching an increasing number of 3D videos. 
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Table 2.1: Sixteen symptom items with ratings and three sub-scales in SSQ [39]. 

SSQ Symptoms Nausea (N) Oculomotor (O) Disorientation (D) 

General discomfort 1 1  

Fatigue  1  

Headache  1  

Eye strain  1  

Difficulty focusing  1 1 

Increased salivation 1   

Sweating 1   

Nausea 1  1 

Difficulty concentrating 1 1  

Fullness of head   1 

Blurred vision  1 1 

Dizzy (eyes open)   1 

Dizzy (eyes closed)   1 

Vertigo   1 

Stomach awareness 1   

Burping 1   

Total [1] [2] [3] 

 

Nausea = [1] × 9.54 

Oculomotor = [2] × 7.58 

Disorientation = [3] × 13.92 

(2.4) 
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Table 2.2: Potential score ranges of SSQ scores. 

Symptom Nausea Oculomotor 

(O) 

Disorientation 

(D) 

SSQ Score 

None 0 0 0 0 

Slight 66.8 53.1 97.4 78.5 

Moderate 133.6 106.1 194.9 157.1 

Severe 200.3 159.2 292.3 235.6 

 

2.4.4 Biosignal-based evaluation 

To quantify the self-reported subjective fatigue and emotional engagement of viewers when 

watching 3D videos, Electroencephalography (EEG) can be used. The Quality of Multimedia 

Experience (QoMEX) community has previously used EEG for analysis of multimedia 

experience [93-95]. The QoMEX community is leading experts from industrial partners and 

academic professionals to discuss the current and future research on multimedia quality, quality 

of experience (QoE), quality of service (QoS) and user experience [96]. EEG records the 

electrical activity generated by the brain by using electrodes placed on the scalp [97]. The 

position of electrodes in EEG equipment is shown in Figure 2.8 [98], where one electrode is 

typically used as the reference position at the earlobe or mastoid location such that the 

measured potential difference of the electrical signal is just equal to the voltage drop from the 

measured electrode to the reference electrode. The EEG signals are classified into delta, theta, 

alpha, beta and gamma waves according to the following frequency bands [72]: 

 Delta waves (1-3 Hz): relate to deep sleep 

 Theta waves (4-8 Hz): correlate with emotional stress for adults 

 Alpha waves (9-14 Hz): reflect physical relaxation, meditation and creative visualisation 

 Beta waves (15-30 Hz): reflect emotional state and focus level 

 Gamma waves (above 30 Hz): can be used for the diagnosis of some brain illnesses 
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Figure 2.8: An example of consumer EEG headset equipment to connect the two electrodes in 

the respective locations [98]. 

 

A typical medical-grade EEG apparatus can collect brain waves from around 16 to 20 contact 

points simultaneously [99], as shown in Figure 2.9 [61]; however, the experimental setup is 

non-trivial. Therefore, some consumer-grade EEG apparatus are available in the commercial 

market because of the higher mobility of the device, participants, and lower price point than 

the typical medical-grade equipment. Various commercial EEG equipment such as NeuroSky 

[100], Muse [101], EMOTIV [102] and OpenBCI [103] vary from 1-8 electrode channels. 

Bateson et al. [104] compared 30 mobile EEG headsets adopted by previous researchers for 

the categorisation of the device, participant mobility, the system specification, and the number 

of channels. Such categorisation of the mobile EEG equipment can thus help to quantify the 

EEG equipment in a standardised way for research equipment selection. 
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Figure 2.9: A typical medical-grade EEG apparatus for measurement [61]. 

 

Zou et al. [90] proposed nine EEG indices to assess stereoscopic visual fatigue, including three 

basic indices and six ratio indices. Six indices (α, β, α/β, α/θ, θ/(α+β) and (θ+α)/β) were found 

to be significantly different before and after the viewing period. Three of these indices (α, α/β, 

α/θ) were confirmed to show temporal variation after verification by Grey Relational Analysis 

(GRA). GRA is an alternative indicator for stereoscopic visual fatigue [105], and its grade can 

be calculated with Equation (2.5): 
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where XR (k) is the reference sequence, XA (k) is the alternative sequence, and s is the number 

of samples of the nine EEG indices. The Relational Coefficient (RC) from the reference 

sequence to each alternative sequence was calculated with Equation (2.6) [90]: 
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where: 
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where Δi (k) is the difference between two sequences for comparison, τ is a coefficient between 

0 and 1, and Δmax and Δmin are the maximum and minimum values of the differences between 

the alternative sequences, respectively. RCR,A (k) indicates the closeness of two sequences for 

comparison. Comparisons show that an alpha wave is a potential optimal visual fatigue index 

of S3D video due to its effective identification of the fatigue level and sufficient sensitivity for 

an EEG index for visual fatigue detection. 

The International Federation of Clinical Neurophysiology (IFCN) provides a list of brain wave 

energy testing methods for the measurement of 3D fatigue and has proposed several formulae 

for calculating brain wave energy from various measured parameters [99, 106]. The results 

show that a brain wave power ratio of more than 0.05 reveals an increase in the fatigue level. 

2.5 Eye-tracking Techniques in Human Vision System Analysis 

Eye-tracking systems are used for following eye positions of the observer in real time. They 

can measure the gaze point or the motion of the eye [107]. Eye-tracking is a widely used 

technique in the research of the vision system and Human-Computer Interaction (HCI). 

Typically, the raw eye-tracking data is recorded using specialized eye-tracking equipment by 

applying an algorithm, or series of algorithms to the raw data. Then, fixations and saccades are 

extracted. Both fixations and saccades can be described in the spatial and the temporal domains; 

the variability of where exactly the viewer focused on (fixation), can be used for assessing the 

consistency of eye movements (saccades). The eye positions are sampled uniformly in time 
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(typically at 60 Hz). This sampling method does not require pre-processing of eye-tracking 

data into discrete fixation-saccade sequences, as is usually adopted in eye movement analysis 

[108]. 

Gaze point evaluation is one of the methods for eye-tracking analysis as it can convey the fast-

changing focus of the visual interest from viewers [109]. A major challenge for gaze input is 

the limited accuracy and precision, and the noise in measuring the gaze point. Accuracy means 

how the measured gaze point matches the real gaze position, whilst precision is the amount of 

variation of samples succeeded within a fixation. However, there is always some noise in 

measuring our gaze, even during a fixation [110] 

The distribution of fixations across an image can be represented by presenting a heat map: a 

spatial density plot showing how frequently the viewer focused on the scene. The discrete 

fixations are first transformed into a continuous distribution, convolving a binary map with a 

Gaussian function. Figure 2.10 shows an image of a scene with fixations marked as red dots 

and a heat map where the peaks are shown in colour, which is proportional to the height of the 

heat map. 

 

Figure 2.10: An example to present fixations on the image scene (a) marked in red dots, (b) 

presented in heat map [108]. 
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2.5.1 Calibration 

The calibration procedure is a critical factor in spatial accuracy, and can provide a mapping 

function that allows raw eye-tracking data to be converted to the coordinates of the viewing 

screen. Calibration usually involves presenting targets at a sequence of known locations. A 

simple approach would be to use a linear regression; that is to use a simple straight line equation 

(y = mx + c) describing the relationship [108, 111]. 

Gegenfurtner et al. [112] defined the comparison of perceptual performance and eye movement 

in the context of speed discrimination. In their study, the definition of perception was based on 

human interaction with the environment, further defining the perception of velocity as based 

on the error signal and a reference signal. These signals are obtained from the signals generated 

by the oculomotor plant, and it was shown that the relationship between the noise sources can 

be analysed. Turano et al. [113] also showed that constant displacements are associated with 

eye movements that change the velocity of the retinal image. Furthermore, this study also 

showed that eye movements must be compensated. The distal-motion model was analysed 

along with the retinal-motion model, in which the speed was analysed to identify the perceived 

speed of the distal stimulus changes, which are used to evaluate the direction and speed of eye 

movements. The study showed that the distal motion can be applied to examine fully 

compensated eye movements. Taking a different approach, O’Connor et al. [114] and Bennett 

et al. [115] studied the influence of ageing on eye direction discrimination and speed 

discrimination. O’Connor [114] demonstrated that both eye direction discrimination and speed 

discrimination have an important influence, whilst Bennett [115] showed that age did not have 

a significant effect.  
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2.5.2 Eye-tracking methods for gaze estimation 

Ferhat and Vilariño [116] studied visible light gaze tracking in a 2D setting to analyse 

techniques such as gaze estimation, calibration methods and the variation of head pose. The 

study was based on an experiment in which a single camera was set up to perform remote gaze 

tracking. They also conducted some calibration experiments under a controlled environment to 

optimise methods to perform eye-tracking in a 2D setting. The findings revealed that high-

performance techniques are suitable when eye-tracking can be performed in the desired manner. 

Furthermore, the study found that convolutional neural networks can be used to obtain accurate 

results for eye-tracking. 

Hanhart et al. [117] proposed a gaze estimation method based on a 3D model, which is 

calculated based on the fitting of an eye model and the contour of the iris extracted from an 

image of the eye. However, it remains unclear whether the refraction phenomenon will affect 

their basic premise, namely, that the iris contour can be modelled as a simple perspective 

projection of a circular 3D iris. This seems to be a reasonable assumption for a near-eye camera 

installed almost directly in front of the eyes; however, the geometry of a headset with head-

mounted eye-tracking usually requires a more inclined camera angle, and this assumption is 

not satisfied in such a case. Diekes et al. [118] proposed an approach to explain the effects 

while ignoring the corneal refraction can result in angular errors of several degrees. Such an 

approach used eye images from a single camera for refraction modelling for gaze estimation. 

Narcizo et al. [119] reviewed current remote eye-tracking systems for research purposes, such 

as Human-Computer Interaction (HCI), data visualisation and human behaviour based on 

ocular activities. The system suggested by Hennessey et al. [120] comprised a single camera 

and a single LED to determine the centre of the cornea. They assumed refraction in the cornea 

and estimated the centre of the 3D pupil via back-projection points from the 2D pupil 

contour. As the radius of the back-projection pupil is estimated from the measured value of the 
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pupil in the 2D image, their method is an approximate solution. Other researchers have 

proposed similar approximate calculation methods but used an eye-tracker with a single camera 

and multiple blinking points [121]. Cognolato et al. [122] further reviewed the current eye-

trackers with gaze estimation systems. The results showed that each of the commercially 

available eye-trackers allowed for unobtrusive capture of real-time visual information. 

 

2.5.3 Gaze point accuracy and area of interest determination 

The fixed gaze point is a key indicator to obtain the human visual attention in visual science 

research, and is more specific than gaze estimation. Ciancio et al. [123] used eye-tracking 

equipment to measure the gaze point of fixation as the output measure of interest. The gaze 

point reveals the target to which the eye is looking at. An eye-tracker collecting data at a 

sampling rate of 1000 Hz will collect 1000 individual sampling points per second, known as 

gaze points. If a series of sampling points are very close in time and space, they form a gaze 

cluster constituting a fixed gaze point, which indicates that the eye is locked on the target. 

Expressions for accuracy estimate calculations were summarised by Kar et al. [124], as shown 

in Equations (2.7) – (2.11). 

Gaze point coordinates: 
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Gaze displacement (POG_d): 

 2 2_ ( _ ) ( _ )POG d POG X POG Y   
(2.8) 
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Pixel accuracy (Pixel_acc): 

 2 2_ (target _ ) (target _ )Pixel acc X POG X Y POG Y       
(2.9) 

On-Screen Distance (OSD): 
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Angular accuracy (Angular_acc): 

 

1pixelsize  _   cos tan

_
_

OSD
Pixel acc mean

dist
Angular acc

mean dist

  
    

    (2.11) 

The mean gaze coordinates of the eyes’ point of gaze (POG) are represented as POG_X and 

POG_Y, whilst dist and mean_dist are the distance between the eye and projection screen, and 

the mean distance between the eye and eye-tracker respectively. The pixel shifts of the x and y 

pixels move along the x and y directions, and the offset is the distance of the eye-tracker sensor 

from the lower edge of the projection screen. Further details of the calculation formulae are 

explored in the literature [125]. 

The eye movement between two fixations are called saccades. It has been found that the eyes 

become locked because the central “visual range” of the human eye is limited. The “visual 

range” refers to the number of words visually read before and after the current fixed words. 

The physiological explanation deals with the fovea, parafovea and the nerves around the 

eyeball [126]. The interpretation of saccades reflects how the trajectory of the eye movement 

changes and whether the position of the gaze changes. This is a spatial indicator of eye-tracking 

[126]. 

Determination of the Area of Interest (AOI) is done by selecting a displayed stimulation target 

area and extracting eye movement indicators in this area for statistical analysis. It defines the 
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area from which the eye movement indicator metric is calculated. The display indicators for 

each area, such as the time from the beginning of the stimulus to the time the participant views 

the area, the amount of time the participant spends in the area and the number of people who 

move their eyes away and then back, are useful when evaluating the performance of two or 

more areas in the same video, picture, website or program interface [127]. The first fixation 

time is the duration of the first fixation point that falls on the AOI and serves as an important 

reference index of time in the eye movement index, especially in reading research. It reflects 

the early characteristics of vocabulary access when the eyeball is watching and reading [128]. 

Ahn et al. [129] studied visual scene stimulation and found that participants will scan by 

saccades due to the difficulty of visual processing. The ratio in the visual scene refers to the 

proportion of the gaze information from the participants’ gaze in the target AOI to the rest of 

the non-target area. This approach is often used in advertising and Web design to quantify 

viewers’ focus, identifying which parts of a visual scene are more attractive to different 

participants. During reading, the saccade rate can be referred to as the skipping rate because it 

refers to the probability that the target AOI will be skipped. Studies have found that the length 

and height of a word in the sentence predictability have an important influence on the saccade 

rate [130]. In reading research, the saccade rate can reveal the degree of familiarity of the words 

[131]. The number of “look-backs” reflects the participant’s reprocessing of previous 

information and provides information about the number of times the participant’s gaze returns 

to a specific target defined by the AOI. This information allows the researcher to check which 

areas repeatedly attracted participants (good or bad) and which areas are seen and then moved 

from. Although eye tracking cannot tell researchers how the participants feel when they look 

at something, it can provide gaze and visual attention focus [132]. 

 



 

39 

2.5.4 Current saliency prediction models 

Compared with a long history of the gaze point detection method, only a short history in salient 

object detection tasks has developed as it involves several computer vision tasks, such as visual 

tracking, image captioning and the segmentation of images. Itti et al.[133] and the Graph-Based 

Visual Saliency (GBVS) model by Havel et al. [134] are the earliest works in this field. These 

saliency object detection models, referred to the saliency prediction models, are mainly based 

on a bottom-up method, using different low-level visual features, such as colour and edges, due 

to the significant object detection. Therefore, the salient object detection model also referenced 

basic theories of the human visual attention mechanism, including the contrast hypothesis and 

centre-periphery hypothesis. Jiang et al. [135] then proposed a salient object detection task, 

which can be regarded as an extension of the visual attention mechanism of the object 

segmentation task. The proposed model includes a prediction function of the visual comfort to 

differentiate an S3D image as a low- or high- level comfortable stereo viewing and derive the 

saliency maps for different visual comfort, this saliency map can provide better visual comfort 

assessment. Liu et al. [136] used a multi-scale contrast, centre-surround histogram, and centre-

surround histogram at different scales. After the three saliency measures of colour spatial 

distribution, conditional random fields were used to integrate these saliency features, and the 

first significant object detection data set is also proposed [135, 137, 138]. Three important 

evaluation indices are proposed: precision, recall and F-value (F-measure), where two 

variables, F-defined value and evaluation index, have become the most commonly used 

evaluation indices in the field of significant object detection in vision science research. He et 

al. [139] proposed a salient object detection method by obtaining the centre coordinates of the 

salient object using several detection algorithms, and the proposed model has better detection 

effects and higher detection rates. The research of Iatsun et al. [140] conducted follow-up work 
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in the direction of salient object detection, which proposed a model to consider video 

characteristics, such as disparity range, motion activity, and the previous visual fatigue state. 

 

2.5.5 Eye-tracking for S3D video quality of multimedia experience 

Researchers have already adopted eye-tracking to understand how the human visual system 

responds to visual attention when watching 3D video content [141]. Hanhart et al. [141] and 

Fang et al. [142] created an eye-tracking dataset providing the eye-tracking information, such 

as fixation points and fixation density maps and developed a visual attention model to 

understand the visual mechanism which can enhance the QoMEX of S3D video. Then, 

Banitalebi-Dehkordi et al. [143] evaluated existing saliency detection methods and proposed a 

new 3D visual attention model to validate and benchmark these methods. 

2.6 Current Developments in Multi-view 3D Video 

Multi-view video includes multiple video sequences captured by several cameras at the same 

time, but in different locations [144]. The view direction and the viewpoint can be changed 

within the range captured by cameras. Various applications of multi-view video coding include 

free-viewpoint TV and 3D video applications for home entertainment and surveillance [9]. 

Multi-view 3D video increases the transmission bandwidth because it typically provides 16 

cameras with different viewing angles [35]. Therefore, these video sequences contain a large 

amount of data, but there are limitations on data distribution applications [144]. However, it is 

critical to limit the bandwidth while minimising the total distortion between two different views. 

Several schemes for bit allocation between the texture and depth map for a multi-view 3D video 

have been proposed to ensure that the synthesised view has nearly the same quality as the 

original view. Depth Image-Based Rendering (DIBR) approaches eliminate the requirement to 
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deliver each view of a multi-view video if the left and right views of the desired view have 

been transmitted to other viewers [145-147]. Moreover, the number of left and right views in a 

multi-view video must be constrained to ensure the quality of the synthesised view [148], such 

that the desired view of each user can be synthesised with good quality. 

With the development of advanced video quality, significant changes have occurred in frame 

rate, dynamic bit depth and colourimetry [30]. In the current development of 4K resolutions 

(also called UHD-1), the video should include ITU BT.2020 colourimetry, frame rates up to 

120 fps and bit depth up to 12 bits for the high dynamic range. Figure 2.11 shows how the 

viewing angle affects the advanced video quality, where increasing the viewing angle provides 

higher-resolution images.  

 

Figure 2.11: Viewing angle with the advanced video quality [30]. 

 

Researchers have proposed methods for multi-camera processing arrangements and 

evaluations, and the software framework of free viewpoint TV is currently in MPEG 

standardisation [10, 17]. However, few methods of multi-view video coding have been 

proposed for S3D [149]. 
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2.7 Summary 

This chapter has reviewed key literature on objective and subjective quality assessments of 

S3D video. Objective evaluation is a long-standing approach to image and video assessment, 

whereby the key approaches are detection of blocking artefacts, Just-Noticeable Difference 

(JND), and NOSPDM image quality metrics. However, objective metrics are mainly an 

extension from 2D quality assessment methods, and are generally used without considering the 

subjective assessments of 3D fatigue for S3D. 

Various subjective quality assessment methods of 3D video are available and related to ITU 

and MPEG standardisations. Most commonly, the SSQ is used to assess VIMS and brain 

fatigue. Recent research has adopted biosignal-based evaluation for continuous-time feedback, 

including EEG to assess neurological activities and eye-tracking to assess the human visual 

attention in 2D video assessment. Using eye-tracking, human saliency maps and saliency 

prediction models can thus be developed for 2D video. However, there is currently limited 

investigation on the subjective evaluations of commercial environments by other standards, 

such as SMPTE and THX, and comparison of subjective evaluations in different viewing 

environments. Further, few studies involves both surveys (e.g., SSQ) and biosignals (e.g., EEG) 

to assess VIMS, or complement with eye-tracking to assess the human visual attention of S3D 

video and correlate human visual attention with QoE assessments for S3D video. Working with 

these key approaches to address research gaps from previous studies, this thesis investigates 

VIMS with EEG signals to correlate 3D fatigue level with VIMS by comparing 2D and S3D 

videos in a flat 3D screen; and compares S3D videos in three different viewing environments, 

with the use of commercial standard: THX. Also, the thesis investigates visual attention of 

viewers using eye-tracking to predict S3D visual attention and develop a human saliency map 

model. 
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The presentation and evaluation of the QoE of a flat 3D screen and different viewing 

environments are discussed in Chapter 3 and Chapter 4 respectively, to address the challenges 

outlined in Sections 2.2–2.4. The application of the quality metrics and subjective evaluations 

as a use-case in S3D is then evaluated in Chapter 5 to reflect the methods raised in Sections 

2.3 and 2.4. The discussion and the current QoE assessments of S3D video using eye-tracking 

technology from Section 2.5 are then presented in Chapter 6 .  
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Chapter 3  Comparison of Objective and Subjective S3D 

Evaluation using EEG Biosignals 

 

3.1 Introduction 

In S3D image and video, each eye is presented with a different image, and the combination of 

these two images in the brain applies depth to generate a 3D image. However, it has been 

reported that long 3D movies or visual effects may cause health effects in the audience, such 

as eyestrain, nausea, headaches or visual fatigue [22]. 

It is important to understand the QoE between 2D and 3D image and video content from the 

perspective of end-users [150]. Using objective approaches, one method to differentiate 2D and 

3D video is based on the stereoscopic concept. Subjective evaluations generally focused on 

Visually Induced Motion Sickness (VIMS) [151]. All existing studies confirm that S3D videos 

produce greater symptoms of VIMS to participants [23], compared to 2D image and video 

content. 

To augment users’ self-reported VIMS experience, an alternative and complementary method 

is to use continuous-time biosignals. Few researchers have investigated VIMS augmented with 

biosignals such as EEG signals. Therefore, this chapter focuses on the comparison of QoE 

measuring self-reported VIMS and recording EEG biosignals when participants view both 2D 

and S3D videos of the same, non-stimulating consumer content. The experimental approach 

had two main aims: 
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 To investigate 3D visual fatigue to identify the effects of VIMS, using EEG 

measurement and the Simulator Sickness Questionnaire (SSQ), to consider visual 

attention and assess 3D visual fatigue. 

 To understand whether 2D or 3D video content caused more visual fatigue and to 

what extent [53]. 

3.1.1 Electroencephalography (EEG) 

Electroencephalography (EEG) is a method of recording the bioelectrical activities in the brain. 

It is classified into five wave types. As described in Section 2.4.2, several researchers have 

used and recommended the use of EEG signals to evaluate VIMS. According to Choi et al. 

[152], there are five waves associated with EEG signals and these include alpha (α), beta (β), 

delta (δ), theta (θ) and gamma (γ) waves. The five types of waves correspond to particular 

frequency bands which correlate with various emotional states of the viewers. Hence, it is 

possible to understand the emotions of the viewer using the EEG signals by correlating the 

emotions corresponding to the particular frequency ranges of the detected waves. 

Table 3.1 below lists the various EEG components and the frequency ranges used in the 

cognitive neuroscience system. The delta wave is a temporal component that occurs in the 

frequency band of 1-3 Hz which reflects deep sleep, and the state of unconsciousness of the 

mind. The second temporal component is the theta wave that occurs in a frequency band 

between 4 and 8 Hz and reflects light sleep and emotional stress. The third component, the 

alpha wave, is an oscillatory component that occurs between 9 and 14 Hz and reflects physical 

relaxation, creative and meditation visualisation [153, 154]. The beta wave oscillatory 

component occurs in the 15 to 30 Hz frequency band and reflects the emotional state. Lastly, 

the gamma wave, an oscillatory component, occurs above 30 Hz and may reflect a diagnosis 

of some brain illnesses. 
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According to Young and Cashwell [155], the brain wave power can be measured in varying 

frequency bands consistent with the alpha, beta, gamma and theta waves. These waves can be 

used to identify fatigue by comparing the ratio of fast waves (α and β) to slow waves (δ and θ) 

as a function of time. Cognitive neuroscience shows that the comparisons of the behaviours of 

temporal components on two occasions namely before and after the event can be used to 

measure mental fatigue. In addition, the frequency bands show different levels of alertness. On 

the one hand, when the alertness increases, there is also an increase in the proportion of low-

frequency bands such as the α, θ and δ waves [156]. In contrast, when the alertness level 

decreases, there is a decrease in the proportion of high-frequency bands namely the γ and β 

waves [155]. Human emotion recognition and bioelectrical activities can thus be measured 

using the EEG signals as proposed by Petrantonakis et al. [106] and Liu et al. [72]. 

 

Table 3.1: Characteristics of major EEG components. 

Component Name Frequency 

Band (Hz)  

Reflection 

Temporal Delta (δ) 1 – 3 Deep sleep, unconscious of the mind 

Temporal Theta (θ) 4 – 8 Light sleep, emotional stress 

Oscillatory Alpha (α)  9 – 14 Physical relaxation, meditation 

Oscillatory Beta (β) 15 – 30 Emotional state 

Oscillatory Gamma (γ) >30 Diagnose brain illness 

Table 3.1 also shows a reflection for each component. The reflection gives an indication of the 

emotional status of the display user [152]. Oscillatory components show the neural states of 

participants [61]. Recent research indicates that a brain wave is the response of the emotional 
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pattern associated with the alpha wave properties [90], and this type of association can be 

observed by multi-channel EEG recording.  

The EEG signal of a viewer changes depending on emotions arising from the viewer’s viewing 

experience. From the EEG, one can classify the viewing emotions into six categories; sadness, 

happiness, disgust, anger, surprise and fear [157]. Hence, in real-time, the monitoring of the 

user’s viewing experience of the S3D video can be monitored by recording the EEG signal 

throughout the video. Such approaches have been used by researchers such as Liu et al. [72] to 

determine 3D visual fatigue. During the experiment, viewers in a binocular parallax condition 

watched both the 2D and 3D videos. The study revealed that the EEG signals are significantly 

correlated with the subjective measurement of 3D visual fatigue, and can be used to determine 

the dominance level of emotional interaction in the human brain [72]. Although the results were 

positive, Liu et al. [72] used a method that relied on auditory stimuli only without considering 

the visual stimuli. The researchers compared both 2D and S3D videos while choosing an EEG 

method to record the signals. Zou et al. [90] further investigated whether the nine types of EEG 

indices are effective in assessing the visual fatigue of the viewer. In their study, alpha waves 

produce better results in detecting stereoscopic visual fatigue. Another study conducted by Hu 

et al. [158] relied on functional Magnetic Resonance Imaging (fMRI) to bridge between low-

level and high-level semantics for video classification. They have also studied EEG signals to 

establish their success rate in determining user emotions. In their study, Vinhas et al. [159] 

extended this work to consider additional biosignals, e.g., respiration rate and volume, galvanic 

skin response, heart rate and skin temperature, in regard to the multimedia content and delivery 

based on the user emotions.  
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3.2 Experimental Methodology 

3.2.1 EEG for visual fatigue assessment 

The viewing of S3D video and the fatigue due to excessive viewing can impact the bioelectrical 

signals in the brain. EEG can be used to measure changes in the brain during specific activities 

and for that reason, EEG can be used to measure fatigue whilst watching videos. It has been 

found in research that an individual cannot keep their attention for a long time without causing 

fatigue. The amount of fatigue experienced whilst watching 2D and S3D videos is not well 

understood, and therefore this research has been conducted to measure the impact and amount 

of fatigue during the watching of 2D and S3D videos of the same content [160]. In the case of 

physical fatigue, it is measured or analysed by exhaustion; in contrast, mental fatigue is 

generally measured through reduced mental activity. The proposed approach of using EEG to 

measure visual fatigue whilst watching 2D and S3D videos is investigated in this chapter, as it 

provides a more accurate human activity assessment than the VIMS approach alone [26, 73]. 

 

3.2.2 EEG for eyeblink measurement 

Wang et al. [161] advocated the use of eye fatigue assessment models to evaluate eye fatigue 

in regard to the eye blink data and eye movement data. Such assessment can be achieved with 

the aid of an eye-tracker. However, an eye-tracker is not the only device or method that can be 

used to assess eye fatigue. Previous studies have showed that health monitoring and eye 

blinking movement are correlated, where eye movement, eye-gaze and pupil contraction are 

related to fatigue [162, 163]. It can indicate physical condition, mental workload, stress, sleep 

disturbances, depression, Parkinson’s disease, neurodegenerative diseases and different social 

activities [70, 108]. In particular, eye blinking can be observed when an individual is fatigued. 
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Different studies have shown that increased mental fatigue results in a change in blink velocity 

and blink interval [163]. Thus, in this work, in addition to measuring visual attention, the eye 

blinking is also measured using EEG data capture. 

 

3.2.3 EEG equipment used for data acquisition 

A consumer-grade EEG apparatus called the NeuroSky MindWave [97] was used for the 

current experiments. The NeuroSky system [100] was chosen due to its benchmark against the 

Biopac system, a widely used medical- and research-grade EEG system [164]. The 

benchmarking compared the EEG signals measured by the two types of apparatus; electrodes 

for the two systems were placed as close as possible to the same location to avoid interference. 

Figure 3.1 and Table 3.2 show the raw EEG signals and the correlation coefficient of the two 

EEG systems. Both systems show a similar pattern of waveform and the eye blink sensitivity. 

The average Discrete Fourier Transform (DFT) power spectrum results showed that the EEG 

signals of the NeuroSky system are comparable to those of the Biopac system [164]. Therefore, 

the NeuroSky system was used in the 3D fatigue experiments of this thesis. 

 

Figure 3.1: Raw EEG signals of NeuroSky and Biopac systems over time (blue line: 

NeuroSky, red line: Biopac) [164]. 
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Table 3.2: Correlation coefficient values between NeuroSky and Biopac systems [164]. 

Time (seconds) Correlation 

Coefficient 

Meditation 

Rating 

Attention 

Rating 

15 – 16 0.771 73 61 

17 – 18 0.712 78 56 

18 – 19 0.858 80 45 

19 – 20 0.567 88 41 

20 – 21 0.564 93 43 

21 – 22 0.581 86 38 

22 – 23 0.321 95 41 

23 – 24 0.685 88 43 

24 – 25 0.751 85 45 

25 – 26 0.842 76 56 

Average power spectrum 0.715 - - 

Figure 3.2 shows a diagram and design of the NeuroSky MindWave EEG headset used in the 

experiment for data acquisition of brainwaves. The headset consists of different parts, such as 

sensor tip and arm, ear clip, flexible ear arm, adjustable head band, power switch, battery area 

and ThinkGear ASIC chipset. For the principle of the data acquisition of brainwaves, two 

sensors are used to detect and filter the EEG signals. The sensor tip detects bioelectrical signals 

from the forehead and an ear clip sensor acts as a reference ground for the ThinkGear chipset 

to filter the electrical noise (ambient noise generated by human, computers and other electrical 

appliances and devices) [97]. 
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(a)                           (b) 

Figure 3.2: NeuroSky MindWave EEG headset (a) Diagram, (b) Design [97]. 

 

This headset can measure raw EEG signals such as alpha, beta, delta, theta and gamma waves 

at a sample rate of 512 Hz. The headset can also detect attention level, meditation level and eye 

blink rate, using proprietary algorithms supplied by the manufacturer [97, 165]. The 

manufacturer’s specifications of the NeuroSky MindWave EEG equipment state that the 

meditation (similar to relaxation) and the attention (similar to concentration) level of a 

NeuroSky MindWave wearer are reported by an “eSense” meter to characterise the wearer’s 

mental states. The eSense meter has a scale that ranges from 1 to 100. Any value lying at the 

middle of the scale from 40 to 60, is said to be a neutral condition [97]. Hence, by using the 

eSense meter, the attention and meditation levels were measured and found to have an average 

level of 50 with all the devices. As concluded, a reading of between 40 and 60 indicate a neutral 

condition; hence, participants experienced a neutral condition. These findings correspond to 

the results of the studies conducted by [166]. A study conducted by Andreu-Sánchez et al. [167] 

found that in the presence of chaotic and fast audiovisual material, conscious processing 

decreases while the attention scope increases. 
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3.2.4 Experimental procedures and conditions 

The experiment has been approved by the Universities’ Human Research Ethics Committee, 

based on the guidelines of “National Statement on Ethical Conduct in Human Research” 

developed jointly by the National Health and Medical Research Council, the Australian 

Research Council and Universities Australia, as shown in Appendix 4. Further, all the EEG 

experiments in this thesis were conducted according to the International Federation of Clinical 

Neurophysiology standards [168]. 

For the experiment, the participants were required to complete an SSQ after watching each 2D 

and 3D video sequence. The captured biosignal data and SSQ scores were then analysed to 

study the fatigue level, total SSQ scores, and total eye blinking frequency (measured by the 

EEG headset) across all the video sequences. 

3.2.4.1 Experimental procedures 

Figure 3.3 illustrates the experimental methodology used to measure visual fatigue whilst 

watching 2D and S3D videos. The study was conducted on 12 males and 3 females aged 

between 18 and 38 years old. All participants are seated for the 3D experiment, which is based 

on the ITU-R BT. 2021 standard [25]. 

 

Figure 3.3: Experimental methodology of QoE test in S3D flat screen. 

Panasonic BT-
3DL2550 Monitor                        

Watch 2D/S3D 
video

EEG signals and 
eye blinking data

Complete SSQ

Data analysis: 
EEG power, total 
SSQ score, total 

eye blinking
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The research was conducted in controlled laboratory conditions at 23ºC±1ºC and 50%±8% 

relative humidity. The S3D video sequence was presented on a 25.5’’ Panasonic BT-3DL2550 

LCD S3D screen and all 2D and S3D video sequences were displayed in 19201080 HD 

resolution [169]. Figure 3.4 below illustrates the equipment setup with the viewing dimensions 

of the experiment. All participants are seated for the 3D experiment, which is based on the 

ITU-R BT. 2021 standard [25]. The participants were seated in front of a 3D monitor at a 0.9 

m viewing distance with a 36 viewing angle to watch 2D movies, as specified by the THX 

Cinema Certification specification [87]. The controlled environment with the THX 

specification settings is used to simulate a real-life 3D environment to test whether VIMS exists 

when participants view both 2D and S3D videos. 

 

   (a)            (b) 

Figure 3.4: Experimental setup of viewing location from THX farthest recommendation (a) 

Viewing dimensions (b) Actual setup. 

 

All the video sequences were from the RMIT3DV [75] and Big Buck Bunny [170] databases, 

as shown in Figure 3.5. All video sequences were natively recorded in S3D, with the left view 

selected as the 2D video shown to participants for each sequence. Sequence BBB is from the 

Big Buck Bunny [170] database, while sequences water fountain, wishing well, flame and 

garden is from the RMIT3DV [75] database. 
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(a)     (b)       (c) 

 

(d)     (e) 

Figure 3.5: Video sequences used (a) BBB [170], (b) Water fountain [75], (c) Wishing well 

[75], (d) Flame [75], (e) Garden [75]. 

 

Table 3.3 below summarises the characteristics of each video sequence. Two factors were used 

as the selection criteria for the five video sequences. One of the selection criteria used was the 

variety of 3D effects, and the second criteria was the comparison of 3D video experiences 

between animation and outdoor scenes. The first criterion was used to test whether the variation 

of 3D effects affected VIMS, while the second criterion was used to test if there were any 

significant differences in VIMS between animation and outdoor scenes. 
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Table 3.3: Characteristics of the S3D video sequences. 

Name of Movie Type Description 3D effect 

(a) BBB Animation Cartoon characters with 

the garden background 
Weak 

(b) Water fountain Outdoor scene Water, trees Moderate, water 

fountain 

(c) Wishing well Outdoor scene  Warped water moment Strong warped water 

movement 

(d) Flame  Outdoor scene Chaotic flame Moderate at the 

chaotic flame 

(e) Garden  Outdoor scene Lake, Birds, trees Weak 

All video sequences were presented for 5 minutes; if the sequence was shorter than the required 

duration, the sequence was repeated to fulfil the time requirement. The reason is that starting a 

vision-related activity for 5-10 minutes, participants may experience visual fatigue [171]; 

therefore, 5-minute period is the minimum time to experience visual fatigue. Firstly, the 2D 

video was presented and the participant’s eye blinking and EEG data were measured and 

monitored by the NeuroSky software. After 5 minutes of rest, the participant watched the same 

video rendered in S3D for another 5 minutes with their eye movement and EEG data recorded. 

Then, each participant completed an SSQ after each 2D/S3D video sequence pair [172]. The 

viewing of each video pair was conducted in a random order to reduce the sequence bias, and 

the average duration of each viewing experiment was 1.5 hours. The reason for a long duration 

is that some participants indicated tiredness and additional rest pauses were included. 
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3.3 Results and Discussion 

3.3.1 SSQ results 

The results from the SSQ are shown in Figure 3.6. The SSQ scores of the 3D videos are higher 

than any of the scores of 2D videos. In particular, the “Wishing well” video sequence causes 

the greatest increase by 50% change in VIMS between the 2D and 3D sequence, potentially 

due to the chaotic and frequent movement of the water throughout the sequence. Similarly, the 

“Water fountain” sequence contains regular water movement, and the “Flame” contains chaotic 

flame movement; both sequences also result in increased VIMS between the 2D and 3D 

sequences. In contrast, the “Garden” sequence features the least movement being a near-still 

sequence of a floral scene, resulting in the least SSQ variation (20% change) between the 2D 

and 3D sequence. Overall, for the video sequences shown, the VIMS is comparatively lower 

for 2D conditions than for the 3D conditions. Sequences containing more scene movement 

causing greater increases in VIMS, likely due to more engaging and higher cognitive scenes. 

 

 

Figure 3.6: Average SSQ score for 2D and 3D sequence of videos (95% confidence interval). 
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3.3.2 Eye blinking movement 

Table 3.4 shows the measured eye blinking movement rates of the participants. It can be seen 

from Table 3.4 that amongst the five videos, the “Wishing well” video caused the least eye 

blinking which suggests that it is the most fatiguing video. Congruent with the SSQ result in 

Figure 3.6, the video is very engaging as it includes rapid water movement, unstable flashes of 

light, a shadow from the water, and different interactions underwater [173]. A similar effect 

due to movement in the video can be seen for the “Water fountain” video. These results indicate 

that movement videos are likely very engaging; however, movement causes the viewer to be 

attentive, thus reducing eye blinking [174], and causing the most fatigue due to higher cognitive 

activity. In contrast, as in the findings shown in Figure 3.6, the “Garden” video is the least 

fatiguing video due to the stable scene. 

 

Table 3.4: Total eye blinking for 2D and 3D video sequences. 

Name of Videos Count of eye blinking in 5 minutes 

2D 3D 

BBB 56.4 54.3 

Water fountain 53.7 49.2 

Wishing well 50.4 45.3 

Flame 57.8 55.2 

Garden 63.4 60.1 

Average 56.3 52.8 

The experiment also showed that eye blinking whilst watching a 2D video is overall higher 

than the same sequence in S3D, as shown in Table 3.4. The result of the average eye blinking 

for 2D videos is 56.3 whereas the average for S3D videos is 52.8. These average eye blink 
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results indicate that the visual fatigue is likely to be higher for 3D video sequences compared 

to 2D video sequences. 

3.3.3 EEG brain activity measurement 

Hirvonen et al. [175] proposed test methods which use brain wave power ratios of EEG 

signals for the measurement of 3D visual fatigue according to the International Federation of 

Clinical Neurophysiology (IFCN). Equations (3.1) and (3.2) show two brain wave power 

ratios using different frequency bands of EEG signals. The threshold power ratio level 

between low and high fatigue is 0.05, as shown in Equation (3.3).  

1 Power Ratio
 




  (3.1) 

2 Power Ratio
 

 





 (3.2) 

where: 

1,2

0.05 (High fatigue level)
 

0.05 (Low fatigue level)
Power Ratio





 (3.3) 

The measured brain wave power ratio for participants watching the five video test sequences 

in 2D and S3D is represented in Figure 3.7, where P1 and P2 indicate the power ratios given 

by Equations (3.1) and (3.2) respectively. The brain wave power ratios are the averages across 

all of the 15 participants, where it can be seen that the average brain wave power ratios for the 

3D videos are consistently higher than the power ratios for the 2D videos. In Figure 3.7, the 

axis of the brain wave power ratio is centred at 0.05 which indicates the threshold level for 

high fatigue [168]. Figure 3.7 also indicates that 3D videos can be above the high fatigue 
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threshold level, depending on the content in the video. The “Wishing well” video, consistent 

with the results shown in Figure 3.6 and Table 3.4 causes the highest level of fatigue. Further 

analysis of the brain wave power ratios for each participant across all 3D videos found that 

over 90% of participants were above the high fatigue threshold level when watching 3D videos 

(this analysis is not shown in Figure 3.8). 

 

Figure 3.7: Brain wave power ratio distribution. 

 

Figure 3.8 shows the brain wave power ratios of each participant viewing the “Wishing well” 

video sequence. This video was chosen for further analysis due to the image distortion through 

water movement in the content, depth perception change, time-varying and rapid higher 

frequency motion. Therefore, it leads to more fatigue for the viewers. The higher brain wave 

power ratio for the 3D video can be clearly seen from Figure 3.8. Further, the brain wave power 

ratios for 2D and S3D videos significantly differ, which suggest different emotion recognition, 

as discussed in [173]. Congruently, the highest level of nausea and VIMS were recorded for 

the “Wishing well” video sequence in the SSQ (Section 3.3.1). The SSQ score for each 

participant viewing the “Wishing well” video sequence is shown in Figure 3.9. The result 

shows that the SSQ score for the S3D video is generally higher than that for 2D video. Also, 

more than half of SSQ scores for 2D and S3D videos differ significantly. This result aligns with 
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the brain wave power ratios analysis shown in Figure 3.8. 

 

Figure 3.8: Brain wave power ratio distribution for the “Wishing well” video sequence. 

 

 

Figure 3.9: SSQ score distribution for the “Wishing well” video sequence. 
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3.3.4 Discussion 

Previous studies have proposed a series of methods to assess eye fatigue whilst watching videos 

[137, 161, 176]. However, eye fatigue has been less investigated for S3D videos. Previous 

studies have focused on how an S3D projection screen causes VIMS to viewers. In this thesis, 

SSQ has been used to assess VIMS symptoms through an experimental evaluation. Results 

presented in Section 3.3.1 show that none of the participants felt any VIMS after the experiment 

because all the SSQ scores are less than 50, indicating none of the symptoms according to Table 

2.2 in Section 2.4.3. However, the majority of the participants exhibited eye fatigue when 

participants watched video sequences for a prolonged period of time. Thus, in this work EEG 

signals are used to quantitatively measure eye fatigue by assessing visual information 

transmission [177]. 

3.4 Conclusion 

This chapter proposed and investigated the use of EEG biosignals to measure visual and eye 

fatigue to augment VIMS measurement through participants’ self-reporting using the SSQ. 

Experiments were conducted to compare fatigue caused by 2D and S3D video sequences of the 

same video content. Experimental results indicate that the 3D video sequences caused more 

fatigue for the participants than the 2D video sequences. Further, participants exhibited more 

eye blinking movement for 2D videos, indicating less eye and visual fatigue. Congruently, the 

brain wave power ratio results from the EEG biosignals showed that 3D videos caused higher 

power ratio values than 2D videos, and larger than the fatigue threshold value of 0.05. 

Previous researchers have shown that 3D videos cause the most VIMS for viewers, and the 

results in this chapter confirm these same outcomes. Most VIMS and fatigue were seen whilst 

watching the “Wishing well” video sequence.  
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In future work, an extensive SSQ should be conducted to evaluate and analyse the fatigue level 

with the help of biosignals [178]. In addition, a medical-grade EEG apparatus is capable to 

operate at least 16 contact points for simultaneous brain wave collection. As a future extension 

to this work, this may give more accurate results for the EEG recordings and fatigue analysis. 

Also, future studies may consider other factors on stereoscopic effect in human health, such as 

Zernike polynomials score, Modulation Transfer Function Index (MTFI) analysis and higher-

order root mean square [179-181]. The sequence of videos watched can also impact the fatigue 

level of a viewer. Therefore, more investigations can be conducted to see if a broader range of 

content and shorter video sequences has an impact on the visual fatigue levels. Furthermore, 

further extended studies may include the SMPTE and THX specifications for the 3D fatigue 

assessment of UHD-1 video quality and corresponding parameters. Regarding the impact of 

the viewing device, the study in this chapter used a passive flat screen device. The study did 

not include any projection or VR devices, and this is explored in the work of the next chapter. 
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Chapter 4  Comparison of S3D Video QoE in Different 

Viewing Environments 

 

4.1 Introduction 

Engagement in 3D video content has increased since the use of virtual reality (VR) devices 

such as Head Mounted Display (HMD) headsets, especially among university and college 

students [182]. VR refers to the environment created by a computer simulation in which a 

person can interact with the environment through electronic devices such as goggles enabled 

with a screen. In such immersive multimedia environments, stereoscopic imagery further 

enhances the sense of immersion and reality, compared to using only 2D imagery alone. 

Despite the wide use of projectors in immersive multimedia environments, research has shown 

that the majority of viewers experience some degree of visual fatigue [80]. This problem has 

also been associated with exposure to stereoscopic images and videos. Viewers have reported 

having experienced headaches, eye strain, dizziness and nausea, which are the symptoms of 

visual fatigue [183-185]. Prolonged use of a screen is known to induce ocular discomfort [137, 

186], and excessive utilisation of VR with an HMD may result in a major clinical disorder 

[187]. In this regard, various QoE assessments towards 3D content have been developed, hence 

motivating further research. 

A study conducted by Quan et al. [74] evaluated the viewers’ experience and perception of 3D 

content. The researchers hypothesised that 2D content can be used to differentiate the 

perception of 3D content. Studies have also suggested the use of a panoramic screen to obtain 

better visual attention for 3D content perception. Lee and Kim [186] found that compared to 

curved screens, flat screens cause greater visual fatigue effects. Hence, projecting 3D videos 
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on a curved screen can reduce adverse effects on the eyes. Wegner et al. [18] suggested the 

projection of 3D videos on a curved circular panoramic screen as the best design specification, 

as shown in Figure 4.1. The challenges associated with such a design is the requirement of 

subjective quality experiments that must be performed before it is more widely implemented. 

 

Figure 4.1: Circular projection by the rotation of cameras. 

 

For more personalised use, HMDs have become popular due to their ability to display both 360 

and 3D video content. Examples of HMDs include Facebook’s Oculus Rift [49] and the HTC 

VIVE [50], both of which can project omnidirectional video contents. Due to the increased 

popularity of these HMDs, several researchers have conducted experiments to determine the 

QoE associated with viewing S3D videos on these platforms [188-190]. These previous studies 

used Simulator Sickness Questionnaires (SSQ) to evaluate the Visually Induced Motion 

Sickness (VIMS) by viewing S3D videos. Although some studies on QoE have been conducted, 

there are no studies to date that evaluate the QoE of S3D videos on two or more different 

viewing environments such as a panoramic screen [191], flat screen or VR headset. 
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To investigate viewers’ QoE in different viewing environments, this chapter investigates and 

evaluates the effects of viewing S3D videos projected on different screens. The research sought 

to assess the associated 3D fatigue with the use of more than one projection screen ranging from 

a research-grade flat 3D screen, a 3D panoramic screen [191] and a consumer-grade VR headset 

for S3D videos. The effects of VIMS was measured through a series of subjective and objective 

evaluations. For the subjective evaluation, participants were recruited to view a set of S3D 

videos. As the participants viewed the videos, both their eye blinking signals and EEG signals 

were recorded, following the methodology outlined in Chapter 3 . The participants were then 

asked to complete an SSQ in which they rated the enjoyment level and the quality of the S3D 

videos that they watched. This QoE data analysis and evaluation is thus discussed in-depth in 

this chapter. 

 

4.2 Background 

4.2.1 Existing QoE experimental methodologies 

A number of researchers [192-195] have conducted experiments to understand the QoE whilst 

viewing 3D videos on different types of screens and viewing environments. Such experiments 

can be categorised into three groups including adding stimulus for comparison, subjective 

evaluations among participants and image quality assessment models. Upenik et al. [192] used 

subjective evaluations to understand the quality of images projected on HMD displays, 

recommending the use of a testbed to perform the subjective tests in an omnidirectional 

environment on distinct projection screens. In another study, Sun et al. [193] suggested the use 

of a novel Image Quality Assessment (IQA) model from 360 image databases. The viewpoint 

images were used as the input and the output was omnidirectional content. This content was 
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composed of six viewpoint images [193]. The evaluations identified that this model produces 

the best performance in the assessment of image quality. Narciso et al. [194] used an HMD to 

study how the video and sound format affects the user’s cybersickness and sense of presence, 

where cybersickness is the feeling of dizziness or nausea while presence indicates the “sense of 

being there” in a VR environment [196]. However, the statistical results did not reveal any 

significant difference in the cybersickness and sense of presence between the sound and video 

variables. To further investigate the phenomenon, Narciso et al. [195] recommended adding 

smell as an additional sensory stimulus to measure how the various VR environments affect 

fatigue, stress, sense of presence, transfer of knowledge, and cybersickness of the viewer. 

However, the results found that smell and the measured variables were not correlated. Proposing 

the use of biosignal-based evaluations, the study by Duan et al. [197] was motivated by the 

knowledge that omnidirectional videos and images offer an immersive experience in a VR 

environment. Hence, the researchers sought to track the movement of the eye and the head 

during a subjective quality rating experiment. Duan et al. [197] suggested the establishment of 

an omnidirectional IQA database comprised of 320 distorted images and 16 source images. A 

subjective quality evaluation was then conducted on the database in a VR environment. A 

comparison was then made between the existing IQA databases and the created database. The 

results showed that high frequency content and image content in VR environments were more 

preferable to viewers, and the loss of the image detail affected the VR visual experience. 

Singla et al. [190] conducted a study to compare the QoE of omnidirectional content displayed 

and viewed on various HMDs. The researchers identified three classifications of 

omnidirectional content namely: low, medium and high degrees of content and camera motion. 

The authors further evaluated the three content types and established that they contribute 

significantly to the quality rating of the video content and resolution. To further understand 

cybersickness, feeling of presence, and perceptual quality of omnidirectional content in VR 
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environments, Anwar et al. [196, 198] conducted and compared the subjective evaluation of two 

high priority QoE factors: the interest and the familiarity of a user in a VR environment. The 

two factors were evaluated using the Absolute Category Rating (ACR) method. The impact of 

these factors was evaluated using the QoE prediction methods from Artificial Neural Network 

(ANN) under different situations on the cybersickness level of users. The results found that the 

prediction accuracy rate of the proposed method is 90% compared to other existing prediction 

models. Higher scores on QoE levels are rarely achieved since cybersickness is a common 

barrier that creates discomfort [199, 200]. The cybersickness and strain arise as a result of the 

user being fully immersed in the content. 

In regard to the quality assessment of S3D videos, Zhang et al. [201] performed two assessments 

on panoramic videos. The assessments were subjective and objective quality assessments of 

videos encoded on distinct bitrates and noise at different resolutions. Data on the subjective 

quality assessments showed a variance of subjective perceptions between the panoramic videos 

and normal videos when the bitrate was varied. In their study, Appina et al. [202] suggested the 

use of 288 test videos obtained from 12 “pristine” S3D videos; the term “pristine” referred to a 

video that was uncompressed. The researchers used novel subjective quality and objective 

quality prediction tests, where pristine videos were chosen for the subjective quality tests with 

reference to spatial information, motion information and disparity. A 6-point scale rating was 

used in the experiment; however, the QoE assessments were not further elaborated. 

 

4.2.1.1 VIMS measurement 

As explored in Chapter 3 , exposure to S3D videos causes VIMS and visual fatigue. Owing to 

this observation, Naqvi et al. [23] proposed methods to assess VIMS caused by S3D videos 

and made a comparison of the ratio of high- and low-frequency components in the video 
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content. For the comparison, the high-frequency component was classified as a frequency that 

exceeded 0.15 Hz while the low-frequency component was classified as a frequency below 

0.15 Hz. The high- and low-frequency components defined above are corresponding to 

parasympathetic activities and sympathetic modulations respectively. However, the proposed 

method included the S3D flat screen only. 

Sickness arising from exposure to screens such as VR HMDs has been evaluated by various 

researchers using SSQ [203]. In this regard, VIMS can be assessed using SSQ and the results 

correlated to visual fatigue. Tychsen and Foeller [203] found that the impact of being exposed 

to VR displays can be studied more effectively using the SSQ method. The results also found 

that young children may view immersive 3D video game content using current HMDs without 

deleterious effects on visuomotor property. In contrast, Duan et al. [19] conducted an 

experiment to evaluate the VIMS of immersive videos of actual scenes by controlling visual 

oscillations. Experimental results showed that the increase of the frequency of visual 

oscillations can increase the level of VIMS. Furthermore, Wang et al. [176] investigated eye 

fatigue compared to the VIMS caused by prolonged exposure to an HMD. The researchers used 

eye-tracking methods to assess eye fatigue and SSQ scores to assess VIMS. After the analysis 

of eye fatigue was completed, Wang et al. [176] also developed an assessment model to assess 

eye fatigue using HMDs. 

 

4.2.1.2 Statistical analysis approaches 

In previous studies [160, 168, 204], ANalysis Of VAriance (ANOVA) has been suggested for 

the statistical analysis of EEG signals. Trejo et al. [156] compared and analysed EEG signals 

using an ANOVA test to evaluate the cognitive fatigue during sustained mental work in a 

controlled environment. To study the features that characterise EEG signals, Salami et al. [205] 
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used a Common Spatial Pattern (CSP) algorithm through a Brain-Computer Interface (BCI). 

They utilised the Unbalanced Factorial ANOVA to understand the feature vectors of EEG 

signals, and the ANOVA table was used to obtain the F-distribution parameter through linear 

regression. 

Mouzé-Amady and Horwat [168] identified three Hjorth parameters namely complexity, 

mobility and activity. Mehmood et al. [160] processed the above three parameters by 

performing emotion recognition experiments that involved recording the EEG signals. The 

signals were then analysed using a one-way ANOVA and the peak EEG features were selected 

for different EEG frequency ranges. Measurement of the EEG signals allowed the researchers 

to obtain information on eye blinks, attention, meditation and brain wave powers. Zou et al. [90] 

then proposed brain wave power equations that were used to calculate the visual performance 

level. It was established that EEG signals yield more accurate results than typical subjective 

rating in the assessment of visual fatigue. 

 

4.2.2 Different S3D viewing environments 

 

4.2.2.1 Flat screen 3D monitor 

As discussed in Chapter 3 , 3D flat screens may cause visual fatigue to the viewer, especially 

those that are affected by epileptic response and the screen can cause eye fatigue and headaches 

due to the viewing requiring glasses [20, 206]. Additionally, most images displayed on 3D 

screens required a higher resolution which means that they need more space for data storage 

and also they take a longer period of time to process this data for display compared to 2D 

videos [207]. Even though there are drawbacks to viewing S3D videos on flat screens, 

according to Meitzler et al. [208], when it came to rating the quality of experience when 
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watching videos from 3D screens, the viewers had an increased sense of enjoyment as 

compared to other viewing devices. It was noted that the enjoyment resulted from longer 

viewing distances, larger viewing screens and a large space in the viewing area. 

 

4.2.2.2 Curved and panoramic 3D screens 

Urakami et al. [209] posited that curved screens create a better feeling of immersion than flat 

screens. However, since no studies had yet been conducted to evaluate the effects of curved 

screens on immersiveness, Urakami et al. [209] sought to compare the immersion experience 

of curved and flat screens. It was found that curved screens provide a better speed and accuracy 

than flat screen displays in a visual search task. Further, Kyung and Park [210] evaluated the 

effects of screen curvature radius and the screen size with the visual search accuracy, visual 

fatigue and visual search speed. They compared the experience using a curved screen and a flat 

screen, showing that when the screen size is increased, the readability of the texts and the degree 

of visual fatigue on a flat screen was affected. However, it was not affected in a curved screen. 

In this regard, they proposed that large curved screens are better and more appropriate for use 

in multi-purpose applications. In future, more visual devices such as split screens and the 

layered effects and transitions will emerge as hypothesised by Bizzocchi [211]. 

Panoramic screens differ from traditional flat or curved screens because they are able to present 

panoramic views and have a wide screen. Zhang et al. [212] described panoramic display 

screens as the most significant media content in VR. The screens represent a video that displays 

continuous content in every direction. Images and videos of a panoramic nature are taken 

simultaneously using more than two cameras [213]. In that regard, each camera captures a scene 

in a certain direction separately with specific geometric constraints. All the images are then 

stitched together to create a panoramic scenario. A large panoramic image with a wide field of 
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view is thus seamless and comprises many overlapping narrow Field Of View (FOV) images 

[214].  

To display a 360 FOV, the imagery is then rendered assuming that the human head is at the 

central point. Thus, using a panoramic display screen, the viewer can see the image in several 

directions, thus enabling a 3D-like experience. In that regard, panoramic screens are part of 

multi-projector display systems that generate high-resolution displays for wide field of view 

images. 

Currently available panoramic screens include consumer headsets comprised of a regular screen 

and a plugin to allow navigation with a mouse. The panoramic screen can thus be an HMD that 

allows the viewer to be immersed in a virtual world. Other devices to display panoramic video 

include the low-end single-viewer Google Cardboard [213], to high-end multi-viewer Cave 

Automatic Virtual Environment (CAVE) [215, 216] shown in Figure 4.2. However, the 

majority of panoramic videos and content are currently viewed on HMDs [215]. 

 

      (a)         (b) 

Figure 4.2: Devices to display panoramic video (a) Google Cardboard, (b) CAVE-like 

environment [216]. 

 



 

72 

Panoramic screens present several benefits to viewers. Firstly, they cover a wide area of view, 

even from far distances. Folen et al. [217] hypothesised that a panoramic immersive video 

provides the viewer with an efficient yet cost-effective environment. Although the study found 

a difference in outdoor and indoor experiences, the use of Oculus Rift VR equipment showed 

no difference [218]. In another study conducted by Sabarudin and Tiau [219], digital panoramic 

systems produce better and improved images. Folen et al. [217] examined the 

psychophysiological effects from a panoramic screen compared to a flat screen, where 

participants wore an HMD with a panoramic screen display. The results showed that the 

omnidirectionality of panoramic videos allow viewers to view the video by focusing on what 

interests them the most. However, in such videos, it is not possible to view the video entirely 

due to the wide FOV. 

The limitation of panoramic videos is the limited transmission bandwidth because of the large 

amount of data. Due to this limitation, at present the videos must be compressed before being 

sent to viewers. The application of existing coding approaches then becomes a challenge when 

mapping the videos. One has to map the panoramic video onto a plane in regard to the geometric 

transformation rules. After mapping, the panoramic video is then rendered into a sphere to 

create a display suitable to the viewer. On the other hand, panoramic screens have to display 

panoramic video in its entirety regardless of the varying resolutions, which is different from the 

traditional flat screen. In addition, panoramic display screens give the viewer an immersive 

experience, whilst an HMD maintains a fixed and consistent position with respect to the human 

eye. If the fixed and consistent position is missing, the viewer’s experience becomes affected, 

and VIMS may develop [212]. 
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4.2.2.3 VR HMDs 

Desai et al. [220] defined VR as a computer-simulated environment that allows the user to 

experience that environment. Juanes et al. [221] described VR as a computer system that creates 

an artificial world where the user possesses the sense of being in that world and the ability to 

move and manipulate present objects. VR headsets are often made of a stereoscopic HMD, head 

motion tracking sensors and stereo sound. The tracking sensors consist of accelerometers, 

gaming controllers, structured light systems, magnetometers, eye-tracking sensors, and 

gyroscopes. The virtual reality of the VR headset is facilitated and enhanced by interactive 

devices such as helmets and gloves. VR devices have gained wide application in video games, 

and simulators. 

In recent research, Urakami et al. [209] indicated that curved displays can create a feeling of 

immersiveness that is similar to a VR environment. For VR related devices, their suitability is 

based on the capacity to take the user into the world immersively. Immersiveness is an illusion 

that gives the user the impression that they are drawn into the image or that they are present in 

a scene that is far away from them. 

However, there are some challenges with VR headsets. When VR content is shown in HMDs 

where the user can notice a latency in the VR system, this can cause either a headache or nausea 

[222, 223]. Further, the weight of an HMD may be an issue for some viewers [223]. As stated 

by Craig et al. [223], other disadvantages of HMDs are that their FOV is narrow and the user is 

isolated from the people surrounding them, which makes the present viewing experience 

challenging. 

The choice of VR equipment used when watching S3D videos is thus critical. Various 

commercial VR hardware platforms such as the Facebook Oculus Rift [49], HTC VIVE [50], 
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FOVE [224] and Google Cardboard [225] provide varying levels of VR experience. Hence, 

different VR hardware results in a different user experience. Table 4.1 shows the specifications 

of the resolution per eye, refresh rate and FOV from the different commercial VR devices 

mentioned above [226]. In Table 4.1, Google Cardboard was not considered for use due to the 

resolution constraint of the required smartphone, relatively low refresh rate and FOV compared 

to the other VR devices. The HTC VIVE and the Oculus Rift are the two leading PC VR 

headsets on the commercial market [227]. Singla et al. [190] also compared the QoE and SSQ 

of these two VR headsets. Further, the FOVE VR headset has an embedded eye-tracking 

function that can automatically record eye-gaze data to be used for QoE in a VR environment; 

however, the headset is now rare in the commercial market. 

 

Table 4.1: Specifications of different commercial VR equipment. 

Brand of VR headset Resolution per eye Refresh rate 

(Hz) 

Field Of View 

(FOV) (degrees) 

HTC VIVE 10801200 90 110 

Oculus Rift 10801200 90 110 

FOVE 12801440 70 100 

Google Cardboard Depends on smartphone 

quality 

60 80 

 

4.2.2.4 Oculus Rift and user experience 

Parisi [228] described the Oculus Rift headset as a spectroscopic display that has a built-in head 

motion tracking sensor. Figure 4.3 shows the Oculus Rift equipment which consists of a headset, 

an infrared sensor and a joystick controller. It can create stereoscopic vision that possesses 

excellent depth, parallax and scale. Juanes et al. [221] created a virtual reality experience on the 
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platform with artificial environment capabilities in a medical operating room. The aim was to 

expose the user to the perception of virtual situations with the aid of Oculus Rift to depict its 

immersive potential. The VR device possesses stereoscopic vision, which allows for the training 

of students to tend towards reality. The virtual space allows for the creation, modification, and 

arrangement of various 3D objects. The software development tools of the Oculus Rift can 

develop virtual environment platforms for both research and educational purposes. 

 

Figure 4.3: Oculus Rift headset with infrared sensor and controller [49]. 

 

Lee et al. [229] considered Oculus Rift to be HMD technology suitable for VR games. 

According to Bailenson [230], the VR technology of Oculus Rift has led to an improvement of 

the video quality and the creation of an immersive medium in which the user experiences a 

sensation of being fully transported into a virtual 3D world. Compared to screen-based media, 

Oculus Rift gives the user a more instinctive experience. Tan et al. [231] highlighted that Oculus 

Rift gives users an improved VR experience compared to previous HMDs; the device has the 

potential to immerse the user into emotional levels and a feeling of sense of reality. 

Tan et al. [231] also found that users can naturally look around without using controls. However, 

after exploring the experience of ten participants, it was found that the users experienced 
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cybersickness despite heightened experiences. Also, the user experienced a deeper immersion 

and a higher degree of “flow”. Users also experienced a large range of head motion to navigate 

through the game environment; however, the gaming experience was negatively affected by 

such excessively demanding movements [230]. 

 

4.2.2.5 HTC VIVE and user experience 

The HTC VIVE equipment has a headset, two infrared laser emitter units (Lighthouses) and 

two controllers, as shown in Figure 4.4. The laser emitters are the tracking technology that the 

device relies on. They alternately send both vertical and horizontal beams that span 120 in each 

direction [227]. The device can control the motion using motion controllers and external sensors 

for the entire VR room. With the aid of built-in motion sensors and external sensors, the headset 

accurately tracks the head motion [227]. HTC VIVE also provides the user with realistic and 

precise graphics with 360 headset tracking capabilities. The device also offers HD video with 

directional audio for interaction in the virtual environment [232]. Niehorster et al. [233] 

described HTC VIVE as an appropriate device that gives the user a large FOV and high-

resolution content. Also, the device has a room-scale tracking system, which is sufficient in 

both precision and accuracy [233].  

 

Figure 4.4: HTC VIVE headset with infrared sensor and controller [50]. 



 

77 

4.2.2.6 Selection of VR device: HTC VIVE vs Oculus Rift 

Both HTC VIVE and Oculus Rift are the biggest competitors in the market and both devices 

are tethered VR headsets. Borrego et al. [234] conducted a study to compare the HTC VIVE 

and Oculus Rift. The researchers found that although both VR devices had an excellent and 

comparable performance at sitting height (1.3 m), HTC VIVE had a working area two times 

larger than that of the Oculus Rift. The VIVE device had a larger working range of 7 m [234]. 

HTC VIVE has also been found to provide an experience with a higher degree of immersion 

[235]. In their study, De Paolis and De Luca [236] also investigated the QoE of both Myo (a 

gesture control armband controller for the Oculus Rift, which is shown in Figure 4.5) and the 

VIVE controller. The findings revealed that the VIVE controller has better usability results 

compared to the Myo. Since these studies, newer technological developments such as the VIVE 

Pro may offer viewing experiences surpassing Oculus Rift in future, already shown to have the 

highest comfort and clarity [227]. 

 

Figure 4.5: Myo – Gesture control armband controller for the Oculus Rift [237].  

 

4.3 Experimental Methodology 

This section is grouped into three sub-sections which relate to three different viewing 

environments that are commonly used as the viewing environments of S3D videos: a VR 

headset device, a panoramic screen and a flat screen. Thus, in this thesis, two types of 

panoramic screens were used in the experimental work: a composition of several curved 
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screens to form a panoramic screen, with multiple projectors to project S3D videos (described 

in Section 4.3.2); and, a VR HMD (described in Section 4.3.3). 

Figure 4.6 below illustrates the methodology used to conduct the experiment. The participants 

were given five sets of S3D video sequences, watching each sequence for a duration of one 

minute each. Sequence bias was minimised by playing the S3D videos in a random order. The 

random order of the S3D videos was generated using the Stat Trek [238] Random Number 

Generator. 

 

Figure 4.6: Block diagram of the experimental methodology. 

 

The previous work in Chapter 3 has identified that watching S3D videos can cause motion 

sickness and fatigue; thus, participation time was divided into three sessions, each lasting 

approximately 30 minutes with a 10-minute break between each session. The average duration 

of the whole experiment for each participant was 1.5 hours, inclusive of the rest breaks. Such 

an average duration was essential in minimising both fatigue and VIMS. For ethical 
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experimental conduct, participants who suffered from dizziness, physical or motion sickness 

were given the freedom to discontinue the study. 

4.3.1 Device 1: Flat 3D screen 

The flat 3D screen used in the study was a 25.5’’ Panasonic BT-3D L2550 Full HD (1920×1080) 

LCD 3D screen, the same used as in Chapter 3 . The five S3D video sequences were played on 

the flat screen and the participants’ responses obtained. According to the THX Cinema 

Certification [87], the participants should sit 0.9 m in front of the S3D screen and a viewing 

angle of 36 when viewing 3D videos, as shown in Figure 4.7. The equipment and the view of 

S3D video settings are the same for the flat 3D screen experiments conducted in Chapter 3 in 

order to maintain a controlled experimental environment. 

 

Figure 4.7: A participant wearing the NeuroSky MindWave EEG headset to watch 3D movies 

on a flat 3D screen. 
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4.3.2 Device 2: 3D video projection on panoramic screen 

In this experiment, the panoramic screen used was the Data Arena at the University of 

Technology Sydney (UTS) [191]. The room is hemispherical in shape with a diameter of 10 m 

and consists of a large panoramic screen and six 3D stereo panoramic projectors arranged in a 

circular position as shown in Figure 4.8. The S3D videos were projected to six 3D stereo 

panoramic projections from one large panoramic screen. Table 4.2 below shows the 

specifications of the Data Arena used in this study. Each of the participants wore active shutter 

3D glasses and stood in the middle of the panoramic screen to view the stereoscopic videos, as 

shown in Figure 4.9. 

 

Figure 4.8: Six 3D stereo panoramic projectors arranged in a circular position. 

 

Table 4.2: Specifications of the UTS Data Arena [191]. 

Dimension 

Hemisphere 

Diameter: 10 m 

Height: 4 m from the floor to projectors 

Screen Dimension Height: 3.5 m, panoramic 

Resolution of video projector 1920×1200 
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     (a)          (b)  

Figure 4.9: A participant wearing the NeuroSky MindWave EEG headset and active shutter 

glasses to watch 3D movies in the Data Arena (a) Moving, (b) Standing at the centre. 

 

The video walls and the six S3D video projectors were driven by a high-performance computer 

graphics system. The rendering process, graphic computation and reconstruction of the 3D 

images were achieved through the use of software tools such as Houdini [239], Equalizer [240] 

and FFmpeg [241]. For this experiment, the 360 surround panoramic screen used six 

projectors that displayed three identical, edge-blended 1920×1080 S3D video sequences. A 

work station, shown in Figure 4.10, was the main control for the experiment within the arena 

space. 

 

Figure 4.10: A work station to control the panoramic screen in the Data Arena. 
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4.3.3 Device 3: 3D video on 360 in a VR headset 

Taking into consideration the findings from previous researchers’ studies comparing the HTC 

VIVE and Oculus Rift as discussed in Section 4.2.2.6, the HTC VIVE was adopted for the 

experimental work in this thesis. The HTC VIVE headset has a FOV of 110, a refresh rate of 

90 Hz and a total resolution of 2160×1200 pixels. The manufacturer suggested setup of the 

HTC VIVE is shown in Figure 4.11 for a standing-only setting. Therefore, body movements 

and the synchronicity of the stimuli were restricted to ensure that the participants sat down 

when watching the S3D video sequences. However, the participants were allowed to turn their 

heads to achieve varying viewing positions. Hence, while the limited body movement can 

affect the user experience, the movement of the head does not interrupt but enhances the 

viewing experience. The experimental setup is shown in Figure 4.12. 

 

Figure 4.11: The experimental setup of HTC VIVE using a standing-only setting [50]. 
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Figure 4.12: A participant wearing the HTC VIVE HMD with NeuroSky MindWave EEG 

headset to watch 3D movies using a VIVE controller. 

 

4.3.4 EEG devices 

The experiment required that participants use different viewing environments and rate the 

experience in each environment. In addition, participants’ EEG biosignals were recorded for 

continuous-time QoE measurement. A NeuroSky MindWave brainwave headset was used, 

which was used in Chapter 3 and described in Section 3.2.2, and both the eye blink rate and 

the EEG signals were recorded using the NeuroSky software provided. 

 

4.3.5 Video stimulus and metrics 

All S3D video sequences chosen for this experiment are the same as used in the flat 3D screen 

experiments conducted in Chapter 3 for consistency in the experiential video sequences tested. 

To measure the VIMS, each of the participants was required to complete the SSQ after viewing 

each of the five S3D video sequences, as per the methodology in Chapter 3 . In addition to the 

SSQ and EEG biosignal measurement as described in Chapter 3 , the Absolute Category Rating 

(ACR) method was added to perform the subjective assessment of the S3D video quality in 
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accordance with ITU-T P.910 [81] recommendations. A scale of five levels (1: not enjoyable at 

all, and 5: very enjoyable) was used to rate the enjoyment of the video watched. Based on this, 

participants were asked to rate the perceived enjoyment quality of the S3D video on the scale 

provided. 

4.4 Results and Discussion 

A total of fifteen people participated in the viewing experiment, consisting of 4 females and 11 

males. The participants’ ages were between 18 and 46 years and the mean and standard 

deviation of the years of the participants’ ages were 29.1 years and 8.67 years respectively. 

Before the start of the experiment, each participant was asked about their fatigue level to ensure 

that everyone recruited was not fatigued. Participants were then required to complete a short 

3D vision test to ensure that their stereo vision was appropriate for the study. The vision test 

for screening included fine stereopsis and dynamic stereopsis tests of 3D vision, as shown in 

Figure 4.13. The stereoscopic test materials for the test are available in the ITU-R BT2021.1 

standard [25]. The questionnaire of this experiment can be referenced to Appendix 2. 

 

(a) 

 

(b) 

Figure 4.13: 3D vision tests (a) Fine stereopsis, (b) Dynamic stereopsis, showing the left and 

right images. 
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4.4.1 SSQ results 

The results of the SSQ scores from each viewing environment are shown in Figure 4.14 and 

Figure 4.15 (95% confidence intervals shown). Figure 4.14 shows the average total SSQ score 

for each video sequence and for each viewing environment. Figure 4.15 shows the SSQ scores 

with three sub-scales for each video sequence for the three different viewing environments. 

The SSQ sub-scales are for the disorientation, oculomotor, and nausea produced by each 

viewing device when used to watch each of the S3D videos provided. The results from Figure 

4.14 and Figure 4.15 also show that both SSQ scores and their associated sub-scales for the 

“Water fountain” and “Garden” video sequences viewed in the Data Arena are zero. 

 

Figure 4.14: Total SSQ scores. 
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Figure 4.15: Total SSQ scores with 3 sub-scales: Nausea (N), Oculomotor (O) and 

Disorientation (D). 

 

From Figure 4.14, it can be noted that the VR device had the highest total SSQ scores followed 

by the flat 3D screen and lastly the panoramic screen. For all video sequences the total SSQ 

score for the VR device was more than 50, whereas the scores for the flat 3D screen were 

between 20 and 50 and the panoramic screen had scores lower than 20. Since SSQ scores depict 

the likelihood of VIMS, it implies that the VR device has a higher possibility of causing VIMS 

than the panoramic or flat 3D screens. Panoramic screens have the least capacity to cause VIMS 

with the “Water fountain” and “Garden” video sequences having the lowest scores at zero.  

For the “Flame” and “Wishing well” video sequences from all the viewing environments, the 

SSQ scores were higher compared to the “Garden” and “Water fountain” video sequences. 

These results suggest that chaotic movement of the “Flame” and “Wishing well” video 

sequences may correlate with higher SSQ scores. After a single-factor ANOVA was conducted 

for the SSQ scores, it was revealed that the factor was F = 2.78 and p < 0.01. Therefore, the 
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factor was significant. However, none of the participants identified as experiencing motion 

sickness symptoms during the study for any of the viewing environments. 

 

4.4.2 EEG brain activity 

Similar to the work in Chapter 3 , the brain wave power ratios for the five video sequences and 

the three different projection devices were recorded and analysed. The results of the analysis 

are shown in Figure 4.16 below. The graph shows P1 and P2 which represent the calculation 

results using Equations (3.1) and (3.2) from Section 3.2.2 respectively. 

 

Figure 4.16: Measured brain wave power ratios for various viewing environments and S3D 

videos. 

 

For all the video sequences under test, the average brain wave power ratios ranged from 0.05 

to 0.09. These results were greater than 0.05, hence showing that all the participants exhibited 

a higher level of 3D fatigue [36]. From the results in Figure 4.16, it is evident that the VR 
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device resulted in brain wave power ratios ranging between 0.0623 and 0.0893. These are the 

highest levels of brain wave power ratios stimulated across all five video sequences. On the 

other hand, the panoramic screen and flat 3D screen caused similar brain wave power ratios: 

the brain wave power ratios for the panoramic screen ranged from 0.0507 to 0.0683 while for 

the flat 3D screen they ranged between 0.0572 and 0.0708. When comparing the video 

sequences that produced the highest fatigue levels, it can be seen that the “Wishing well” video 

sequence resulted in a brain wave power ratio of 0.0893 for the VR device and 0.0683 for the 

flat 3D screen. The results show that the “Wishing well” video sequence caused the highest 

fatigue level. For the panoramic screen, the “Wishing well” video caused the second highest 

and highest fatigue levels for the “Water fountain” video sequence with fatigue levels of 0.0650 

and 0.0708, respectively. The most significant differences between the brain wave power ratios 

were recorded when participants were watching “Wishing well” with a VR device. This result 

was reflective of the various emotional responses exhibited by the participants [175]. The two 

brain wave power ratios were analysed by performing a single-factor ANOVA. The analysis 

gave the factors from the two brain wave power ratios as F = 1.85 and p < 0.01 and F = 3.23 

and p < 0.01 respectively, showing that the two brain wave power ratios were found to be 

significant. 

 

4.4.3 Eye blink frequency, attention and meditation levels 

In Figure 4.17 below, the average eye blink frequency, as calculated from the EEG of the 

participants is shown when watching the different video sequences on each viewing device. 
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Figure 4.17: Eye blink frequency. 

 

For all the participants, the flat 3D screen produced an eye blink frequency over a one-minute 

duration ranging from 46.2 to 57.3 times per minute. These values were greater than 36.4 to 

50.3 times recorded when the VR device was used to measure the same parameter. The SSQ 

scores in Figure 4.14 and the brain wave power ratios in Figure 4.16 correlate well with the 

eye blink results, indicating that the flat 3D screen may cause a lower level of visual fatigue 

compared to the VR device. Also, the eye blink frequency was greater with the flat 3D screen 

than the Data Arena except for the “BBB” video sequence. This result may be due to a lower 

level of visual fatigue for the different scene content, as the “BBB” video sequence is an 

animation. The results also revealed that the confidence intervals from the Data Arena were 

larger than for the other devices (at least more than 5 for each video sequence), which may 

also affect the accuracy.  
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The lowest average frequency of eye blink was recorded for the “Wishing well” video sequence, 

and may be due to the movements of the objects underneath water, the natural lighting 

conditions and the unstable water movements (consistent with the results presented in Chapter 

3 ). When watched with the VR device, the “Flame” video sequence had the lowest frequency 

of eye blink at 36.4 times per minute. This may be a result of the rapid movement of the flame 

which is the main focus point in the scene. Several researchers have conducted studies to 

investigate if there is any implication of eye movements and eye blinks when viewing chaotic 

scenes [108, 242]. 

The attention and meditation levels of the participants whilst they were watching the five video 

sequences on the three different viewing devices were recorded with the NeuroSky headset and 

calculated using the NeuroSky software as shown in Figure 4.18 below. 

 

Figure 4.18: Attention and meditation levels. 
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The manufacturer’s specification of the NeuroSky MindWave headset recording the meditation 

and attention levels was previously described in Section 3.2.3. From the results obtained in the 

current work, the attention level of the “Wishing well” and “Flame” video sequences had the 

highest readings of 56.7 and 54.9, respectively, when viewed on the flat 3D screen. When the 

other two environments, the VR device and the Data Arena, were used, a contrary trend was 

noticed. These results reveal that the viewing environment affects the correlation between 

attention and consciousness of viewers. A single-factor ANOVA of the attention and meditation 

levels and the eye blink frequency was conducted, and it was found that the video sequence 

and the viewing device are not significant factors affecting attention and meditation levels. This 

is consistent with Ulker et al. [243], who found that attention and meditation levels from the 

participants were in acceptable ranges because the viewers can recognise the content.  

In addition, it is known that VR technology increases the levels of meditation and attention. 

Navarro-Haro et al. [244] explored VR technology to capture the attention of participants and 

to give them the illusion of being there in a 3D computer-generated environment, such as a 

panoramic screen or VR headset. Studies have found that before participants use VR 

environments, they should be prepared through mindfulness or meditation. According to [244], 

VR technology can also improve the state of mindfulness and reduce negative emotional states. 

Kosunen et al. [245] found that a VR environment induces deeper relaxation, a deeper level of 

meditation and a feeling of presence. 

 

4.4.4 Enjoyment rating of S3D video 

In Figure 4.19 below, the enjoyment ratings obtained using the ACR from all the participants 

are reported. For all participants, the enjoyment rating of viewing video sequences using a flat 

S3D screen was found to be between 2.93 and 3.80. This range was higher than as found for 
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the VR device, which was between 2.13 and 3.33. Also, the results show that the panoramic 

screen resulted in an enjoyment rating from 3.40 to 4.60. These results suggest that compared 

to the flat 3D screen and the VR device, the panoramic screen offers the highest enjoyment 

rating. The high enjoyment ratings can be attributed to a longer viewing distance, a larger 

viewing screen and perhaps also the novelty of the unique immersive space provided by the 

UTS Data Arena. In contrast, the participants reported the lowest enjoyment ratings for the VR 

device that can be attributed to a shorter viewing distance, a smaller viewing screen and the 

poor experience exposed to immersive environments by the VR device. This is because they 

might be influenced by a lower sense of spatial presence and realism in the virtual world [246]. 

For the “Flame” and “Wishing well” video sequences viewed with the VR device, the 

enjoyment ratings were the lowest compared to the “BBB”, “Garden” and “Water fountain” 

video sequences. These results suggest that the chaotic movement of the “Flame” and “Wishing 

well” video sequences may be correlated with the lower enjoyment rating. From the single-

factor ANOVA on enjoyment rating, a factor of F = 12.2, p < 0.01 was found to be significant. 

 

Figure 4.19: Enjoyment rating of participants. 
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4.4.5 Statistical analysis of QoE experimental factors 

The data obtained from the QoE evaluation metrics – SSQ scores, ACR enjoyment rating, and 

EEG signals (analysed for visual fatigue and total eye blink frequency) – were recorded for each 

of the five video sequences. The collected data was analysed using Microsoft Excel and 

Statistical Package for Social Sciences (SPSS). Descriptive statistics is divided into two, namely 

the measures of variability and measures of central tendency. For this study, the measures of 

central tendency and variability which were determined included the standard deviation and 

mean values of each data set. Inferential analysis of data is also important in a study as it aids in 

understanding and unravelling the correlations between the study variables. As part of the 

inferential analysis, ANOVA was also analysed to identify the significance of the QoE factors 

for the three various viewing environments and five sets of video sequences. 

Two-factor within-subjects ANOVA analyses were carried out to statistically evaluate the 

impact of experimental factors and further understand the correlation existing among the eye 

blink frequency, the brain wave power ratios and the QoE assessment metrics of SSQ score 

with the three different devices. The study included the analysis of three critical experimental 

factors namely the ACR enjoyment rating, the video sequence and the viewing device. The 

three factors analysed are as follows: 

1. Enjoyment rating: The participants viewed S3D videos and their enjoyment levels 

were recorded. 

2. Video sequence: The study involved the use of five different S3D video sequences. 

3. Viewing environment: The experiment was intended to determine viewers’ 

experience after watching S3D videos. However, the videos were viewed in different 

environments on different screens. The three screens used were a 3D flat screen, a 

panoramic screen and a VR headset. 
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The results for the statistical analysis of the QoE experimental factors are recorded in Table 4.3, 

Table 4.4 and Table 4.5. 

Table 4.3: Results from within-subjects ANOVA on SSQ. 

Factor DF Mean Square F ratio p-value 

Device 2 8260 22.7 <0.01 

Video sequence 4 1270 3.50 0.01 

Enjoyment rating 4 1910 5.26 <0.01 

 

Table 4.4: Results from within-subjects ANOVA on brain wave power ratios (a) Power Ratio1, 

(b) Power Ratio2. 

(a) 

Factor DF Mean Square F ratio p-value 

Device 2 0.001 38.6 <0.01 

Video sequence 4 0.001 25.1 <0.01 

Device × video sequence 8 0 3.48 <0.01 

(b) 

Factor DF Mean Square F ratio p-value 

Device 2 0.002 64.8 <0.01 

Video sequence 4 0.001 28.5 <0.01 
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Table 4.5: Results from within-subjects ANOVA on eye blink frequency 

Factor DF Mean Square F ratio p-value 

Device 2 772 14.5 <0.01 

Video sequence 4 247 4.64 <0.01 

Device × video sequence 8 317 5.94 <0.01 

The results of the within-subjects ANOVA revealed the presence of significant correlations 

among the eye blink frequency, the brain wave power ratios and the total SSQ scores. The 

above ANOVA tables only include the p-values that are less than 0.05. Based on the p-values, 

the attention and meditation levels had insignificant effects. However, in all the QoE 

assessments the significant impact was p  0.01 for both the video sequence and the device. 

The eye blink frequency demonstrated a significant cross-influence factor between the video 

sequence and the device as the p-value was less than 0.01. Similarly, the p-value for SSQ scores 

was less than 0.01 indicating that it was significant with the enjoyment rating. The statistical 

cross-influence analysis conducted during the experiment and the results obtained in Tables 

4.3-4.5 revealed the following insights about the QoE. 

 

4.4.5.1 Type of viewing environment 

In every QoE assessment, when viewing the S3D videos, the type of device used in the viewing 

environment is significant for every parameter being investigated: the enjoyment rating (ACR), 

brain wave power ratios, and SSQ. This study was limited to only three viewing environments, 

hence future work can enhance the study by using additional screens and testing them with 

different video content with various 3D effects. Such studies will provide further exploration 

of the correlation among the QoE parameters. 
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4.4.5.2 Eye blink frequency, attention and meditation level 

The one-factor ANOVA of individual factors – the eye blink frequency, and the attention and 

meditation levels – did not depict any significant effect in the different types of device or 

viewing environment used. However, when the two-factor ANOVA of eye blink frequency was 

conducted, there was a significant difference between the video content and the device used to 

view the content. Based on these findings, the eye blink frequency has a relationship with the 

video content and the stereoscopic depth. The results are therefore insufficient to establish the 

existence of any difference when static or dynamic 3D video content is used. Hence, future 

work should investigate if there is any significant difference for different video content that is 

static or dynamic. 

 

4.4.5.3 Enjoyment rating (ACR) 

The enjoyment ratings and the SSQ scores were found to be significantly correlated. In addition, 

the two correlated subjective indicators – enjoyment rating and SSQ scores – were found to 

correlate with the quality perception and VIMS. The above correlations can be explored further 

in future work to understand the effects when more video sequences are used in the experiment. 

 

4.5 Conclusion 

In this chapter, the aim of the study was to compare the QoE of S3D videos in different viewing 

environments: namely, a flat screen, panoramic screen, and VR headset. A series of 

experiments was performed to evaluate the occurrence of 3D fatigue that viewers may 

experience when in three different environments. The evaluation of the viewer experience 

whilst watching S3D video sequences used five metrics: ACR enjoyment rating, SSQ 
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(measuring VIMS), and EEG – measuring attention and meditation levels, eye blink detection, 

and the brain wave power ratios in different brain wave frequency bands. These metrics were 

evaluated with a variety of content and the results revealed that the viewers who used a VR 

device to view the stereoscopic video sequences resulted in higher SSQ scores. Higher SSQ 

scores imply that the visual fatigue was higher for the VR device compared to the other two 

screen display types. Also, the participants reported the lowest enjoyment ratings for the VR 

device. This is because they might be influenced by a lower sense of spatial presence and 

realism in the virtual world [246]. In addition, the experimental results indicated that 

participants who watched S3D video sequences were more likely to exhibit higher VIMS. For 

the panoramic screen, the participants reported the lowest SSQ scores and the highest 

enjoyment ratings when viewing S3D video sequences. The difference in results experienced 

when viewing the same S3D video sequence on different screens reveal that the screen and 

viewing environment are an essential factor that influences the level of visual fatigue, QoE and 

VIMS. The results also revealed that the chaotic movement in some video sequences had an 

effect on the SSQ, level of visual fatigue and enjoyment ratings. Hence, such findings show 

that the content of the video sequence and the viewing screen used are key factors that affect 

the enjoyment rating of the S3D videos. 

This study was limited by the sample size of video sequences and the number of participants. 

Hence, it is recommended for future work to use a larger sample size of video sequences and 

participants to further assess the correlation of ACR enjoyment rating with both the brain wave 

power ratios and SSQ scores. 
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Chapter 5  S3D Objective Quality Metrics and Subjective 

Evaluation Methods applied to Video 

Compression Evaluation 

 

5.1 Introduction 

In order to transmit an S3D video from one point to another, it needs to be compressed so that 

it can be transported over a transmission medium. The compression of 3D videos refers to the 

compression of two stereoscopic views. As stated in Nasralla et al. [247], with the rapid 

advancements in video stereoscopy, network transmission can be a challenge due to the 

capacity or bandwidth needed and also the types of errors that can occur during the transmission 

process. These issues are related to the transmission and storage of S3D videos, and the 

methodology used to compress the data. 

Video evaluation approaches are often applied to test video coding approaches. Thus, this 

chapter investigates the application of S3D evaluation approaches to testing a novel video 

compression technique. The compression technique proposed for evaluation uses a hybrid 

sequencing of uncompressed and compressed stereoscopic 3D (S3D) video, with the evaluation 

studying how the sequence would impact perceptual videos subjectively judged by viewers and 

how 3D videos can be scaled to fit available bandwidth. Immediate insight is given into the 

differences between the compressed and uncompressed video content, and the changes in the 

perceived quality through the S3D evaluation approaches used. 
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5.2 Background 

5.2.1 Video coding sequences of 3D video 

Current approaches for video coding generally use scalable stereo video coding to control the 

bitrate. Videos with different bitrates and content have also been assessed as an alternative to 

the computationally complex scalable video coding techniques, and to cater to stereoscopic 

videos with scenes that may be susceptible to potential artefacts introduced into the left/right 

views from compression [26]. Zou et al. [90] compared different 3D representation formats 

and coding architectures to evaluate the performance of various 3D video compression 

approaches, and suggested that the sequencing of compressed content may affect the 3D video 

quality. Asan et al. [248] conducted to evaluate the QoE of videos based on the content type 

and the switch of the resolution with respect to the Mean Opinion Score (MOS) degradation 

for different video adaptation patterns. The results show that the content type and the change 

of resolution pattern have a significant impact on the perception of the change in resolution. 

Mallik et al. [249] proposed a mixed-resolution multi-view video codec in High Efficiency 

Video Coding (HEVC) for limited transmission bandwidth, resulting in a higher coding 

performance to traditional HEVC codec at low bitrate by objective and subjective evaluations. 

 

5.3 Experimental Methodology 

5.3.1 S3D video compression 

There are limitations on the stereoscopy that can effectively mask binocular fusion such that 

the perceived output is similar to the output with higher quality. These limitations can be 

experienced in subjective experiments by introducing just one form of 3D video (e.g., left or 
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right view of S3D video). Also, in subjective experiments, the analysis of uncompressed Mixed 

Resolution (MR) stereoscopic video allows certain limitations in the resolution between two 

views and removes the challenge of evaluating subjective effects, due to several forms of 

asymmetry in S3D images [250]. In addition, the aim of MR is that the perception of 

stereoscopic video is not affected when one view is higher quality and the other view is lower 

quality, which is widely used in S3D video [251]. This assumption is based on the binocular 

suppression theory that the HVS combines two images such that the quality of the perceived 

image is similar to the higher quality view [252]. The novel compression approach proposed 

in this thesis as a use-case for evaluation investigates how various resolutions of 3D video 

content are compressed and the types of techniques used together with the type of codec used 

to utilise the transmission due to limited bandwidth. The research in this chapter focuses on the 

variation in the quality of different views, and the effectiveness of objective and subjective S3D 

video evaluation techniques. 

The major challenge in this work is the level of stereoscopy achieved with different resolutions 

in the video. The research in this thesis has two coding approaches as use-cases to be evaluated 

using both objective and subjective metrics: 

1. Assess the “hybrid” S3D video coding scheme proposed for evaluation using objective 

metrics. With the aim of achieving the highest possible subjective quality through “hybrid” 

coding schemes for video sequences, this “hybrid” approach is used to reduce the amount 

of data transmitted over a given period without changing the perceptual quality of the S3D 

videos. 

2. Enhance S3D video through a higher quality of the stereo pair coded. 

The “hybrid” S3D video coding scheme proposed as a use-case for applying S3D evaluation is 

shown in Figure 5.1. The main aim of “hybrid” sequencing is to reduce the level of redundancy 
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and maintain a comparable video quality for different views experienced due to the limited 

transmission bandwidth. The proposed “hybrid” coding approach mixes one uncompressed 

(raw) 1080p video and one compressed 1080p video into a hybrid 1080p video in the same 

channel; the compressed videos used the standardised and widely used AVC/H.264 codec. The 

“hybrid” compressed versions of the files were then stored in MP4 format. For each video 

sequence tested, the bitrate of uncompressed, compressed and hybrid video sequences are the 

same within the sequence but may differ between sequences. 

Figure 5.2 shows the proposed time sequencing of the resulting hybrid video. The 

uncompressed video and compressed video are denoted as ‘U’ and ‘C’, respectively. Due to 

human visual perception and the computation time of video sequences when viewing the 3D 

video [7, 253], the time duration for alternative sequencing is in one-second segments.  

In objective evaluations, the Peak Signal-to-Noise Ratio (PSNR) is computed between 

uncompressed and compressed video, and “hybrid sequencing” video is computed as the 

difference between the left and right views of the S3D video sequence. 

 

Figure 5.1: The process of creating a hybrid video sequence from different video formats in 

the same channel. 
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Figure 5.2: The timing of the proposed hybrid video sequence. 

 

In this research, all S3D videos were coded using H.264/AVC coding to handle the Full 

Resolution (FR) and the Mixed Resolution (MR) formats similarly. This ensures minimising 

unpredictable effects on the outcome by varying down-sampling ratios. Stereoscopic video 

encoding with MR is a widely utilised and well-studied form of asymmetry between views. 

One of the main factors driving many video coding research efforts is to minimise the 

sophistication of the primary encoder and decoder execution since the spatial precision of a 

single view decreases the number of pixels used in coding and decoding relative to the usage 

of FR information [27]. 

 

5.3.2 S3D video dataset 

To select appropriate video sequences for evaluation, there should also be a variance for depth 

prediction and disparity, which is the negative and positive parallax that is encoded into one 

measurement [254]. The depth prediction determines the farthest and nearest objects that our 

viewer can perceive. A bad depth prediction of images leads to visual degradations of the 3D 

experience [255], where crosstalk artefacts can also become more pronounced [69]. It is 

therefore important to include for evaluation various depth perception and different disparities 

of focal objects, and use a variety of scenes that interact differently with the 3D effect. 
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Further, the coding “difficulty” posed by the video content should range from easy-to-code 

scenes to hard-to-code scenes [4]. Different algorithms affect the different ranges of coding 

difficulty. Video encoders and decoders, video quality metrics and error correction software 

vary with variance in coding difficulty. To understand the full scope, it is therefore important 

to have an acceptable range of scenes with various coding difficulties. This allows for full 

characterization of the coding approach that is being assessed. 

A total of three video sequences as shown in Figure 5.3 were selected from the RMIT3DV [75] 

database to apply the “hybrid” video coding as a use-case for S3D video evaluation. All the 

video sequences in the RMIT3DV databases were recorded in high resolution, uncompressed 

(raw), 25 fps and stored in MOV format [75]. For the S3D evaluations in this chapter, different 

versions of the stereoscopic videos using the “hybrid” coding were generated from these 

uncompressed videos using the FFmpeg software [241]. Both the uncompressed and 

compressed files were rendered into two resolutions, 720p and 1080p, to enable evaluation at 

different video resolutions. 

The S3D video sequences selected were the “Water fountain”, “Tram stop” and “Wishing well”, 

which provided a range of video content for evaluation. For experimental consistency, the 

“Water fountain” and “Wishing well” video sequences are as used in Chapters 3 and 4. The 

“Water fountain” video sequence has the characteristic of being difficult to encode whilst the 

“Tram stop” video sequence can be encoded easily. The “Water fountain” video sequence is 

difficult to code due to the changing depth perception due to the moving water and objects. In 

contrast, the mostly static scene of the “Tram stop” video sequence results in easy encoding. 

Lastly, the “Wishing well” video sequence features a number of small objects that vary in size. 
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       (a)       (b)         (c) 

Figure 5.3: Video sequences selected from the RMIT3DV database (a) Water fountain, (b) 

Tram stop, (c) Wishing well. 

 

5.4 Evaluation Results 

5.4.1 Objective quality assessment 

For objective quantitative quality assessment of the different hybrid video sequences, the PSNR 

was compared between uncompressed video, compressed video, and the proposed “hybrid” 

sequence coding approach at the same video resolution (720p or 1080p). The first set of PSNR 

computations is the comparison between the uncompressed and compressed video at the same 

resolution using the left view of the video sequences. The second set of PSNR computations is 

the comparison of the differences (if any) in the disparity of the S3D video sequence between 

the left and right views. Unlike the first set of PSNR computations previously shown in 

Equations (2.1) and (2.2), the second set of PSNR computation is modified as Equations (5.1) 

and (5.2): 
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where MSE is the Mean Square Error to measure the quality, m and n represents the image 

pixel, Left(i, j) and Right(i, j) are the left and right views of the S3D video sequence, 

respectively, and MAXI is the maximum value of a pixel. 

 

5.4.2 Subjective quality assessment 

The proposed “hybrid” coding approach was previously described in Section 5.3.1. S3D video 

encoding with MR (Mixed Resolution) is a widely utilised and well-studied form of 

stereoscopy between two views. One of the main factors driving video coding research is to 

minimise the sophistication of primary encoder and decoder execution since the spatial 

precision of a single view decreases the number of pixels used in coding and decoding relative 

to the usage of full referenced information [27]. Another advantage of MR stereoscopic video 

coding is limiting bitrate to the reduced amount of encoded pixels compared to the Full 

Referenced (FR) situation. The bitrate required to encode MR with the same Quantization 

Parameters (QPs) as FR S3D video is reduced when the left and right views are encoded in 

simulcast mode with different levels of quality [251]. The magnitude of the bitrate decrease 

depends on the video frame ratio. 

To verify the subjective quality of MR video [249], four different video sequence pairs have 

been compared using subjective quality assessment, as shown in Table 5.1. For each video 

sequence tested, the bitrate of uncompressed, compressed and hybrid video sequences are the 

same within the sequence but may differ between sequences. 

Ten participants (8 male and 2 female) aged 20 to 38 years old participated in the experiment. 

Before the experiment, the participants performed 3D vision assessments according to the ITU-

R BT.2021 [25] standard. The S3D videos in the subjective tests were displayed on a 25.5’’ 

Panasonic BT-3D L2550 Full HD LCD 3D monitor, where participants wore passive 3D glasses 
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to watch the S3D content. A 36 viewing angle and 0.9 m viewing distance were implemented 

using the THX Cinema Qualification criteria [36] in quantitative standard measurements. 

When a comparative exercise was done in pairs, participants were required to sit near the 3D 

display for 10 s to view the first S3D video. After 10 s, the participants rated the subjective 

quality of the video content using a scale of five Absolute Category Rating (ACR) points (1: 

bad, 2: poor, 3: fair, 4: good, 5: excellent). Each participant then viewed the second video (of 

a different quality, as in Table 5.1) for 10 s to reassess the video quality. Each participant was 

requested to watch a combination of three separate S3D videos. The sequence of the four video 

experiments shown in Table 5.1 was randomly selected to mitigate sequencing bias. Therefore, 

a total of 12 video pairs were viewed by participants (i.e. 3 video sequences  4 compression 

sequence pairs). The questionnaire of this experiment can be referenced to Appendix 3. 

 

Table 5.1: Video sequence pairs for subjective assessment. 

Video Sequence pairs Video 1 Video 2 

1 Compressed 1080p Compressed 720p 

2 Compressed 720p Compressed 1080p 

3 Uncompressed 1080p Hybrid 1080p 

4 Uncompressed 720p Hybrid 1080p 
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5.5 Results and Discussion 

5.5.1 PSNR of hybrid sequencing 

In this experiment, the raster file used for uncompressed (raw) video is represented in MOV 

format, while the use of compressed video is represented by MP4 format. Table 5.2 shows the 

computations of PSNR for the three S3D video sequences evaluated (Figure 5.3). Table 5.2 

shows that the 1080p PSNR values for all video sequences were lower than for 720p resolution. 

These results reveal that a higher resolution can lead to more errors from uncompressed video 

compared to compressed video. 

Furthermore, the PSNR between the left and right views were compared to study the 

relationship between objective and subjective video quality evaluation [67]. Generally, all the 

PSNR between the left and the right views (i.e., Set 2 from Table 5.2) are lower than the PSNR 

of videos with the same resolution (i.e., Set 1). The results are potentially due to the different 

content and display between two stereoscopic views. Among the videos tested on the left and 

right views, the “Tram stop” video sequence obtained the lowest PSNR values, whereas the 

“Water fountain” video sequence obtained the highest PSNR values. However, the subjective 

evaluations suggested that the “Tram stop” video sequence showed the least score variation 

among participants evaluated in response to the varying video quality and resolutions. These 

findings indicated that S3D video disparity might not be the only factor affecting 3D video 

quality. Subjective assessments showed that other features of 3D videos, such as scene 

movements, encoding methods, and image orientation, may also affect the perceived video 

quality [256]. For the proposed “hybrid” approach, the PSNR for all video sequences are higher 

than the compressed videos, but lower than uncompressed videos at 1080p resolution. The 

results are correlated to the video quality that compression causes distortion of the video quality, 

leading to lower PNSR values.  
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5.5.2 Subjective quality assessments from the ACR 

Figure 5.4 shows the average ACR participant scores recorded for each pair of video formats 

shown in Table 5.1 for the “Water Fountain”, “Tram Stop” and “Wishing Well” S3D videos 

tested. The goal of testing video Pair 1 and Pair 2 in Figure 5.4 was to examine how the ACR 

scores differ from low (high) to high (low) resolution videos. Pair 1 and Pair 2 of these 

subjective assessments show that the smallest difference between the ACR values for the 1080p 

and 720p videos was recorded for the “Tram Stop” video. This is most likely because both the 

people and the trams travelled steadily in this video [137]. 

 

Table 5.2: PSNR comparison for the three video sequences. 

           PSNR(dB) 

Video quality 

“Water 

fountain” 

sequence 

“Tram stop” 

sequence 

“Wishing well” 

sequence 

Set 1: Comparison between the uncompressed video (reference) and compressed 

video (distorted) with the same resolution 

1080p 35.78 35.32 35.12 

720p 36.00 35.87 35.23 

Set 2: Comparison between the left view and the right view of the video sequence, 

using left view as the reference 

1080p uncompressed 17.52 12.35 16.34 

1080p hybrid 17.54 12.36 16.37 

1080p compressed 17.57 12.37 16.40 

720p uncompressed 17.81 12.44 16.47 

720p compressed 17.84 12.45 16.52 

Pair 3 and Pair 4 in Table 5.1 were used to compare uncompressed videos at 1080p and 720p 

with the “hybrid” coding approach. Figure 5.4 shows that the “hybrid” coded video average 

rating is less than that for the uncompressed video while it is at the same resolution, as in the 



 

109 

Pair 3 test (1080p). Compared to the lower resolution of the uncompressed file (720p) in the 

Pair 4 test, hybrid sequencing for all three video sequences resulted in higher ACR scores. 

 

 

 

Figure 5.4: Average ACR scores for different pairs of video quality for the three S3D videos. 
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Furthermore, the ACR scores for the “Tram stop” video sequence shows again the smallest 

score difference for Pair 3 and Pair 4, similar to those for the Pair 1 and Pair 2 tests. The larger 

difference in ACR scores for the “Water fountain” video sequence may be caused by the rapid 

movement of water in the video, which induces a high 3D effect with potentially distorted 

images [257]. In comparison, the less consistent ACR ratings of the “Wishing well” video 

sequence could be attributed to the video with multiple tiny artefacts with varying depth 

perceptions due to the moving water content, which may cause more viewers to focus on those 

objects. 

The results show that the video content with more scene movement has less ACR score than 

stable scene. Therefore, “hybrid” coded video sequence is more preferable for the content with 

static scene. Also, the average ACR rating of the “hybrid” coded video is comparable to the 

same resolution of the uncompressed video content, and the rating of this “hybrid” coded video 

is better than the lower resolution of the uncompressed file. 

5.6 Conclusion 

S3D video compression is studied in this chapter as a use-case for applying objective and 

subjective evaluation techniques. A “hybrid” sequencing video coding approach was thus 

proposed for evaluation for both uncompressed and compressed S3D video evaluations. The 

study investigated the effects of hybrid sequencing on the S3D QoE videos viewed on a 3D flat 

screen. This study found that hybrid sequencing can provide perceptual quality similar to that 

of uncompressed videos. This was found to be true for videos with scenes that have 3D effects 

that are moderate, and more stable scenes. The different artefacts that affect the quality of 3D 

content and which therefore need to be reduced to maintain a comparable video quality were 

also noted in the evaluation results; therefore, future work can further evaluate the effect of the 
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different types of scenes in an S3D video such as the level of complexity and effect over the 

proposed “hybrid” sequencing approach. 

The compression technique used in this research was the AVC/H.264 codec. Another option 

for future work for a practical use-case is the coding of S3D videos with High Efficiency Video 

Coding (HEVC). The resolution is higher than HD and the computational efficiency of the 

approach has been improved. Samelak et al. [258] conducted a study to compare the 

performance in compression achieved through screen content coding HEVC and multi-view 

HEVC. The results suggested that the compression time was reduced by almost 10% in 

comparison to the standard recommended configuration for computer generated content. Hence, 

the use of HEVC can be one of the potential ways to carry out further research on the basis of 

the proposed “hybrid” sequencing coding approach. 
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Chapter 6  Visual Attention of S3D Video in relation to 

QoE using Eye-tracking Analysis 

 

6.1 Introduction 

Previous chapters have investigated subjective evaluation approaches measuring visual and eye 

fatigue in the viewing of S3D videos through the use of consumer grade EEG headsets. In 

addition to the measurement of visual and eye fatigue, the existing literature in Section 2.1.4 

discussed that visual attention may correlate to the quality of experience when participants 

view S3D videos. Therefore, it is also important to consider the visual attention of viewers 

when watching S3D video and how it relates to QoE. Thus, Section 2.5.5 discussed how 

researchers have adopted eye-tracking methods to assess how the human visual system 

responds to visual attention when viewers watch 3D video contents. With this aim, this chapter 

presents eye-tracking experiments conducted to measure human visual attention when viewing 

S3D videos to see whether there is any correlation to the quality perception and experience 

from viewers. Some visual attributes such as brightness, colour, texture, direction, motion and 

depth were selected for the prediction of visual attention when viewing S3D video. 

In the experiments detailed in this chapter, eye-tracker equipment was used to detect the eye 

movements from viewers and a human saliency map (or fixation density map) was developed 

to show the most important objects or areas in a scene. This model was compared with existing 

human saliency maps and saliency map prediction models from other researchers for analysis, 

evaluating whether visual attention measured using the eye-tracking methods contributes to 

QoE assessments of S3D video. 
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6.2 Background 

6.2.1 Current saliency prediction models 

The concept of visual saliency comes from human perception in viewing a scene, and correlates 

with the ability of a region to attract attention [259]. Section 2.5.2 described how a human 

saliency map can be obtained with an eye-tracking experiment. However, this approach is a 

time-consuming and costly method, requiring many viewers to conduct eye-tracking 

experiments, and processing large amounts of visual data. Another approach is the prediction 

of a visual attention model by computer stimulation as a perception mechanism of the HVS to 

view a scene, called the saliency prediction model.  

Existing saliency prediction models of 3D videos have been based on two approaches. The first 

approach uses a weighting factor for the disparity or depth map derived from a current 2D 

saliency detection model. i.e., the 2D saliency map is generated and a weight based on its 

disparity value was used to generate a 3D saliency map. Chamaret et al. [260], Zhang et al. 

[261] and Maki et al. [262] designed their 3D saliency models by adopting the above approach. 

In these three models, objects that are closer to the observer are considered to be more salient. 

Therefore, the results of these 3D saliency models are considered to be more salient when 

closer to the objects. In addition, qualitative evaluations show improvements compared with 

2D saliency models. However, this method did not provide a quantitative evaluation of these 

3D models. The results are not necessarily more salient when the viewers are closer to the 

objects. The second approach adopts the prediction of a depth saliency map from the depth 

information of the image. The 2D saliency map is combined with the resultant depth saliency 

map to generate a 3D saliency map. Ouerhani and Hugli [263] suggested a model including the 

gradient of depth features and the surface curvature. The model did not include the quantitative 

assessment using eye-tracking data, but a qualitative assessment was included. Lang et al. [264] 
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suggest a depth saliency map for the evaluation of a saliency ratio at different ranges of depth 

by statistical analysis with the use of a training dataset. This method has been validated by 

comparing the existing 2D saliency models with the generated depth saliency map by using 

different combinations of multiplication and summation. 

The above two approaches to 3D saliency map prediction methods that can imitate the HVS is 

still a challenge for researchers. In addition, the key features of the HVS to be examined are 

still an important task for investigation. 

6.2.2 Dataset 

Previous research has established fixation prediction datasets and salient object detection 

datasets for saliency prediction [132, 154, 265, 266]. The following sub-sections describe three 

recent datasets which are widely adopted in the current research. 

 

6.2.2.1 MIT300 dataset 

Judd et al. [267] established the MIT300 dataset in 2012. This dataset contains 300 natural 

images and 39 sets of observer eye movement data. This database is the most widely used in 

the field of image human eye focus detection. However, the dataset still has challenges. The 

ground truth of the human eye’s focus is not public and it is generally not used as a training set 

[268]. Another dataset MIT1003 was also established by Judd et al. [269]. This dataset contains 

about 1000 images obtained from Flickr [270] and LabelMe [271] websites, of which 779 

images are landscapes, 228 images are portraits, and 15 observations are included. At the same 

time, the recording process of eye movement data also considered human memory mechanisms. 

Each participant was required to indicate which of the 100 images was previously seen. Thus, 

the MIT1003 dataset can be used as a supplement to the MIT300 dataset. For example, this 
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dataset could be used to train an attention model based on machine learning on the MIT1003 

dataset, and then used on the MIT300 dataset as the test set for performance evaluation [272]. 

 

6.2.2.2 PASCAL-S dataset 

The PASCAL-S dataset was established by Li et al. [273] in 2014. This dataset used 850 images 

from the PASCAL VOC 2010 dataset validation set [274], viewed by 8 participants in “free 

viewing” mode within 2 seconds. Eye movement data was obtained by observing the image. 

In the gaze prediction experiment, 8 participants were asked to perform a "free viewing" task 

to explore images. The eye movement data was sampled at 125 Hz using the EyeLink 1000 

eye-tracker equipment. In the salient target segmentation experiment, a complete segmentation 

was manually performed to crop out all objects in the image. It has been determined that the 

ground-truth of the saliency object segmentation followed these three rules: 

1. Unintentionally mark parts of the image such as human faces. 

2. Separately identify disconnected areas of the same object. 

3. A solid area approximates a hollow object, such as a bicycle wheel. 

Twelve participants were asked to mark prominent objects. There was no time limit or 

restriction on the number of objects a person could choose. The final significance value of each 

segmentation is the total number of clicks it receives divided by the number of characters. The 

marking of salient objects was based on the complete segmentation of an image. Each image 

in the PASCAL-S dataset was marked by multiple markers, and there was no limit to the 

number of salient targets [275]. 
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6.2.2.3 Eye-tracking dataset for stereoscopic videos 

Fang et al. [276] established an eye-tracking dataset for stereoscopic videos in 2014. This 

dataset contains 41 video sequences selected from the following two main databases: 1) The 

RMIT3DV database [75] containing 24 video sequences with 10-bit 4:2:2 YUV format at 25 

fps; 2) The IVC stereoscopic video database [277] including 12 video sequences with AVI 

format at 25 fps. 

This dataset includes both indoor and outdoor scenes in full HD resolution. This dataset used 

an SMI RED-60Hz eye-tracker at 60 Hz to record eye movement data. When using eye 

movement data recorded in different ways as training samples to train a saliency model, the 

different training samples will have different effects on the final performance of the model. A 

typical ground truth saliency map is generated by performing Gaussian filter aggregation, 

which is common practice for generating gaze views from eye-tracking data [137]. However, 

the saliency map in this dataset was generated in two parts. The first part creates two gaze point 

maps from the left and right eye respectively. Then, the “left” gaze point maps were directly 

generated by using the gaze position data of the left eye, whilst the “right” gaze point maps 

were generated by using each gaze point coordinate of the right eye plus a horizontal and 

vertical displacement. The final output gaze point map is the sum of the above gaze point maps 

referenced to the left and right eyes. The final ground truth saliency map is then created using 

a Gaussian kernel. 

Therefore, taking into consideration the findings from previous researchers’ studies using these 

three key datasets, this dataset for stereoscopic video was adopted for the experimental work 

in this chapter. 
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6.2.3 Evaluation indicators of eye focus detection 

In human eye focus detection tasks, previous researchers have proposed many evaluation 

indicators, among which the most commonly used include Earth Movers’ Distance (EMD), 

cross-entropy such as Kullback-Leibler (KL) divergence, standardised scan path significance 

such as Normalised Scan-path Saliency (NSS), Similarity Metric (SIM), Pearson’s Correlation 

Coefficient (CC) and Area Under Curve (AUC) indicator; that is, the area under the Receiver 

Operating Characteristic (ROC) curve [267, 278-280]. These indicators follow different design 

principles: for example, the cross-entropy indicator treats the saliency prediction result and the 

real human eye attention calibration as a probability distribution. The AUC indicator treats the 

saliency prediction result as a binary classification to evaluate from the perspective of analysing 

the classification performance of the classifier. The Linear CC or NSS can be treated to measure 

two correlations: the saliency prediction result and the real human eye attention calibration as 

random variables. These evaluation indicators provide different dimensions of evaluation for 

consistency between the saliency detection result and the attention distribution from the real 

human eye. A variety of evaluation methods are used to evaluate the model to find the most 

preferable approach to predict eye focus distribution from experiments [128].  

Based on the saliency prediction result: P = [0, 1] W × H, the true binary human eye attention 

point record R = [0, 1] W × H and the visual attention true value distribution Q = [0, 1] W × H, Q is 

obtained by using a smaller Gaussian kernel convolution on the binary human eye attention 

point distribution map. The parameters of the Gaussian kernel are mainly based on different 

eye parameters. The eye size and eye movement equipment on the movement dataset are set 

previously [281]. 

In this thesis, two saliency prediction models, Itti [133] and GBVS [134] as described in 

Section 2.5.4, are adopted in the experimental work. These two saliency predictions are still 
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the most commonly used methods by researchers because they are relatively simple and the 

values of AUC are also relatively high in most scenes tested. 

6.3 Experimental Methodology 

Figure 6.1 below shows the method used to conduct the eye-tracking experiment in this thesis. 

The participants were given five sets of S3D video sequences at random, and they watched 

each video sequence for one minute, taking an average total duration of 15 minutes. In line 

with the ethical conduct of participant experiments, participants who suffered from dizziness, 

physical or motion sickness can discontinue the study at any time. 

Similar to the experimental work conducted in Chapter 4 , bias was minimised by viewing the 

S3D videos randomly without any specific order. The random order of the S3D videos was 

generated using the Stat Trek [238] Random Number Generator. 

 

Figure 6.1: Method for the eye-tracking experiment. 

 

Before participants watched the S3D videos, they were required to conduct an eye-tracking 

calibration to ensure accuracy in collecting their eye movement data. The details of the eye-

tracking calibration will be described in Section 6.3.1. Whilst participants were watching an 

Panasonic BT-
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Eye movement 
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S3D video, the eye movement of the participant was recorded by the eye-tracker. The eye-

tracker obtained the eye position of both left and right eyes: each eye position is shown in X, Y 

and Z coordinates with respect to this equipment. The eye-tracker can also obtain the eye-gaze 

locations on the screen when participants are watching video sequences.  

All of the signals obtained from the eye-tracker were processed in Matlab [282] software, 

where the Matlab scripts control the eye-tracker to start and stop the data logging and analyse 

the gaze data [283], as shown in Appendix 1. Those gaze points show more visual attention of 

relative parts whilst the fixation tracking can help to identify which objects the human eyes 

focus on. For the eye-tracking equipment, a higher-performance eye-tracker can help to build 

up different models for analysis such as the heat map, fixation map and saliency map. The eye-

tracking data thus provides the time spent, fixation and Area of Interest (AOI) information. 

 

6.3.1 Experimental setup and eye-tracker calibration 

The flat 3D screen used in the research was a 25.5’’ Panasonic BT-3D L2550 Full HD LCD 3D 

screen. The participants sat 0.9 m in front of the S3D screen with a viewing angle of 36 when 

viewing 3D videos, based on the THX Cinema Certification [87]. The screen, position of the 

screen, the viewing conditions and the selection of the five video sequences were the same as 

for the experiments using the flat 3D screen described in both Chapter 3 and Chapter 4 to 

maintain the same controlled environment.  

To record the eye movement of the participants, a Tobii EyeX eye-tracker [284] was used. The 

specifications of the Tobii eye-tracker are shown in Table 6.1. The sampling rate of this eye-

tracker is 70 Hz, which can trace eye movement up to 70 times per second. The reason for the 

selection of this eye-tracker is that it was readily available to consumers, it non-intrusively 

recorded eye-tracking signals, and was non-contact to the participant. Figure 6.2 shows the 
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experimental eye-tracking setup showing how to connect all the required devices for the 

experiment. The distance between the eye-tracker and the participant is set at the minimum 

operating distance of 0.5 m to maintain the highest eye-tracking accuracy due to the fact that 

wearing passive 3D glasses increased the difficulty of eye-gaze tracking. 

 

Table 6.1: Specifications of Tobii EyeX eye-tracker [284]. 

Operating distance 0.5-0.9 m 

Maximum screen size 27’’ 

Frequency 70 Hz 

Illustration Backlight assisted near-infrared: red light 

(650 nm) and near-infrared red (850 nm) 

Tracking population 95% 

 

Figure 6.2: Experimental setup of the eye-tracking experiment. 

 

Participants were required to complete an eye-tracking calibration before the experiment, 

consisting of two parts. The first part was the calibration of the five gaze points provided by 
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the software tools of the Tobii eye-tracker. These five points are illustrated in Figure 6.3 using 

an active display coordinate system. 

 

Figure 6.3: Five gaze points for eye-tracker calibration. 

 

The second part of the calibration procedure was based on the study from O’Connor et al. [114], 

where a 2-second scene including both fixation and pursuit conditions for participants to view 

and collect data for further calibration [112]. The aim of the design is used to compare the 

precision of retinal and extra-retinal motion signals between young and old observers [114]. 

This approach to direction and speed discrimination over a 2-second period is implemented in 

this work for the calibration. Kaernbach et al. [285] designed the two angle intervals as an 

adaptive test to collect the response of eye movement. Table 6.2 shows two examples of the 

speed and orientation of dots in two situations: 1) The dots are moving to 0 direction, 2) The 

dots are moving to 45 direction, for direction and speed discriminations of pursuit conditions 

at the time in the 0 second and the 0.8th second, respectively [114].  
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Table 6.2: Two examples of dot arrangements in pursuit conditions. 

           Time 

Discrimination  

Orientation  

0 s 0.8 s 

Direction Speed Direction Speed 

Direction at 0  

Speed 2/s 4.8/s 2/s 4.8/s 

X,Y coordinates at centre point (50, 200) (50, 200) (63, 200) (81.2, 200) 

Direction at 45 

Speed 2/s - 2/s - 

X,Y coordinates at centre point (50, 200) - (66, 216) - 

 

6.3.2 Eye-tracking data processing 

Figure 6.4 shows an example of the simulation result during the experiment, which collected 

eye-gaze data from the Tobii eye-tracker, which was processed in Matlab. The eye-gaze data 

included the x and y coordinates of the eye gaze points, the position of both eyes in front of the 

S3D screen, and the access time for data logging. The data “L” and “R” correspond to the 

detection of left and right eyes respectively. For data consistency, the data is only used when 

the detection of both left and right eyes were valid. The accuracy rate to detect both left and 

right eyes in this experimental work is 96.89%, which is higher than the reference accuracy 

rate (95%) from the Tobii specifications. 
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Figure 6.4: Example of eye-gaze data logging by the Tobii eye-tracker. 

 

The collected gaze point coordinates were the sum of the resolution from the two screens (i.e., 

technician’s screen plus the S3D flat screen, the setup was previously shown in Figure 6.2). 

The x-coordinate (i.e., GazeX_px) is revised to fit the gaze point viewing on the S3D flat screen 

only. Also, the first two seconds of eye-tracking data were discarded to allow for participants 

to adjust to the experimental setup and process. 

A procedure for the generation of a human saliency map (or fixation density map) is shown in 

Figure 6.5. All calibrated gaze points recorded by all participants are processed by the binary 

representation of the location of the gaze points to form a human fixation map. The human 

fixation map is then processed by a Gaussian Mixture Model (GMM) [129, 286], as shown in 

Equation (6.1), for the distribution of all gaze points, where (xf, yf) is the gaze points obtained 

by the eye-tracking experiment, σ2 is the variance of the fixations obtained, fnum is the number 

of fixations, and αf is the weight of the distribution of fixations. 

 

Figure 6.5: Procedure for the generation of a human saliency map for visualisation. 
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Gaussian mixture model (GMM): 
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Finally, the human saliency map is further processed to form a heat map visualisation in a “jet” 

colour map format, as shown in Figure 6.6. The red colour represents the most salient parts 

whilst the blue colour represents the least salient parts. The human saliency map can thus be 

used to analyse the eye movement behaviour. 

 

Figure 6.6: A “jet” colour map is presented for a heat map visualisation. 

 

6.4 Results and Discussion 

A total of ten participants took part in the viewing experiment, consisting of 3 females and 7 

males. A minimum sample size of 10 is suggested based on the recommendations of the Quality 

of Multimedia Experience (QoMEX) research community under the recommendation of the 

ITU-T P.913 International standard [5]. The participants’ ages were between 18 and 46 years 

and the mean and standard deviation of the participants’ ages were 28.3 years and 7.26 years 

respectively. Before the start of the experiment, each participant was asked about their fatigue 

level, and each participant completed three kinds of calibration: eye-tracker, eye-gaze point 

and pursuit and fixation conditions. Such calibration methods were previously described in 

Section 6.3.1. 
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6.4.1 Comparison of human saliency maps 

The human saliency map for computational eye movement prediction in this work was 

compared with two widely used saliency prediction models, the Graph-Based Visual Saliency 

(GBVS) model [134] and the model of Itti et al. [133], which were previously described in both 

Section 2.5.4 and Section 6.2.1 based on the literature and existing current saliency prediction 

models. The procedure to formulate the saliency maps is illustrated in Figure 6.5. Figure 6.7 

shows the comparison between the proposed saliency maps with these two existing saliency 

prediction approaches. The five sets of images shown from the top to the bottom are represented 

as: 1) original image, 2) proposed human saliency map, 3) 75th percentile of most salient parts 

of the GBVS saliency map, 4) the heat map of the GBVS saliency map, and 5) the heat map of 

the Itti saliency map, respectively. 

 

     (a)    (b)      (c)    (d)      (e) 

Figure 6.7: Comparison of the proposed human saliency map to two saliency prediction 

models, GBVS [134] and Itti [133], from five video sequences (a) BBB, (b) Water fountain, 

(c) Wishing well, (d) Flame, (e) Garden. 
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In the “Wishing well”, “Flame” and “Garden” video sequences, participants were more focused 

on watching the centre of the scene rather than on the main object whilst the existing two 

saliency map models predicted the most salient parts on the object. In the “BBB” and “Water 

fountain” video sequences, the prediction of the two saliency models are comparable to the 

proposed approach. However, the prediction of the fountain from the “Water fountain” video 

sequence is not accurate, especially for the Itti model [133]. This is probably due to the 

difficulty in the prediction of chaotic and fast-moving water jet streams from the fountain. In 

addition, Figure 6.7 shows the 75th percentile outline of the most salient parts from the GBVS 

model, which reflected mostly on stationary objects in the area of interest. Therefore, the 

prediction may not be correct for the proposed human saliency map. 

Figure 6.8 shows two sets of human saliency maps generated from watching three video 

sequences from the RMIT3DV database. These videos are: a) Water fountain, b) Wishing well, 

and c) Garden. The three images on the top show the human saliency maps generated by the 

method proposed in this thesis, whilst the images at the bottom show the output generated by 

Fang’s dataset [276] as previously described in Section 6.2.2.3. Comparing the two sets of the 

human saliency map, they are more consistent for viewing the area of interest and are in line 

with the viewing pattern from the participants. In addition, the most salient parts are also 

focused at the centre of the scene in both the “Garden” and “Wishing well” video sequences. 

Based on the findings of the “Wishing well” video sequence, the participants are more focused 

on watching the centre of the scene rather than watching the tree cover at the right-hand side. 

The reason for this is potentially due to the continuity of the objects of interest at the centre of 

the scene [272], and the chaotic movement of the tree cover. Some researchers consider this 

situation as “centre-bias” from eye-tracking experiments, due to the tendency of participants to 

view at the centre [287]. In the “Water fountain” video sequence, most participants viewed the 

right-hand side where a car is located in the scene. The reason for less focus on the fountain 
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may be due to the chaotic water jet stream of the fountain. 

 

      (a)       (b)        (c) 

Figure 6.8: Two sets of human saliency maps generated by the proposed approach (top) and 

Fang’s dataset [276] (bottom) for three video sequences (a) Water fountain, (b) Wishing well, 

(c) Garden. 

 

According to the findings presented in this section, eye-tracking experiments are thus essential 

to an investigation of the visual attention and QoE, especially for 3D videos; however, a 

saliency prediction model may not contribute reliable results to the research of QoE. 

 

6.4.2 Evaluation indicators of saliency map performance 

As described in Section 6.2.3, a number of evaluation indicators are available to measure the 

performance of the saliency prediction models. Riche et al. [288] compared an eye-tracking 

database with 12 different saliency prediction models and found that using only one similarity 

metric is insufficient for evaluation. In addition, the Kullback-Leibler (KL) divergence 

indicator with complementary interpretation can be compared fairly with the saliency 

prediction model. With reference to Riche’s consideration, the following three evaluation 

indicators of a saliency map are used to compare the distribution between human saliency maps 
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and saliency prediction models. Bylinskii et al. [278] has shown the detailed computation of 

the following three evaluation metrics: 

1. Similarity metric (SIM): Measure of similarity between two distributions, viewed as 

a histogram to compare the intersection between two distributions [278]. 

2. Pearson’s Correlation Coefficient (CC): A similarity metric by statistical methods to 

measure the linear relationship between two distributions [278]. 

3. KL divergence: A dissimilarity metric to measure the difference between two 

probability distributions. A lower score represents a better approximation of the 

ground truth of the human saliency map by the saliency prediction model [278]. 

Table 6.3 shows the comparison of two human saliency maps with two saliency prediction 

models using the three evaluation indicators. Higher scores obtained from the SIM and CC 

evaluation indicators and a lower score obtained from the KL evaluation indicator represents a 

more accurate result of the human saliency approximation. In general, the three indicators show 

that the models of this research have an improved human saliency approximation than Fang’s 

dataset. However, there is no clarity on which saliency prediction model is better for a stable 

or a moving scene. In addition, the variation of the CC and KL indicators are comparably higher 

than the SIM indicators when comparing the two saliency prediction models. Figure 6.9 shows 

the “Wishing well” video sequence with the least variations of the three evaluation indicators 

when comparing with Itti’s saliency maps [133]. From parts (d) to (f) of Figure 6.9, the CC and 

KL evaluation indicators show a better match than SIM in terms of similarity. Therefore, the 

findings in this thesis are in line with Riche’s recommendations [288]. 
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Table 6.3: Comparison of the two human saliency maps (proposed research and Fang’s 

dataset* [276]) with two different saliency prediction models (GBVS [134] and Itti [133]) 

using three saliency evaluation indicators (SIM, CC and KL). 

Video 

sequence 

Water 

fountain 

Wishing well Garden *BBB *Flame 

Model GBVS 

[134] 

Itti 

[133] 

GBVS 

[134] 

Itti 

[133] 

GBVS 

[134] 

Itti 

[133] 

GBVS 

[134] 

Itti 

[133] 

GBVS 

[134] 

Itti 

[133] 

Proposed approach 

SIM↑ 0.681 0.595 0.719 0.734 0.546 0.479 0.403 0.418 0.726 0.636 

CC↑ 0.603 0.420 0.572 0.714 0.275 0.080 0.280 0.311 0.741 0.492 

KL↓ 0.336 0.619 0.259 0.244 0.655 0.875 1.07 1.025 0.249 0.454 

Fang's Dataset [276] 

SIM↑ 0.568 0.524 0.562 0.571 0.480 0.416 

CC↑ 0.473 0.448 0.466 0.622 0.195 0.031 

KL↓ 0.592 0.782 0.598 0.564 0.864 1.13 

*Note: Fang’s dataset does not include the “BBB” and “Flame” video sequences 

 

(a)       (b)        (c) 

(d)       (e)        (f) 

Figure 6.9: An example of the comparison between the proposed approach and the Itti [133] 

saliency map model (a) Original image of “wishing well” video sequence, (b) Proposed 

human saliency map, (c) Itti’s saliency map, and the corresponding three saliency evaluation 

indicators for visualisation (d) SIM, (e) CC, (f) KL. 
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The results show that the saliency prediction model could be considered to be influenced by 

the centre bias from participants. To reduce the influence of centre bias, the centre map could 

be first computed by taking the average of all human saliency maps obtained from eye-gaze 

data [287]. Then, the centre bias can be measured by the distance between the image at the 

centre and the centroid of the centre map. Then, the performance of the centre bias can be 

analysed by statistical analysis such as a one-way ANOVA [287]. In addition, the selection of 

saliency evaluation indicators is also important for a comparison of the existing saliency 

prediction models with the human saliency map. Furthermore, similar to Fang’s dataset [276], 

choosing more video samples including both indoor and outdoor scenes are also key factors for 

better estimation of saliency prediction models [289]. 

6.5 Conclusion 

Measuring the human vision experience is the most direct way to assess the visual attention of 

viewers when watching S3D videos and how it relates to QoE evaluation. Eye-tracking 

experiments have been detailed in this chapter to assess human visual attention, which 

compared human saliency maps based on eye-tracking gaze data with existing human saliency 

maps and saliency prediction models when watching S3D video sequences. Three evaluation 

indicators were used to evaluate the similarity between the human saliency map proposed in 

this research and other saliency models. The results found that eye-tracking is an important 

approach to identify the visual attention of viewers for QoE evaluation. However, the existing 

saliency prediction models are not yet accurate enough to predict a visual attention model, 

especially for S3D video sequences consisting of depth information, viewing preference and 

other factors, such as the chaotic movement of objects. However, the results can reflect some 

characteristics of the viewing preference by viewers and thus can be beneficial for visual 

attention and QoE assessments. 
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Further studies can further elaborate on S3D videos of both indoor and outdoor scenes to 

compare with other saliency prediction models. Also, the study in this thesis was conducted by 

examining a 3D passive flat screen only. The study has not included any VR device or other 

viewing environment; however, this can be included in future research work. For example, 

FOVE VR [224] and HTC VIVE Pro Eye VR [290] headsets can conduct eye-tracking 

experiments in a VR environment as they have embedded eye-tracking functionality to capture 

eye-gaze data for further analysis. 

In future studies, the research focused on salient object detection can investigate deep learning 

technology to explore more effective network structures that can retain more spatial details 

[132, 268]. For example, Lin et al. [126] used different scale inputs to obtain depth information 

and interconnected the deep neural network features of each layer. In addition, Qin et al. [291] 

developed a BASNet model that detected visually salient objects and developed saliency object 

detection maps with clear boundaries. This model used visual attention as a high-level 

understanding of the entire scene, learning through higher-level neural network layers and 

salient object detection tasks. 
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Chapter 7  Conclusions and Future Work 

 

7.1 Introduction 

The research conducted in this thesis addresses the video quality assessments of stereoscopic 

3D (S3D) video technology, in order to develop novel objective and subjective quality 

assessments of S3D videos. All of the work and experiments conducted in this thesis were 

performed with four specific objectives: 1) an investigation of both objective and subjective 

tests to evaluate visual fatigue measured through Electroencephalography (EEG) through a 

comparison of viewing 2D and S3D videos; 2) an investigation of both objective and subjective 

assessments using Quality of Experience (QoE) methods to evaluate the visual fatigue of S3D 

videos with three different viewing environments; 3) an application of the objective quality 

metrics and subjective evaluation approaches to video coding applications as a practical use-

case; 4) an investigation of eye-tracking analysis when viewing S3D video to develop human 

saliency maps and compare with existing human saliency maps and saliency prediction models 

for visual attention whilst watching S3D video. 

Firstly, this thesis conducted objective and subjective assessments to investigate differences in 

the viewers’ QoE between 2D and S3D videos. This work proposed and investigated the use of 

EEG biosignals to measure visual and eye fatigue to augment Visually Induced Motion 

Sickness (VIMS) measurement through participants’ self-reporting using the Simulator 

Sickness Questionnaire (SSQ). Experiments were conducted to compare fatigue caused by 2D 

and S3D video sequences of the same video content. Experimental results indicate that the 3D 

video sequences caused more fatigue for the participants than the 2D video sequences. Further, 

participants exhibited more eye blinking movement for 2D videos, indicating less eye and 
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visual fatigue. Congruently, the brain wave power ratio results from the EEG biosignals showed 

that 3D videos caused higher power ratio values than 2D videos, and larger than the fatigue 

threshold value of 0.05. Previous researchers have shown that 3D videos cause the most VIMS 

for viewers, and the results in this work confirm these same outcomes. Most VIMS and fatigue 

were seen whilst watching the video sequence with the greatest image distortion through water 

movement in the content, depth perception change, time-varying and rapid higher frequency 

motion. 

Secondly, this thesis extended to the QoE assessment of S3D videos in three viewing 

environments: a flat 3D screen, a panoramic screen and a Virtual Reality (VR) headset. This 

experiment was performed to identify the effects of VIMS and to analyse 3D fatigue in the 

three viewing environments. The evaluation of the viewer experience whilst watching S3D 

video sequences used five metrics. The metrics were evaluated with a variety of content and 

the results revealed that the viewers who used a VR device to view the S3D video sequences 

resulted in higher visual fatigue compared to the other two screen displays. In addition, the 

experimental results indicated that participants who watched S3D video sequences were more 

likely to exhibit higher VIMS. For the panoramic screen, the participants reported the lowest 

SSQ scores and the highest enjoyment ratings when viewing S3D video sequences. The 

difference in results reveal that the screen and viewing environment are an essential factor that 

influences the level of visual fatigue, QoE and VIMS. The results also revealed that the chaotic 

movement in some video sequences has an effect on the SSQ, level of visual fatigue and 

enjoyment ratings. Hence, such findings show that the content of the video sequence and the 

viewing screen used are key factors that affect the enjoyment rating of the S3D videos. The 

findings of this chapter are essential for the advancement of the identification of quality factors 

in the assessment of stereoscopic visual fatigue. In addition, these factor are key to enhancing 

the development of better quality experiences (and measurement thereof) for 3D screens in 
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various viewing environments, and this study contributes to the adoption of the design of 3D 

video sequences to suit particular viewing environments. For instance, a better user experience 

can be achieved by designing a 3D video optimal for a particular viewing environment. In this 

regard, a user preference of typical S3D video content could be adapted to the 360 video 

content in a panoramic screen, or the omnidirectional visual content in a VR environment. In 

this research, the University of Technology Sydney (UTS) Data Arena provided a suitable yet 

unique immersive surround, panoramic multimedia facility on-campus. 

Thirdly, eye-tracking experiments were conducted for the investigation of human visual 

attention to determine whether visual attention obtained from eye-tracking methods contribute 

to the QoE assessments of S3D videos. Experiments have been conducted to compare human 

saliency maps based on eye-tracking gaze data with existing human saliency maps and saliency 

prediction models when watching S3D video sequences. Three evaluation indicators were used 

to evaluate the similarity between the human saliency map proposed in this research and other 

saliency models. The results found that eye-tracking is a key method to identify the visual 

attention of viewers for QoE evaluation. The existing saliency prediction models are not yet 

accurate enough to predict a visual attention model, especially for S3D video sequences 

consisting of depth information, viewing preference and other factors, such as the chaotic 

movement of objects. However, the results can reflect some characteristics of the viewing 

preference by viewers and thus can be beneficial for visual attention in relation to QoE 

assessments. 

Finally, the application of the objective quality metrics and subjective evaluation approaches 

were applied as a practical use-case to video coding evaluation. A “hybrid” sequencing video 

coding approach was thus proposed for evaluation for both compressed and compressed S3D 

videos. The study investigated the effects that hybrid sequencing has on the viewer QoE of the 

S3D finding that hybrid sequencing can provide perceptual quality similar to that of 
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uncompressed videos. This was found to be true for videos with scenes that have 3D effects 

that are moderate and video whose scenes are stable. The different artefacts that affect the 

quality of 3D content and which therefore need to be reduced to maintain a comparable video 

quality were also noted in the evaluation results. 

7.2 Research Question Outcomes 

Research Question 1: How to assess the visual fatigue of S3D video in both objective and 

subjective quality assessments? 

Following experimental analysis of various factors, two methods are used to measure visual 

fatigue of S3D video in this thesis: 1) the self-reported Simulator Sickness Questionnaire (SSQ) 

to measure Visually Induced Motion Sickness (VIMS); and 2) the analysis of the correlation 

between biosignals and 3D visual fatigue, in which Electroencephalography (EEG) signals 

record the bioelectrical activities in the brain to quantify the subjective emotional engagement 

of viewers when watching S3D videos, and the EEG indices are used to assess S3D visual 

fatigue. Chapter 3 and Chapter 4 discussed in detail the research conducted to assess 3D fatigue 

with experimental evaluations.  

The SSQ results show that none of the participants felt any VIMS after the experiment in flat 

3D screen. However, the majority of the participants exhibited eye fatigue when participants 

watched video sequences for a prolonged period of time. Thus, the brain wave power ratio 

results from the measurement EEG biosignals showed that 3D videos caused higher power 

ratio values than 2D videos, and larger than the fatigue threshold value of 0.05. 
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 Research question 1(a): How to assess the viewers’ perceptual experiences and 

visual attention when watching S3D video? 

The measure of eye blinking movement rate, attention and meditation levels, and the self-

reported enjoyment level by Absolute Category Rating (ACR) method were used to 

measure the perceptual experiences and the visual attention of viewers. Chapter 3 and 

Chapter 4 discussed these methods for evaluations and presented relevant results. 

The eye blink movement rate indicates that the visual fatigue is likely to be higher for 3D 

video sequences compared to 2D video sequences. In addition, both video sequence and 

the viewing device are not significant factors affecting attention and meditation levels. 

Furthermore, chaotic movement of video sequences may be correlated with lower 

enjoyment rating. 

 Research question 1(b): How to evaluate the perceptual experience and visual 

attention of viewers watching S3D video in different viewing environments? 

Three different viewing environments that are commonly used as the viewing 

environments of S3D videos were evaluated: a VR headset device, a panoramic screen, 

and a flat 3D screen. Evaluation methods investigated including the SSQ, EEG biosignals, 

eye blinking, attention and meditation levels, enjoyment rating by ACR and statistical 

analysis by Analysis Of Variance (ANOVA). Chapter 4 discussed in detail this research 

design and experimental methods in three different viewing environments with 

evaluations and results presented. 

The experimental results show that VR device to view the stereoscopic video sequences 

resulted in higher visual fatigue compared to the other two screen display types. In 

addition, the participants reported the lowest enjoyment ratings for the VR device. For the 

panoramic screen, the participants reported the lowest SSQ scores and the highest 
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enjoyment ratings when viewing S3D video sequences. The difference in results 

experienced when viewing the same S3D video sequence on different screens reveal that 

the screen and viewing environment are an essential factor that influences the level of 

visual fatigue, QoE and VIMS. The results also revealed that the chaotic movement in 

video sequences had an effect on the SSQ, level of visual fatigue and enjoyment ratings. 

Hence, such findings show that the content of the video sequence and the viewing screen 

used are key factors that affect the enjoyment rating of the S3D videos. 

 

Research Question 2: How to assess the visual attention of viewers watching S3D video in 

relation to the quality of experience? 

Measuring the human vision experience is the most direct way to understand the visual 

attention of viewers when watching S3D videos. Eye-tracking experiments were conducted to 

measure human visual attention when viewing S3D videos. Some visual attributes were 

selected for the prediction of visual attention when viewing S3D video. Human saliency maps 

based on eye-tracking gaze data were compared with existing human saliency maps and 

saliency prediction models when watching S3D video sequences. Three evaluation indicators 

were used to evaluate the similarity between the human saliency map and other saliency models. 

Chapter 6 discussed eye-tracking techniques, comparing with existing human saliency map 

saliency prediction models and presented experimental results to identify if there is any 

correlation to the quality of experience of viewers. 

The results show that the saliency prediction model could be influenced by the centre bias from 

participants. In addition, the selection of saliency evaluation indicators is also important for a 

comparison of the existing saliency prediction models with the human saliency map. 

Furthermore, choosing more video samples including both indoor and outdoor scenes are also 

key factors for better estimation of saliency prediction models. 
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Research Question 3: How are objective metrics and the quality of experiences of viewers 

affected when implementing a video sequencing model for video coding as a practical 

application? 

The commonly utilised PSNR and evaluation by ACR were used to evaluate the objective 

metrics and the subjective QoE, respectively. A practical use-case of “hybrid” sequence video 

coding approaches were proposed and adopted for the practical application of these evaluation 

methods. Evaluation results found the proposed “hybrid” S3D video coding approach to 

provide perceptual quality similar to that of uncompressed videos with scenes where the 3D 

effects are moderate and where the scenes are stable. Chapter 5 discussed in detail the 

application of video coding evaluation as a practical use-case to measure and evaluate objective 

metrics and the viewer quality of experience, presenting relevant results. 

The results show that hybrid sequencing can provide perceptual quality comparable to that of 

uncompressed videos, with the 3D effects that are moderate and stable scenes. The different 

artefacts that affect the quality of 3D content and which therefore need to be reduced to 

maintain a comparable video quality were also noted in the evaluation results. 

7.3 Summary of Contributions 

The list below summarises the main technical contributions of the work in this thesis: 

 Chapter 3 : Comparison of Objective and Subjective S3D Evaluation using EEG 

Biosignals (published in [36]) 

- Employed Simulator Sickness Questionnaire (SSQ) scores to evaluate the 

Visually Induced Motion Sickness (VIMS) of 2D and S3D videos. 

- Presented the effect of the eye blinking frequency of participants whilst viewing 

2D and S3D videos. 
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- Adopted Electroencephalography (EEG) signals and brain wave power 

algorithms to evaluate visual fatigue of participants whilst viewing 2D and S3D 

videos. 

- Conducted objective and subjective tests to evaluate the visual fatigue of 

participants whilst viewing both 2D and S3D videos. 

 Chapter 4 : Comparison of S3D Video QoE in Different Viewing Environments 

(published in [37]) 

- Employed SSQ scores and its sub-scales to evaluate the VIMS of S3D videos 

in different viewing environments. 

- Presented the effect of eye blinking frequency and neuro signal conditions (EEG) 

of participants viewing S3D videos in different viewing environments. 

- Adopted the use of EEG signals and its brain wave power algorithms to evaluate 

visual fatigue. 

- Suggested the major factors that affect visual fatigue and evaluated the QoE of 

viewers whilst watching S3D videos in different viewing environments with 

three different projection devices. 

 Chapter 5 : S3D Objective Quality Metrics and Subjective Evaluation Methods 

applied to Video Compression Evaluation (published in [38]) 

- Compared and evaluated PSNR between the uncompressed and compressed 

S3D video at the same resolution. 

- Proposed a practical use-case, a “hybrid” coding approach, to compare and 

evaluate PSNR between the two stereoscopic views. 

- Proposed the “hybrid” coding approach to compare and evaluate the QoE of 

viewers whilst watching the different video pairs of S3D video. 
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- Suggested the major factors that affect the objective metrics and subjective 

evaluation of the QoE of viewers in the practical S3D video coding use-case for 

evaluation. 

 Chapter 6 : Visual Attention of S3D Video in relation to QoE using Eye-tracking 

Analysis 

- Contributed a dataset to obtain the eye-gaze data of participants when viewing 

S3D videos and developed an approach to estimate the fixation map. 

- Developed a human saliency map for the visual attention of S3D video to 

correlate with eye-gaze data. 

- Compared the human saliency map with existing human saliency maps and 

saliency map prediction models from other researchers for analysis. 

- Evaluated if visual attention from the eye-tracking analysis contributed to QoE 

assessments of S3D video. 

7.4 Future Work 

For the future development of objective and subjective quality assessments of S3D video, the 

following research directions are suggested for extending the work in this thesis: 

1. QoE of different video formats in different viewing environments 

Further studies should include QoE assessments of 360 2D videos, S3D videos and S3D 

videos with omnidirectional content in panoramic screening environments; and include 

the SMPTE and THX specifications for the 3D fatigue assessment of UHD-1 video. 

 

2. Larger sample size of participants and more video sequences 

Regarding the impact of the viewing device, the sample size of video sequences and the 

number of participants, it is recommended for future work to use a larger sample size of 
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video sequences and more participants to further assess the correlation of ACR enjoyment 

rating with both the brain wave power ratios and SSQ scores. 

 

3. Eye-tracking in VR technology 

The work in this thesis may inspire more S3D videos, including both indoor and outdoor 

scenes. The viewing device, especially a VR headset, can be used in future experiments. 

Furthermore, the FOVE VR [224] and HTC VIVE Pro Eye VR [290] headsets are 

potential device options to conduct the eye-tracking experiments in a VR environment 

because they have embedded eye-tracking functionality to capture eye-gaze data for 

further analysis. 

 

4. Multi-view S3D video technology 

The challenge of multi-view S3D video technology includes the design of a quality metric 

for assessments and the adoption of a QoE method to assess the visual attention of viewers 

when viewing multi-view S3D video. Future work should expand to develop evaluation 

metrics for multi-view 3D technology and the assessment of 3D fatigue with the 

enhancement of video quality, such as multi-view High Efficiency Video Coding (HEVC). 

Also, future research work should expand the objective metrics and subjective evaluations 

proposed in this thesis to assess higher-resolution stereoscopic video, such as Full-HD and 

4K, which are available on the commercial market in commercial movies and 3D-enabled 

consumer televisions [23, 26-28, 73].  
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Appendix 1: Matlab Toolbox for the Data Collection from Tobii 

EyeX Eye-tracker 

 

This Matlab script is modified from the publication of Gibaldi et al. [283]. 

 

Main program: 

 

%%%  MATLAB TOOLBOX for TOBII EYEX EYE-TRACKER  %%% 

   

%% CLEAR ALL 

clear, close all, clc 

  

%% ADDPATH 

addpath ../../tobii_matlab 

  

%% CHECK SOFTWARE 

chk = chk_software('../../matlab_server'); 

  

%% COLLECT SOME INFO 

prompt = {'Subject ID:'}; 

dlg_title = 'EyeX Vergence'; 

num_lines = 1; 

def = {'SBJ1'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

sName=char(answer(1,1)); 

  

%% CREATE DIRECTORIES 

save_dir='DATA/';               

subject=[sName '/'];            

  

if isempty(dir(save_dir)) 

    mkdir(save_dir) 

end 

  

if isempty(dir([save_dir subject])) 

    mkdir([save_dir subject]) 
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end 

  

if isempty(dir([save_dir subject '/traj'])) 

    mkdir([save_dir subject '/traj']) 

end 

  

%% TOBII SETUP 

% START SERVER AND OPEN UDP PORT 

%if the Matlab server is in a different folder with the original one, write 

the FULL PATH 

server_path=fullfile(pwd,'../../matlab_server/'); 

tobii  =  tobii_connect(server_path); 

% INITIALIZE EYE TRACKER 

[msg DATA] =  tobii_command(tobii,'init'); 

% START EYE TRACKER 

[msg DATA tobii] =  tobii_command(tobii,'start',[save_dir subject 

'traj/']); 

  

%% PSYCHOTOOLBOX SETUP 

PsychDefaultSetup(2); 

Screen('Preference', 'SkipSyncTests', 1);  

% Get the screen numbers 

screens  =  Screen('Screens'); 

% Draw to the external screen if avaliable 

screenNumber  =  max(screens); 

% Define grey color 

grey = (WhiteIndex(screenNumber)+BlackIndex(screenNumber))/2; 

  

% Open an on screen window 

[win, winRect]  =  PsychImaging('OpenWindow', screenNumber, grey); 

%% CALIBRATION 

MAX = .95;  MIN = 0.05; MD = .5; 

TargetCalib = [MD, MAX, MIN, MIN, MAX, MD, MIN, MAX, MD;... 

               MD, MAX, MAX, MIN, MIN, MIN, MD, MD, MAX]; 

% POSITION GUIDE 

PositionGuide(tobii,win,winRect) 

% BINOCULAR CALIB 

[CalibL CalibR] = CalibrationProcedure(tobii,TargetCalib,[save_dir subject 
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'/DATA_CB'],win,winRect,'B') 

% CHECK CALIBRATION 

[Lpos Rpos] = 

CalibrationCheck(tobii,win,winRect,TargetCalib,CalibL,CalibR); 

  

pause(1) 

  

%% EXPERIMENT PARAMETERS 

time_per_scene = 10; %sec 

%Read and show image 

IM = double(imread('IMAGES/kitchen1.png'))/255; 

Screen('PutImage', win, IM, winRect); 

Screen('Flip', win); 

  

% ACQUIRE DATA 

Time=0; 

count=1; 

[L(:,count), R(:,count)] = tobii_getGPN(tobii); 

  

tic 

stop=false; 

while Time(count)<time_per_scene && ~stop 

    count = count +1; 

    [L(:,count), R(:,count)] = tobii_getGPNcalib(tobii, CalibL, CalibR); 

    Time(count) = toc; 

     

    if KbCheck 

        stop=true; 

    end 

end 

  

% Clear the screen 

sca; 

  

% STOP EYE TRACKER 

[msg, DATA] =  tobii_command(tobii,'stop'); 

% CLOSE SERVER AND UDP PORT 

tobii_close(tobii) 
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%% SAVE DATA 

save([save_dir subject 

'DATA_FIXATION.mat'],'L','R','Time','Lpos','Rpos','time_per_scene','IM') 
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Appendix 2: Questionnaire for QoE Experiment in different 

Viewing Environments 

 

Quality of multimedia experience in 3D video environments 

Online Questionnaire Survey 

 

Please put  in each the following item: 

Personal Profile 

Gender: Male  □ Female   □ 

Age:  

Vision: Myopia (short 

sighted) □ 

Hyperopia (long 

sighted) □ 

Normal   □ 

Psychic Condition: Good  □ Tired     □ Tired-out □ 

 

1. Please rate your enjoyment of the 3D video experience on a scale of 1-5 (1: not enjoyable at 

all; 5: very enjoyable): 

1    2    3    4    5 

 

2. Briefly describe your video experience here: 
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3. Please indicate if you experience any of the following symptoms: 

Symptom None Slight Moderate Severe 

General discomfort □ □ □ □ 

Fatigue □ □ □ □ 

Headache □ □ □ □ 

Eyestrain □ □ □ □ 

Difficulty focusing □ □ □ □ 

Increased salivation □ □ □ □ 

Sweating □ □ □ □ 

Nausea □ □ □ □ 

Difficulty concentrating □ □ □ □ 

Fullness of head □ □ □ □ 

Blurred vision □ □ □ □ 

Dizzy(eyes open) □ □ □ □ 

Dizzy(eyes closed) □ □ □ □ 

Vertigo □ □ □ □ 

Stomach awareness □ □ □ □ 

Burping □ □ □ □ 

 

 

 

  For Staff Only 

Participant no.:  Date of Test: 

Device: Video sequence: 
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Appendix 3: Questionnaire for S3D Subjective Evaluation 

Methods applied to Video Compression Evaluation 

 

S3D Subjective Evaluation Methods applied to Video Compression Evaluation  

Online Questionnaire Survey 

 

Please put  in each the following item: 

Personal Profile 

Gender: Male  □ Female   □ 

Age:  

Vision: Myopia (short 

sighted) □ 

Hyperopia (long 

sighted) □ 

Normal   □ 

Psychic Condition: Good  □ Tired     □ Tired-out □ 

 

1. Please rate your score of the quality of the video content on a scale of 1-5 (1: bad, 2: poor, 

3: fair, 4: good, 5: excellent): 

1    2    3    4    5 

 

2. Briefly describe your video experience here: 

 

 

 

 

 

 

For Staff Only 

Participant no.:  Date of Test: 

Video sequence pair: 

Video 1: Video 2: 
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Appendix 4: Ethics Approval Letter for QoE Experiment in 

different Viewing Environments 
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