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Summary

This research follows a multi-disciplinary pathway which begins with the development of a novel
measurement technique via the application of custom piezoresistive sensor arrays, continues through
to integration within compression apparel as a validated biomechanical analysis system, finishing
at the exploration of a system capable of providing detailed feedback to a wearer on their muscle
activity and fatigue performance, with the scope to identify impending higher-risk injury conditions.

The aim of this work was the development of a wearable system that focuses on near real-time
muscle performance analysis through the measurement of muscle activity induced surface pressure
variations. It further explores ligament loading and muscle fatigue condition parameters through
the use of the developed system. In doing so the research methodology questions whether pressure
could be used to measure muscle activity at varying levels of muscle exertion, whether additional
performance metrics could be extracted in real-time, and how these metrics reflected changing
performance over sustained activity.

The research serves to demonstrate that an alternative measurement system for muscle performance
monitoring is possible through the use of surface pressure changes. Further demonstrating that
advantages of such a system can be used to extend beyond measuring just the direct muscle perfor-
mance, but also the performance and loading on other soft tissues connected in the biomechanical
chain, and lastly present an alternative to the gold standard of muscle fatigue measurement that
alternatively measures the instability present within the measured signal of a fatiguing muscle as a
valid fatigue index.

Through the completion of this exploration three main contributions to the knowledge gap are made.
New evidence and methodology is presented on the viability of measuring muscle performance
(activity, load and fatigue) through pressure-based Force Myography using a compression garment
and pressure sensors. A new technique for fast estimation of Cruciate Ligament loading for early
warning and injury prevention detailed, and lastly a determination of a new muscle fatigue index that
uses Fractal Dimension analysis to calculate level of muscular fatigue and muscle interdependence.
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1. Introduction

1.1 Overview

The level of enjoyment and participation in physical activity at all levels will always be contingent

on a need to consider and address the associated dangers and risks of injury, and therefore its

implications to our ongoing participation. Unlike a significant portion of medical injuries, almost

50% of all sports-related injuries are deemed preventable [Sports Medicine Australia et al. 1997].

Early efforts in addressing injuries in sport led to the deployment of various defensive equipment to

reduce injuries through predominantly impact-related events. Glasses shielded the eyes, padding

and armour protected the body, braces supported the joints and helmets cushioned the brain. These

solutions, and their ongoing developments, have had a profound effect on reducing the frequency

and severity of injuries sustained through broken bones, concussions and soft-tissue impact damage.

They represent a form of protection which encourages active injury-prevention by wearing ‘passive’

protection equipment for preventing time-dependent accidents and impact events.

More recent efforts toward injury prevention have seen the focus extend toward the design of

equipment that actively retrains participant behaviours to avoid injury. A form of ‘active’ protection

equipment, this approach largely focuses on addressing the consequences of longer-duration

behaviours which lead to injuries through excessive overloading and overuse of muscles and the

soft-tissues of the body. Of particular focus are the upper and lower limbs which have demonstrated

a higher prevalence to injuries as a result of muscle and ligament overloading and straining.

This thesis explores the foundational development and viability of such a system for active injury

prevention. The system focuses upon monitoring muscle and soft tissue loading conditions through

the instrumentation of compression apparel for direct monitoring and feedback of muscle and soft

tissue loads to aid in the early warning of high-risk conditions and the prevention of sport-related

injuries. The novel application of Force Myography and material-based sensors is utilised to detect

pressure changes at the skin surface due to muscle contraction activity, allowing for analytical

insights into how muscles and soft tissues perform under various loading and fatigue conditions.
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The long-term direction of the research is toward development of an innovative solution for wearable

sports technology, aiding in the improvement of training, assessment of performance and physical

welfare of participants in exercise activities. With current high-end compression apparel still limited

to only providing passive muscular and vascular exercise response the additional intelligence from

a pressure mapping system enhances a compression garment, from a standard piece of clothing to a

wearable biomechanical performance analysis system providing data analytics and biofeedback.

The anticipated benefits realised from this research extend beyond the traditionally elite domain

of professional athletes, encompassing multi-discipline enrichments to broader fields of sport

participation, healthcare and injury rehabilitation.

1.1.1 Research Field: Where the research gap exists

Significant literature and developments exist within the scope of muscle activity and performance

measurement, largely due to its fundamental role across biomechanical and medical fields. Com-

monly applied gold-standard techniques are:

• Coaching and Feedback, the traditional method of utilising a third-party or visual recording

to observe behaviour, and relay insights and feedback based on experience and knowledge.

• Electromyography (EMG), a system measuring the electrical activity of the muscles and

correlating this behaviour to a muscle’s activity and loading.

• Motion Tracking with Force Plates, an approach which tracks biomechanical markers and

ground forces to define muscle loads from external loading and movement conditions

Whilst being go-to industry standards, these techniques are not without their limitations; coaching

lacks numerical accuracy and repeatability, EMG suffers from high costs, and motion tracking

systems are not readily portable. A new technique is growing in capability with potential to address

some of these limitations, Force Myography (FMG) measures mechanical changes at the skin

surface as a result of muscular activity. A sensor measures the force (or its distribution as pressure)

between the muscle and a constraining compression device. With greater commercial availability

and consumer demand for compression garments in sport, this has opened up a strong research

opportunity to pursue this FMG technique as a means of integrated muscle analytics within a

compression garment.

To date very little FMG research has been undertaken to explore the biomechanical evaluation

of muscle performance (and subsequent soft-tissue) through surface pressure variation. The vast

body of literature primarily focuses upon detecting only muscle activation, and is popularly used in

prosthetics control for robotic hands and devices. Additional research has demonstrated the further

use of pressure-based FMG to measure varying levels of healthy muscle output, but again do not

explore the muscle performance itself, rather the focus lends toward the signal output as a means of

controlling another device through human interaction. As such there exists a lack of established

literature in the use of FMG for introspective exploration of the efficiency in muscular activity and

execution behaviour. This work endeavours to explore this niche, and compare and contrast the

performance of pressure-based FMG against the industry gold-standards.
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1.2 Research Scope and Objectives

The research focuses on the development of a novel system and methodology capable of muscle

and injury diagnostics using an instrumented compression garment. Current (passive) compression

garments provide little to no feedback on a wearer’s performance, wherein functioning mainly as

a proprioceptive aid. By monitoring select muscle groups and joints, a smart garment ultimately

provides a system that allows the wearer to eliminate the restrictions of lab-based analysis, and

place them free to perform in their natural physical environment with similar analytical monitoring.

This however by no means is restricted to the sporting fields, and is directly, if not more applicable

within rehabilitation, medical and aged care pathways.

Presently there is no single portable system capable of assessing in realtime the Active muscle

loading of an athlete in the lower limbs, Cruciate Ligament strains within the knee joint, and

co-contraction and fatigue of paired lower limb muscles. This research endeavours to explore

the development of such a methodology system. Where the research presented demonstrates the

necessary analytics and engineering considerations required to capture, process, analyse and extract

insights relevant to human performance in uncertain and realtime environments.

1.2.1 Research Questions

The scope of the research is framed around the empirical observation of the behaviour of the

muscles, and thus testing of these assumptions, being that:

• Muscle activity under the surface of the skin should correlate to localised pressure changes

directly above the muscle when wearing a garment that applies sufficient compressive

pressure to the muscle and dermis.

• A muscle undergoing a consistently repetitive, medium to high exertion action will experience

an increase in fatigue. This should be reflective in an increasing level of chaotic instability

when measuring the muscle activity.

In an effort to better define, analyse and ultimately better the knowledge gap within the field, the

following research questions formed the guiding framework of the research:

Question 1 How can deformation changes in the physical surface of a limb during activity be

utilised for quantification of muscular activity levels?

◦ This question explores the following key research pursuits:

• Does muscle deformation correlate to the performed muscle activity?

• What sensor considerations are needed for measurement of deformation?

• How does this compare and correlate to the current gold standards of measurement?

Question 2 With an understanding of the muscle loads associated with a set activity, how can we

further determine the non-measurable loads (i.e. knee ligament loads, fatigue), that otherwise

cannot, or have not been measured before within a real-time measurement capacity?

◦ This question explores the following key research pursuits:

• How does the proposed methodology compare to the currently implemented measure-
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ment systems, such as surface Electromyography?

• What comparative advantages or weaknesses exist?

Question 3 What insight can the analysis of temporal loading conditions on the muscle surface

provide?

◦ This question explores the following key research pursuits:

• How does the onset of a muscle fatigue condition affect the changes in the resultant

measured signal?

• What insight is provided through the analysis of the muscles behaviour over time with

respect to fatigue?
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1.3 Research Significance and Contribution

Listed below is a summary of the impact the completed research has made through the pursuit

of the research questions stated above. Impact within the field is separated as to the Novelty, the

Contribution toward a knowledge gap, and the relevant Breadth and Depth entailed.

1.3.1 Novelty and Innovation

• The measurement of muscle activity through surface pressure changes for the purpose

of calculating soft-tissue performance parameters, including; muscular loading force, co-

contraction behaviour, ligament force, and muscular fatigue. (Chapters 4-7)

• Novel development of a cruciate ligament load monitoring methodology for fast alerting

of dangerous behaviour, as highlighted within an International PCT Patent filed, which the

author of this thesis is a co-inventor. (Chapter 5)

• Peer-recognised research innovation as recipient of the APCST-ASICS International Innova-

tion Award (2015) for research conducted (Chapters 3-4)

• The discovery and demonstration of visualising antagonistic muscle co-dependent mechanical

fatigue behaviours through the use of Fractal Dimension Analysis. (Chapter 7)

1.3.2 Breadth and Depth

Breadth across the developmental research:

• Design and development of calibrated material-based soft piezoresistive pressure sensors

• Development of a wearable system (Smart Compression Garment) capable of realtime data

capture across numerous activities

• Correlation of inverse dynamic muscle force to forward dynamic EMG and FMG sensors

• Development of a biomechanical model for the fast calculation of Cruciate ligament forces

• Analysis of athlete cycling performance using motion tracking and muscular monitoring

• Fatigue analysis through advanced signal processing and analytics

Depth into the development of muscle fatigue analysis:

• Application and comparison of standard technique for fatigue analysis to alternative methods

• Development of an automated Fractal Dimension analysis program

• Completion of over 65 tests in the development and refinement of the test procedure and

analysis of athletes

• Full testing methodology applied to seven cyclists in assessment of fatigue through measure-

ment of surface EMG and FMG using both gold-standard and novel methodologies

• Thorough analysis of alternating recovery and fatigue of antagonistic muscle groups using

both the gold standard and developed novel technique

• Analysis of muscle activation behaviour and fatigue patterns over peak crank angle activation
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Depth into benchmarking pressure sensors to the gold-standard:

• Application of a 5-point EMG signal analysis for correct sensor positioning and alignment

• Peak pressure determination of muscle belly for centre of pressure positioning of sensors

• Novel pressure material-based sensor development and calibration to gold standard equipment

1.3.3 Main Findings and Contribution to the Knowledge Gap

The completed works focused upon the development of a smart compression apparel device that

utilised pressure and EMG sensors to detect muscle and soft tissue performance parameters.

The main findings and contributions of the work are discussed below.

1. Development of material-based sensors for Force Myography in a smart garment
For the successful application of Force Myography using pressure sensors underneath a

compression garment it was necessary to utilise pliant sensors that conformed to the changing

shape of the muscle’s surface. Early investigations of the research were supported by the use

of commercially available sensors that were not adequately compliant to the measurement

task, and as such integration into a smart garment was completed. Therefore as a critical

component of the research, design and development of soft material-based sensors tailored

for FMG application within a garment. This involved the selection of materials whose

properties met the electrical, mechanical and environmental requirements, the construction

and selection of the best sensor form, and lastly the calibration of these sensors using

gold-standard equipment.

2. Demonstration that Force Myography can be extended beyond activation detection to
include muscle loading and fatigue conditions
The work demonstrates through multiple tests that muscle activity and loading can be

measured by pressure changes to the muscle surface. This extends the knowledge from

existing literature works beyond simply detecting muscle activation for binary switch control,

to include an understanding into the correlation of surface pressure to that of muscle loading

conditions. Whilst somewhat confirmation of what we already know empirically (contraction

of muscles exert larger deformation changes with increasing contractile force), the work

quantifies this change through set activity from seated, standing and cycling positions for

multiple participants. Validating this against both a biomechanical model, and the gold-

standard technique of monitoring electrical behaviour of the muscles.

Through the comparison of the cyclist muscle behaviour at the beginning and end of a

fatigue-inducing exercise, FMG was shown to demonstrate changes in the muscle activation

timing and levels due to the onset of fatigue. Subsequently, radial shift of the peak activation

tended toward earlier activation for all participants, but was more prevalent within the cycling

dominant power generation muscles (quadriceps) and with participants more conditioned to

fatigue-based cycling exertion.

3. Development of a methodology for fast calculation of Cruciate Ligament forces
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The body of literature providing detailed analysis of the knee’s cruciate ligaments is extensive.

The majority of this however focuses understanding on the detailed failure mechanism of

the ligaments, largely post-injury or within controlled laboratory conditions. The thesis

work undertaken presents a novel, lateral contribution, which focuses on the fast detection

of cruciate ligament loading conditions for in-situ, near real-time analysis and alerting of

dangerous activity to a wearer. The solution prioritises a biofeedback loop to prevent injury

invoking behaviours, rather than fully discretising the ligament failure mechanisms.

4. Highlighting weaknesses in Electromyography when measuring high-speed activity
Whilst considered the gold-standard for monitoring muscle performance, it was presented that

Electromyography suffers from significant inaccuracies in measuring the timing of muscle

power generation during high speed cycling activity. This was identified as a consequence of

the inherent electromechanical delay in the muscle engagement, compounded by the high

speed activity when mapped across the circular pedalling path of the bicycle crank. The work

identifies this and makes recommendations to consider alternate measurement techniques

such as pressure-based FMG which does not suffer from the same electromechanical delay

as it measures the direct mechanical response muscles during high speed activity.

5. Fractal Dimension analysis as an alternate method for measuring muscle fatigue
The measurement of muscle degradation in performance due to fatigue most commonly

is done through the established gold-standard, a combination of EMG measurement and

calculation of changes in the resultant median value of an FFT analysis. The research enforced

a fatigue condition within participants and demonstrated the confirmation of fatigue using

this established methodology. This was furthered through exploration of a new technique

using Fractal Dimension Analysis to correlate muscle signal instability with fatigue. The

increasing presence of muscle fatigue, confirmed by both a test known to enforce fatigue

conditions and the gold standard, is directly correlated in the increasing level of chaotic

signal instability of the measured signal through fractal dimension analysis. Where the use

of fractals demonstrates the detection of electrical and mechanical fatigue for both EMG and

pressure-based FMG signals respectively across the tests.

6. Fractal Dimension analysis as a method for measuring muscle interdependent behaviour
during fatigue conditions
Further to confirmation in the detection of fatigue, the Fractal-based fatigue measurement

yielded a discovery that was not clearly evident through the measurement of fatigue using

traditional means. The analysis method highlights interdependent load-sharing behaviour of

antagonistically-paired muscles that extends activity duration whilst maintaining required

output power. This is observed through cyclic accelerated fatigue-recovery patterns between

the two muscles, which allows for one of the muscle to reduce power delivery (recover)

whilst the other muscle balances the activity’s power demand. This behaviour slows the

longer-term rate of fatigue, as measured through the fractal dimension value.
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1.4 Published Research Output

As a result of the research undertaken, portions of the material in this thesis have been published or

represented within the following publications.

Journal Articles:

• Belbasis, A. & Fuss, F. K. Muscle performance investigated with a novel smart compression

garment based on pressure sensor force myography and its validation against emg. Frontiers

in Physiology 9 [2018]

• Belbasis, A., Fuss, F. K. & Sidhu, J. Estimation of cruciate ligament forces via smart

compression garments. Procedia Engineering 112, 169–174. ISSN: 18777058 [2015]

• Belbasis, A., Fuss, F. K. & Sidhu, J. Muscle activity analysis with a smart compression

garment. Procedia Engineering 112, 163–168. ISSN: 18777058 [2015]

• Belbasis, A. & Fuss, F. K. Development of Next-generation Compression Apparel. Pro-

cedia Technology 20, 85–90. ISSN: 22120173. http://linkinghub.elsevier.com/

retrieve/pii/S2212017315001929 [2015]

• Fuss, F. K., Belbasis, A., van den Hazel, B., et al. Design Strategy For Selecting Appropriate

Energy Absorbing Materials and Structures: Data Library and Customised Selection Criteria.

Procedia Technology 20, 98–103. ISSN: 22120173. http://linkinghub.elsevier.com/

retrieve/pii/S2212017315001942 [2015]

Conference Proceedings:

• Fuss, F. K., Belbasis, A., Sidhu, J., et al. Fractal dimension analysis of muscle fatigue with

muscle surface pressure measured via compression garments in Proceedings of ICSST 2016,

2nd International Conference in Sports Science and Technology [Nanyang Technological

University, Singapore, 2016]

• Salim, F. et al. Design and evaluation of smart wearable undergarment for monitoring physi-

ological extremes in firefighting in Proceedings of the 2014 ACM International Symposium

on Wearable Computers Adjunct Program - ISWC ’14 Adjunct [2014], 249–254. ISBN:

9781450330480

Patents:

• Fuss, F. K. & Belbasis, A. Soft tissue management method and system. WIPO PCT Patent

(filed) WO2016065404A1 [May 2016]

Awards:

• Asia-Pacific Conference on Sports Technology 2015, APCST-ASICS International Innovation

Award (2015) for research presented within:

– Muscle activity analysis with a smart compression garment

– Estimation of cruciate ligament forces via a smart compression garment

http://linkinghub.elsevier.com/retrieve/pii/S2212017315001929
http://linkinghub.elsevier.com/retrieve/pii/S2212017315001929
http://linkinghub.elsevier.com/retrieve/pii/S2212017315001942
http://linkinghub.elsevier.com/retrieve/pii/S2212017315001942
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1.5 Thesis Structure

The thesis is divided into two main parts; Research Development, and Research Implementation.

The first part encompasses chapters 1-3, and provides an introduction into the thesis and the research

gap within the literature, and a documentation of the development of the foundational capture

systems and methodology used throughout the work. The second part of the thesis covers chapter

4-8 and focuses upon the implementation of the developed research, with each chapter focusing on

addressing the research questions.

The thesis chapter breakdown is as follows:

Chapter 1 Thesis overview and scope of research performed (this chapter).

Chapter 2 Literature review of the current state of works surrounding the research of performance

monitoring through wearable technologies.

Chapter 3 The design of a wearable data collection system. The design of soft pressure sensors

and the installation within a compression garment to read dynamic pressure changes during

an activity. Necessary considerations in the measurement of limb angles using a motion

capture system, and the utilisation of a Surface Electromyography system for gold-standard

validation.

Chapter 4 The measurement of muscle activity through the use of a controlled leg extension

and flexion activity to determine muscle activation and load criterion. Testing methodology

explores increases in limb loading, therefore required muscle force, to determine whether

this reflects changes in the measured surface pressure exerted by the muscle.

Chapter 5 Resolution of the biomechanical forces in the upper leg to the forces present in the

Cruciate ligaments in the knee. A theoretical model based upon muscle exertion levels, limb

angle, and understood soft tissue parameters from literature is developed to increase speed of

in-situ warnings over overloading and strain to the ligaments.

Chapter 6 The testing of fatigue performance of the lower leg by using an established fatigue-

inducing test methodology for cycling activity. Analysis of the results explores how muscle

performance changes were evident between the start and end of the test, as measured by the

surface pressure and EMG, that reflect the conditions of increasing muscular fatigue.

Chapter 7 Further research and confirmation presented into the transitional increase of fatigue

throughout the duration of the test using both the gold-standard technique and an alternative.

Results presented that changes in measured signal instability, through a Fractal Dimension

analysis, are reflective in the increasing fatigue of the muscles and can be further used to

investigate inter-dependencies between muscles.

Chapter 8 Thesis conclusions and summary, with scope for future work in the continuation of the

research performed within the thesis.
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The design of the human body, it’s complexity and function, greatly overshadow that of all attempted

man-made invention to date. We have spent much of our history exploring the intricate detail and

composition of what provides us the scope for existence, makes us who we are, and allows us the

gift of movement.

In our ways of classification we label the system responsible for movement as the Musculoskeletal

system, the combination of the structural supports (skeleton) and actuation units (soft-tissues) of

the human body. This system alone is not solely responsible for movement, working in synergy

with other systems of the body (e.g. the nervous, circulatory, and respiratory systems) we achieve

efficient and healthy movement. It is however the soft-tissues (muscles, tendons and ligaments)

within our Musculoskeletal system which plays a key part in the enclosed research that follows.

As this research introduces and explores a novel measurement technique that evaluates soft-tissue

performance, it is necessary to understand and evaluate the current existing analysis systems in use,

and subsequent body of literature that support them. This chapter focuses on a brief exploration

into the current developments toward the measurement of muscle activity through wearable systems

or garments (smart apparel). Exploring where these methods have been used for the measurement

of muscular fatigue through traditional or newer, alternative methods. Concluding with a brief

overview of the research work encompassing the measurement of the cruciate ligaments using

wearable systems.

In lieu of a standard, all-encompassing literature review, much of the relevant work by key re-

searchers pertaining to each topic has been introduced and discussed at the beginning of each

relevant chapter to better frame and explore the work.
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2.1 Development efforts towards smart apparel

The analysis of exercise performance has long since surpassed the sole interest of sports bio-

mechanists and health practitioners. It has become commonplace for the average consumer to

actively capture and analyse their own personal activity data. Motives for such behaviour differ, yet

increasing sales of wearable fitness trackers and smartphone fitness solutions are a testament to this

paradigm shift [James & Petrone 2016; Moustafa et al. 2015].

Identified as one of the ten technologies which will change the world by the European Parliament

Scientific and Technology Options Assessment Panel, Market prospects for wearables are very

promising with wearables shipments forecasted to increase to $150 billion by 2026 from the

estimated level of $30 billion in 2016 (European Commission, 2016). Wearable technologies were

the most popular and leading fitness trend in 2016 for the first time, and continued to be so in

2017 [Thompson 2015, 2016] yet they have dropped to the third highest trend leading into 2018

[Thompson 2017], but returning to the lead position in 2019 [Thompson 2018]. A major drawback

of smart wearables which may account for this shift is the value that consumers are getting from

these devices. In contrast to non-wearable laboratory equipment, wearable devices have a reduced

level of accuracy within the technology, posing a challenge to consumers in a market saturated with

un-validated products [Düking et al. 2016].

To contrast the current magnitude of fitness tracking solutions, one only has to look back a decade

when consumers were content to track activity through a single information stream; the heart rate.

As both technology and consumer needs evolve, the once prominent lines between Clinical and

Consumer measurement systems have become blurred. Constant progression of instrumentation

simplification and miniaturisation has led to once cost-prohibitive technology solutions to be widely

affordable to the masses. Increasingly it is not only consumer devices but also sporting garments

that are adopting this trend and spanning these now blurred lines; Smart devices now scope beyond

the wrist with technology-enhanced or smart headbands, shirts, jackets, socks and underwear

[Düking et al. 2016; EU DG Connect 2016].

Of particular focus is that of the progressive developments in compression apparel. Current passive

compression garments provide little to no feedback on performance and behaviour to the wearer,

functioning mainly as a proprioceptive aid during recovery [Fu et al. 2013]. The prominence of these

garments within the sporting industry does provide an advantageous avenue for instrumentation

of the athlete. Where monitoring select muscle groups and joints directly through a garment

affords a transition from lab-based analysis to a wearable platform where evaluated performance is

done within the athlete’s unique training environment. Novel approaches in material-based sensor

technology now allow for integrated soft sensors within compression garments, creating smarter

apparel that is able to record, store, stream and deliver high-end muscle and joint data for real-time

user feedback [Lorussi, Galatolo, Bartalesi, et al. 2013; Lorussi, Galatolo & De Rossi 2009].
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2.2 Wearable apparel measuring muscle activity

This research deals with smart wearable apparel for muscle performance assessment, the gold

standard of which is undeniably electromyography (EMG). Whilst prominent, there are several

problems associated with EMG, clearly pointed out by De Luca (1997) which makes it difficult to

use EMG in wearables:

• EMG measures the electrical activity of a muscle which the mechanical activity lags behind

(electro-mechanical delay).

• The amplitude of the EMG signal is non-linearly correlated to the muscle force, and depends

on the number of motor segments recruited on the surface of the muscle, next to the electrodes.

• For optimal measurement electrodes should be located in the midline of the muscle, halfway

between innervation zone and the next myotendinous junction.

• Shifting the electrodes along the action line of the muscle decreases the signal amplitude and

a sidewards shift decreases the amplitude of higher frequencies (thereby suggesting fatigue if

the textile integrated electrode moves sideways).

• Tri-polar electrodes are preferable over bipolar ones, as the former eliminate crosstalk

introduced between muscles.

Furthermore, to capture the electrical activity gel/salt-based electrodes are required to reduce the

skin resistance and must be incorporated within the design, although special design of embroidered

electrodes can overcome this problem [Shafti et al. 2017; Taelman et al. 2007].

In spite of the issues pointed out above, two companies are selling EMG-based garments for

performance analysis: Athos1 and Myontec2. A third company, Leo3, developed an EMG thigh-

sleeve but never sold the product [Early 2016]. B10nix4 have announced an EMG-based shirt that

is not commercially available yet.

Athos, for example, assesses right-left muscle imbalance. Given the fact that precise electrode

placement is crucial for accurate results, equal activity levels of muscle groups on the right and left

side of the body would generate different signals if the electrode were not placed on the same spot

on both right and left muscle groups. A recent research paper [Lynn et al. 2018] explored validating

the performance of the Athos system against a laboratory system, however does not explore the

impact of incorrect placement through improper fit of the Athos garment, in contrast to that of

validation performed on Myontec garments by Finni et al. (2007).

There are some research papers available that investigate prototypes of EMG-based garments for

activity analysis [Finni et al. 2007; Manero et al. 2016; Shafti et al. 2017; Taelman et al. 2007].

Finni et al. (2007) used traditional EMG electrodes incorporated in a garment, whereas Shafti

et al. (2017) utilised customised, embroidered electrodes, validated with traditional gel-electrodes.

Taelman et al. (2007) investigated the effect of electrode misalignment in a smart shirt, in the same

1Mad Apparel Inc., Redwood City, CA, USA; https://www.liveathos.com/athletes
2Myontec Ltd, Kuopio, Finland; https://www.myontec.com/en
3GestureLogic Inc., Ottawa, Canada; https://gesturelogic.squarespace.com
4b10NIX Ltd, Milano, Italy; http://wise.b10nix.com
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way as Belbasis & Fuss (2015) did. Manero et al. (2016), however, did not validate their leggings

prototype.

Figure 2.1: Examples of commercially available garments measuring EMG by Athos (top), Myontec
(middle) and B10nix (bottom)
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2.3 Wearables measuring muscle fatigue

De Luca who was the first to develop the concept of myoelectrical manifestations of localized

muscle fatigue [De Luca 1984; Merletti, Afsharipour, et al. 2016; Merletti, Knaflitz, et al. 1990].

Fatigue is expressed in the EMG signal as an increase in EMG amplitude (increase of motor unit

recruitment or synchronization by the central nervous system to maintain the required force level,

related to central fatigue) and a shift to the lower frequencies of the EMG frequency spectrum

(decrease of the conduction velocity of motor unit action potentials over the muscle, related to

peripheral fatigue) [Crozara et al. 2015; Mesin et al. 2009].

The Myontec garment measures the muscle fatigue threshold (EMGFT2 according to Crozara et al.,

2015), i.e. breakpoint in the linear relationship between EMG amplitude and exercise intensity

[Lucia et al. 1999]. The muscle fatigue threshold, however, is not suitable for measuring the

increasing fatigue over time. Manero et al. (2016) were the first that attempted to measure fatigue

with an EMG garment prototype, by using the instantaneous Average Rectified Value (iARV) signal.

However, they did not validate the fatigue data they obtained. For example, although their iARV

signal is supposed to increase with fatigue, their initial data at the beginning of the exercise are also

very high. Another limitation in this technique is that the introduction of increasing sweat levels

drives increases in the iARV signal [Manero et al. 2016].

There are several methods available for the assessment of fatigue with EMG, such as FFT-based,

time-based, amplitude-based and wavelet-analysis-based methods. Details can be found in com-

prehensive reviews of Cifrek et al. (2009) and González-Izal et al. (2012). Both papers mention

fractal dimension methods without going into detail. The most common method for assessment of

fatigue (gold-standard method) is FFT-based, and the onset of fatigue is characterised by a shift

of the median frequency to smaller frequencies [De Luca 1997]. Basmajian & De Luca (1985)

conducted an isometric experiment that shows the difference between mechanical fatigue and

metabolic fatigue (measured with EMG and FFT method): the muscle force decreased at the failure

point, whereas the preceding fatigue point was only detectable with EMG through the decreasing

median frequency (Figure 2.2).

Fractal dimension methods for assessing muscle fatigue have increased in importance over the

last 10 years, with researchers using different methods, such as the box-counting method [Beretta-

Piccoli et al. 2015; Boccia et al. 2016; Troiano et al. 2008] to understand the fractal behaviour.

Marri & Swaminathan (2016) used several methods (e.g. Higuchi, Katz, Sevcik, box counting;

multifractal analysis). In most cases, Marri and Swaminathan’s monofractal algorithms delivered

smaller fractal dimensions for fatigued muscles compared to non-fatigue; whilst the opposite was

true for multifractal algorithms where the fractal dimension was mostly smaller than a value of 1.

In general, a signal’s fractal dimension ranges between a value of 1 and 2, i.e. ranging between a

straight line or smooth curve, to that of a maximally noisy signal filling up an area [Fuss 2013].

Mesin et al. (2009) compared the fractal dimension of EMG signals to other muscle fatigue indexes,

indicating that the EMG fractal dimension was least affected by changes in conduction velocity and

most related to the level of motor unit synchronisation, and suggesting that the fractal dimension is
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Figure 2.2: Distinction between contractile mechanical fatigue and metabolic fatigue; from Fig. 8.1
of Basmajian & De Luca (1985)

an index of central rather than peripheral fatigue.

Furthermore, Mesin et al. (2009) found that in a power trained subject, the Fractal Dimension

(FD) does not have a clear trend, indicating that the level of motor unit synchronisation does not

change, whereas the rate of change of the median frequency is high. In an endurance trained subject,

the rate of change of the median frequency is lower than in the power trained subject, whereas

rate of change of FD was high. These results suggest that power trained athletes are affected

more by peripheral fatigue, whereas endurance trained athletes suffer more from central fatigue.

Consequently, Fractal Dimension of the EMG signal (EMG-FD) appears to be more sensitive in

endurance trained muscles, and the Fast Fourier Transform of the same EMG signal (EMG-FFT)

more sensitive in power trained muscles when regarding fatigue conditions.
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2.4 Alternative muscle measurement: Force Myography

An alternative method to measuring muscle activity through myoelectrical activity (i.e. EMG), is to

explore the mechanical changes of the muscles through Mechanomyography (MMG; Islam et al.,

2013). In contrast to surface EMG, the quality of the MMG signal is not affected by electrical

interference and changes of skin conditions as MMG measures the mechanical action of a muscle.

MMG offers two main methodological options:

1. Vibromyography or Acoustic-myogram (phono-myography) using accelerometers and/or

microphones. The method assesses the low amplitude sound of lateral oscillations generated

by volumetric changes in active muscle fibres at frequencies between 5 to 100Hz with

microphones or low mass accelerometers [Fang et al. 2015]. However, the signals are

affected by limb movements and ambient noise, such that the method is not suitable for sports

applications [Islam et al. 2013].

2. Force or Pressure sensors used for Force-Myography (FMG). The sensors measure the forces

or pressure exerted by the muscles against the skin by volumetric changes of the active

muscles [Castellini et al. 2014; Connan et al. 2016]. Muscle bulging increases the pressure

non-linearly with respect to the increase in muscle force [Belbasis, Fuss & Sidhu 2015a].

Figure 2.3: Example of a commercially available FSR sensor (top), and the use of a pre-load device
to improve sensor performance [Esposito et al. 2018] (bottom)

The most common sensors used for FMG purposes are off-the-shelf FSR (Force Sensing Resistive)
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sensors (see figure 2.3 above), either as single sensors, several sensors [Connan et al. 2016] or sensor

matrix arrays [Zhou et al. 2017], that are preloaded, either compressed by tight fitting garments or

elastic bands to the surface of the relevant muscles [Lukowicz et al. 2006; McLaren et al. 2010;

Zhou et al. 2017], Velcro bracelets [Connan et al. 2016], integrated in a textile sleeve [Ogris et al.

2007], equipped with mechanical preload adjustments [Esposito et al. 2018; N. Li et al. 2012],

or placed inside a forearm orthosis [Wininger 2008]. Belbasis & Fuss (2015) and Belbasis, Fuss

& Sidhu (2015ab) used several customised piezoresistive polymer sensors sandwiched between

compression garment and skin. Meyer et al. (2007) applied a capacitance pressure sensor array

embedded in textiles. Alternatively, Jung et al. (2015) utilised air-bladders to detect pressure

changes underneath a compression band, and Cheng et al. (2010) did not use any sensors but

instead measured the body capacitance and its changes with movement.

FMG or pressure sensor based garments are a typical example of lateral innovation, i.e. achieving

the same goal with other or alternative means, a common precursor of a disruptive technology.

Lateral innovation is characterised by e.g. lower costs, higher accuracy, better user-friendliness,

smaller hardware, simpler solution, simpler implementation, less affected by error and method,

better wearability, providing additional information, or improved manufacturability [Fuss 2017].

However, none of these FMG solutions are commercially available yet.
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2.5 Wearables measuring the Cruciate Ligaments

Soft tissue injuries (both acute and chronic overuse syndromes) are among the most prevalent sports

injuries. In numerous sporting codes, from the amateur to the elite, every season is plagued by

injuries that prevent many participants from full participation. Of key concern is the increasing

predominance of non-contact ligament injuries in the lower limbs, specifically the Anterior and

Posterior Cruciate Ligaments (ACL, PCL respectively). Several studies have been performed in an

effort to quantify the loading of the cruciate ligaments when in use, but ultimately measurement

systems rely on data commonly obtained through largely static machines performing either isometric

or isokinetic movement.

In the design of the knee joint, it is the cruciate ligaments that function as restraining elements to

anterior and posterior movement of the tibial plateau with relation to the distal head of the femur.

Both ACL and PCL work under load to compensate for the net horizontal force from the ground

reaction force and subsequent supportive muscular activity, where the resultant load on the ligament

is highly dependent of the flexion angle of the knee [Fuss 1989; Fuss 1996].

Although significant research has been done into the failure of the cruciate ligaments under various

loading conditions [Colby et al. 2000; DeMorat et al. 2004; Fuss 1989], and the prevalence of

injury during due to muscle activity [Withrow et al. 2008], gender [Myer et al. 2005] or sport

[Alentorn-Geli et al. 2009a,b], quantifying the real-time loading forces of the cruciate ligaments

within the sporting environment has been limited due to the complexity of the joint.

Significant research in ligament structure, composition and failure patterns has led to accurate

estimations of soft tissue loading maxima through biomechanical simulations [Zhang et al. 2011]

and models [Fregly et al. 2012; Kinney et al. 2013]. However there still exists a need to continue

research into the inherent unknowns of the loading condition; the applied load, the subject’s health,

and ultimately the reflex-driven response. These parameters control how closely we can provide

an understanding on when, or how, a ligament will fail. Lin et al. (2012) attempted to explore

some of these through a stochastic biomechanical model of the risk and risk factors to the ACL, but

interestingly found no difference in risk between genders.

The ideal measurement opportunity is through direct access to the soft tissue in question, however

practicalities of in-vivo measurement without affecting joint performance pose a challenge to

researchers, resulting in novel-approaches being undertaken. Beynnon et al. (1992) utilised the

arthroscopic installation of in-vivo hall-effect transducers for direct strain measurement of the ACL

(see figure 2.4), whereas Taylor et al. (2011) opted for the less-intrusive use of biplanar fluoroscopy

with motion capture markers and the use of Magnetic Resonance Imagery (MRI) to capture static

positional displacement and lengths of the ACL.

Due to clinical requirements and restrictions of in-vivo measurement, much of the investigative

research around the joint is done through external capture. Most commonly this is done with motion

analysis techniques through either video or more advanced motion capture systems often partnered

with force plates to determine the respective ground reaction force.
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Figure 2.4: Experimental in-vivo setup from Beynnon et al. (1992)

Mobility limitations of a combined camera-force plate setup has seen many researchers look to

the opportunities to capture data afforded by the ongoing miniaturisation of electrical systems.

External attachment of Inertial Measurement Units (IMUs); housing accelerometers, gyroscopes

and magnetometers, have allowed researchers to prototype wearables systems that capture gait and

knee angle allowing for the determination of preliminary cruciate ligament loading risk [Dowling

et al. 2011, 2012], with greater mobility outside of a traditional lab environment.

Whilst numerous IMU-based motion capture systems exist, the skill and complexity involved in

setup and preparation of a subject for data capture has limited their use outside of the traditionally

research and medical applications as validation of the data is often difficult without the use of

another (gold-standard) system. For this reason most IMU systems are operated as a capture system,

with researchers applying post-capture models on the limb angular data captured.

Figure 2.5: Gait analysis using the wearable IMU-based Xsens MVN Awinda system [Xsens
Technologies 2019]
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2.6 Summary

The literature reviewed shows that there is both a growing research and commercial interest in the

synthesis of two bodies of work, namely the monitoring of muscle performance, and the growth and

use of wearable devices. The acceptance and capability of wearable technologies are increasing, as

are the functional uses of these systems for performance monitoring.

Evaluating the performance of muscle activity has become well established using Electromyography

(EMG) techniques, and is accepted as one of the current leading gold-standard methods. Along

with its use in both medical and laboratory research environments, EMG has been successfully

incorporated into a number of wearable apparel solutions. Limitations in implementing EMG

however are driving new thinking into alternate methods for muscle measurement. Force Myography

(FMG), a newer yet promising technique, evaluates the muscle activity through the mechanical

changes induced by muscle movement. The growing body of research and the respective outcomes

for Force Myography largely focuses on measuring muscle activity for control of an external system,

and very little has been done on evaluation of the muscle performance.

Evaluation of fatigue behaviour within muscles also relies on EMG as a leading gold standard

methodology. However growing research interest is underway into the use of alternative signal

processing techniques, such as measurement of the signal’s Fractal Dimension, where more

information can be extracted from the fatigue behaviour than currently possible through EMG-FFT

techniques.

This identifies an opportunity to explore the use both Force Myography and Electromyography to

evaluate muscle and limb performance within a wearable system, using both established FFT-based

and developing Fractal-based signal processing.
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Published Research

The following chapter contains work published within:
• Belbasis, A. & Fuss, F. K. Development of Next-generation Compression Apparel.

Procedia Technology 20, 85–90. ISSN: 22120173. http://linkinghub.elsevier.
com/retrieve/pii/S2212017315001929 [2015]

A key need highlighted within the scope of existing literature was the ongoing need to establish

performance monitoring smart garments to better understand in-situ biomechanical behaviours.

This chapter discusses the selection, design and development of a prototype sensor system to

determine the surface pressure under a compression garment and the relative limb orientations of

the lower body. A portable monitoring system with the capability of capturing data in a mobile,

activity relevant location, outside of the traditional bounds of the research lab.

3.1 A Smart Compression Garment

Complete enjoyment and participation in physical activity is often hindered by a fear of possible

injury, a behaviour increasingly common amongst those in recovery from previous injuries. In

particular, the muscles and joints in the lower limbs suffer from an increased likelihood of injury

due to muscle and ligament overload and straining. A widespread consumer option is the use of

elasticated compression apparel to address the concerns of activity-provoked injury by providing

additional support to the wearer’s body.

In the current state of design, compression apparel is limited only to providing passive muscular

and vascular exercise responses; it is in effect a "dumb" garment. In an effort to improve and

enhance this, "Smart" apparel introduces the integration of a pressure mapping system into a

compression garment. Therein extending the functional support a garment can provide in a range of

applications through the real-time collection and processing of information. This solution provides

biomechanical information as an indispensable training aid within competitive sports, whilst also

http://linkinghub.elsevier.com/retrieve/pii/S2212017315001929
http://linkinghub.elsevier.com/retrieve/pii/S2212017315001929
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functioning as a rehabilitative tool in the health and medical fields.

Figure 3.1: Smart Garment concept

3.1.1 Novel Muscle Measurement

The focus of this research was the investigation into the design considerations and developmental

steps necessary in producing such a Smart Garment for monitoring biomechanical activity. It

investigates a novel approach to quantifying muscular exertion and loading through the measurement

of the surface pressures between a target muscular group and a compressive elastic garment during

activity. The research goal is that by monitoring and mapping this pressure through garment-

integrated sensors, real-time analysis of muscular activity and limb behaviour is possible.

Solely monitoring the pressure exerted by compression garment is not a novel technique; significant

approaches have been taken within the fields of garment research to optimise the effectiveness of

compression garments [Troynikov et al. 2010], and the resultant ranges of pressure they provide

during use [Hill et al. 2015]. The scope of this document’s research builds upon earlier work by
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McLaren et al. (June 2010) and the Skins Compression Garment company in the development

of a separate wearable system measuring pressures for gradient compression garment design. A

key difference where this research deviates is the investigation of an integrated garment-sensor

system, where the direct pressure variations due to muscle and limb behaviour become the focus of

measurement, not the behaviour of the garment. In this way the research also follows developing

work by Dordevic et al. (2014) with their Tensionmyography technique of determining muscle

tension from skin indentations using a discrete load cell attached to the skin. This research however

places a specific focus on continuous movement analysis, rather than discrete evaluation of the

muscle activity under the singular maximal action that Dordevic et al. explores.

3.1.2 Development of a biofeedback system

Presently, no compression garment is capable of entirely assessing active muscle loading, knee

ligament strain and co-contraction of paired muscles. Development of an information processing

system was undertaken to allow for real-time monitoring of an individual providing a greater

understanding of the lower body soft tissue biomechanical loads.

This biofeedback system aims to prevent injury due to excessive inefficient activity by providing

sufficient and succinct information to an athlete. At present this system exists in the form of the

SmartWear software package, a GUI driven custom MATLAB program written for this research

work to provide basic feedback to the user through set threshold values which provide real-time

auditory tones and visual indication in graphical display linked to the output from the garment

based on level of surface pressure activity.

This biofeedback system presents outputs from the smart compression apparel only relating to

changes in surface pressure of the body, allowing for further research into the correlation of the

surface pressure to direct muscle loads and limb position [Belbasis, Fuss & Sidhu 2015b], with the

resultant cruciate ligament loading [Belbasis, Fuss & Sidhu 2015a] which allows for the system to

aid in;

• Monitoring of muscle activity, load, and balance (leg load distribution)

• Assessment of co-contraction of muscle groups

• Alerts to high muscle load and levels of co-contraction

• Monitoring and alerts to ligament loading

• Monitoring and alerts to muscular fatigue

Future developments in the biofeedback system aim to investigate the challenges and solutions used

in similar fields of preventative support (diabetes, heart management) where a user-centered design

approach has yielded significant improvements into the impact and effectiveness of the critical data

relayed to a participant [LeRouge & Wickramasinghe 2013].
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3.2 Pressure Sensor Development and Calibration

The unique electro-mechanical relationship between a material’s deformation and the resulting

change in its electrical resistance is key in the development of a force sensor capable of accurate

determination of loads. This relationship, the piezoresistive response of a material, is utilised as

the core measurement parameter in the design of numerous measurement systems. Specifically,

this includes the common thin-foil strain gauges and MEMS-based IMU sensors we see used

extensively throughout the field of engineering.

The piezoresistive properties of a material are the aggregate of both mechanical and electrical

behaviours exhibited by the material under deformation, each influencing the accuracy and function

of the sensor. The mechanical response of the sensor is largely driven by the physical properties of

the piezoresistive material utilised. To this effect the material must be selected with consideration of

the expected loading profile where measurement is needed. Thin films impregnated with conductive

material (i.e. carbon, metals) can have favourable repeatability within elastic loading, and due to

their size, are easily integrated into thin sensor constructions.

Electrically, the piezoresistive sensor acts as a force sensitive potentiometer, providing a varied

resistance load proportional to the level of force applied. An electrical circuit capable of measuring

the changes in the resistance over the sensor is necessary, as such the implementation of a basic

voltage divider circuit was utilised. Figure 3.2 depicts a circuit diagram of a voltage divider

measuring multiple inputs. A set reference resistor (240Ω) was selected for each channel to

measure comparative voltage changes within the circuit allowing for the determination of individual

sensor voltages within the target loading profile.

Figure 3.2: Circuit representation diagram of voltage divider measuring multiple (14) sensor inputs
through a microcontroller



26 Chapter 3. Development of a Measurement System

3.2.1 Design of the sensors

The requirements driven by the research goals outlined a need for a thin, material-based sensor

capable of measuring an applied load between the surface of the skin and a compression garment.

The thickness of the sensor was critical in minimises the obtrusiveness of the system to the wearer,

yet was required to operate within a specified pressure range of 0-3000 Pa [Hill et al. 2015].

Successful sensor research and development efforts by the extended RMIT Sports technology

team have shown that Velostat material, a carbon-impregnated electro-static discharge (ESD) film

developed by 3M, produces a significantly high response characteristic to low force applications

[Belbasis, Fuss & Sidhu 2015b; Tan, Fuss, Weizman & Azari 2015; Tan, Fuss, Weizman, Woudstra,

et al. 2015].

Figure 3.3: Exploded view of piezoresistive pressure sensor

Sensor Construction

Each sensor was constructed from seven material layers bonded together (Figure 3.3). To improve

the sensor accuracy and piezoresistive response a dual layer of the Velostat material was utilised as

this expands the mechanical and electrical properties of the sensing material. The electrodes of

the sensor was constructed from conductive silver-plated ripstop nylon fabric. This was utilised

over alternative, rigid layers as it was able to maintain the flexibility necessary for conforming to

the skin surface, therefore maximising contact to the piezoresistive layer. Electrode contact area

measured 2×2cm (4cm2), with extended connectivity tabs for the electrode connections.

The individual components of the sensor were enclosed using a material-based elasticised sports

strapping tape. Thin double-sided adhesive tape was utilised on one side of the sensor for both

attachment to the skin surface, and to act as a vapour barrier to prevent electrical disruption to the

readings through permeation of moisture (i.e. sweat) into the sensor.
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Useful Nomenclature

n Analog Sampling Resolution (bits)
α Analog sample value (0−2n)
Vinput Input Voltage (V)
Vre f Reference resistor voltage load (V)
Vsensor Sensor voltage load (V)
I Current in the circuit (A)
Rre f Resistance of the reference resistor (Ω)
Rsensor Resistance of sensor (Ω)
As Area of the sensor (m2)
t Thickness of the sensor material (m)
ρ Resistivity of the sensor (Ωm)
σ Conductivity of the sensor (1/Ωm)
Psensor Pressure measured by the sensor (Pa)

Sensor calibration

Sampling of the sensor’s electrical changes was performed through the use of an Analog-to-Digital

Converter (ADC), either on a microcontroller or dedicated Data-Acquisition unit (DAQ). The ADC

samples the sensor circuit as a scaled value to that of the sampling resolution (n) from the ADC

circuit. As such it is necessary to calculate the resultant scaled value of the sensor, this is done

within the defined input voltage (typically Vinput = 5V , however this was adjusted where losses in

the length of the cable were measured) and the ground (0V), Equation 3.1.

As the circuit measures the voltage load within the reference resistor (Vre f ), Equation 3.2 is utilised

to isolate the voltage load present within the sensor (Vsensor).

Vre f =
Vinput ×α

2n (3.1)

Vsensor =Vinput −Vre f (3.2)

At this stage the Vsensor value can be utilised for calibration to a known load, however the loading

response of the voltage change in a piezoresistive material is non-linear and as such accurate

calibration is difficult to achieve throughout the length of the loading curve (See Figure 3.4).

The conductivity of the sensor exhibits a far better linear behaviour to that of the the (so far)

calculated voltage response, calculated based on the unique circuit and sensor properties. This is

achieved by calculating the Current (I) and the Resistance of the sensor (Rsensor) using Equations

3.3 & 3.4.

I =
Vre f

Rre f
(3.3)

Rsensor =
Vsensor

I
(3.4)

Knowledge of the physical dimensions of the sensor, the electrode area and the thickness of the
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piezoresistive material, allows for determination of the Resistivity (ρ) of the sensor, and its inverse

the sensor’s Conductivity (σ ) using Equations 3.5 & 3.6.

ρ =
Rsensor×As

t
(3.5)

σ =
1
ρ

(3.6)

Figure 3.4: Non-linear voltage response behaviour of the sensor under load using simple voltage-
divider circuit with various reference resistances, [Interlink Electronics 2016]

Calibration to a commercial sensor

To achieve valid calibration a commercially available force transducer was utilised (Kistler 9317B

sensor with Charge Amplifier, Kistler Switzerland). The sensor was positioned in series above the

force transducer and both loaded with a variable load over the operational range of the sensor. To

ensure and maintain uniform loading over the sensor, 4cm2 non-conductive rigid plates were used

on both sides of the sensor, aligned with the internal electrodes.

Figure 3.5: Calibration setup with commercial load cell and material sensor

When comparing the peak loading responses from the force transducer to the sensor conductivity a

calibration curve can be derived (see Figure 3.6). To do this a curve is fit to the data to calibrate the
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material sensor voltages to that of the known transducer values. An example linear function for the

single sensor is shown below (Equation 3.7) where the correlation holds accurately throughout the

loading envelope (R2 = 0.977). Alternatively an exponential relationship can be utilised (Equation

3.8), where the equation constants (A & B) represent the derived values for the fit respectively for

each equation.

Psensor = Aσ +B (3.7)

Psensor = Aσ
B (3.8)

Figure 3.6: Correlation curve of material sensor to force transducer

An important consideration is that the compression force provided by the garment is pressure

rather than pinpoint force (although it is resolved to the force over the encompassed area within

the calculations). For simplicity it has been assumed that a uniform tangential compressive force

in the garment applies a uniform normal pressure over the surface of the sensor, which was made

due to the comparative size of the sensor (4cm2) to that of the muscle belly, and the lack of any

surface undulations which would present pinpoint localised forces rather than uniform pressure

loading. With the sensing based on uniform loading, normal-direction pressure applied to a curved

or flat surface will thus be equally measured irrespective of the shape taken due to positioning of

the sensors in various locations of the body.

Calibration of the Garment to the User

Muscle capability and performance has long been associated with the visual size and bulge of a

muscle; a core premise behind the sport of bodybuilding. Current techniques do not focus on the

measurement of this associated change in muscle shape and size under contraction. This is largely

due to the accuracy achievable in measuring electrical (EMG) or vibrational motion (Mechanomyo-

graphy, MMG) of the muscles. This accuracy however comes at the cost of complexity and
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portability, reducing the functionality of these systems outside of clinical environments.

Through the measurement of surface pressure the research aims to create a portable monitoring

solution that requires minimal setup (installation and calibration) over its alternatives, and provides

direct real-time feedback of muscular and limb performance to the individual. As a consequence

of the direct feedback, a real-world metric such as pressure in pascals, whilst achievable through

comparative calibration, is no-longer paramount to the functionality of the system. Rather, impor-

tance is placed upon the biofeedback signal’s intuitive relevance to the wearer in understanding

their corresponding loading behaviour.

To account for this the Maximum Voluntary Isometric Contraction (MVIC) method is often utilised

as a solution in estimation of the forces produced by the muscle, as relevant loading of a muscle

can be calibrated and conveyed from a minimally contracted state to the MVIC at 100% effort

[De Luca 1997]. This involves the measurement of muscle loads being normalised to the unique

characteristics of each individual condition (i.e each participant and the performed action), whereas

many of the unknown variables can be discounted through the performance of a calibration routine.

Calibration routines consist of a series of activities in which the muscle are activated at various

exertion levels from their most relaxed state, to that of a maximal condition (MVIC) state at a given

limb angle (see Section 3.2.1). The resultant limitations of the muscle exertion can then be utilised

to normalise the exertion level of all further signals. Cautionary observation must be made when

calibrating the MVIC using pressure variation. Location of the sensor can result in decreases in

pressure with increase in muscle load as the the muscle belly travels away from the sensor location.

MVIC calibration therefore must be appropriately normalised considering the absolute pressure

change exhibited during the activity.

The resultant scaled metric is significantly more intuitive and perceptible as a biofeedback signal

when compared to the standard scientific measurements of the system (N, Pa, mmHg, etc) to a user.

Calibration is performed by recording and scaling the range between the base pressure exerted by

the compression garment on the relaxed muscle, through to the maximal recorded value through

voluntary muscular activity.

Figure 3.7: Measuring MVIC through garment pressure range

It is necessary to note that 100% MVIC is not the maximal limit of a muscles exertion, merely

the voluntary limit recorded during the calibration activity. It is possible for muscular exertions

to exceed this value during exercise (i.e.>100% MVIC) through involuntary activity. Muscular

activity within this involuntary contraction zone is not necessarily damaging, yet if substantial

activity forces the user to regularly exceed their MVIC threshold, it is expected that injury likelihood
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through overload or straining will increase and acts as a supportive metric to monitor overtraining.
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3.3 Goniometry – Limb Angle Measurement

Measurement of key parameters within the testing (i.e. Knee and Hip angles) required the imple-

mentation of a system capable of measuring target angles on the body of the subject or on the

equipment (i.e crank angle). To accomplish this task a commercially available Motion Capture

(MOCAP) system (Qualisys Oqus System, Göteborg, Sweden) was utilised, capturing limb angles

and additional motion parameters during the test.

The visual MOCAP system was selected over several other systems which were tested (camera im-

age keyframe and keypoint tracking, IMU-tracking, magnetic-tracking) due to it’s higher reliability

and accuracy.

3.3.1 Validation System - Qualisys motion capture system

Well established as a gold standard in 3D motion measurement, video-based marker tracking yields

significant accuracy due to its globally referenced marker positioning, robustness and ease of use.

This is evident in the technology’s widespread use throughout the biomechanical and health fields,

as well as that of the film and animation industries for reproduction of highly accurate movements.

For the research performed, the volume of interest was observed by 6 infrared motion capture

cameras (Qualisys Oqus 500+) with video analysis performed using an additional colour video

camera (Qualisys Oqus 210c).

All points were tracked at 100fps and physically represented through spherical 12mm passive

retroreflective markers mounted either on the participant or equipment. Calibration of the system

was consistently accurate (residuals tracking < 1mm), allowing for confident estimation of limb

movement and spatial positioning.

Figure 3.8: Coordinate determination for angle measurement of A) Limbs, and B) Bicycle Crank

Limb Angles

For determination of a subjects limb angles, key observations where made along the sagittal plane

of the body (plane separating left and right halves) as it was most critical to the evaluation of knee
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flexion. Four retroreflective markers were mounted on the leg of the participant, two on the upper

leg and two on the lower leg (see Figure 3.8a). Markers were aligned so the angle between the two

groups of markers matched that of the participant’s knee flexion angle. In the event of misalignment

either; the markers were realigned, or a correction angle (θcorr) was applied by measuring the

angular deviation taken when the knee was straightened (θKF = 0◦).

Two vectors were determined through the coordinate points from the markers on each limb segment

(Equation 3.9), and the dot product of these vectors utilised to determine the respective angle

between them (Equation 3.10).
v1 = (x1,y1)− (x2,y2)

v2 = (x3,y3)− (x4,y4)
(3.9)

θ = cos−1
(

v1 · v2
|v1||v2|

)
+θcorr (3.10)

Bicycle Crank Angle

For determination of the crank angle a single marker was utilised. The righthand pedal was fitted

with a retroreflective spherical marker mounted on a custom bracket along the axial line of the pedal.

This mount eliminated visibility interference (occlusion) from the cyclist’s leg on the MOCAP

cameras. The sole marker provided reference coordinates (x1,y1) for the location of the pedal and

crank (see Figure 3.8b).

The crank centre (x2,y2) was determined by assessing the centre point of rotation utilising the

midpoint theorem1. The analytical technique was used as placement of a marker in this location

proved difficult due to varied bicycle geometries and the repetitive loss of marker tracking on every

pedal stroke; as such this point was derived from the fixed circular path taken by the first marker.

With the crank centre restricted from translation by the stationary bicycle trainer, the mid-point of

the circular range of the pedal was used to determine the centre point of rotation.

(x2,y2) =

(
(x1)max− (x1)min

2
,
(y1)max− (y1)min

2

)
(3.11)

By zeroing the pedal-mounted marker about the coordinates of the crank centre (Equation 3.12),

conversion of each pedal stroke from cartesian to polar coordinates using the arctangent (atan2)

function2 yields the respective crank angle (Equation 3.13). To align the resultant polar angle to that

of the crank coordinates (i.e angle measured with 0◦ at top, and clockwise rotation), the coordinates

in the standard arctan function were reversed, as well as any negative angles corrected with a 2π

rotation (Equation 3.14).

(x,y) = (x1,y1)− (x2,y2) (3.12)

1Midpoint theorem states that the centre-point between two coordinates can be determined by taking the mean
distance between the two respective coordinates. In the use case presented this is the maxima and minima of the circular
path taken in both axes.

2atan2 is utilised as it extends the standard arctangent range from ±π/2 to ±π to resolve the full range (2π) of the
pedal stroke.
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θ = atan2(x,y) (3.13)

θ =

θ +2π, if θ < 0

θ , otherwise
(3.14)
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3.4 Physiological Monitoring - EMG and Pressure

3.4.1 Placement of EMG sensors

Due to the nature of detection, EMG is particularly prone to misalignment errors where incorrect

placement increases noise and crosstalk within the signal. To overcome this and improve the

accuracy of the EMG results, the electrode placement can be optimised through a 5-point signal

analysis test to determine best placement. Through comparison of the ratio of peak magnitude and

median frequency of all five of the measurement sites, an indication of the optimal location to place

the electrode is evident [De Luca 1997], where signal to noise ratio was maximised, and crosstalk

from nearby muscles minimised (Figure 3.9)[Belbasis, Fuss & Sidhu 2015b].

It is the use of this localisation testing, or an established guide, which is necessary to determine

the correct placement location. For the performed tests the subject was fitted with wireless EMG

measurement units (Zwave Zero-wire Cometa Systems, Italy) for each target muscle. Due to

the impracticality of performing a 5-point test for every muscle on every participant, the general

placement of the electrodes followed the recommendations of Hermens et al. (2000) and SENIAM

(1999) alongside the Cometa Software providing a visual placement guide for the determination of

optimal placement sites with automated warning of poor signal quality. Figure 3.9 demonstrates

an example of the 5-point test, whereas the correct placement of the electrodes yields the optimal

signal from the central position.

Figure 3.9: Example of the 5-point EMG localisation test, where the central electrode (red line)
indicates optimal placement [Belbasis, Fuss & Sidhu 2015b]

3.4.2 Placement of Pressure sensors

The measured pressure response exists as a result of the mechanical deformation of the muscle, as

such it is not prone to the electrical crosstalk of neighbouring muscle groups that must be overcome

in EMG placement. For the purpose of the research case, achieving a maximal pressure differential

drove placement optimisation. Therefore, placement (where possible) was selected to be above the

target muscle belly centre of pressure when under maximal contraction. This aided in maximising

the pressure reading and further improving the signal to noise ratio of the measurements. For most
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muscles the optimal position was aligned with the EMG placement, whereas pressure sensors were

positioned between the two EMG electrodes.

To reduce the impact of the EMG electrodes on the pressure sensors, only the EMG gel electrodes

were placed underneath the garment, with wiring exposed through small holes in the garment

connecting the EMG sensor units which were mounted on the the ‘outside’ of the garment above

(but off-axis) to the muscles. This allowed for minimal disruption to the garment providing

compression to the pressure sensors, and allowing the necessary electrical EMG measurements to

be taken simultaneously.

Figure 3.10: Generalised placement location of the ten sensors (5 EMG, 5 FMG) on the right leg
quadriceps and hamstrings

Whilst not affected by an electrical crosstalk as with EMG, pressure measurements are adversely

affected by the mechanical connection shared with the encompassing compression garment. This

mechanical crosstalk condition exists as a result of localised pressure increases transferred over the

circumferential stretch of the garment. An example would be when quadricep-only extension of

the knee creates increased compression through increased thigh volume, the uniform compression

provided by the garment applies increased pressure to the sensors of the hamstring muscles resulting

in phantom hamstring muscle activity.

To overcome this the muscles require individual compression conditions, thus the selected commer-

cial garments utilised for testing specifically isolated muscle groups through the use of siliconised

regions on the internal face (show in figure 3.12) which increased friction on the skin around key

muscle groups. This allowed for prevention of localised muscle pressure changes transferring to

other regions of the garment.
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Figure 3.11: Layout of EMG electrodes and Pressure sensors on the upper leg

3.4.3 Calibrating the Dynamic Zero Baseline pressure

With EMG measurements, non-muscular activity exhibits a baseline measurement near constant

zero, where a constant offset in the baseline value is easily zeroed. Pressure measurement over the

garment however is non-consistent, changing with different participants, garments and limb angles.

Therefore an additional consideration when performing muscle pressure measurements was the

identification of the dynamic zero baseline pressure of the relaxed muscle at varied limb angles.

Whilst during static contraction this pressure remains constant, when the limb angle is altered, the

position of the muscle belly mass in relation to the sensor is affected, thus altering the baseline

pressure value.

To counter this, at the beginning of every test session a dynamic zero baseline is recorded for each

sensor by the external manipulation of the participant’s relaxed limb throughout the full angular

range of the knee joint. The baseline pressure measurement are then subtracted from the recorded

test data for each relevant test according to the respective knee angle, isolating the pressure provided

by the active muscular contraction from that of the relaxed muscle.

3.4.4 Conditioning the EMG signal

A key step in the use of Electromyography, is the conditioning methodology utilised in the analysis

of the captured signals. The method utilised within this research follows the guidelines proposed by

Carlo DeLuca a foremost leading expert and pioneer in the research of EMG [De Luca 1997; Luca

2003]. To counter both low and high frequency noise artefacts a 6th order butterworth bandpass

filter was utilised to isolate frequencies between 10-350Hz where muscular activity is present and a

full wave rectification performed to the signal.
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Figure 3.12: Internal siliconised friction regions ensuring localised garment compression of the
quadricep muscles; 2XU MCS compression tights (left), Puma ACTV compression tights (right)

Debate continues within the field of EMG over the most appropriate determination of the EMG

signal strength for analysis, significant evidence has led to an industry recommendation that the

signal’s RMS value shows greatest robustness in reflecting the signal power of the muscle [De Luca

1997]. As such an RMS function was applied to the signal with a sliding window of 0.1 seconds.
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3.5 Summary

Initial research into the development of Smart Apparel has yielded positive results into its viability

as a muscle diagnostics and injury prevention garment through its novel approach to quantifying

muscular exertion and loading. Preliminary testing of the surface pressures between a target

muscular group and a compressive elastic garment shows repeatable pressure change that can be

measured and normalised to a user’s muscular exertion levels, allowing for the real-time feedback

of key muscle, ligament and joint loading conditions.

To allow for the capture of the under-garment pressures, material-based pressure sensors have been

developed and calibrated to a known industry standard, as well as a methodology introduced for

on-body calibration. Advantages and disadvantages of the use of gold-standard techniques in the

form of EMG and Motion Capture have been highlighted, with the experimental setup detailed for

use in later chapters.

Lastly a biofeedback tool has been developed to assist an individual in mitigating potential injury

conditions and further enhance the quantifiable nature of their activity. The research will continue

further work into the correlation of the associated movement to that of the known muscle force

through inverse dynamics calculations, and also to another forward dynamics system, namely EMG,

where direct forces are attributed to the loading of the muscle based upon surface pressure.
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4. Estimation of Muscle Activity

Published Research

The following chapter contains work published within:
• Belbasis, A., Fuss, F. K. & Sidhu, J. Muscle activity analysis with a smart compression

garment. Procedia Engineering 112, 163–168. ISSN: 18777058 [2015]

Compression garments have seen a significant increase in their use within the sporting and fitness

domains, both as fashionable sporting attire and as post-activity recovery wear through passive

soft-tissue compression. This proliferation has allowed for new opportunities in capturing detailed

insights through integration of wearable technology upon the human body via a convenient scaffold-

ing form factor that users are well accustomed to. The establishment of a measurement system in

the previous chapter allows the research focus of this chapter to be placed on developing the ability

to determine the muscular activity captured through such an instrumented compression garment.

The following work explores the scope of measuring muscle surface pressure in an effort to identify

the activity and load conditions present. Specifically, this research section looks at how monitoring

the deformation changes on the physical surface of a limb (muscle surface pressure caused by

the garment compressing the muscle) can be utilised for quantifying the muscular activity levels,

doing so with respect to Surface Electromyography (EMG) the established gold standard within the

field. It demonstrates that with increasing loading of the muscles, a corresponding increase in both

electrical and mechanical activity is present. Furthermore both measured systems show alignment

to the analytical loading model derived from the biomechanics of the lower limb.
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4.1 Determining Muscle Activity Patterns

It is clear that as a consequence of the physical deformation of the muscle, pressure between the

skin and the compression garment is altered. Inherently, variation of this pressure will be affected by

the level of muscular exertion and the position of the sensor in relation to the changing shape of the

muscle. Unfortunately both of these factors are instrumental as to whether the occurring pressure

change will be positive or negative in direction with respect to the increased muscle activity.

A challenge lies in the correlative association of the this pressure change to the activity of the

muscle, and if possible the level of force involved. De Luca (1997; 2003) and Liu et al. (2002) each

demonstrated using EMG that the measured activation level of the muscle fibres exhibit a non-linear

relationship to that of the corresponding forces exerted. This is due in part to the numerous variables

conditional on muscle fibre activation, distribution and conditioning, where reliance on an accurate

model is difficult to achieve due to the influences of genetic and preconditioning variances within

the population. Wininger (2008) however demonstrated that the use of Force Myography (surface

muscle pressures) on the proximal forearm can produce sufficiently accurate representation of

grip forces when compared to a grip dynamometer from rest to 100% MVIC, with near realtime

representation of muscular activity. Noting however that this did not measure the direct force of

each muscle, but the resultant output at the grip. Moreover, Yungher et al. (2011) measured the

surface pressures over the three superficial heads of the quadriceps (RF, VM, VL), with correlation

to the EMG behaviour to assess walking gait, highlighting clinical relevancy in surface pressures

furthering our understanding of muscle function patterns, however stopped short of determining

specific muscle forces.

4.1.1 Experimental Method

To estimate the muscles force patterns in the upper leg an activity was selected where motion, and

subsequently the forces produced, could be readily modelled. The selected activity was required to

isolate a target muscle (or group) such that resolved forces were associated where possible with the

respective muscle of action and no others. To achieve this the basic actions of leg extension and

flexion were selected for force derivation, as both of these activities enforced a condition where

only the quadriceps or hamstring muscles were activated at any one time. Simple extension or

flexion of the knee was performed from a seated (extension, quadriceps loaded) or standing (flexion,

hamstrings loaded) position with either an unweighted or weighted shank at the ankle (Figure 4.1).

As the selected activity was one where the desired behaviour of the motion was known it operates as

an inverse-dynamic biomechanical approach to determine the muscle forces in the quadriceps and

hamstrings. This affords an opportunity to better understand the relationship between the muscle

force to that of the corresponding pressure variation experienced above the skin at the muscle’s

surface. Given that Force Myography (FMG) pressure mapping of the muscles relies upon pressure

measurements to infer resultant motion, it functions as a forward-dynamic system, so to assist in

validation of results Electromyography (EMG), another forward-dynamic system, was incorporated

into the testing.
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Figure 4.1: Quadriceps driven leg extensions (left) and Hamstring driven leg flexion (right) with
weighted shank

Quadricep Extension Test

Figure 4.2: Video frame from Quadricep extension testing

Quadricep-driven leg extension was performed from a seated position. A slightly reclined position

was used to open the hip joint and enforce full utilisation of the Rectus Femoris muscle. Optional

padding was utilised underneath the posterior-distal section of the femur for alignment to the

horizontal (0◦), and the lower leg allowed to freely swing into a resting position (∼ θKFA = 90◦).

Participants were tasked with slowly (∼3-5 seconds each direction) extending the knee joint to

full extension (∼ θKFA = 0◦) and then back to a resting position. To prevent overstimulation of

the quadricep muscles at maximal extension, participants were instructed not to ‘lock-out’ their

knee, a condition nearing hyperextension which would over-contract the muscles with no additional

support to the extension activity.
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Figure 4.3: Video frame from Hamstring flexion testing

Hamstring Flexion Test

Hamstring-driven leg flexion was performed from a standing position. Participants utilised two

points of contact for stability; the wall as a minimal contact support, and a raised platform on

the floor for the majority of their bodyweight supported through the left-leg. The raised platform,

namely a book, was utilised to allow unrestricted movement of the right-leg from contact with the

ground. Additional monitoring was provided by the research team to ensure any hip tilt (in the

coronal plane) caused by the raised platform was corrected for by the participant. In this position

the leg was allowed to freely swing into a resting position at full extension (∼ θKFA = 0◦).

Similarly to the quadricep activity, participants were tasked with slowly (∼3-5 seconds each

direction) flexing the knee joint to near full flexion (∼ θKFA = 110◦) and then back to a resting

position. To prevent overstimulation of the hamstring muscles providing additional engagement,

participants were instructed not to ‘bounce’ the weight at the peak of the leg flexion, rather to

decelerate and pause and then proceed to extend the knee.

4.1.2 Participants

Six male participants were involved in the testing. This study was granted Ethics approval by the

RMIT University Human Ethics Committee (approval no. ASEHAPP 45-15) and adhered to the

Declaration of Helsinki. Participants were briefed to the requirements of the test and an informed

consent form was filled in by all the participants before the start of the experiment.

4.1.3 Data Collection

A motion capture system (9 Camera - Qualisys Oqus System, Göteborg, Sweden) was utilised

to capture the limb segment angles of the participants. The data sampling frequency for motion

tracking was set at 100 Hz. The smart compression prototype garment [Belbasis & Fuss 2015;

Belbasis, Fuss & Sidhu 2015a,b] was utilised for the testing of each participant. The garment

provided capability for measuring and mapping changes in the surface pressure above a muscle

where the active movement of the muscle under the compression fabric was detected by a distributed

network of pressure sensors. The low-pressure sensors were manufactured from two layers of a

conductive piezoresistive polymer, with an almost linear calibration curve of the average equation

of p = 97282000σ1.184335 for 2 layers, where p is the pressure in Pascal, and σ is the conductivity
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in Siemens [Fuss 2016]. A sensor was positioned over each of the five thigh muscles (Rectus

Femoris, RF; Vasti Medialis and Lateralis, VM & VL; Biceps Femoris, BF; and Semitendinosus,

ST) of the participant’s right leg.

In addition to the utilisation of pressure sensors, a 16-channel wireless EMG system (Wave Plus

Wireless EMG, Cometa Systems, Bareggio, Italy) was used for recording the electrical signal of

the same muscles. The general placement of the electrodes followed the recommendations of

[SENIAM 1999] and the optimum placement of the electrodes was achieved by using the method

of Belbasis, Fuss & Sidhu (2015a).

The raw data of both pressure and EMG signals were recorded in volts and millivolts respectively,

at a frequency of 2000 Hz, simultaneously and synchronised with the motion capture data utilising

a centralised trigger device. Retroreflective marker on the right upper and lower leg were utilised to

determine respective knee flexion angles.

4.1.4 Data Analysis and Statistics

For the muscle activity analysis, the signal amplitude (of FMG pressure and EMG signals) for

±1.5 standard deviation (removal of outliers) was assigned to the knee flexion angle. The summed

output from each muscle group (quadriceps - RF, VM, VL; hamstrings - BF, ST) were summed and

normalised. The average amplitude was calculated with a running median filter of a window width

of 35 datapoints. Subsequently, the average knee extension/flexion data were normalised across all

measurements. In order to calculate the average signal of each muscle across all participants, the

data of all participants were averaged, squared (thereby assigning a greater weight to higher data),

and normalised once again.

Derivation of Muscle Force

As it is necessary to account for the complexity of forces in the knee joint, a key objective of

the analysis was the determination of the resultant moment (rotational force) produced about the

knee (MKnee)1. Earlier derivations by Fuss (1989) on knee joint mechanics were used to estimate

the resultant force required of the activated muscles to compensate the moment. Critical to these

calculations was the determination of the knee flexion angle (θKF ), measured through the motion

capture setup.

Measurements were taken for the length from the knee’s rotation centre to the centre of mass of

both the shank (xleg), and added weight positioned on the ankle joint (xweight). These parameters

allowed for the further calculation of the moment acting about the knee (Mknee); a function of the

effective moment arm that is dependent on θKF , and the estimated total combined mass of the

leg (mleg) taken based on the participant’s measured or calculated body proportions [Contini et al.

1As with most ongoing research, complimentary streams of research occur in parallel with one another. Derivation of
knee-based forces is discussed in further detail within the next chapter, however a subset of the calculations associated
with knee forces are utilised here. For greater explanation and expansion on these calculations please see Chapter 5.
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1963], and that of the added weight (mweight).

Mleg = (xleg×mleg)cos(θKF) (4.1)

Mweight = (xweight ×mweight)cos(θKF) (4.2)

MKnee = Mleg +Mweight (4.3)

As the patella acts as a force multiplier between the quadriceps tendon and patellar ligament [Fuss

1989], the mechanical advantage of the patella (MApatella) at a given θKF , along with the moment

arm of the patellar ligament (xPL), was determined to resolve the knee moment to that of the force

produced by the quadriceps (Equation 4.4).

FQuadriceps =
MKnee

MApatella× xPL
(4.4)

Alternatively Equations 4.1-4.4 can be combined to produce Equation 4.5.

FQuadriceps =
(xlegmleg)cos(θKF)+(xweightmweight)cos(θKF)

MApatella× xPL
(4.5)

The resultant force produced by the hamstrings through the moment arm of the hamstring tendon

(xHT ) is also determined (Equation 4.6). The lack of a force multiplier on the posterior side of

the joint results in a simplified force equation dividing the applied moment over the force offset

distance of the hamstring tendon from the rotation centre of the joint (xHT ).

FHamstrings =
MKnee

xHT
(4.6)

The resultant polynomial relationships allow for the calculation of the required force in the quadri-

ceps or the hamstrings with respect to the θKF (between 0-90◦), holding true where no co-contraction

of the quadriceps and hamstrings occurs. For example, the force in the quadriceps is solely respon-

sible for the moment about the knee joint when performing quadriceps-only extensions. Conversely

the hamstrings responsible for the moment about the knee during flexion. Figure 4.4 utilises both

Equations 4.4 (extension) and 4.6 (flexion) to represent the calculated resultant loading curve for an

adult male (90kg/180cm) performing the test activities with gradated weighting conditions (0-10kg)

of the shank.
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Figure 4.4: Calculated loading curves for quadricep and hamstring extension-flexion exercises
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4.2 Discussion of knee extension-flexion results

For the purposes of the study concentric and eccentric movements for the activity were isolated and

only concentric movements identified for further analysis. An averaged dataset for each muscle

group (Quadriceps and Hamstrings) was taken across all participants, values were normalised

between the maximum and minimum range of measured results and plotted against the measured

θKFA for both tests. This allowed for direct comparison of both pressure and EMG signals to that of

the calculated force loading of the muscle from the performed activity, the resultant aggregated

performance curves are shown below within Figure 4.5.

4.2.1 Quadriceps Extension

Quadricep results demonstrated clear separation of the muscle activity with increasing loading

across the extension test for both EMG and FMG pressure measurements, following the calculated

biomechanical model. Increases in muscular activity with increasing loads (0, 5, 10kg) applied

to the shank was clearly defined in EMG activity throughout the whole range (θKF = 90◦→ 0◦),

with near even separation of the three curves as the additional weight was applied. Muscle activity

measured through FMG pressure sensing was less consistent over the entire extension range,

however clear separation of the three grouped results was demonstrated over a majority of the test

extension range (θKF = 85◦→ 22◦), expected reasons for this behaviour at low and high angles

will be discussed further below.

Prominent within both EMG and FMG pressure results was the presence of muscle activation

prior to the start of the loading (θKFA ≥ 90◦), an apparent indication of pre-engagement of the

quadricep muscles. Early engagement of the quadriceps at the start of the test was present for

several participants and is reflective within the grouped results for both EMG and FMG pressure

with apparent muscle engagement (non-zero values) prior to beginning the activity, noticeably

higher within the FMG pressure measurements. Possible causes for this behaviour could stem from

the following;

• Muscle pre-engagement: Participants activating their quadricep muscles in anticipation of

the force required in completing the extension task. The existence of pre-engagement on

both EMG and FMG pressure indicates that a portion of this behaviour was not measurement

system dependent and indeed is a reflection of muscle engagement (both electrically and

mechanically). However without a consistent load to necessitate the engagement of the

primary quadriceps, this contractile behaviour could indicate potential crosstalk from the

activation of secondary stability-support muscles in the upper leg.

• Incorrect angle measurement: Incorrect alignment of the upper and lower leg motion capture

markers would result in the measured angle not representing the true knee flexion angle. This

would be consistent across both testing measurements as they were taken simultaneously and

the markers were not moved. The low zero value of the 0kg EMG test provides evidence that

there is a low possibility this is the cause of the early muscle activation.

• Incorrect zeroed baseline: The noticeable existence of muscle activation of the FMG pressure

results could stem from a failure to address correctly the dynamic zero baseline throughout the
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Figure 4.5: Averaged grouped results for extension (left) and flexion (right) tests. Showing
measurement differences for FMG pressure (top), EMG (centre) and Calculated (bottom) normalised
muscle activity.
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range of motion (see Section 3.4.3). Although the research team manually manipulated the leg

for the participant whilst monitoring a zero muscle activity state, this external manipulation

may not truly demonstrate the pattern exhibited by the muscle under a participant’s own

action, therefore producing a differing baseline profile. Heightened initial activation of the

pressure values over EMG support this, however the existence of these EMG values provides

indication that muscle activation was in fact still present and not completely a result of

incorrect baseline controls.

• Knee joint complexity: Additional to the early engagement of the muscle, FMG pressure

measurements for the 0kg and 10kg tests demonstrated a decline in measured load during the

initial 15 degrees (90−75◦) of the test. It is unclear whether this is due to a free-swinging of

the shank during relative low-loading, afforded by the complex structure of the knee joint, or

an activation-relaxation behaviour to accelerate the dead-weight of the shank at the beginning

of the activity. This engagement of muscle at low angles retracts muscle bulk from directly

under the sensor as the muscle stiffens to perform the activity, and as a consequence lowers

the apparent muscle measurement.

Future testing will require a more rigorous control of setup and testing to ensure that potential

inconsistencies in the experimental process are eliminated and the route cause of this behaviour

isolated to determine the biomechanical relevance to the activity.

With higher extension angles the force multiplier afforded by the patella bone reduces the nec-

essary muscle force required, and as such peak loading was expected to occur at approximately

midway through the extension activity (θKF ≈ 40◦). EMG results did not follow this pattern and

demonstrated an increasing trend through to maximal extension before reaching peak loading.

This is reflective of the increased muscle fibre activation, not the subsequent mechanical force

produced. As FMG measures the mechanical output of the muscle, peak muscle loading for FMG

measurements were demonstrative of the patella’s force multiplier effect (θKF = 40◦−55◦) before

significantly reducing in loading, differing to the theoretical model as an interception of all three

pressure values occurs at approximately θKFA = 22◦. From here the 0kg and 5kg tests show uniform

behaviour, decreasing to a minima at θKF ≈ 12◦. The 10kg test however continues a negative

pressure change through to the full extension of the leg (θKFA = 0◦).

This behaviour shows an indication that across all participant the muscle belly has traversed across

the pressure sensors (prior to the intercept point at 22◦), and sensor measurements of the muscular

engagement for the remaining extension have become less sensitive to tracking muscle behaviour.

The continued drop of the 10kg results show indication that contraction along the length of the

muscle, shortening due to the concentric behaviour, is reducing the measured pressure even though

the muscle is still being engaged further as evident in both the EMG result and the calculated

biomechanical model.

4.2.2 Hamstring Flexion

Hamstring response across both tests demonstrated clear evidence that muscle loading produced

a corresponding increase in the electrical (EMG) and mechanical (FMG) activity of the muscle,
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aligning strongly with the biomechanical model. As was with the quadricep extension testing,

pre-activation of the muscles was again present, however significantly less so. Interestingly the

pre-activation of the hamstring muscles was higher amongst the FMG pressure values for the 5kg

test over the 10kg. This could be an artefact as a result of grouping all participants, however from

θKF > 15◦ signals follow that of the EMG and Calculated model, and clear separation of the three

results demonstrates the clear stepped muscle activity as a result of increasing loads.

The calculated behaviour for the hamstring biomechanical model, whilst near linear, indicates a

growing muscle activation as the loaded shank is flexed through to 90 degrees where the moment

arm is longest, and thus maximal torque expected about the rotational centre of the knee. Contrary

to this, both the EMG and FMG pressure signals demonstrate a plateauing, diminishing behaviour

as the higher angles of flexion, seen between 60− 70◦, where the muscle activation slows with

increasingly higher angles.

Without the complexity of the patella, the flexion activity operates as a simple hinged joint. Knowing

that the moment arm hasn’t shortened (expected only at angles where θKFA > 90◦), mathematically

the source of the diminishing performance must occur as a component of the force produced (see

Equation 4.6). Given the fixed loading, and thus constant force, this behaviour must originate as a

consequence of the sensor measurement on the hamstring muscles. Thus similar to the observed

behaviour of the Quadriceps, due to the gross movement of the muscle belly for both the Biceps

Femoris and Semitendinosus over the flexion range, it can be presumed that as a result of the muscle

belly moving away from the sensors the corresponding electrical (EMG) and mechanical (FMG)

measurements are decreasing and not capturing the true muscle performance (shown in Figure 4.6).

4.2.3 Signal comparison

To explore the similarity in muscle activity responses between each measurement system (EMG,

FMG, Calculated) correlation was determined using the Pearson correlation coefficient (R2) through

linear, quadratic and cubic fits. An averaged mean of each R2 value was taken across each of the

respective load (0, 5, 10kg) as to determine a single grouped behaviour, affording better insight

into the similarities between the calculated and measured systems. For Quadriceps and Hamstrings

these are shown in Tables 4.1 and 4.2 respectively.

Table 4.1: Correlation coefficient (R2, as percentages) of Quadricep grouped performance of the
three results across the activity range of motion

Correlation signals θKFA range Linear Quadratic Cubic
Calculated Model to FMG Measurement 90◦→ 0◦ 5.45 16.75 24.56
Calculated Model to EMG Measurement 90◦→ 0◦ 35.42 37.75 39.93
FMG Measurement to EMG Measurement 90◦→ 0◦ 27.82 70.15 86.54

Due to the effects of the patella on the quadricep muscles, it was anticipated that a linear correlation

to the calculated model for both systems would be low. This is reflected in the results with both

systems showing low linear correlation values (EMG, R2 = 0.354; FMG, R2 = 0.055). Even
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Figure 4.6: Peak muscle loading results demonstrating the implication of longitudinal movement of
the muscle belly centre of pressure beyond the range of the pressure sensor.

when considering higher order polynomial quadratic and cubic fits, the correlation does not

improve significantly further highlighting the discussion points raised in Section 4.2.1. It was also

expected that the two measured systems (both forward-dynamic in nature) would demonstrate

higher correlation to one another, however the results demonstrate that unique characteristics

centred around the electrical and mechanical loading of the quadriceps differs, and a strong linear

relationship between the two does not exist (R2 = 0.278).

Table 4.2: Correlation coefficient (R2, as percentages) of Hamstring grouped performance of the
three results across the activity range of motion

Correlation signals θKFA range Linear Quadratic Cubic
Calculated Model to FMG Measurement 0◦→ 90◦ 88.83 97.32 98.32
Calculated Model to EMG Measurement 0◦→ 90◦ 96.95 97.54 99.81
FMG Measurement to EMG Measurement 0◦→ 90◦ 91.28 98.08 99.55

As can be clearly seen within Figure 4.5, Hamstring behaviour across all three systems exhibits

similar responses in both magnitude and direction. This is reflective in the strong linear correlation
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values found in Table 4.2. The simpler mechanical operation of the joint in flexion results in

higher linear correlation of the measured values to the calculated forces (EMG, R2 = 0.969; FMG,

R2 = 0.888), and amongst each other (EMG to FMG, R2 = 0.913). Use of higher order fits improves

the correlation further with the additional flexibility in accomodating the diminishing performance

of the sensors at higher flexion angles.
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4.3 Summary

This study explored the measurement of participants conducting defined target muscle activity (leg

extension and flexion) whilst recording FMG pressures, EMG and motion capture data. The system

was calibrated through voluntary contractions of target muscles, where the surface pressure range

and EMG data allowed for the quantification of activity and exertion levels whilst the participant

performed leg extension and flexion activities. Each sensor tasked with monitoring mechanical and

electrical activity (FMG and EMG respectively), successfully measured a viable range of exertion

for each muscle group investigated. The summed data collected from the pressure and EMG signals

allowed for confident estimation of normalised muscle exertion levels of participants during the

dynamic flexion and extension exercises.

A key investigation of the study was to determine whether measured changes in muscle surface

pressure correlate with respect to increases in muscular loading during an activity. Preliminary

relationships were drawn between the two forward-dynamic systems (EMG and FMG pressure

mapping), with comparison of the measured results to that of the inverse-dynamic analytical

approach taken to determine the muscle loads. The analytical model, derived from the biomechanics

of the knee joint and upper leg muscles, provided indication that with increases in loading to the

shank we can expect higher forces present within the muscles on the upper leg.

Established literature across the field shows that increases in muscle load are reflective in greater

electrical activity within a measured EMG signal. This relationship is nonlinear and multiple

factors attribute to its shape. This understood behaviour was confirmed within our testing with clear

delineation between all measured EMG signals with increases to loading of the shank during flexion

and extension activity. Confirmation of muscle activity increase through this forward-dynamic

system allowed for the identification of loading behaviour through another forward-dynamic system,

measurement of muscle surface pressures.

The key finding from the results was that surface pressure testing demonstrate that it is clearly

reflective of increases within the surface pressure of the muscle, demonstrating that increase in

additional shank mass is reflected in the normalised muscle activity for both mechanical and

electrical activity. Clear stepped separation in the monitored activity was evident across all three

0kg, 5kg and 10kg loading profiles for the grouped results.

There existed separate loading curve profiles for quadricep extension, with understanding that

the complexity of the quadricep muscle support functions and force multiplier effect introduced

by the patella require further improvement to the testing methodology to better identify grouped

muscle behaviour. More consistency across all testing was present within the hamstring muscle

group. The results showed increases in electrical and mechanical activity corresponding to loading

increases, with the profile of the curve largely showing consistency in shape, and primary growth in

amplification as a result of increased weighting applied to the shank.

Additional key findings of the test results was the observable traits in the signals and how these

differed between subjects, actions and measurement systems, highlighting limitations in the pro-
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posed test setup and methodology. A summary of these observations were presented, with their

findings establishing improvements in the design and analysis of further testing methodologies.

Critical to the pressure measurement is the need to address the calibration of the garment to that of

the range of knee flexion angles. Longitudinal positioning of sensors along the limb is critical for

both EMG and FMG sensor measurement due to the movement of the muscle belly during dynamic,

large angle movements ‘beyond’ the sensor placement. This results in lower muscle activity values

and does not truly represent the loading condition. Notably in literature this is often overlooked

within EMG studies, or commonly mentioned as for future consideration. Capturing the behaviour

of the muscle belly as it travels across (and past) the sensor will require further implementation

techniques with either additional sensors applied along the longitudinal direction of the muscle,

and/or calibration and post-processing corrections.

Further research of the smart garment will look into the relationship of these two measurement

systems in greater detail, with a focus upon improved fit accuracy along with the inclusion of

a matched biofeedback signal capable of alerting the wearer to the condition of the muscles,

such as the loading strain and co-contraction activity. This research continues to show that

further development into the smart garment concept promotes an innovative and smart solution for

wearable sports technology, aiding in the training, performance assessment and physical welfare of

participants in physical activities.
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Published Research

The following chapter contains work published within:
• Belbasis, A., Fuss, F. K. & Sidhu, J. Estimation of cruciate ligament forces via smart

compression garments. Procedia Engineering 112, 169–174. ISSN: 18777058 [2015]
• Fuss, F. K. & Belbasis, A. Soft tissue management method and system. WIPO PCT

Patent (filed) WO2016065404A1 [May 2016]

Our ability to load the lower limbs during dynamic activity is largely possible by the complex

internal support structure of the knee, a network of soft-tissues which allow for multi-directional

loading at the full range of the joint. In particular, the dominant anterior and posterior loading

forces at the tibial-femoral plane are supported by the Anterior (ACL) and Posterior (PCL) Cruciate

Ligaments. With growing participation in both physical activity and the pursuit of personal

performance, there is an increasing need to better understand and raise awareness of the loading

conditions of the cruciate ligaments, and importantly provide an intuitive understanding to their

safe working range whilst in use during an activity.

Within the field of biomechanics loading of the ACL and PCL ligaments are heavily investigated in

an effort to further understand the causes of their catastrophic failure. Yet they continue to pose a

challenge [Kinney et al. 2013] to the research community, where "The most significant barrier to

model-based treatment design is validation of model-based estimates of in vivo contact and muscle

forces" [Fregly et al. 2012]. This can be predominately attributed to the encapsulated position they

hold within the knee, where the scope of invasive, in-situ measurement is largely unattainable due

to the interference with the performed activity of interest [Belbasis, Fuss & Sidhu 2015a].

To counter the limitations of experimental measurement, much research has shifted to the devel-

opment of controlled modelling simulations to aid in the predictive ability to determine real-time

loading conditions [McLean et al. 2015]. Fregly et al. (2012) highlights the paradox of model-based

evaluation of the knee joint, where to accurately determine the validity of the model’s output an

invasive technique is needed, which in turn is detrimental to true loading measurements of the joint.
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5.1 A novel model for fast calculation of cruciate ligament loads

Whilst there exists within literature a high number of prominent developed works and predictive

models into calculating internal ligament forces of the knee, the step towards real-time, unrestricted

(free-mobility) calculation of loading conditions has been limited [Fregly et al. 2012; Kinney et al.

2013]. This is especially true where the use of muscle activity analysis through systems such as

EMG should be treated with caution [De Luca 1997; Hug 2011] when used outside of the controlled

conditions of the experimental setup. This largely is attributed to the overwhelming unknown forces

present during unknown activities a user may perform, and the complexities that arise under these

conditions.

A large focus has been placed on honing each specific model for accuracy, where this astute

attention to detail results in the model’s growth in both complexity and limitation. As a result,

the ability for direct application of an early-stage broad implementation within an unconstrained

environment is limited. Put simply, within a laboratory testing environment the models hold with

high accuracy, but when exposed to unconstrained training environments where an athlete is free to

determine the loading nature of the joint, we see a significant drop in predictive performance of

these same models.

It is within this scope that the development of a new model is proposed, one that does not intend at

its beginning to produce a clinical-level accuracy on the summed internal forces of the knee joint.

Rather, to act as a provisional early indication of loading conditions through minimal complexity

and non-invasive techniques that are both readily available and easily implemented. In this way

the model follows a lateral-thinking approach of developing an improved understanding of the CL

forces through early awareness and actionability to their overload or overuse.

5.1.1 Measurement of parameters

Following this lateral mindset, an alternative approach to the mainstay of literature was introduced.

The model begins with the consideration of the internal components of the knee joint as a black box,

a closed system. This allows for the complexity of the joint’s soft tissue, range of use and resultant

internal forces to be isolated for analysis. A macro view of the loading scenario can therefore be

considered. We turn our attention to the loading of the knee from the external forces providing

inputs (or outputs) to the joint as a closed system, and the assumption that this blackbox operates as

a loss-less1 system with all forces effectively transferred.

During a common loading scenario, inputs to the joint come in the form of the Ground Reaction

Force (FGR) and the subsequent moment produced around the joint’s instantaneous centre of rotation

(MK). Outputs are therefore the compensatory muscle reactions to provide a balanced steady state

within the joint. These are provided through the two large muscle groups in the upper leg; the

Quadriceps and Hamstrings. Therefore much like a balanced equation, the collection of three key

parameters critical to the resolution of the cruciate ligament forces are;

1Whilst no biomechanical system is truly loss-less, the comparative magnitude of the losses present to that of the
loads applied within the knee joint allows for this assumption to hold true.
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Quadriceps Force (FQ) The summed force generated by the four Quadricep muscles; Rectus

Femoris, Vastus Medialis, Vastus Lateralis and Vastus Intermedialis. These muscles are

largely responsible for the extension of the knee, whilst also providing significant stabilisation

support during movement.

Hamstrings Force (FH) The summed force generated by the Hamstring muscles; Biceps Femoris,

Semitendinosus, Semimembranosus. The antagonistic muscle group to the quadriceps, these

muscles control flexion of the knee and stabilisation support.

Knee Flexion Angle (θKF ) The flexion angle of the knee; where at full extension of the shank (a

straightened leg) θKF = 0◦, and at active maximum flexion (fully bent knee) θKF ≈ 140◦.

The measured angle is taken along the femoral-tibial line within the sagittal plane.

The proposed model allows for the determination of the above parameters through multiple mea-

surement systems (i.e. EMG, Video, Motion Capture, Force plates), however within the context

of this research the FMG and EMG measurement techniques were utilised. This involved the

application of the following:

• Pressure sensors at anterior skin surface of the thigh to measure FQ.

• Pressure sensors at posterior skin surface of the thigh to measure FH .

• Motion capture system with at least two reflective markers on the lateral skeletal line of the

thigh, and at least two reflective markers on the lateral skeletal line of the shank to determine

knee flexion angle (θKF ).

5.1.2 Further parameters calculated from Knee Flexion Angle

Earlier research by Fuss (1996) showed that the knee flexion angle governed the relevant parameters

of key soft tissues within the knee, not excluding that of the cruciate ligaments. The study involved

the dissection and measurement of knee joints from adult male cadavers and showed that key angles

and lengths of these soft tissues could be accurately determined with respect to the overall knee

angle in the form of derived polynomial functions. Of critical importance to the further calculation

of the model, the following parameters are outlined below with respective components listed in

Table 5.1.

ACL Angle The angle of the Anterior Cruciate Ligament (θACL) with respect to the tibial plateau

within the knee joint.

θACL = ACLa +ACLb(θKF)+ACLc(θKF)
2 +ACLd(θKF)

3 (5.1)

PCL Angle The angle of the Posterior Cruciate Ligament (θPCL) with respect to the tibial plateau

within the knee joint.

θPCL = PCLa +PCLb(θKF)+PCLc(θKF)
2 +PCLd(θKF)

3 (5.2)

Patellar Ligament Angle The angle of the patellar ligament (θPL) with a perpendicular to the

tibial plateau within the knee joint. At extension of the leg the value is positive, negative



5.1 A novel model for fast calculation of cruciate ligament loads 59

when in flexion.

θPL = PLa +PLb(θKF)+PLc(θKF)
2 +PLd(θKF)

3 (5.3)

Hamstring Tendon Angle The averaged angle of the hamstring tendons with a perpendicular to

the tibial plateau (θHT ). The coordinate system is taken along the sagittal plane and the

posterior direction of the hamstrings, yielding a negative value.

θHT = HTa +HTb(θKF)+HTc(θKF)
2 +HT Ld(θKF)

3 (5.4)

Mechanical Advantage of Patella The Mechanical Advantage due to the lever arm of the Patella

bone (MAP) and its resultant effects on the force transfer from the quadriceps tendon the the

patellar ligament.

MAP = {MAPa +MAPb(θKF)+MAPc(θKF)
2 +MAPd(θKF)

3

+MAPd(θKF)
4 +MAPd(θKF)

5}
(5.5)

Patellar Ligament Moment Arm The moment arm of the Patellar Ligament (LPL), yielding a

positive result to the equation.

LPL = LPLa +LPLb(θKF)+LPLc(θKF)
2 +LPLd(θKF)

3 (5.6)

Hamstring Tendon Moment Arm The averaged moment arm of the Hamstring Tendons (LHT ),

yielding a negative result to the equation.

LHT = HTa +LHTb(θKF)+LHTc(θKF)
2 +LHTd(θKF)

3 (5.7)

Table 5.1: Coefficients for determination of parameters of the knee [Fuss 1996]
Parameter Coefficient A B C D E F

θACL ACLn 60.0849 -0.1105 -0.0022 1.1896E-05 - -
θPCL PCLn 52.0700 -0.1323 0.0042 -1.6752E-05 - -

θPL PLn 24.1122 -0.09492 -0.0041 2.1612E-05 - -
θHT HTn -7.6190 -0.4261 -0.0067 2.4484E-05 - -

MAP MAPn 1.3999 -0.0057 1.0478E-05 -3.8194E-06 5.3082E-08 -1.7975E-10

LPL LPLn 5.0003 -0.0122 -8.7046E-05 7.4877E-07 - -
LHT LHTn -3.0081 -0.0471 0.0003 1.8671E-07 - -

* Where physical user parameters of: body height = 1.8m, shank height = 0.285m, foot height = 0.039m

5.1.3 Calculation of external force

To continue resolution of the internal forces within the knee, the external loading conditions around

the knee joint require calculation. The analytical model continues with the assumption that the

applied load balanced between the upper and lower leg at the knee is as of a result of the supporting
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Figure 5.1: Key parameters of the Knee Joint - Angles of ligaments and tendons

forces provided by the quadricep and hamstring muscle groups. The varied loading condition

between the two muscle groups is of a result of the given angle of the knee joint.

A loading scenario of the knee is considered during running. Upon the foot strike of a runner’s

stride, a resultant ground reaction force creates a moment load around the knee joint, requiring the

activation of both quadricep and hamstring muscles to stabilise the joint. Whilst other muscles

in the lower limb also activated for stability, the antagonistic quadricep-hamstring pair are solely

responsible for maintaining and supporting the angle of the knee. Fundamentally to maintain the

knee angle, the resultant moment they provide around the instant centre of the knee should be that

of equal magnitude to the external moment produced by the ground reaction force.

Moments about the Knee Joint

Combining the force produced by the quadriceps and the mechanical advantage of the patella bone

(MAP), allows for determination of the resultant force (FPL) transferred to the patellar ligament

(Equation 5.8). The force multiplier effect of the Patella at varied θKF is evident at this stage; where

at θKF = 90◦ the MAP ≈ 0.6, resulting in the FPL loaded 1.67 times higher than the quadriceps

force (FQ).

FPL =
FQ

MAP
(5.8)

This now permits calculation of the moment about the knee instant centre produced by the quadri-

ceps (MPL) via the patellar ligament. Determination of MPL (Equation 5.9) will always yield a
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positive value.

MPL = FPL×LPL (5.9)

The force produced by the hamstring muscles (FH) is also responsible for producing a resultant

moment (MH) about the knee instant center (Equation 5.10). As the LH is negative due to the

coordinate system taken, MH is also negative.

MH = FH ×LH (5.10)

The coupling of MH and MPL determines the overall moment about the knee (MK). This in turn

is balanced by the external moment, the directional sign of which will dictate whether extension

(positive) or flexion (negative) of the knee is occurring.

MK = MPL +MH (5.11)

As the MK is a product of the muscles balancing the ground reaction force (FGR), the horizontal

component of the external force (FGRx) is calculated based upon the relative moment arm from the

instant center of the knee to the point of ground contact. For this the body height (BH) of the subject

is considered where the relative shank length (Lshank) and foot height (h f oot) are calculated (28.8%

and 3.9% of BH respectively) [Contini et al. 1963; Drillis et al. 1964] or for greater accuracy

measured directly.

Fext =
MK

BH(0.285+0.039)
or

MK

Lshank +h f oot
(5.12)

Ground reaction force error

Alignment of the localised coordinate system is selected so the vertical (y) component of the

coordinate system is in-line with the longitudinal length of the tibial bone, and the horizontal (x)

component with the tibial plateau. This allows for the simplification of the analysis as ground

reactions forces travelling along the y-component are negated as they do not stress the cruciate

ligaments. The simplistic model is limited to determining ground contact always at the intersection

of the longitudinal axis and the bottom surface of the foot. In this respect it does not currently take

into account the additional effects produced by plantar and dorsiflexion of the foot.

The existence of an error due to the unknown point of ground contact, and consequently the changes

in moment produced about the knee, limits the accuracy of the proposed model. Further research

developments are needed within both the analytical model and the smart garment progress to

account for the plantar/dorsi-flexion of the foot as well as the location of impact to determine the

additional impact of the FGR.

The model however considers an important biomechanical understanding - internal joint forces

(thus ligaments) are largely loaded as a consequence of the muscular forces, not external loads (i.e.

ground reaction force). This is due to the comparative length of the moment arms for the muscles

to that of the ground reaction force. Knee loading is produced by the external moment about the
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knee, a product of the ground reaction force and the length of the shank height. The muscles tasked

with balancing these moments rely on significantly smaller moment arms, and as a consequence are

required to produce higher compensatory forces.

Horizontal Loads at the Tibial Plateau

The cruciate ligaments support and transfer horizontal loads along the tibial plateau to the distal

femoral head, therefore it is necessary to isolate and sum the horizontal (x) components of FH , FPL

and Fext for the net horizontal shank force (Fxnet) acting upon the ligaments. For the calculation of

the horizontal component of FPL and FH it is necessary to utilise the angles determined above by

Equations 5.3 (positive) and 5.4 (negative). A forward (positive) result for Fxnet (Equation 5.15) is

compensated by the ACL, whilst a backward (negative) result by the PCL.

FPLx = FPL sin(θPL) (5.13)

FHx = FH sin(θHT ) (5.14)

Fxnet = FPLx +FHx +Fext (5.15)

5.1.4 Calculation of cruciate ligament forces

Finally the forces within the anterior (FACL) and posterior (FPCL) cruciate ligaments can be deter-

mined through the angles of the individual cruciate ligaments based on the current measured θKF

(equations 5.1 and 5.2).

FACL =
Fxnet

cos(θACL)
(5.16)

FPCL =
−Fxnet

cos(θPCL)
(5.17)

As ligament tissue does not provide support under compression and the cruciate (crossed) configu-

ration of the ACL and PCL means they both cannot be under tension at the same time, equations

for decision making are required to determine which ligament is under tension. A negative result

(denoting compression) in Equations 5.16 and 5.17 is zeroed and only the positive results deemed

relevant to the loading conditions.

If Fxnet > 0 (positive) then FACL > 0 and FPCL = 0

If Fxnet < 0 (negative) then FPCL > 0 and FACL = 0

Thus mathematically determined:

FACL = H(Fxnet)×
Fxnet

cos(θACL)
(5.18)

FPCL = [H(Fxnet)−1]× Fxnet

cos(θPCL)
(5.19)
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Where H denotes the Heaviside function (unit step function); and sgn() denotes the sign function.

H(x) =
sgn(x)+1

2
(5.20)

Published Research

The preceding methodology has been successfully filed as an international patent:
• Fuss, F. K. & Belbasis, A. Soft tissue management method and system. WIPO PCT

Patent (filed) WO2016065404A1 [May 2016]

International filing within the following domains:
• Australia
• New Zealand

• United States
• Canada

• China
• Japan

• Europe
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5.2 Cruciate Loading: Static Testing

To evaluate the function of the proposed model, static loading tests of the cruciate ligaments were

conducted utilising the Smart garment to measure both muscle surface pressure changes (FMG)

and muscle electrical activity (EMG). The tests were designed to alternatively strain either the ACL

or PCL ligaments under specific muscle activation and knee flexion angles. In total, four tests were

conducted where the θKF was held constant and the muscles of the Quadriceps and/or Hamstrings

activated maximally to extend or flex the knee against a stationary anchor at maximal voluntary

isometric contraction (MVIC).

5.2.1 Testing Procedure

The MVIC was used as a means of normalising the force in the muscle with respect to both

systems of measurement. The tests were designed to selectively load either one of the cruciate

ligaments maximally; test 1 loaded only the ACL at maximal extension, tests 2 & 3b the PCL at full

flexion and 90 degrees (respectively), and test 3a loading of neither cruciate ligaments (provided

no hamstring co-contraction occurred) at a 90 degree flexion angle. A summary of the testing

conditions is shown within Table 5.2.

Table 5.2: Ligament load testing conditions

Test Knee Flexion Active Muscle Action Ligament Load
1 5◦ Quadriceps Full Extension Maximal ACL
2 138◦ Quadriceps Full Extension Maximal PCL
3a 90◦ Quadriceps Full Extension None
3b 90◦ Hamstrings Full Flexion Maximal PCL

5.2.2 Calculating Knee Ligament Loading

The calculation of cruciate ligament forces was achieved by extending Fuss’ inverse-dynamic

method [Fuss 1989] to a forward-dynamic one as described within the model above. Through the

measurement of the knee flexion angle (θKF ) several key parameters could be derived to determine

critical soft tissue conditions within the knee joint (see Table 5.3). Measured θKF values allowed

for the average angles (relative to the normal of the tibial plateau) of the ACL (θACL), PCL (θPCL),

patellar ligament (θPL) and average hamstring tendons (θHT ) to be calculated. Furthermore, the

θKF was utilised to determine the mechanical advantage created by the patella (MAP), and the

respective moment arms of both the patellar ligament (LPL) and hamstring tendons (LHT ).

5.2.3 Results and Discussion

The data for the static cruciate loading was compared across all tests, with specific focus placed

upon matching calculated loading conditions (shown within Table 5.2) with that of outputs from the

SCG. The outcomes for all four tests, for both Pressure and EMG measurements, were processed

through the presented mathematical model and the relationship of each system inferred from the

muscle activity to the resultant ligament loads.

Results for all the tests (1, 2, 3a, & 3b) showed strong correlations (R2) values of 0.7812, 0.8129,
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Table 5.3: Soft tissue parameters based on knee flexion angle [Belbasis, Fuss & Sidhu 2015a]

Parameter 5◦ 90◦ 138◦

ACL angle θACL 59.5◦ 40.9◦ 34.1◦

PCL angle θPCL 51.5◦ 61.9◦ 69.7◦

Patellar ligament angle θPL 23.5◦ −1.8◦ −10.0◦

Hamstring tendon angle θHT −9.9◦ −82.7◦ −130.4◦

Mechanical advantage of patella MAP 1.37 0.61 1.03
Patellar ligament moment arm LPL 49mm 37mm 36mm
Hamstring tendon moment arm LHT 32mm 46mm 31mm

0.8422, 0.8722 respectively between both pressure and EMG signals for each test, further confirming

evidence that muscle electrical activity correlates to that of surface pressure changes of the active

muscle group.
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Test 1: Leg extension at θKF = 5◦

Figure 5.2: Test 1: ACL loading at θKF = 5◦

Whilst at full extension, the patellar ligament is drawn forward by the patella (θPL = 23.5◦), and

subsequent loading forces from the quadriceps produce a mixture of Fxnet and Fynet loads (see

Figure 5.2). Test 1 specifically assesses this condition, where at close to full extension (θKF = 5◦)

the contraction of the quadriceps to extend the leg fully produces a positive Fxnet load, compensated

solely by the ACL.

Extension of the leg does not utilise the hamstring muscle group, however should inadvertent

activation of the hamstring muscles occur, the angle of the hamstring tendons (θHT = −9.9◦)

produces additional positive Fxnet loads, as well as significant Fynet loads. This action is detrimental

to the intended task with the antagonistic action reducing the quadricep extension force, whilst also

producing an unnecessary increase in the summed ACL load.

Test 2: Leg extension at θKF = 138◦

When the leg is at near full flexion (≈ 138◦) the patella draws the Patellar Ligament rearward

(θPL = −10.0◦). This ensures any resultant activation of the quadricep muscles performing a
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Figure 5.3: Test 2: PCL loading at θKF = 138◦

leg extension creates a negative Fxnet force, thus loading the PCL. Similarly as with test 1, any

activation of the hamstring muscle group is unnecessary and detrimental to the intended leg

extension as θHT = −130.4◦, where co-contraction of the antagonistic muscle group produces

significant additional Fxnet loading to the tibial plateau, thus transferring additional loading to the

PCL.

Test 3: Leg extension (3a) and flexion (3b) at θKF = 90◦

Test 3 evaluates the effect of quadricep and hamstring activity when the knee is positioned at 90

degrees. At this angle the patellar ligament is closely aligned with the normal to the tibial plateau

(θPL =−1.8◦), and there exists only a small resultant Fxnet produced by quadriceps activity. As

such, horizontal net force is provided through the activation of the hamstrings muscles, as the

hamstring tendon is almost parallel to the tibial plateau (θHT =−82.7◦).

Furthermore when at θKF = 90◦, the mechanical advantage of the patella is at its lowest (MAP =

0.61) and plays a significant role in the internal joint forces. Loads transferred from the quadricep

tendon to the patellar ligament are increased by 1.67 times through the lever-effect of the patella

bone. This results in any quadricep activity (even at the reduced θPL value) amplified in its effects

on the cruciate ligaments.
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Figure 5.4: Test 3a: PCL loading at θKF = 90◦

Test 3a evaluates the resultant CL loading through quadricep-driven leg extension at θKF = 90◦. As

both θPL and θHT are negative angles, any loading from either the quadriceps or hamstrings results

in a posterior force transfer to the tibial plateau; stressing the PCL. This is evident in the results of

Test 3a where the PCL is minimally stressed through inadvertent hamstring co-contraction activity

(confirmed through EMG activity) whilst the quadriceps is used maximally to extend the knee.

Test 3b evaluates the resultant CL loading through hamstring-driven leg flexion at θKF = 90◦. When

the hamstring muscles are activated to further flex the knee, the PCL becomes maximally stressed,

this relationship is clearly shown in Figure 5.5. As with test 3a, co-contraction of the quadriceps

only increases the PCL loading, however the effect of which is minimal due to the alignment of the

patellar ligament.
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Figure 5.5: Test 3b: PCL loading at θKF = 90◦
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5.3 Summary

The utilisation of a smart compression garment and the proposed model functions as a new approach

at creating a wearable system capable of assessing active muscle loading, knee ligament strain and

co-contraction of paired muscles in a real-time capacity during physical activity. The mathematical

approach presented allows for the calculation of cruciate ligaments loads through the knowledge of

the forces in the lower leg, and the respective angle of the knee.

Preliminary research shows that the selective loading of the cruciate ligaments by both varied

muscle activation and knee flexion angle can be calculated by measuring both the electrical activity

within the muscle, and the subsequent surface pressure variations under a compression garment

as the muscle contracts to apply a force. As with all models developed for internal knee loading,

further testing is required to improve accuracy and reliability of the proposed model, however

as presented the model provides an informative view of the loading conditions within the knee

within a realtime capacity, specifically driving a focus to allowing use within an open free-activity

environment. A limitation of this work is the difficulty in determining the accuracy of the model

using both EMG and FMG. Further work is required to benchmark the performance of this novel

model against other models within literature to aid in avoiding the danger of highly correlated, yet

incorrect model predictions.

Continued development of not only the smart garment but also the associated information processing

and calculation methods allows for the real-time monitoring of an individual’s CL loading forces,

providing metrics for improved exercise performance and safety. The development of this novel

method is critically necessary to overcome the limitations of lab-focused monitoring, which

although providing high accuracy of the knee mechanics, do not allow for a broad range of

loading conditions and activity monitoring of the joint significantly affecting their usefulness and

applicability.
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Published Research

The following chapter contains work published within:
• Belbasis, A. & Fuss, F. K. Muscle performance investigated with a novel smart

compression garment based on pressure sensor force myography and its validation
against emg. Frontiers in Physiology 9 [2018]

• Fuss, F. K., Belbasis, A., Sidhu, J., et al. Fractal dimension analysis of muscle fatigue
with muscle surface pressure measured via compression garments in Proceedings of
ICSST 2016, 2nd International Conference in Sports Science and Technology [Nanyang
Technological University, Singapore, 2016]

In recent years, cycling has grown into one of the world’s most popular exercise activities, with

active participation for a number of purposes; from general exercise, a means for transportation,

to racing both on- and off-road. Along with the growth in participant number, there exists a

corresponding growth in the number of injuries sustained within the sport.

While cycling is traditionally considered a low impact sport and has been suggested as a therapeutic

activity with use in rehabilitation [Fleming et al. 1999], the considerable time spent on the bike,

both in training and racing (upwards of 3 hours and often more than 5) and the repetitive nature of

pedalling leads to unique patterns of overuse injury within the sport. Up to 85% of cyclists reported

one or more non-contact, overuse injuries and 30% requiring medical intervention [Kim et al. 2006;

Wilber et al. 1995]. Where one of the most common sites for overuse injury (41.7%) was that of

the knee joint [Holmes et al. 1994].

There are two major causes for knee injury in cyclists, the first is that muscle fatigue produces

changes in pedalling technique and leads to stress and imbalances in the kinetic chain [Asplund

& St Pierre 2004]. The second major cause is an overdevelopment of the knee flexors. The

pedal cycle has been extensively studied, and there are several models that describe the lower limb

biomechanics [Raasch et al. 1997; Thelen et al. 2003; Zajac 2002]. The prime drivers for generating

energy in the pedal cycle are the knee extensor muscle group (Rectus Femoris, Vastus Medialis
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& Vastus Lateralis) [Zajac 2002], and so many cyclists focus their training on these muscles, this

however may increase their risk of knee injury [Raasch et al. 1997] through muscle fatigue caused

by overtraining and overuse.

This chapter explores the evaluation of muscle fatigue during a controlled exhaustive cycling

activity through the measurement of an athlete’s muscular and biomechanical performance. The

test structure implemented enforces a fatigue condition on the participant, providing a means to

collect muscle performance data under the known conditions of non-fatigued and fatigued states.

Established fatigue measurement techniques include both analysis of the changes in the muscular

firing patterns (EMG) and the changes in the athletes muscular surface pressure during the activity

as they fatigue.

6.1 Changes in activation timing of the muscle

The use of FMG pressure readings for detection and measurement of muscle activation patterns

during activity is a key technique discussed within Chapter 3 and further explored in Chapter 4.

With the additional motion capture of the pedal stroke movement, muscle activity can be resolved

to the corresponding angle of the crank where each individual muscle was utilised.

Figure 6.1: Gastrocnemius activation onset differences highlighted in the timing between Pressure
(left) and EMG (right) measurements at a cadence of 92 rpm [Fuss, Belbasis, Sidhu, et al. 2016]

Utilisation of a polar representation of the EMG and FMG pressure signals aids the intuitive

understanding of the muscle activation throughout the 360 degree pedal stroke. Figure 6.1 shows

both the non-fatigued (coloured) and subsequently fatigued (black) states of the muscle after

performing the exhaustive second test. This visual furthers an understanding of how the muscle is

activated throughout the pedal stroke, along with displaying some insight into the affect fatigue has

on the muscle behaviour and performance across two differing measurement techniques.
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6.1.1 Electromechanical delay of the muscle

It can be seen above that the maxima of the polar plots for EMG and FMG pressure do not

coincide (Figure 6.1), the phase shift of which reflects the fact that the activation onset of the EMG

signal precedes the increasing muscle force [De Luca 1997]. Essentially, EMG measurements are

reflective of the electrical (nerve) activity within the muscle, not the (later) force generating physical

response which tends to be the desired measurement objective, as demonstrated by Cavanagh &

Komi (1979) in Figure 6.2.

Figure 6.2: Electromechanical delay between the EMG signal and the produced muscle force
[Cavanagh & Komi 1979]

This electromechanical delay phenomenon poses a significant issue when observing EMG behaviour

during high speed activity such as cycling. Due to the increased frequency of muscle activation,

higher cadence speeds result in greater angular deviation of the measured EMG signal (see Figure

6.3). Although activation onset durations differ by both subject and muscle, research has shown

most fall within a range of 30-100ms [Cavanagh & Komi 1979].

Therefore, taking this onset delay range and the mean cadence of Session 2 results from further in

this chapter (73 RPM), the observable muscle activation response will precede the physical response

by between 19-64 degrees. If this deviation is not accounted for, significant misrepresentation of

the data is possible. However due to physiological differences between individual muscles, the

onset latency of the muscle is often difficult to ascertain [Cavanagh & Komi 1979], particularly

during cycling [L. Li & Baum 2004], and thus difficult to accurately correct for at these higher

activation rates and across different participants.

Alternatively, the measurement of muscle pressure through FMG is a direct analysis of the muscle’s

physical state change due to mechanical activity. With this technique an onset delay largely only

exists in two forms; through the electro-mechanical response of the sensor (a negligible delay), and

the mechanical response of the muscle in relation to the sensor position.
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Figure 6.3: Angular deviation impact of EMG muscle activation onset delay at increasing cycling
cadence speeds

Provided the pressure sensor is positioned above the muscle belly at the time of initial activation, the

sensor response and thus recorded muscle activation timing is a true representation of the muscle

mechanical behaviour during the activity. This gives further support to the analysis of the muscle

force with FMG surface pressure as a possible alternative technique when knowledge of real-time

activation behaviour is key to the analysis.
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6.2 Methodology

6.2.1 Experimental method

A fatigue-inducing regiment based upon work by Dorel et al. (2009) was utilised to quantify the

effects of fatigue during cycling. The test protocol deliberately introduced fatigue to the active

muscles, allowing for the analysis of muscle activity and performance under two known definitive

conditions, namely a non-fatigued and fatigued state. To allow for sufficient muscle recovery,

participants were asked to follow the following testing procedures over two testing sessions which

were separated by at least four recovery days.

The tests were performed on the participant’s own bicycle mounted on the stationary ergometer

(Wahoo Kickr, Wahoo Fitness USA). To ensure that muscles were activated during the upstroke of

the pedal phase (180◦-360◦ of the crank cycle) clip-in shoe/pedal combinations or caged pedals

were utilised to prevent separation of the foot and pedal.

Session One: FTP Ramp Test

Figure 6.4: Example of proposed testing power profile for Session 1: Incremental power test
reaching FTP = 220W after 6 minutes

Each participant was tasked with completing an incremental cycling exercise (Ramp test). This

involved the incremental ramp-up of generated power to determine the exercise limitations of the

participant. Other than a heart-rate strap for ensuring safety of participants, no instrumentation of

the participant’s body was necessary for this session. All testing begun at a target power output of

120 Watts with increasing workload increments of 20 W/min until the target power could no longer

be satisfactorily sustained.

To ensure consistent power output during the test the ERG-mode setting of the Wahoo Kickr

ergometer was utilised. This setting constantly monitors the generated power and cadence (angular

velocity), and enforces a consistent target power output through automatic adjustments to the

cycling resistance level (torque) through a magnetic actuator.
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To prevent artificially enforcing an earlier end to the test, reasonable changes in both cadence and

gearing were permitted for the participant to find their comfort zone to complete the task. The

Functional Threshold Power (FTP), defined as the last stage that was completed in its entirety, was

used to calculate the appropriate workload imposed by the cycle ergometer during the second test

session.

Session Two: 80% FTP Fatigue Test

Figure 6.5: Example of proposed testing power profile for Session 2: Induced fatigue test set at
80% FTP = 176W.

The second session, notably the primary data collection session, involved the complete instrumen-

tation of the participant’s right upper leg with EMG, Motion capture and FMG pressure sensor

equipment. Participants performed a self-directed warm-up routine consisting of at least 3 minutes

of cycling at a lower power output to the test condition, ensuring sufficient preparation of the

participant for the test. Following the warm-up, subjects performed a cycling exercise at a constant

power output equating to 80% of their measured FTP for as long as physically maintainable. The

ergometer was set at a fixed resistance setting and the participant instructed to maintain the two

target parameters displayed to them; the target power output (80% FTP), and a constant cadence

freely adopted from the end of the warm-up session. FMG surface muscle pressures, EMG activity

and angular parameters were recorded continuously throughout the session.

To enforce repetitive muscle activation, participants were asked to maintain a single cycling position,

where shifting along the saddle or handlebars was not allowed. The test continued until the cyclists

voluntarily chose to stop the exercise (fatigue-induced exhaustion) or until they were no longer able

to maintain their initial test cadence (±5 rpm), which was considered as a failure to maintain the

required task (the target power output at a constant cadence).

6.2.2 Data Analysis and Statistics

The raw data of both FMG pressure and EMG signals were recorded in volts and millivolts

respectively, at a frequency of 2000 Hz, simultaneously and synchronised with the motion capture
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data utilising a centralised trigger device. Utilising the retroreflective marker on the right pedal, the

top dead centre of the crank (highest marker position) was set as zero position (0◦) with positive

increases in crank angle in the clockwise direction as viewed from right-hand side of the bicycle.

For the muscle activity analysis, the signal amplitude (of FMG and EMG signals) for±1.5 standard

deviation (removal of outliers) was assigned to the crank angle. The average amplitude was

calculated with a running median filter of a window width of 7.5 degrees. Subsequently, the average

crank cycle data were normalised across all measurements. In order to calculate the average signal

of each muscle across all 7 participants, the data of all participants were averaged, squared (thereby

assigning a greater weight to higher data), and normalised once again.

It was anticipated that both the performance limiting affect of fatigue and the mechanical/electrical

nature of both FMG and EMG measurement systems respectively would have an observable impact

on the radial activation behaviour of the muscles. Unlike the electromechanical onset delay within

EMG measurement, fatigue can influence activation behaviour in both earlier and later timing to

that of the non-fatigued state. For these reasons the calculation of the average crank angle was

determined for each muscle as the angle that divides the areas under the signal into two equal parts

(integration window = 180◦). The average crank angle represents the position of the activated

muscle on the crank diagram as a single number for comparative purposes.

Finally, the angular phase shift of the Fatigued and Non-Fatigued conditions are compared to

determine the respective movement as a factor of the introduced fatigue; the radial phase shift angle

(∆θ ). A positive value reflective of a delayed activation by the muscle, or conversely a negative

value representative of earlier activation during the pedal stroke.

6.2.3 Participants

Seven male participants (age: 28±3.6 yrs; body height: 1.751±0.059 m; body mass: 78.7±7.9

kg) were involved in the testing. This study was granted Ethics approval by the RMIT University

Human Ethics Committee (approval no. ASEHAPP 45-15) and adhered to the Declaration of

Helsinki. Participants were briefed to the requirements of the test and an informed consent form

was filled in by all the participants before the start of the experiment.

All participants were deemed healthy volunteers, passing the health and fitness requirements for

ethics committee approval for to sustain the level of exertion required during the testing procedures.

All participants were of above-average levels of fitness, regularly participating in various sports

such as running (participant 1 and 5), soccer (2 and 4) and cycling (3,6 and 7) at least 3 times a

week, where their typical training sessions would meet or exceed the physical requirements of

the testing. The overall cycling skill ranged from an Amateur cyclist (participant 2), through to

Semi-elite cyclists (participants 3 and 7).

6.2.4 Data Collection

A 9-camera motion capture system (Qualisys Oqus System, Göteborg, Sweden) was utilised to

capture the limb segment angles of the participants, as well as providing tracking for the rotational



78 Chapter 6. Testing for Muscle Activity and Fatigue

Figure 6.6: Motion capture markers (highlighted red circles) mounted on the participants upper and
lower leg whilst wearing the smart garment.

crank angle of the bicycle (Figure 6.7.A,B). The data sampling frequency for motion tracking was

set at 100 Hz, with the marker positions mounted as per the installation requirements detailed in

Section 3.3 on the right leg of the participating cyclist, are shown highlighted in Figure 6.6.

The smart compression prototype garment [Belbasis & Fuss 2015; Belbasis, Fuss & Sidhu 2015a,b]

was utilised for the testing of each athlete. The garment provided capability for measuring and

mapping changes in the surface pressure above a muscle (Figure 6.7.D) where the active movement

of the muscle under the compression fabric was detected by a distributed network of pressure

sensors. The low-pressure sensors were manufactured from two layers of a conductive piezoresistive

polymer, with an almost linear calibration curve of the average equation of p = 97282000σ1.184335

for 2 layers, where p is the pressure in Pascal, and σ is the conductivity in Siemens [Fuss 2016].

The sensors were positioned over five of the thigh muscles (rectus femoris, vasti medialis and

lateralis, biceps femoris, and semitendinosus) of the participant’s right leg. In addition to the

utilisation of pressure sensors, a 16-channel wireless EMG system (Wave Plus Wireless EMG,

Cometa Systems, Bareggio, Italy) was used for recording the electrical signal (Figure 6.7c) of the

same muscles.

The general placement of the electrodes followed the recommendations of [SENIAM 1999] and the

optimum placement of the electrodes was achieved by using the method of Belbasis, Fuss & Sidhu

(2015). To ensure accurate capture of the muscle behaviour throughout the tests a data sampling

frequency of 2000 Hz was utilised for both the FMG and EMG sensors. Table 6.1 contains a



6.2 Methodology 79

Table 6.1: Test measurement equipment and monitored data

Measurement Equipment Data Parameter

Wahoo Kickr Cycle Trainer • Cycling Power
• Cycling Cadence

Wahoo TickrX heart rate monitor • Heart Rate
Qualisys MOCAP Cameras • Knee Angle

• Crank Angle
Qualisys DAQ • Muscle Pressures:
(wired pressure sensors) - Rectus Femoris (RF)

- Vastus Lateralis (VM)
- Vastus Medialis (VL)
- Biceps Femoris (BF)
- Semitendinosus (ST)

Cometa EMG System • Muscle sEMG:
(wireless connection) • Muscles as above

summary of the variables captured and recorded for the purpose of testing and data analysis.
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Figure 6.7: Qualisys software outputs of muscular behaviour (8 second window) exhibited during
the Fatigue test; A) Raw video, B) Motion Capture, C) EMG data, D) FMG data
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6.3 Results

6.3.1 Power Data: Session 1

The primary objective of the first testing session was to determine each participant’s achievable

FTP wattage level, allowing for the normalised testing FTP target during the second test. Outputs

from the cycling trainer pertaining to the participant’s performance data was collected and is shown

below within Table 6.2.

Table 6.2: Session One activity summary
Participant Time Time FTP Total Mean Mean Mean Mean

Level Work Cadence Cadence Power Torque
(m:s) (s) (W) (kJ) (rpm) (rad/s) (W) (Nm)

1 10:35 635 320 141 88 9.2 222 24.1
2 6:09 369 220 62 58 6.1 168 27.7
3 17:11 1031 420 272 82 8.6 264 30.7
4 12:12 732 320 151 74 7.7 206 26.6
5 9:11 551 260 100 70 7.3 181 24.8
6 12:14 734 340 167 90 9.4 228 24.1
7 13:07 787 360 189 68 7.1 240 33.7

mean 11:31 691 320 154.6 75.71 7.9 216 27.4
st.dev 3:26 206 65.32 66.92 11.57 1.2 33 3.7

Application of the ramp test specifically assessed an individual’s ability to increasingly deliver

higher power output over time, as such we expect a distribution in the resultant efforts throughout

the sample group due to differences in physical ability and familiarisation with the task. Due to the

similarity in skill set and fitness between the participants, five participants fell within the bounds

of one standard deviation from the mean of the duration and achieved FTP level. The other two

participants; namely the least experienced cyclist (participant 2, below), and the most experienced

(participant 3, above) were within two standard deviations.

Figure 6.8: Power profile of a Ramp test taken by a participant

The test result profile shown in Figure 6.8 is an example of a participant successfully completing an
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FTP level of 320W after 11 minutes. The next step level (340W) was attempted by the participant,

however fatigue induced failure led to voluntary completion of the test.

6.3.2 Power Data: Session 2

Following the determination of the participant’s FTP level, individual 80%FTP calculations were

made for each participant and utilised for the second session to produce the fatigue profile. This

inclusion of the additional biomechanical measurement systems (FMG, EMG and MOCAP) within

the second test session allowed for greater insight into the onset and continued fatigue of the

muscles in the lower limbs where the muscle behaviour for all key muscles were recorded and

displayed throughout the second session. Figure 6.9 shows an example of the captured Power,

Heart-rate and Cadence measurements of the fatigue test.

Figure 6.9: Fatigue test data of a participant, showing Power output, Heart-rate and Cadence. Blue
shading represents the test period

All but one measurement for the seven participants was captured correctly throughout the full

duration of the tests. Due to a lack of adhesion of the electrode, the Semitendinosus EMG

measurement of participant 1 was corrupted mid-test and therefore is omitted from the following

analyses. It is worth noting, that whilst the maturity of the FMG pressure monitoring technique is

still in development, the majority of experimental issues (restarts, corrupted data, time-consumed)

was attributed to the installation and affixment of both the EMG electrodes and equipment, and

the motion capture markers. The simplicity and robustness of the pressure measurement system

limited the prevalence of experimental failures.

A summary of key test data relating to each test is displayed within Table 6.3. Accuracy of achieving

the target∼ 80% FTP loading required was met within a satisfactory range (5%) for each participant

with the mean accuracy within 1% of the grouped aim.

A noticeable deviation in the results was the duration of the test for participant 2 (least experienced).
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Table 6.3: Session Two activity summary
Participant Time Time Mean Total Mean Mean Mean Target Target

Power Work Cadence Cadence Torque Power Accuracy
(m:s) (s) (W) (kJ) (rpm) (rad/s) (Nm) (W) (%)

1 9:28 568 259 147 84 8.8 29.4 256 98.84
2 3:28 208 175 36 68 7.1 24.6 176 100.57
3 11:18 678 330 224 81 8.5 38.9 336 101.82
4 9:15 555 257 143 71 7.4 34.6 256 99.61
5 12:41 761 208 158 64 6.7 31.0 208 100
6 9:52 592 268 159 80 8.4 32.0 272 101.49
7 12:00 720 275 198 66 6.9 39.8 288 104.73

mean 9:33 583 253 152 73 7.7 32.9 256 101.01
st.dev 3.40 183 49.6 59.1 8.1 0.8 5.4 52.3 1.94

Whilst all other participants concluded the test within one standard deviation of the test mean

(9:33 minutes of exercise), the low fatigue tolerance for participant 2 forced an end to the test after

only 3:28 minutes. This result aligns with the experience level of the participant in comparison to

that of the other participants, where duration of the test is largely driven on the physiological and

psychological conditioned nature of the muscle and participant to operate under increasing fatigue

limiting conditions. The experience level also correlated with the mean power and torque (Table

6.3) such that the least (participant 2) and most experienced (participants 3 and 7) participants

exhibited the lowest and highest values, respectively.

6.3.3 Overall muscle activation

Through the motion capture of the pedal stroke movement, the muscle activity was resolved to

the corresponding angle of the crank where each individual muscle was utilised, shown on polar

diagrams. The polar diagrams of three representative participants (3, 6 & 7) are shown in Figure

6.10 for both the EMG and FMG measurements.

The EMG graphs of the extensors (Quadricep muscles: Rectus Femoris RF, Vastus Medialis

VM, Vastus Lateralis VL) exhibited overlapping activity in the same sector of the diagram, with

individual differences: in Figure 6.10A and 6.10C overlap of the muscles occurred at 330◦-360◦,

whereas in Figure 6.10B this was observed at 30◦. The FMG pressure-based activity deviated

from the EMG-based activity in general by a clock-wise phase shift, indicative of the expected

electromechanical delay of the muscles. For example, it can be seen in Figure 6.10C, the extensors

still sizeably overlap, although not as perfectly as in the EMG plot, where the peak activities are

shifted by 30◦ to 60◦ clockwise.

In Figure 6.10B, RF behaviour for both FMG and EMG activity aligns in the same sector. Whereas

for VM, the pressure signal is shifted counter clockwise by approximately 30◦ with respect to the

EMG signal, and VL is shifted clockwise by more than 60◦.

In Figure 6.10A, RF and VM are shifted clockwise by 30◦ and 70◦, respectively, and VL by almost

180◦. Comparing the three FMG pressure plots, the activity of RF ranges from 20◦ to 30◦, of VM
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Figure 6.10: Polar plots of the activity of five muscles and three participants; Left column: EMG
data, Right column: FMG (pressure data).
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from -10◦ to 50◦, and VL from 40◦ to 150◦.

The flexor muscles (Hamstrings: Biceps Femoris BF and Semitendinosus ST) showed less consistent

EMG activation patterns than the extensors: ST at 90◦, 90◦, and 180◦; and BF at 100◦, 110◦, and

340◦. The FMG pressure activation patterns are, in general, shifted clockwise as already seen in the

extensor muscles, namely the BF by 70◦, 70◦ and 200◦; and the ST by -30◦, 70◦, 150◦. Comparing

the three FMG pressure plots, the peak activity of BF occurs around 170◦ to 180◦, whereas the one

of ST ranges from 150◦ to 240◦.

Figure 6.10A shows a co-contraction of the three extensors and the BF on the EMG plot, whereas

the FMG plot confines the co-contraction to VL and BF. The same is true for both hamstrings and

the VL on the FMG plot (Figure 6.10B), whereas the EMG plot appears to be free of co-contractions.

The latter is true for both FMG and EMG plots in Figure 6.10C.

Figure 6.11 shows the average muscle activation patterns of all 7 participants combined, thereby

highlighting the sectors used by most participants. In general, while the muscle activities, measured

with EMG or FMG, are relatively consistent across athletes, they do not coincide when the two

different methods are compared directly (Figures 6.10 and 6.11).

Figure 6.11: Combined polar plots of the activity of five muscles of all seven participants; Left plot:
EMG data, Right plot: FMG (pressure data).

Table 6.4: Average angles and resultant phase shift
Muscle Average Angle (FMG) Average Angle (EMG) Phase Shift
RF -8◦ -24◦ +16◦

VM -24◦ -8◦ -16◦

VL -23◦ -124◦ +101◦

BF -110◦ -143◦ +33◦

ST -122◦ -156◦ +34◦

mean -57.4◦ -91◦ +33.6◦

st.dev 54◦ 69.6◦ 42.8◦

The average angles of the EMG signal are highlighted within Table 6.4. The FMG pressure plots
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of all but one muscle are characterised by a clockwise phase shift with respect to the EMG plots

of 16◦ to 101◦. Only VM is shifted counter-clockwise by 16◦. This phase shift phenomenon is

attributed to the electromechanical delay of the muscle signal, which will be explained in detail in

the Discussion section.

6.3.4 Fatigue induced radial phase shift

Radial phase shift angle (∆θ ) for all tests is displayed within Tables 6.5 & 6.6 for EMG and FMG

measurements respectively and within Figure 6.12. The results are further averaged using the

median values to determine central tendency by muscle and participant. This allows for observing

the signal distribution pattern of each test with reference to the direction and magnitude of the

radial shift angle, affording better insight into how fatigue-induced activation has influenced the

muscles over the duration of the test.

Table 6.5: Muscle EMG activation angle (degrees) shift due to fatigue.
Subject RF VM VL BF ST median

1 -17.36 -5.24 -6.06 2.94 - -5.65
2 -1.23 0.99 -0.96 -2.31 -3.79 -1.23
3 -6.43 -3.49 23.3 -16.29 18.47 -3.49
4 8.14 3.14 1.05 5.7 18.75 5.7
5 -8.85 -3.78 -0.2 0.29 8.02 -0.2
6 17.42 1.32 -6.55 12.38 6.28 6.28
7 -14.94 -20.12 -15.55 -4.41 3.13 -14.94

median -6.43 -3.49 -0.96 0.29 7.15 -0.58

Table 6.6: Muscle FMG activation angle (degrees) shift due to fatigue.
Subject RF VM VL BF ST median

1 -6.43 -20.94 8.72 -17.08 90.66 -6.43
2 -2.89 1.43 -8.78 -4.41 -8.21 -4.41
3 -55.58 -0 -22.22 -20.74 -6.23 -20.74
4 55.54 -5.83 -4.73 2.9 -2.23 -2.23
5 -134.64 -68.35 32.31 -17.31 -2.09 -17.31
6 -148.91 -19.43 -12.65 -59.57 -11.98 -19.43
7 -24.22 -27.01 -42.91 -23.39 -3.76 -24.22

median -24.22 -19.43 -8.78 -17.31 -3.76 -8.78

With respect to the EMG measurements, radial shift was balanced between earlier and later peak

activity between muscles and participants with an aggregated average shift toward an earlier

activation (∆θavg =−0.58). Earlier peak muscle activation was highest amongst the three power

generating extensor muscles (RF = −6.43◦, VM = −3.49◦ & VL = −0.96◦). The stabilising

flexors (BF = 0.29◦ & ST = 7.15◦) both demonstrated a tendency toward later activation. The

maximal range of angular shift was between −20.12◦ and 23.3◦.

Radial phase shift in peak activity was distinctly more prominent within the FMG pressure results,

ranging at maximums between −148.91◦ and 90.66◦. Unlike in EMG results, these results showed
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Figure 6.12: Radial shift in activation angles for (top) EMG and (bottom) FMG (denoted as PRS)
measurements separated by muscles (left) and participants (right).

a higher skew toward earlier peak muscle activation for both muscles and participants, and a higher

aggregated average radial phase shift (∆θavg = −8.78). Less distinction was present between

the power generating extensor muscles and the stability flexor muscles, with the RF (−24.22◦),

VM (−19.43◦) and BF (−17.31◦) demonstrating high earlier shifts, and the VL (−8.78◦) and ST

(−3.76◦) lower due to spread across the participants. A connection to activity conditioning may be

present here, as the highest shifts were present amongst the participants who primarily identify as

cyclists (3 , 6 & 7), with the soccer identifying participants (2 & 4) presenting the lowest changes

to peak activation timing.
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6.4 Discussion

The purpose of this study was to explore the applicability of a smart compression garment based on

force myography with pressure sensors [Belbasis & Fuss 2015; Belbasis, Fuss & Sidhu 2015a,b],

measuring muscle contraction, for assessment of muscle activity and fatigue, as an alternative to

EMG during a cycling exercise. The goal of which was addressing whether muscle activity can be

assessed and measured with the smart compression garment. The signals obtained, related to the

contraction pattern when cycling, were highly comparable and consistent on the polar diagrams,

with some individual differences between participants.

The constant-load cycling task was chosen as it employs a mixed combination of muscle groups

within the leg that provide either power generation, or stability throughout the activity. These

muscle groups work together to produce a consistent power output to the crank, however as fatigue

sets in the muscular performance of each group is affected differently. A common behaviour

observed within the signal magnitude response of the test results is the decrease in performance

of the stability-support (hamstring) muscles with the increasing presence of fatigue. Whilst in

comparison, the power-generating Vasti muscles of the quadriceps (Vastus Medialis & Lateralis),

experience increases in the amplitude of the signal over the test duration, demonstrating an increase

in overall muscle activity (Figure 6.13).

Sanderson & Black (2003) showed that during a fixed-load fatiguing activity, reduced performance

within stabilising muscles is compensated through the muscles tasked with power generation.

Thus as a result of the fixed-power output requirements of the test, to maintain the test objective

compensatory muscle force is necessary from the dominant knee extensor muscles to overcome

decreasing performance of the stability-support muscles. It is important to note that the Quadricep

muscles, particularly the Vasti pair (VM & VL), play a significant role in the activity of cycling. As

such the regular engaged nature of the test participants within the sport leads to higher physical

conditioning of these muscles, this leads to an increased ability to compensate an induced fatiguing

condition in these dominant muscles. The Rectus Femoris (RF), unlike the two other measured

quadricep muscles (VM, VL), does not always mimic the same behaviour in performance. This

can be attributed to the activity relying upon the RF for two components of the stroke cycle; once

during the knee extension phase (0-90 degrees) when down-force is applied to the pedal (alongside

both Vasti), and again during the hip flexion phase (270-0 degrees) when up-force is necessary to

lift the pedal. As the Rectus Femoris fatigues primarily through the weaker hip-flexion activity,

the lift force it can apply to the pedal is effectively reduced. During this upstroke however, the

pedal is 180 degrees out of phase with the opposite leg, where this performance decrease is directly

compensated in some part by the opposing Vasti muscles. The increased fatigue associated by this

behaviour in the RF muscle may be the cause for the increased comparative variability in phase

shift observed in the RF to the other four muscles (as shown in Figure 6.12).

Further, the variation in the VL to the other knee extensors as measured using FMG was not as

yet determined clearly as to the source of this behaviour, which differed between participants

as shown in Figure 6.10. Due to the elongated nature of the VL muscle it experienced the
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Figure 6.13: Increased EMG activity in the Vasti muscles to accommodate loss of power from
supporting muscles during the 90-270 degree component of the pedal stroke. (Blue indicates
non-fatigued muscle, Red that of fatigued muscle)

smallest values of pressure variation (i.e ‘bulging’) before normalisation and proved to be the most

difficult to determine the optimal placement for measurement of pressure behaviour. Subsequently

measurement of this muscle was more prone to a ‘signal to noise’ measurement errors and will

require further exploration.

A secondary objective of this study was to validate the muscle activity pattern obtained from the

smart compression garment with a gold standard, i.e. a lab-based EMG system. However, the

muscle activation patterns obtained from EMG and the smart compression garment were, to some
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extent, not comparable (Figures 6.10 and 6.11). The reason for this is not the inferiority of the

smart compression garment, which could be easily deduced from the data, but rather the choice

of the gold standard. Undoubtedly, EMG is the (even if the only) gold standard for assessment of

muscle activity and fatigue. Yet, EMG measures the electrical activity of the muscle, whereas the

smart compression garment detects the mechanical activity, i.e. muscle bulging that compresses the

FMG pressure sensors between skin and garment.

The difference between EMG and FMG polar plots simply reflects the difference between electrical

and mechanical activity. The electro-mechanical delay [De Luca 1997] of the contraction force

with respect to the electrical stimulation of a muscle is explained from the time difference between

onset of electrical activity and the increasing muscle force. This delay is also dependent on muscle

fibre distribution, measured by the percentage of fast and slow twitch fibres. For example, to

reach a contraction level of 50% of the maximal muscle force, it takes a fast and slow twitch fibre

approximately 0.15 and 0.25 seconds, respectively [De Luca 1997]. When cycling at a cadence of

73 rpm (average cadence from Table 6.3), these two delay times would cause, in theory, a phase

shift of between 66◦ and 110◦ on the polar diagram. The differences seen in the EMG and FMG

sensor polar diagrams are therefore expected.

According to EMG data of Jorge & Hull (1986) and Hug et al. (2010), the quadriceps extensors

are active from 300◦ to 130◦ and from 235◦ to 162◦, respectively, and the hamstrings from 15◦ to

255◦ and from 324◦ to 288◦, respectively (maximal ranges). The data seen in Figure 6.11 perfectly

fit into these ranges, which the exception of the VL, which exceeds 130◦. Jorge & Hull (1986)

also reference other papers, the results of which show considerable differences and fluctuations,

suggesting that there is considerable variety of EMG results.

The fatigue induced phase shift present within both electrical and mechanical measurements could

suggest an influencing cause behind the variety of results across the literature. The test results

demonstrated that for both measured systems (EMG and FMG) there was significant individual

movements both forward and backward in the position of the average crank angle for each muscle

between a non-fatigue and fatigued state. The influence of which presented more readily within the

FMG pressure results, with nearly all muscles shifting to earlier peak effort (median =−8.78◦)

suggesting either a reduction in the electromechanical delay, or a pre-emptive action by the muscles

to compensate for reduced performance. The activation phase shift of the EMG results were less

influenced by the presence of fatigue (median =−0.58◦).

The balanced spread across the subjects in the EMG results with no clear skew to earlier or later

activation suggests a dependency not on the muscle group performing the same task across all

participants, but rather its conditioning and muscle fibre (i.e. fast and slow twitch) distribution which

is unique to each participant. Evidence for this is further supported by the grouping of participants

in the FMG pressure results by their defined primary sport, where the cyclist (participants 3, 6 & 7)

all experienced far earlier average activation phase shifts than the soccer players (2 & 4), activities

which call on different muscle conditioning and as such would reflect within the participant results.

Nevertheless, EMG is still a gold standard for validating the smart garment, as there is no other
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system available. The gold standard therefore serves primarily for understanding the differences

between the data, and the underlying principles of the different measurement systems. Validation

is still possible, if differences are known in the first place or at least expected, and subsequently

confirmed through a validation study. This issue poses a new challenge for wearable technology

not experienced before, specifically when dealing with lateral innovation [Fuss 2017]. Finding a

suitable gold standard could then become a problem.
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6.5 Summary

This chapter details the first half of the exploration of muscle activation and fatigue measurement

using smart apparel. Specifically it documents the experimental methodology and data collection

approach taken in an effort to enforce a fatigue condition upon a participants lower limbs. A

total of seven individuals completed both testing sessions, allowing for the detailed capture of

musculoskeletal activity in the quadricep and hamstring muscle groups. All measured muscle FMG

pressures, and all but one single EMG measurement were successfully recorded for later analysis.

The smart compression garment based on force myography with pressure sensors returned per-

formance parameters (muscle activity and fatigue) comparable to the surface EMG, used as gold

standard for validation. The major differences were that the EMG measured the electrical activity

whereas the FMG pressure sensor measured the mechanical activity. As such, there was a phase

shift between electrical and mechanical signals, with the electrical ones preceding the mechanical

ones in most cases. This is specifically important in high speed cycling, the activity investigated in

this study. Using the activity sectors on the polar diagrams, obtained from EMG, for biomechanical

models, could result in incorrect outcomes, compared to using the activity data obtained from force

myography. The latter are considered more appropriate as input for biomechanical modelling.

The results from this chapter also begin to highlight the role that specific muscles undertake within

given activities and the impact that fatigue has on their performance. The quadriceps responsible

for the power generation while cycling are more prone to earlier peak activation as a consequence

of fatigue to that of the hamstrings muscles providing stability. The importance of conditioning of

these muscles was also highlighted, where the dominant activity of participants, and the muscle

fibre distribution required that supports high performance in this activity, played a role in the

direction and magnitude of the phase shift in peak activation of the muscles.
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Published Research

The following chapter contains work published within:
• Belbasis, A. & Fuss, F. K. Muscle performance investigated with a novel smart

compression garment based on pressure sensor force myography and its validation
against emg. Frontiers in Physiology 9 [2018]

• Fuss, F. K., Belbasis, A., Sidhu, J., et al. Fractal dimension analysis of muscle fatigue
with muscle surface pressure measured via compression garments in Proceedings of
ICSST 2016, 2nd International Conference in Sports Science and Technology [Nanyang
Technological University, Singapore, 2016]

Continuing from the outcomes of the last chapter, we now focus upon on a more detailed analysis

into the behaviour of the muscles monitored, with specific relation to the transitioning fatigue

condition. The collected muscle data from the cycling fatigue tests was processed into a Raw and

Conditioned dataset utilising the techniques highlighted within Chapter 3, differing only in the

conditioning of the EMG signal in the latter. These datasets were utilised for the specific analysis

of the fatiguing condition on the muscle through three analyses;

• The Median Frequency shift in the EMG signal (gold standard)

• The Fractal Dimension of the EMG signal

• The Fractal Dimension of the FMG signal

The discrete comparison of two different fatigue states, as shown in Chapter 6, is useful in

identifying the effects that fatigue activity has on active muscles. It is however also important to

explore the transitional change the muscles undergo as the body moves between these two fatigue

states. This is the focus of the work that follows within this chapter.

Foundational works by De Luca (1997; 2003) has shown that the median frequency (MDF) of the

Fast Fourier Transform (FFT) of an EMG signal shifts towards lower frequencies as fatigue sets

in. This has become the industry-accepted method for the reliable indication of muscular fatigue

(EMG-MDF). Whilst widespread, this method relies on significant implementation expertise and a
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high entry cost for equipment and consumables. The aim of this work is to explore the utilisation of

Force Myography and the pressure sensor garment [Belbasis & Fuss 2015; Belbasis, Fuss & Sidhu

2015a,b] as a suitable performance analysis alternative. Specifically measuring muscle activation

and fatigue, with validation of the prototype against EMG, used as the gold standard for muscle

performance assessment.

The method selected for this task had to comprise of a standardised repeatable activity and a defined

fatigue protocol. The research used a cycling activity on a stationary power-controlled bicycle as the

method of choice. Fatigue was assessed through the FFT (Fast Fourier Transform, gold standard)

of the EMG signal, as well as with fractal dimension signal processing. For the latter, the Higuchi

method ([Higuchi 1988]) is considered the gold standard method, however a new customisable

fractal dimension method (Fuss’ method; Fuss, 2013) was selected that offers advantages over

Higuchi’s method.

7.1 Measurement of Fatigue: Median EMG Frequency

The use of EMG has long been relied upon as a gold-standard tool in measuring muscular fatigue.

De Luca (1997) established that the median frequency of an EMG signal (MDF) over a set time

period shifted towards lower frequencies as a result of increasing muscular fatigue (Figure 7.1).

The negative trend of the plotted MDF provided an understanding of the performance decrease in

the muscle under investigation. Through the increase of both the measured time window, and the

frequency of the analysis, a more comprehensive understanding of the fatigue trend is observed

[Luca 2003]. More specific to cycling, Dingwell et al.(2008) built on this approach further by

utilising a Short-time Fourier Transform (STFT) technique, where the calculation of the MDF was

performed over individual time segments attributed to each crank cycle revolution.

Figure 7.1: Influence of fatigue on median frequency of the EMG signal [De Luca 1997]
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7.1.1 Calculating the Median FFT signal

For the fatigue analysis of the EMG muscle data each of the tests was processed as detailed within

Section 3.4.4. The raw signal amplitude was expressed as a time series with a 4th order Butterworth

bandpass filter (10-350Hz) applied to the EMG dataset to remove unwanted noise. Sampling

frequency was downsampled to 80Hz to accommodate better comparisons to the FMG pressure

measurement datasets.

The negative trend of the median frequency over time provides an understanding of the performance

decrease in the muscle under investigation. Following work from Dingwell et al. (2008) a Short-time

Fourier Transform (STFT) technique was applied, whereas the calculation of the power spectrum,

and the resultant median frequency, is performed over individual time segments attributed to each

crank cycle revolution. This allows for the distinct observation of temporal muscular performance

changes over each rotation of the bicycle crank, rather than the utilisation of sliding FFT window,

to observe median frequency changes.

A directional trend is fitted using a linear regression model indicative of the presence and rate

of fatigue. All calculation was made using the FFT function within MATLAB (The MathWorks,

Inc., Massachusetts, USA) and a sliding average window of 1-minute width to define the averaged

trend of the data. The resultant signals were normalised for both amplitude and time to allow for

consistent comparison amongst each other.

Figure 7.2: Averaged Median EMG frequency over each crank cycle for all five measured muscles
of participant 6 showing the linear trend. Observing comparatively smaller Vasti muscle fatigue
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7.1.2 Summary of results

As was anticipated through the application of both the gold-standard EMG-MDF technique [De

Luca 1997] and Dorel’s (2009) fatigue-inducing regiment, the results conclusively show evidence

that all measured muscles experienced a transient or continuing fatigue state during testing. The

majority of muscles (31/34, 91%) experienced a global decrease (negative trend) in the median

frequency, reflective of a continuing fatigue state.

Where the results were indicative of shallow gradients or positive trends, discretion of the fatigue

condition is needed as the use of a linear fit assists in capturing the trend over the entire period

of the test, which does not truly represent transient positive/negative slopes within segments of

the test. Muscles that are prone to transient fatigue-recovery cyclic behaviour resulted in lower

gradient results (discussed further in Section 7.3.2). These muscular efforts, although impinged

by the onset of fatiguing elements, demonstrate the ability to forestall the effects through bouts of

recovery, where grouped muscles cooperate in fatigue load sharing to allow for individual muscle

recovery periods whilst not sacrificing the power generation required throughout the task.

Summarised in Table 7.1 and visualised in Figure 7.3 are the normalised gradient values for the

linear fit for all muscles. Additionally all values were averaged (median, x̃) and results were

conclusive of the existence of a median negative trend, thus a fatigued condition, for each muscle

and participant. Weakest average participant performance, thus highest fatigue was observed in

participant 2 (x̃ =−0.6438). The strongest performance was from participant 4 (x̃ =−0.2598).

For all subjects the RF (x̃ = −0.5826), BF (x̃ = −0.4919) and ST (x̃ = −0.553) experienced

significant negative slopes. Whereas the conditioned Vasti muscles (VM, VL) showed higher ability

in forestalling the onset of fatigue within the VM (x̃ =−0.4168) and VL (x̃ =−0.4047). A possible

explanation for this behaviour is the higher level of conditioning of the Vasti for cycling, thus

slower fatigue onset. The example can be seen in Subject 6’s Vasti muscle performance (Figure

7.2) where the Vasti muscles exhibit a lower gradient (fatigue decline) to that of the other measured

muscles.
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Table 7.1: Normalised fatigue gradient for all EMG-MDF values
Subject RF VM VL BF ST median

1 -0.4711 -0.7969 -0.6303 0.2554 - -0.5507
2 -0.6438 -0.853 -0.4047 -0.605 -0.7031 -0.6438
3 -0.5826 -0.5394 -0.0628 -0.6013 -0.5441 -0.5441
4 -0.2598 -0.1992 -0.1188 -0.4408 -0.5618 -0.2598
5 0.1038 -0.3137 -0.5763 -0.4919 -0.5436 -0.4919
6 -0.7615 -0.1798 -0.2844 -0.5138 -0.4208 -0.4208
7 -0.6939 -0.4168 -0.5056 0.1192 -0.5955 -0.5056

median -0.5826 -0.4168 -0.4047 -0.4919 -0.553

Figure 7.3: Boxplot of fatigue gradient trend for EMG-MDF of Muscles and Participants. Red
shaded area denotes negative gradient and thus fatigue.
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7.2 Measurement of Fatigue: Fractal Dimension Analysis

With increased frequency, non-traditional data analysis methods are becoming more commonly

used within physiological monitoring; of particular interest to the research was the potential of a

Fractal Dimension Analysis (FD) in the providing an alternate measurement of a fatigued condition.

Traditionally an FD analysis provides a measurement of a signal’s instability, quantifying the level

of chaotic behaviour it experiences. Research [Chua 2013; Fuss 2013] has indicated that the use of

this technique can provide significant advantages and insight into a measured dynamic signal when

compared to traditional signal processing techniques.

The research follows an investigative path into whether quantification of a fatigue state is achievable

through the measurement of chaotic muscle behaviour. Whereas it is anticipated that muscles

succumbing to fatigue increasingly exhibit discontinuity in their activation pattern during a continu-

ously rhythmic activity. As such an analysis was undertaken to investigate the effect fatigue has on

the FD analysis of the recorded muscular activity, with a goal of evaluating whether physiological

effects of muscle fatigue produce a greater fractal dimension in the corresponding signal being

measured.

A robust analysis technique

Whilst the correct placement and calibration of a sensor is good-practice, limitations in the im-

plementation of wearable technology can result in non-optimal measurement conditions, often to

the detriment of the resulting analysis. A key benefit in the analytical use of the FD analysis is its

higher independency on sensor placement and calibration when compared to traditional techniques

(i.e. EMG). The analysis utilises the relative chaos within the signal itself, providing a normalised

amplification of the signal’s chaotic behaviour between two known extremes within the signal,

namely a non-fatigued and fatigued state. Provided the sensor itself has not been adversely affected

by the conditions of the test, a resultant FD analysis provides an accurate understanding to the

chaotic behaviour within the muscle. Furthermore, as the nature of electro-mechanical sensor drift

is a low frequency change in the signal output, the use of an FD analysis discounts effects attributed

to drift present within the sensor due to the lower effect it has on influencing chaotic behaviour.

7.2.1 Calculating the Fractal Dimension signal

The fractal dimension of EMG and pressure signals was calculated with the FD analysis method

developed by Fuss (2013). The Modified Amplitude Fractal Dimension Method (MAFDM)

was utilised based on previous development work showing robustness and functionality by the

research team (see appendix A.1). To improve the efficiency and maintain consistency of testing, a

computational Matlab program was written to automate the FD analysis for all measured signals.

The MAFDM method allows for maximal separation of two conditions (e.g. fresh and fatigued

muscle states) by means of adjusting and optimising the signal amplitude multiplier. If this

multiplier is set to high values (infinity in theory), then Fuss’ method is identical to that of Higuchi’s

(1988) method.

The analysis relies upon identification of ranges within the signal where minimal and maximal
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Figure 7.4: Fractal Calculator Analysis output. (A) Original signal with extrema selected, (B)
Calculation of optimal multiplier, and (C) Result amplified Fractal Signal.

chaos is expected. In order to identify the optimal amplitude multiplier the extrema conditions are

utilised to identify the optimal multiplier (M-value) where amplification yields the best distinction

in the FD signal. From the recorded signals, the non-fatigued and fatigued states were the necessary

selection for these extrema ranges. A range of 60 seconds (120K samples) was taken for each

extrema where the non-fatigued state was selected as the second full minute and the fatigue state

the second last minute. The bounding first and last full minute of the test were omitted as extrema

(though included in the analysis) to ensure the signal reflected activity periods were the participant

was completing the task as assigned and not influenced by the artefacts introduced by the start or end

of the test. The differential of the fractal dimensions of fatigued and fresh states (Figure 7.4.B) was

plotted against the decadic logarithm of the multiplier [Fuss 2013] and the optimal multiplier was

identified at the maximum differential (see technique in Appendix A.2). This amplitude multiplier

was then used to calculate the fractal dimensions continuously through the signals with a running

window width of 1 minute.
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Figure 7.5: Example of linear trend for Fractal Dimension response of normalised (Top) EMG and
(Bottom) FMG sensor signals for all five measured muscles of Participant 3.

7.2.2 Summary of results

As was applied to the EMG-MDF data, a linear regression fit was applied to the resultant fractals to

determine the gradient of the fractal signal. However, unlike the EMG-MDF plots which trended

downward to reflect the influence of fatigue, the proposed hypothesis was the expectation of a

positive gradient reflecting an increased chaotic fractal behaviour influenced by the presence of

fatigue. The resultant gradient of the fit for each signal is summarised within Tables 7.2 and 7.3 for

the fractal EMG (EMG-FD) and FMG pressure (PRS-FD) signals respectively, with presentation of

these results within Figures 7.6 and 7.7.

Following a linear trend fit to the both FD signal groups, all EMG-FD muscles (34/34, 100%)

exhibited a positive linear gradient, while for PRS-FD 94% (33/35) of the muscles were reflective

of a positive (fatiguing) gradient. These results, supported by a uniform positive gradient in the

grouped average of the muscles, furthers evidence that the FD analysis of both the EMG and FMG

sensor signals were indeed influenced via muscular fatigue.

For the EMG-FD results the highest gradients observed within the dominant power generating

quadricep muscles, highest average in the RF (x̃ = 0.8025). The median FD gradient of the

hamstring muscles was similar to quadriceps, however with a wider overall spread of results toward

the lower end. This could be due to the reduced usage of these muscles during the cycling activity

(stability-support role) as well as evidence of transient fatigue within the FD signals for the BF and
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ST muscles not being captured via a linear regression fit. The highest individual EMG-FD gradient

was participant 2’s RF (x̃ = 1.0118), however the highest median gradient was by participant 5

(x̃ = 0.8296). Noting that the unequal distribution of effort for participant 5 was distinct through

some of the highest quadricep gradients and lowest hamstring gradients, possible indicators of poor

technique or conditioning.

As with the EMG-FD gradients for the PRS-FD all muscles exhibited a high median average gradient

of fatigue. The RF (x̃ = 0.8296) and VL (x̃ = 0.8296) power generating muscles ranked highest

in the averaged results. Highest overall positive PRS-FD gradient was participant 3 (x̃ = 0.9174),

however much like participant 5’s EMG-FD results (above), the hamstring gradients were nearly

half that of the quadriceps, though still high (x̃ > 0.5). The lowest individual gradients were

highly negative with participant 1’s RF (x̃ =−0.8384) and participant 2’s ST (x̃ =−1.004), likely

indicators of poor technique or conscious discontinued use of the muscle due to poor endurance

capability.
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Table 7.2: Normalised fatigue gradient for all EMG-Fractal values
Subject RF VM VL BF ST median

1 0.7711 0.648 0.6368 0.6814 - 0.6647
2 1.0118 0.9388 0.7818 0.6276 0.7176 0.7818
3 0.7134 0.838 0.7984 0.8982 0.708 0.7984
4 0.0374 0.6483 0.5542 0.7939 0.7864 0.6483
5 0.9434 0.8296 1.0112 0.0404 0.0536 0.8296
6 0.8368 0.358 0.6683 0.4684 0.6029 0.6029
7 0.8025 0.5647 0.7189 0.0649 0.2812 0.5647

median 0.8025 0.6483 0.7189 0.6276 0.6554

Figure 7.6: Boxplot of fatigue gradient trend for EMG-Fractal of Muscles and Participants. Red
shaded area denotes positive gradient and thus fatigue.
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Table 7.3: Normalised fatigue gradient for all FMG-Fractal values
Subject RF VM VL BF ST median

1 0.3051 0.5994 0.3971 0.6006 -0.8384 0.3971
2 -1.004 0.7652 0.2315 0.8485 1.0529 0.7652
3 1.0529 0.9353 0.9174 0.5454 0.5764 0.9174
4 0.9278 0.4665 0.7496 0.6644 0.5309 0.6644
5 0.7243 0.55 0.5538 0.5336 0.9785 0.5538
6 0.6373 0.6452 0.7078 0.7066 0.5642 0.6452
7 0.7702 0.6624 0.7944 0.6642 0.5703 0.6642

median 0.7243 0.6452 0.7078 0.6642 0.5703

Figure 7.7: Boxplot of fatigue gradient trend for FMG-Fractal of Muscles and Participants. Red
shaded area denotes positive gradient and thus fatigue.



104 Chapter 7. Measurement and Analysis of Muscle Fatigue

7.3 Discussion

7.3.1 Fatigue testing using fractal dimensions

Assessment of the fatigue performance over the entirety of the cycling fatigue test was made

through two different measurement methods and two different algorithms resulting in the need to

compare by correlation three different fatigue signals; namely the Fast Fourier Transform (FFT

median frequency of an EMG signal; EMG-MDF) and the fractal dimension for the EMG signal

(EMG-FD) and FMG signal (PRS-FD).

As was confirmed through the EMG-MDF analysis, at one time throughout the testing all muscles

for EMG-FD and PRS-FD exhibited a transient fatigued state. However all measured signals (EMG

and FMG) revealed a near-global increase in their respective fractal dimension, corresponding to

the increases in fatigue enforced by the testing. Statistically significant change in the FD signals

showed that the increasing presence of fatigue within the muscle drove higher instability within

the measured signal, increasing the observed fractal dimension. In general, when considering the

overall behaviour of each participant across all three fatigue assessment methods (see Figure 7.8),

the overall fatigue trend is clearly seen in all signals, with increasing (Fractals) and decreasing

(FFT) trends.

Key Research Discovery

During a fixed-cyclic activity, increases in the presence of muscular fatigue is

reflective in the increased signal instability, thus establishing a causal relationship

between Muscular Fatigue and the Fractal Dimension of the measured signal.

The results also highlight that the use of a linear regression fit leads to non-optimal representation

of the gradient the fractal signal exhibits, where low or negative gradients do not truly capture the

muscles that experienced a transient fatigue state. This raises a need to explore the time dependency

of the results. As at present transient fatigue conditions either, consciously or sub-consciously,

are actively modulated muscle activity to aid in forestalling the effects of fatigue. The cyclic

behaviour by muscles to prevent fatigue through load sharing is evident within the fractal signals

for both the recorded EMG and FMG sensor data. The results relay evidence of the quadriceps as

primary muscles to complete the knee-extensor role during the cycling task, where they experienced

the greatest increases in fatigue-induced instability. Where the hamstrings, traditionally weaker

and under-utilised within cycling, show lower fatigue and function as primarily stability-support

muscles leading to the modulated cyclic fatigue they experience.

To assess time dependency, both median frequency data and fractal dimensions data were normalised.

For comparing the fatigue development across all participants, the time was normalised as well

(due to different experiment durations). The median frequency data and fractal dimensions data

were linearly correlated to the normalised time to assess the percentage of the time dependence

by means of R2 correlation. The R2 values were compared as to their significant difference with

Fisher’s Z-test for comparing correlations from independent samples.
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The normalised FMG pressure fractals correlate with the normalised cycling time in 84% of the

results (R2 = 0.8405, linear fit; 84% of the fatigue level is explained from the time progression of

the exercise). The normalised EMG fractals and median frequencies correlate with the normalised

cycling time in 51% (R2 = 0.5081) and 71% (R2 = 0.7092) of the results respectively.

The R2 value expresses merely that, for the FFT method, 71% of the fatigue level are time-dependent

whereas 29% are not time dependent. Time-independent fatigue would be if a fatigue level or

the average fatigue were kept relatively constant over a longer time. Furthermore, the different

performance levels of the subjects could also contribute to the time-independent fatigue; for example,

more experienced athletes are more skilled in fatigue management over time. FD-EMG reflects

more time independent fatigue (49%) compared to PRS-FD (16%), i.e. approximately three times

as much. When comparing EMG-FD and PRS-FD to EMG-MDF, all three variables correlated to

the normalised time of the experiments, PRS-FD showed highest time dependent correlation (84%),

and EMG-FD the highest time-independent component (41%). These differences come from the

fact that PRS-FD, a measurement of mechanical instability, is more related to mechanical fatigue,

whereas EMG-FD and EMG-MDF are related to central and peripheral fatigue, respectively.

There is indication [Mesin et al. 2009] that shift of the median frequency of the EMG signal is

related to peripheral muscle fatigue (decrease in conduction velocity) whereas the fractal dimension

of the EMG signal is related to central fatigue (increase in motor unit synchronisation). This

seems illogical at first sight, as the higher the amplitude of higher frequencies is, the greater is

the fractal dimension, and therefore any reduction of median frequencies is coupled to a smaller

fractal dimension. This principle can be easily verified when using synthetic fractal signals, such as

Knopp/Takagi function, Weierstrass cosine and Weierstrass-Mandelbrot functions, and stochastic

Brownian Motion function [Fuss 2013]. However, EMG data are not based on functions that

generate signals with predefined fractal dimensions. As such, low median frequencies and small

fractal dimension do not necessarily exhibit a parallel trend. This possibility is also affected by the

method used for calculating fractal dimensions.

Additionally there is indication that a power-trained subject is more affected by peripheral fatigue

whereas an endurance trained subject was more prone to central fatigue [Mesin et al. 2009]. It is

therefore expected that the correlation of fatigue parameters that measure different components of

fatigue is not necessarily high. This correlation is not just affected by the fatigue component, but

also by the distribution of training type across the participants of a study. For example, participant

3 identifies as a long-distance cyclist and therefore endurance trained, whereas participant 4 is a

soccer player and thus power-trained.

If EMG-MDF and EMG-FD are related to central and peripheral fatigue, respectively, then PRS-FD

could be related to mechanical fatigue. Mechanical fatigue is actually defined as the failure of the

muscle system, i.e. that the force level cannot be maintained anymore [Basmajian & De Luca 1985].

Nevertheless, metabolic fatigue (measured with EMG) becomes apparent even before system failure

[Basmajian & De Luca 1985]. As such, the term mechanical fatigue is probable not appropriate,

and should be replaced by mechanical pre-fatigue.
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Figure 7.8: Normalised average fatigue (fractal dimensions and median frequency) vs. normalised
time: (A) FMG fractal, (B) EMG fractal, and (C) EMG median frequency for all participants.



7.3 Discussion 107

This chapter explores a range of key muscular measurement and analytical techniques, but focus is

placed on the exploration of measuring muscle fatigue through a novel fractal dimension analysis

technique using both electrical and mechanical (pressure) measurement techniques. Evaluation was

based on the calculation of the fractal dimensions of FMG and EMG signals. For calculating these

fractal dimensions, Fuss’ method was used as it maximally separates the fractal dimensions FD

of a normal and an abnormal signal, by finding the maximum differential of FD-abnormal minus

FD-normal, when subjecting both signals to the same amplitude multiplier. Normal and abnormal

signals could be physiological/pathological ones, less/more chaotic ones, signals from fresh and

fatigued states, low/high activity signals, etc.

From common sense, the abnormal signal is expected to have a higher fractal dimension. Common

sense is confirmed if there is a maximum differential and the two asymptotic fractal differentials at

multipliers of close to 0 or to infinity are smaller than the maximum. It has been seen on numerous

occasions, that Higuchi’s method, corresponding to Fuss’ method with an infinite multiplier, returns

higher FD for normal signals [Fuss 2013, 2016], compared to abnormal ones. This problem is seen

here as well, more pronounced in the EMG-FD data, though. This behaviour is not unexpected in

the EMG signal, as the decreased amplitude of high frequencies in the power spectrum (typically

seen in fatigued muscles) leads to a decrease of FD. The increase in EMG amplitude, also typical

for fatigue, increases the FD. If the cadence drops, so does the FD. Even if there are multiple

influences that affect the FD, it would be more logical to assume that the FD of a fatigued muscle’s

signal is smaller than the one of a fresh muscle, if the principle of left-shift of the median frequency

is known.

Irrespective of logical assumptions, all three methods applied, EMG-MDF, EMG-FD and PRS-

FD, showed the same clear trend, namely that fatigue increases with time, with some individual

differences between participants. Over the duration of the cycling exercise this deterioration in

the ability to produce consistent power was clearly reflected in the fatigue parameters (fractal

dimensions and median frequency) obtained from the surface electrical (EMG) and mechanical

(FMG) activity.

7.3.2 Muscle Fatigue Affect: Power-Stability relationship

Introduced within Section 6.4 and further discussed throughout this chapter is the power-stability

relationship observed between the muscle groups. Within Figure 7.9 we see the fatigue distribution

of the muscular efforts for two participants, using the PRS-FD method. Whilst the singular task set

for the test was to maintain a constant power output, no restrictions were placed on which muscles

could be used to achieve this goal. Due to this participants presented unique muscle usage profiles

throughout the tests, yet a distinct pattern was observant within the muscular behaviour across all

participants. That was that loading-recovery cycles were evident (see sinusoidal behaviour in VM,

VL & BF of Figure 7.9B) throughout the duration of the test when stability-support muscles were

unable to provide the consistent power generation needed throughout the activity.

Muscular conditioning plays a significant driving role for this behaviour and thus becomes further

apparent when you explore the PRS-FD response for two of the more experienced participants
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within the test. Both participant 3 and 6 are accomplished cyclists yet in distinctly different exertion

training areas. Where one participant (3, Figure 7.9A) focuses largely on long distance endurance

training, the other (6, Figure 7.9B) maintains shorter duration track sprint training and performance.

Figure 7.9: Normalised PRS-FD fractal fatigue response for A) endurance conditioned participant
3, and B) power conditioned participant 6.

Conditioned to duration-based fatigue training, participant 3 clearly drives all five muscles almost

equally throughout the test, presenting a similar fatigue curve across all 5 muscles. Whilst some

muscles perform more consistently with less fluctuation in the fractal curve, in essence each muscle

has not been tasked with an activity it alone cannot sustain. Participant 6 however trains specifically

in cycling sprint and power events. Although possessing conditioned muscles, the long-term fatigue

exposure of the test is not complementary to the standard training regiment. As a result both the

Vasti (VM, VL) and Biceps Femoris (BF) muscles exhibit greater cyclic load-recovery behaviour

(approximately 3.5 cycles lasting 2-3 minutes each) consistent with that of stability-support muscles.

The participant’s main power-generation muscles however the Rectus Femoris and Semitendinosus

(RF, ST) exhibit the constantly increasing fatigue curve similar to that of participant 3.

The exploration of this Power-Stability relationship is critical in the evaluative understanding of

performance and the development of an athlete. It provides clear evidence of recovery behaviour
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of muscles during a fatigue-dominant training test. Importantly it provides a method in which

to isolate performance traits between athletes to better assign or develop athletes to appropriate

competitive activity based on their unique muscular response to a fatigue inducing condition.

7.3.3 Muscle Fatigue Affect: Antagonist load sharing

The analytical techniques employed above all showed evidence of transient fatigue behaviour within

the activity. This behaviour hinted at muscle load-sharing to the effect of forestalling the influence

of fatigue, largely present within the less conditioned muscles. Observation of this behaviour

with respect to the antagonistic pairing of the Quadricep and Hamstring muscles yields a unique

distinction in the FD signal behaviour - namely muscle pairs work together to alleviate fatigue

through overwork-underwork cycles. This behaviour is clearly demonstrated between the RF and

BF antagonistic muscles within Figure 7.10. Specifically in Figure 7.10A we see that over the full

(macro) duration of the test, both muscles experience increases in their FD signal (dotted line),

yet interestingly when observing the micro-fluctuations during the test it becomes evident that the

signals of the RF (blue) and BF (green) behave as almost mirrored signals to one-another.

Figure 7.10: (A) Load-sharing between antagonistic RF and BF muscles. (B) Phase shift of the
load-sharing cycle

These mirrored signals reveal that whilst a positive trend in the FD is concurrent with the global

increase in fatigue across all muscles, transient fatigue cycles reveal significantly higher rates of

fatigue (beyond one order of magnitude larger). The mirrored nature of the paired signals indicates

that this transient fatigue process is the result of one muscle working harder, thus inducing a higher

fatigue rate penalty, whilst the paired muscle is given suitable time to rest and reduce the impact of

fatigue it has sustained in the previous cycle. Once a threshold of limitation is reached by either the

Fatiguing or Recovery muscle, this process is reversed producing the elliptical phase shift behaviour

shown in Figure 7.10B.
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Key Research Discovery

The Fractal Dimension of fatiguing antagonistic muscles exhibit a mirrored signal

relationship that is evidence of load-sharing behaviour. This allows for transient

periods of alternating fatigue-recovery cycles that assist in forestalling ultimate

fatigue-induced muscular failure.

The significance of this discovery lies in the ability to now observe and quantify a traditionally

subjective (somewhat subconscious) decision made by an athlete during an activity as to how they

utilise fatiguing muscle groups. Where data-driven performance and endurance focused training can

implement knowledge of these load-sharing cycles to monitor and/or control the threshold at which

the cycles occur, increasing an individual’s fatigue tolerance and overall athletic performance.

An important remark on the mirrored behaviour is that the recorded signals demonstrate only the

muscular behaviour of a single leg. Wherein, as the bicycle crank enforces an 180 degree offset in

left-right muscle use, we are only observing half of the relationship. Thus further testing utilising

both legs is necessary to improve the understanding the antagonistic pairs across both legs have

on the load-sharing relationship. However, Antagonistic pairs may not always work against one

another to balance fatigue onset, where results from testing are indicative that between particular

muscle groups (i.e. Quadriceps) the muscles will share fatigue-recovery loading behaviour between

each other to alleviate fatigue affects without compromising the performance of the muscle group

as a whole. Figure 7.11 shows this behaviour, where the two Vasti muscle begin the activity in a

load sharing behaviour, but mid-activity (∼325 seconds) begin working in sync to one-another.

Figure 7.11: Antagonistic load-sharing between the VM and VL muscles for participant 4 (PRS-FD)
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7.4 Summary

Muscle activity and fatigue performance parameters were obtained and compared from a smart

compression garment measuring force myography (FMG) activity and the gold-standard, a surface

electromyography (EMG) system during high speed cycling in seven participants. The muscle

activity was assessed by means of crank cycle diagrams (polar plots) that displayed the muscle

activity relative to the crank cycle. The muscle fatigue was assessed by means of the median

frequency of the power spectrum of the EMG signal; the fractal dimension of the EMG signal; and

the fractal dimension of the FMG pressure signal.

The smart compression garment returned performance parameters (muscle activity and fatigue)

comparable to the surface EMG. The major differences were that the EMG measured the electrical

activity, whereas the FMG pressure sensor measured the mechanical activity. As such, there was

a phase shift between electrical and mechanical signals, with the electrical signals preceding the

mechanical counterparts in most cases. This is specifically pronounced in high speed cycling.

The fatigue trend over the duration of the cycling exercises was clearly reflected in the fatigue

parameters (fractal dimensions and median frequency) obtained from FMG and EMG signals.

The fatigue parameter of the FMG signal (fractal dimension) showed a higher time dependency

compared to the EMG signal. This reflects that the FMG pressure signal puts more emphasis on the

fatigue as a function of time rather than on the origin of fatigue (e.g. peripheral or central fatigue).

Key observations were identified from the analysis of works within this chapter:

• Increasing influence of Muscular fatigue has a direct affect on the instability of a muscle’s

contractile behaviour. Measuring instability through a Fractal Dimension analysis allows for

a new, near real-time analytical technique evaluating muscle fatigue behaviour through either

electrical or mechanical behaviour.

• The fatigue parameter of the FMG signal (fractal dimension) showed a higher time depen-

dency (R2 = 0.84) compared to the EMG signal. This reflects that the FMG signal puts more

emphasis on the fatigue as a function of time rather than on the origin of fatigue (peripheral

or central).

• Muscle conditioning and training plays a strong role in the behaviour of the leg muscles

throughout the test. Power generating and stability muscles are clearly identified by their

fatigue performance.

• Load-sharing between muscles can be further explored to show the balancing of load to

alleviate/induce periods of fatigue beyond the continuing trend of the overall fatigue growth.

This suggests muscles are capable of sustaining significantly higher fatigue levels for finite

periods of time to allow supporting paired muscles time to recover without reducing overall

power output from the muscle system as a whole.
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8. Conclusions and Recommendations

The work of this thesis explored a key research gap surrounding monitoring muscular performance

using surface pressure variations across the body. While significant existing works had been

established looking at such performance using muscular electrical behaviours through surface

Electromyography (EMG), alternate exploration of the mechanical changes to the body have been

largely untouched in comparison.

This work undertook portions of this exploration, building upon work by others in the research

field of Force Myography and muscular performance monitoring. The work utilised gold standard

methods employed within research, namely Electromyography and video-based Motion Capture,

to assist in understanding advantages and limitations of monitoring mechanical surface pressure.

Importantly this is from an Engineering lens (over a more traditional biological one), exploring the

human body as an unstable and dynamic mechanical system, one that requires the exploration of

both significant robustness and flexibility for any performance monitoring solution.

The establishing body of work surrounding FMG monitoring is still in early stage development, yet

has become increasingly popular as researchers and practitioners look to alternative monitoring

techniques to overcome the limitations and challenges within the established gold standard methods.

As a result of an exhaustive literature search a defined gap within the field was identified and the

following research questions posited as a means to explore and build upon the body of literature.

Q1 How can deformation changes in the physical surface of a limb during activity be utilised for

quantification of muscular activity levels?

Q2 With an understanding of the muscle loads associated with a set activity, how can we further

determine the non-measurable loads (i.e. knee ligament loads, fatigue), that otherwise cannot,

or have not been measured before within a real-time measurement capacity?

Q3 What insight can the analysis of temporal loading conditions on the muscle surface provide?

The research work contained explored these questions through a defined methodology of testing

and evaluation, presenting a summary of the findings, limitations and conclusions of the work.
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8.1 Conclusions

The thesis encompasses the research and development undertaken of a smart garment capable of

monitoring muscle performance of the lower limbs. It explored the limitations of gold standard

measurement techniques and introduced a novel monitoring technique as an additional tool in

performance measurement. It addressed three general gaps in the knowledge base through the

development of a wearable FMG measurement system, the application of FMG in muscular activity

analysis, and the detailed Fatigue analysis of cyclists using an FMG system and a novel signal

analysis approach.

Part One (Chapters 1-3) explored the need, gaps in knowledge and necessary research development

of a muscular monitoring solution using Force Myography. This involved the design of a novel

pressure sensors capable of unobtrusive pressure monitoring whilst underneath a compression

garment. The design, calibration and deployment of the supporting system was paired with the

understood gold standards of Surface Electromyography for electrical muscle activity, and video-

based Motion Capture to determine relevant limb positioning. The completed ‘Smart Apparel’

system and calibration procedures are detailed for the exploration of key performance parameters,

including muscular activity, loading, co-contraction, ligament force and muscle fatigue. This system

bceame the foundational testing apparatus in exploring the three research questions.

Part Two (Chapters 4-7) explored the Research Implementation, namely the application of Smart

Apparel to address the three research questions.

Chapter Four presented testing of muscular behaviour during knee extension and flexion activity,

showing that muscular activity measured through FMG correlates to increases in the shank loading,

the EMG measurement and the biomechanical loading model. This research demonstrated that

Pressure-based FMG allows for the detection of separate muscular activation across 5 muscles, and

determined that changes in limb loading conditions were correlated to muscle surface pressure.

Limitations of the method however are raised in the need for baseline calibration procedures and

sensor placement considerations throughout the limb range of motion to remove dynamic pressure

changes introduced through muscle belly movement. This directly explored research question 1

and presents evidence that surface pressure activity is determinant of muscle activation and loading.

Chapter Five highlighted the exploration of the biomechanical link which the muscular activity

of the upper leg has with the Cruciate Ligaments (CL) within the knee. The work approaches the

connection of upper leg muscular activity and knee flexion angle to determine a novel analytical

model to determining CL forces using the muscle activity outputs and knee flexion angle from

the smart garment. This work directly addressed research question 2 and demonstrated that the

real-time monitoring of ligament conditions within the encapsulated knee joint are possible through

evaluation of muscle activation of the quadriceps and hamstrings, and the knee flexion angle.

Chapter Six explored the application of FMG monitoring on muscular activity performance during

cycling. It demonstrated that pressure-based FMG is suitable for muscle activation and load

monitoring of athlete cycling performance. The testing demonstrated the suitable use of FMG
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alongside EMG to monitor the fatigue-induced changes in peak activation load and position of

muscle during the crank cycle relative to a non-fatigued and fatigued condition. Furthermore, a key

highlight of the work demonstrated the limitation in the gold standard method (EMG) to maintain

reliability and accuracy with increasing high speed activity. The electromechanical delay present

within this system is discussed and compared to the Pressure FMG technique demonstrating an

advantage the mechanical technique has during high cadence cycling. This work directly addressed

all three of the research questions.

Chapter Seven further explored the dynamics of fatigue throughout the duration of the cycling test

activity performed in the previous chapter. A novel approach is introduced to calculating a fatigue

index across the entirety of the tests using the analysis of the fractal dimension of both the electrical

(EMG-FD) and mechanical (PRS-FD) signals. This technique is compared to the established

gold-standard by which the median frequency of the EMG signal is monitored (EMG-MDF). The

chapter presents findings that during a fixed-cyclic activity, increases in the presence of muscular

fatigue is reflective in the increased signal instability, establishing a direct relationship between

muscle fatigue and the fractal dimension of the signal. Furthermore, the technique also highlighted

the unique partnership that paired muscles (particularly antagonistic pairs) employ to manage

fatigue onset. Fractal analysis of the FMG pressure signal revealed the amplified fatigue-recovery

load sharing behaviour muscles undergo to maximally extend the duration of an activity before the

limitation of fatigue-induced failure occurs. This chapter directly addressed all three of the research

questions.

In summary, the use of compression garments and pressure sensors based on Force Myography is a

valid alternative to the established EMG-garments and provides an alternative method to capturing

muscular activity as a means to represent loading and activation timing. Whilst the novel technique

requires further work in on-body calibration, it proves to provide accurate results during high-speed

activity (avoiding the electro-mechanical delay) in comparison to EMG. Furthermore, through the

post-processing of pressure variations a clear observation and measurement of mechanical muscle

fatigue is possible, with greater insights into muscular load-sharing during transitioning fatigue

conditions and the subsequent involuntary muscle activation responses made to extend overall

functional muscle output. As such, the work leads to the conclusion that utilising an instrumented

compression garment with pressure sensors and Force Myography is a beneficial tool toward

providing direct feedback to an athlete of their muscle and soft tissue behaviour, and ultimately

provides an avenue to reduce the prevalence and likelihood of sports-related injuries.
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8.2 Future work recommendations

The following recommendations for future work are made to address both limitations observed

within the completed works and highlighted opportunities for further exploration:

• Custom garment design - Off-the-shelf compression garments were utilised and were limited

in design of compression zones and siliconised areas. Development of a custom garment will

aid in targeted sector compression, reducing the mechanical crosstalk from other muscles.

• Multiple position sensors - Positioning of additional sensors along the longitudinal line of the

muscle belly movement to capture peak muscle pressure during full range of limb movement

activities.

• Dynamic calibration - Utilisation of a digital dynamometer to capture force generation and

angle to improve calibration of sensors to muscular force. Secondly this will aid in efficient

capture of dynamic zero baseline pressures throughout full limb range of movement.

• Eccentric and concentric analysis - Leg extension and flexion only considered a single

direction of movement during concentric muscle activation. Differing muscle performance

was observed within the results of eccentric and concentric muscular behaviour but detailed

exploration was not performed.

• Dual leg analysis - Further analysis of muscle fatigue monitoring on both legs during cycling

fatigue tests. Current testing was restricted to only a participant’s right leg, limiting the

availability on insights into dominant leg usage and load-sharing across limbs. In addition,

instrumentation of the crank arms with power meters would be beneficial.

• Hybrid system - Incorporate both the gold standard (EMG) and new (FMG) techniques to

build upon limitations of each system using the strengths of the other.

• Portable system - Use of an integrated wiring and electronics solutions. Incorporating

IMU-based positional trackers to determine limb angles over static motion-capture camera

systems.
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A. Correlation of Muscle Fatigue Behaviour

A.1 Fractal Dimension: Method Selection

Works highlighted by Fuss (2013) show that the varied FD techniques within literature result in

non-identical analytical outcomes. At times, the results produced can behave in contrary to one

another, or in contrast to a confidently hypothesised outcome based upon literature. An example of

this was shown within Tan, Fuss, Weizman & Azari (2015), where the stability of a participant was

measured on a force plate whilst standing on a solid plate, or on a foam pad. The expected results

(from literature and logical deduction) was to observe higher fractal behaviour whilst standing

on foam due to increased instability in movement of the centre of pressure. However the results

of the initial fractal analysis indicated this to be the more stable of the two measured conditions,

an unexpected outcome of the work. This aligned with earlier work by Doyle et al. (2005) who

determined a similar issue with the fractal technique in use, a method proposed by Higuchi (1988),

was responsible for the difference in expected results to the hypothesised outcome of an eyes

-open/-closed stability test. Adjustment of the FD technique utilised by both authors corrected the

result to match that of literature and expected findings.

In the development of the presented work, determination of the correct FD techniques was also

necessary. Fractal analysis of the observed signals through the Higuchi technique revealed an

M-value tending towards infinity, or provided an M-value where the differential between the two

extrema was negative (reversed). Whilst being unusable, this also leads to a counterintuitive

response in the hypothesised fractal dimension response of fatigue; suggesting that at higher fatigue

conditions, the behaviour of the muscle was less chaotic. As shown in Figure A.1 utilisation

of the FD technique proposed by Fuss, provides a greater (positive) differential condition more

appropriately useful to the FD analysis of the signal.
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Figure A.1: Highlighted difference in Fractal method selection; Fuss’s MAFDM and the Higuchi
methods

A.2 Fractal Dimension: M-Value Selection

An optimal multiplier value is determined for each signal, however due to different muscle properties

and loading conditions this multiplier is not always common between all muscles. To ensure suitable

amplification of the fractal signal a common multiplier for all muscles must be calculated.

This was achieved by performing the following steps (shown in MATLAB pseudocode):

1. Calculation of the gradient for each signal and isolating only the positive component by

taking the product of the gradient and the Heaviside function of the gradient and finally

normalising each resultant signal to allow for summation with the other muscles.

n = GRAD(:,2,i)-GRAD(:,1,i);

B(:,i) = normalise(n .* Heaviside(n))

2. Determine the ’sign’ of the number (neg or zero numbers = 0; pos =1)

X = sign(B);

3. Calculate the product (later corrected to mode) across the array to determine the first signal

that goes "negative" - this is the LIMIT point

Y = mode(X,2);

4. Remove the summed values after the LIMIT point, this effectively stacks the graphs on top

of each other by using sum(BB,2)

Z = sum(B,2) .* Y;

5. Determine the max point (peak) in the summed signal; the index (x-axis) of which corresponds

to the M-value of the multiplier

[maxSum,indexSum] = max(Z);

multiplier = M(indexSum);
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Figure A.2: Visual output of calculation process for the common multiplier
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