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ABSTRACT 

Parkinson’s disease (PD) patients suffer gait disturbances, which are a major cause of 

disability, falls, reduced mobility, and quality of life. Gait assessment is important in the 

diagnosis and monitoring of the disease. Gait is one of the measures observed in the Unified 

Parkinson’s disease rating scale part III (UPDRS III) and is scored by clinical observations 

to determine the severity of disease and efficacy of treatment. However, this is a subjective 

test and there is a need for quantifiable gait analysis to study the PD patients.  

Walking patterns such as turning are affected in the early stages of the PD patients. The 

main consequence of turns in PD are falls or triggers freezing of gait (FOG), which can result 

in severe immobility and reduced quality of life. Thus, it is very important to evaluate the 

turning ability in PD and to investigate the effect of gait intervals across different turns. 

During the Unified Parkinson’s disease rating scale (UPDRS) screening, neurologists 

observe their patients during the turn phase of their walks, but this is subjective and has not 

been quantified. 

As the first objective, a series of experiments were performed on 72 participants: 24 

with PD, 24 age-matched controls, and 24 young controls. The data recording was performed 

using a wireless inertial measurement unit (IMU), which can record acceleration, rotation, 

and surface electromyogram (sEMG) signals. The experimental protocol required the 

participants to walk in different turns and straight walking, designed in such a way that 

resembled the activities of daily living.  

This research has investigated the effects of gait and muscle parameters based on the 

severity of disease and during turning. The study has proposed that variance and fraction of 

the gait sub-intervals can be used to estimate the severity of the disease. The study also shows 

that the variability of gait sub-interval, irrespective of the walking pattern, straight-line 

walking or turning, is suitable for the evaluation of PD patients, and differentiating from 

control. Finally, investigating the muscle characteristics of Tibialis anterior (TA) and Medial 

gastrocnemius muscle (MG), it was observed that there is an increase in co-activation, 

reduction in TA modulation, and increase in TA and MG lateral asymmetry among PD 

patients when compared to the control.  
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This research output has the potential to be used for the population-based screening for 

early diagnosis of disease while the patient performs simple walking and there is no need to 

perform the complicated task for evaluating PD. The research also highlights the importance 

of the sub-intervals of gait, which can be used for monitoring the progression of the disease 

and differentiating between PD and the control group. This method offers an alternative to 

the subjective measures used by clinicians. Additionally, the muscle characteristics can help 

clinicians better understand the neuromuscular activation underlying muscle contraction and 

altered muscle activation, resulting in gait impairment.  
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Chapter 1 

1.  Introduction 

1.1 Introduction 

Parkinson’s disease (PD) is a progressive neurological condition that is caused by the 

degeneration of neurons in the part of the brain known as substantia nigra (Jankovic, 2008). 

These neurons play a significant role in controlling the movement and locomotion of the 

human body. Decline production of dopamine neurotransmitter in the substantia nigra leads 

to the excessive inhibition of the basal ganglia loop leading to the loss of habitual patterns 

associated with walking (Ringeval et al., 2015) and also causes rigid movement and 

decreased range of limb movement (Snijders et al., 2007).  

PD patients have gait and postural impairment (Abraham et al., 2018; Marinus et al., 

2018; Vetrano et al., 2018). Their gait and posture are one of the major symptoms and is used 

for diagnosis and monitoring of the disease (Borzi et al., 2019; Buckley et al., 2019; Heijmans 

et al., 2019). Expert neurologists monitor their patients by observing their gait to determine 

the progression of the disease and efficacy of the treatments, which requires a significant 

time of the experienced neurologist (Kerr et al., 2010; Adams and Leveson, 2012). Timely 

identification of gait and posture disorder symptoms and monitoring its progress in these 

patients can prevent falls and related injuries (Modarresi et al., 2018; Fernandez et al., 2019).  

In PD patients, the magnitude of variability in gait is a significant parameter that helps 

in identifying the dynamic features (Frenkel et al., 2005; Olmo and Cudeiro, 2005). Gait in 

PD patients is characterized by reduced stride length, gait speed, swing interval and increased 

double support interval (Morris et al., 1998; Sofuwa et al., 2005; Combs et al., 2014). For 

straight walking, the stride interval, swing interval, and stance interval reported an increased 

inter-parameter variability for PD patients when compared to control (CO) (Crenna et al., 

2007; Huxham et al., 2008).  



2 

 

 

Some walking-related activities such as turning in PD patients are even worse in the 

early stages of disease requiring more time to complete the turn (Crenna et al., 2007). Turning 

while walking is a common task performed by every individual in daily living. Turning is a 

complex task, that requires the central nervous system to coordinate body re-orientation 

towards a new direction while continuing with the on-going step cycle and maintaining 

postural stability in the medial-lateral plane (Mellone et al., 2016). Turn often triggers FOG 

events or falls in PD patients, which are termed as adverse events in case of PD. The 

dysfunctions in PD patients are linked to the loss of habit control systems in the basal ganglia, 

leading to greater dependence on voluntary control (Ringeval et al., 2015). Thus, it is very 

important to evaluate the turning ability in PD patients and to investigate the effect of gait 

sub-intervals across different turns. Currently, expert neurologist or clinicians commonly use 

UPDRS scale for monitoring and diagnosing the severity of disease. UPDRS scale consist of 

both motor and non-motor symptom assessment. Gait is one of the measures of UPDRS, 

which comprises of straight walking and turn. Neurologists observe their patients during the 

turn phase of their walks, but this is subjective and has not been quantified. 

The study on muscle activity while walking can reveal clinical information on the gait 

deficits in PD patients (Bailey et al., 2018). Normally muscles stretch when they move and 

reflex when they are at rest. But for PD patients, muscles may not reflex, causing rigidity and 

difficulty walking (Busse et al., 2006). Surface electromyography (sEMG) analysis of muscle 

activity during gait is an efficient tool in differentiating PD patients from control and has 

applications for rehabilitation and detecting pathological gait conditions (Mariani et al., 2013). 

The transition from stance to walking is a result of a coordinated pattern of muscle activity 

(Lacquaniti et al., 1999). For CO, one of the muscle groups acts as an agonistic muscle and 

other as antagonistic muscle. Simultaneous activation of agonistic and antagonistic muscles 

results in joint stiffness and provides postural and movement instability (Latash, 2018), but 
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excessive coactivation can produce negative work, reduce the net torque at the joint and 

increase rigidity (Busse et al., 2006). Thus, there is a need to understand the muscle activation 

strategy in PD patients during different sub-intervals of gait, which can help the clinicians 

manifest the neuromuscular activation underlying the muscle contraction and altered muscle 

activation, resulting in gait impairment.  

1.2 Problem statement 

The walking style of PD patients, the Parkinsonian gait (PG), is characterized by small 

shuffling steps and hypokinesia. Deterioration of the gait of PD patients is a major cause of 

their falls and injuries (Allcock et al., 2009; Latt et al., 2009; Contreras and Grandas, 2012) 

and is an indicator of the progression of the disease (Bloem et al., 2001; Balash et al., 2005; 

Allcock et al., 2009).  Many studies have quantified the differences in the gait of PD patients 

and control participants (Rios et al., 2001; Hausdorff et al., 2003; Hausdorff et al., 2007). 

While there are many studies on differentiating PD patients from control, the relationship 

between gait parameters, and the severity of the disease is not studied. This research focused 

on several key elements of the gait sub-interval: stride, swing, stance, and double-support 

interval.  

Secondly, turning movements in PD patients have reported increased turning time, turn 

arc and number of steps to complete the turn (Crenna et al., 2007; Huxham et al., 2008; 

Spildooren et al., 2013). Turning is the most important trigger for FOG in PD patients. The 

main consequence of turns in PD patients is lateral falls, which can result in an eight-fold 

increase in hip fractures compared with falls during straight walking (Mellone et al., 2016; 

Johannesdottir et al., 2017). Thus, it is very important to evaluate the turning ability in PD 

patients and to investigate the effect of gait intervals across different turns, which has not yet 

been done. This research investigated the difference in the gait of patients with PD, age-

matched controls, and young controls during three turning walking patterns. 
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Thirdly, a coordinated pattern of muscle activity is required during the transition from 

stance into walking. It has been observed that while CI increases for both, PD patients and 

the elderly, the mechanism appears to be very different. An increase in CI for the elderly is 

due to an increase in the muscle activation during mid-stance (Schmitz et al., 2009), in PD 

patients it is due to a reduction in the activity of lower limb muscle (Cioni et al., 1997). To 

better understand the muscle activation pattern in PD patients, it is essential to investigate the 

sub-phases of gait. The study with the elderly has revealed that there is a significant change 

to CI over the different sub-phases of the gait (Schmitz et al., 2009) when compared to young 

healthy. However, such a study has not yet been done for PD patients for straight-line walking 

on a level surface. 

The thesis aims to address three of the gaps identified in the literature- to study the 

relationship between gait parameters and the severity of disease in PD patients, investigate 

the difference in the gait parameter during different walking pattern and understand on the 

muscle activation pattern of  TA and MG muscle while walking in PD patients. The rationale 

for selecting TA and MG muscle for this study was due to its important role in helping to 

walk. These muscle groups activate concurrently resulting in transition from stance into 

walking and provide balance to human body (Neptune and McGowan, 2011). The changes 

in muscle activation patterns of TA and MG muscle reflect the impairment in motor control 

and movement, further resulting in limited control of limbs (Mitoma et al., 2000). 

1.3 Research questions 

This thesis aims to answer the following research questions- 

Q1: How does the gait parameters vary with the severity of PD?  

Q2: How does the gait parameters vary during straight line walking, U-turn, and turn 

around a point between PD patients and control? 
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Q3: How does Tibialis anterior (TA) and Medial gastrocnemius (MG) muscle 

activation vary between PD patients and control for different phases of gait?  

1.4 Outline of the thesis 

This thesis is divided into the following chapters: 

Chapter 1 gives an introduction and research questions for this research study. 

Chapter 2 introduces Parkinson’s disease and its symptoms.  

Chapter 3 presents an overview of the literature on gait analysis in Parkinson’s disease 

patients. This chapter also explains the sensor and its validation performed 

for this study.  

Chapter 4 provides a multidisciplinary review on IMU sensors used for gait analysis.  

Chapter 5 reports the changes in the gait parameters based on the severity of 

Parkinson’s disease and compared with control.  

Chapter 6 discusses, the difference in gait parameters based on the walking pattern of 

Parkinson’s disease patient, age-matched control, and young control.  

Chapter 7 describes the difference in muscle activation strategies of Parkinson’s 

disease patients, age-matched control, and young control.  

Chapter 8 provides the conclusion of this research work and the future work related to 

this research is proposed.  
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Chapter 2  

2.  Parkinson’s disease 

2.1 Introduction 

This chapter provides an overview of Parkinson’s disease. It details the physiology and 

symptoms related to the disease. The currently used rating scale to evaluate the symptoms of 

PD is also described.  

2.2 Parkinson’s disease physiology 

Parkinson’s disease is a progressive neurological condition that affects the movement 

of the body. In Australia, approximately 80, 000 people are living with Parkinson’s disease, 

the average age of diagnosis to be 60 years (Economics, 2015). PD is caused due to the 

declined production of dopamine in the brain. Dopamine is responsible for controlling the 

movement and locomotion of the human body. Many of the cells that produce dopamine are 

in the middle part of the brain, known as Basal ganglia. Figure 2.1 represents the neuron 

pathway in the middle part of the brain. There are two pathways -direct and indirect pathway, 

through which signals are transmitted to the cerebral cortex from the substantia nigra. From 

the cortex, the signals are transmitted to different muscles for performing a certain task.  

 

Figure 2.1: The schematic representation of the neuron pathway in the brain. The left side represents the healthy 

brain and the right side represents the PD brain neuron pathway (Borg, 2006). 
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In figure 2.1, D1 shows the direct pathway which helps in exciting the output from the 

thalamus to stimulate the actions, while D2 is the indirect pathway, which helps in suppressing 

the unwanted actions. The signals are transmitted by the dopamine neurotransmitter and hence 

any imbalance in the dopamine affects the balance of the pathway. In figure 2.1, the left side 

represents the healthy brain and right side represents the PD brain. The cause of decline of 

dopamine in the brain is unknown (Borg, 2006). 

2.3 Parkinson’s disease symptoms 

2.3.1 Motor symptoms 

The most common motor symptoms of PD are 

• Resting tremor: Resting tremor is the shaking movements in lower and upper 

extremities when no action is performed or at rest. In the early stages of the disease, 

about 70 % of the PD people experience a slight tremor (Helmich et al., 2012). This 

tremor usually stops when the patient begins an action. 

• Bradykinesia: It is the slowness in the movement. PD people with bradykinesia walk 

with short and shuffling steps (Politis et al., 2010). With the progression of the disease, 

PD patients have trouble in walking and limb co-ordination.  

• Rigidity: Rigidity is the inflexibility and stiffness of the limbs, causing resistance to 

movement. For a healthy individual, muscles normally stretch when they move and 

relax when they are at rest. In PD patients, the muscles may not always relax and this 

caused a decreased range of motion (Dipiro et al., 2014).   

• Postural instability: The most important sign of PD is postural instability, a tendency 

to be unstable when standing upright (Palakurthi and Burugupally, 2019). Some 

patients develop a tendency to sway either forward or backward while performing 

certain tasks such as rising from the chair, standing, or performing a turn (Kim et al., 

2013). Postural instability along with FOG is the most common cause of falls and 

related injuries in PD patients (Jankovic, 2008).  
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2.3.2 Non-motor symptoms 

The most common non-motor symptoms of PD are depression, emotional changes, 

dysphagia, cognitive dysfunction, and sleep problem. These symptoms can be treated with 

medication and therapy (Hauser, 2006).  

2.4 Diagnosis of Parkinson’s disease 

There is no specific test to diagnose PD. Currently, PD is diagnosed by expert 

neurologists or clinicians based on clinical observation and self-reported symptoms. They 

evaluate the motor and non-motor symptoms of PD using a scale- UPDRS and Hoehn & Yahr 

scale (H&Y), (Goetz et al., 2004; Goetz et al., 2008) the intensity and disability scales using 

the Unified dyskinesia rating scale (UDysRS) (Goetz et al., 2008). In this research, we have 

used these scales to study the motor symptoms and measure the severity of the disease. Also, 

the cognitive impairment in the participant was assessed using the Montreal cognitive 

assessment (MoCA) (Nasreddine et al., 2005). For more details on the scales used, refer to 

Appendix I, II, III and IV.  

H&Y scale was developed based on the concept that the severity of disease is related to 

the bilateral motor involvement and balance or gait impairment. The motor impairment was 

divided into different stages. Stage 1 are those with symptoms only on one side (Unilateral), 

stage 1.5 are those with unilateral symptom plus neck and spine involvement, stage 2 are those 

with symptoms on both side but no balance impairment, stage 2.5 are those with mild 

symptoms on both side with recovery on pull test, stage 3 are those with mild to moderate 

symptoms on both side with balance impairment and physically independent, stage 4 are those 

with severe disability but still able to walk or stand unassisted and stage 5 are those bedridden 

and need wheelchair for mobility.  

H&Y scale can be used for the overall assessment of the severity of disease. The main 

limitation are – the scale focuses only on objective signs or disability of the patient and does 

not take into consideration many other clinical situations, a large variety of the impairment 
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are combined together to form stages and motor and non-motor impairments are not 

considered. To overcome these limitations, UPDRS was later introduced as primary outcome 

measure of treatment efficacy and H&Y scale as the descriptive categorical scale in PD (Goetz 

et al., 2004).   

UPDRS is the clinical rating scale comprising of four parts- Part I assess the behavioral 

problem, Part II assesses activities of daily living, Part III assesses motor examination and 

Part IV covers complications of therapy. This study has used only UPDRS part III (UPDRS 

III) for evaluating motor symptoms in PD patients. Gait is one of the measures for the UPDRS 

III used to study the progression of the disease and is scored by visual observation of the 

walking pattern. The basic postural instability in PD patients is studied using the UPDRS - 

Postural Instability and Gait Disturbance (PIGD) which is calculated as the sum of sub-score 

of UPDRS III items: comprising of arising from a chair, posture, gait, postural stability, and 

body bradykinesia. However, there is a certain limitation- it is a subjective measure, may 

induce instructor bias, and has high inter-rater variability among experts who performs an 

examination on the same patient. Thus, there is a need for diagnosis method that is less 

subjective and more consistent.  

UDysRS is used to evaluate the involuntary movements associated with long term 

treatment of dopaminergic medication PD. The focus of the scale is on the dyskinesia and 

disability in PD. Dyskinesia refers to the involuntary, erratic, or twisting movement present 

on different parts of the body-face, neck, hand, trunk and leg. Dyskinesia is divided into two- 

On-dyskinesia and off- dyskinesia. On- dyskinesia refers to the dystonic movement (mainly 

jerking or twisting movement) that occurs when the medication is working, while off- 

dyskinesia refers to the spasms or cramps that can be painful and occurs when the medication 

is not working or not taken. The disability scale focus on 4 tasks- communication, drinking 

from a cup, dressing, and ambulation. Each task are rated from 0-4 stage, varying from no 

dyskinesia to severe dyskinesia (Goetz et al., 2008).  



10 

 

MoCA is the screening assessment for detecting cognitive impairment in PD. These 

include different tasks- visuospatial/executive, naming, attention, language, abstraction, 

delayed recall and orientation. Visuospatial/executive are assessed for 5 points using a clock-

drawing, drawing line starting from number to alphabet in ascending order and three-

dimensional cube copy task. Naming is assessed for 3 points, with the task involving naming 

low-familiarity animals. Attention is assessed for 6 points involving target detection tapping, 

serial subtraction and digits forward and backward tasks. Language are assessed for 3 points 

using naming words beginning with letter F in one minute and repetition of two sentence. 

Abstraction are assessed for 2 points in identifying the similarity of objects. The delayed recall 

are assessed for 5 points that involves two learning trials of five words and recall after 5 

minutes. Finally, orientation is evaluated for time and place in 6 points. The total score of 

MoCA test is 30 points, with a score above 26 considered as normal cognitive behavior 

(Nasreddine et al., 2005).     
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Chapter 3  

3.  Literature review on gait analysis  

3.1 Introduction 

Gait analysis is the study on human walking. Walking is a complex task that is a 

rhythmic alternating movement of two lower extremities that helps in forward, backward, and 

most often sidewise movement of the body (Ferrucci et al., 2000). To quantify and analyze 

the gait, the repeatable movements during the gait is defined as the gait-cycle, as shown in 

Figure 3.1.  

3.2 Terminology in gait analysis 

Figure 3.1: Diagram representing the intervals of gait 

3.2.1 Gait-cycle 

The gait-cycle is defined as the time from the first heel strike to the next heel strike of 

the same foot. A gait-cycle is also known as stride interval, as in Figure 3.1. The gait-cycle 

consists of two major phases: the stance phase and the swing phase. For a healthy individual, 

60% of the gait-cycle forms the stance phase and the remaining 40% forms the swing phase 

(Wilhelm and Eduard, 1992; Umberger, 2010). 

Heel strike Toe off Heel strike 
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3.2.2 Stance phase 

 The stance phase is also known as the support phase as the body comes in direct contact 

with the ground. This phase begins with the heel of the foot striking the ground known as heel 

strike and ends when the toe of the same foot is taken off known as toe-off (Mochon and 

McMahon, 1980). The stance phase consists of a double support phase and a single-limb 

support phase.  

3.2.3 Double support phase 

The time of bilateral limb contact is defined as the double support phase. For a healthy 

individual, about 40% of the stance phase comprises of double support phase (Perry, 1992).  

3.2.4 Single-limb support phase 

This is the time in the stance phase, when only one limb encounters the ground. About 

20% of the stance phase comprises of single-limb support phase (Lamoreux, 1971).   

3.2.5 Swing phase 

The swing phase is also known as the unsupported phase that is the foot is no longer in 

contact with the ground (Gottschall and Kram, 2005). 

3.3 Gait characteristics of Parkinson’s disease patients 

3.3.1 Gait parameter 

The spatial and temporal parameters of gait are recognized clinical assessment methods 

to identify the difference in gait patterns, motor pathologies, and impairments. The spatial 

parameters are step length, step width and temporal parameters are stride interval, swing 

interval, stance interval, and double support interval.  
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There is significant deterioration of gait of PD patients with progression of the disease 

(Bloem et al., 2001; Balash et al., 2005; Allcock et al., 2009) and this is a major cause of 

their falls and injuries (Allcock et al., 2009; Latt et al., 2009; Contreras and Grandas, 2012). 

In comparison with control, PD patients have reduced stride length (Morris et al., 1998; 

Sofuwa et al., 2005) and walking speed (Sofuwa et al., 2005; Combs et al., 2014) with 

increased double support duration (Morris et al., 1994; Morris et al., 2001; Ferrarin et al., 

2002) during free ambulation on even surface. Neurologists monitor their patients by 

observing their gait to determine the progression of the disease and efficacy of treatments 

(Kerr et al., 2010; Matinolli et al., 2011; Adams and Leveson, 2012). This requires a 

significant time of experienced neurologists, and there is a need for quantifiable gait analysis 

that can be performed without the extensive infrastructure to monitor the severity of PD 

patients.  

3.3.2 Gait variability  

People with a normal gait, when walking on an even surface, have a long-range 

correlation between their strides, their inter-stride variability is insignificant, and the gait is 

rhythmic (Solomont et al., 2003). In comparison with control, PD patients walk slower with 

slower stride with reduced length (Morris et al., 1998), increased variability in the stride 

(Frenkel et al., 2005)  and increased duration of double support phase of gait (Crenna et al., 

2007; Huxham et al., 2008). These have been considered as an adaptive mechanism by the 

patient because of their fear of falls, slowed actions, and cognitive impairments.  

There were many studies on the gait variability of PD patients, and it was found that 

the PD patients have high variability  (Hausdorff et al., 1998; Hausdorff et al., 2003) and 

variable fractal properties of the inter-stride intervals (Blin et al., 1990; Frenkel et al., 2005). 

For more details on the literature that compares the gait variability of the spatio-temporal 

parameter in PD patients, refer to Chapter 4.  
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While there are many studies on differentiating PD patients from control, the 

relationship between gait parameters, and the severity of the disease has not been studied. 

This thesis focused on several key elements of the gait interval- stride, swing, stance, and 

double-support.  

3.3.3 Turns events in PD patients 

Many factors affect gait, i.e. age, gender, height, and weight of the person. Activities 

such as turning have also been found to significantly affect the gait of PD patients, even in 

the early stages of the disease (Carpinella et al., 2007). Turning is a complex task, that 

requires the central nervous system to coordinate body re-orientation towards a new direction 

while continuing with the on-going step cycle and maintaining postural stability in the 

medial-lateral plane. Turning is the most important trigger for FOG in PD patients. Turning 

movements in PD patients have reported increased turning time, turn arc (Crenna et al., 2007; 

Huxham et al., 2008; Spildooren et al., 2013) and the number of steps to complete the turn. 

The number of steps and peak speed during turning significantly differed among control, 

mild PD, and severe PD. The main consequence of turns in PD patients is lateral falls, which 

can result in an eight-fold increase in hip fractures compared with falls during straight 

walking. It is very important to evaluate the turning ability in PD patients and to investigate 

the effect of gait intervals across different turns, which has not yet been done. This thesis 

investigated the difference in the gait of patients with PD patients, age-matched controls, and 

young controls during three turning walking patterns. 

3.4 Assessing gait in Parkinson’s disease patients 

Gait assessment is important in the diagnosis and monitoring of the disease. Gait is one 

of the measures for the UPDRS III and is scored by clinical observations to determine the 

severity of disease and efficacy of treatment. The limitation of such studies is that these are 

subjective measures, can have bias induced by the clinician or neurologist who performs the 
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test and can cause higher inter-rater variability and require excessive clinician time for the 

assessment. Hence, there is a need for quantifiable gait analysis to study PD patients (Yang 

et al., 2016).  

Gait analysis is performed in gait laboratories which are equipped with multiple, high-

speed cameras and pressure mats. In most cases, however, gait assessment is performed by 

trained neurologists, which requires the patients to visit their neurology clinics, and can result 

in their infrequent assessment (Morris and Dreher, 2018; Shipston et al., 2019). Timely 

identification of gait and posture disorder symptoms and monitoring its progress in these 

patients can prevent falls and related injuries (Modarresi et al., 2018; Fernandez et al., 2019).  

Special purpose gait analysis laboratories require significant equipment, space, 

extensive software, and trained personnel. These are large and high-value facilities that are 

generally located in urban hospitals. These suffer from two major shortcomings: 1. the patient 

needs to visit the hospital and thus can only be examined in the clinic which may influence 

the gait. 2. the cost of these facilities is high and requires significant infrastructure (Ferrari et 

al., 2008; Godinho et al., 2016). This limits the regular access to PD patients. 

3.5 Inertial measurement unit (IMU) 

The growth of micro-electro-mechanical systems (MEMS) and wireless technologies 

have led to miniaturized, portable, wireless inertial measurement unit (IMU) devices which 

are relatively inexpensive (Ciuti et al., 2015; Mancini et al., 2016; Qiu et al., 2018; Brognara 

et al., 2019). One major application of MEMS IMUs is measuring human movement 

(Zihajehzadeh et al., 2014).  

An Inertial measurement unit (IMU) consists of gyroscope and accelerometers which 

are used for the rotational and translational movement measurements. Due to the 

advancement in technologies and ease of measurement, IMUs are increasingly popular as a 

measurement tool for analyzing human locomotion (Weiss et al., 2011; Lowe and ÓLaighin, 
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2014; Weiss et al., 2014). IMUs can help in gait analysis by providing spatial and temporal 

parameters of gait, which are a recognized clinical assessment method to identify the 

difference in gait patterns (Johannes et al., 2017), the disease in PD patients (Baron et al., 

2018) and enables the detection of gait deviation (Hobert et al., 2019; Keloth et al., 2019). 

However, there are number of errors associated with IMU sensors- the effect of gravity on 

the vertical axis, alignment of the axis and the effect of drift on the sensor. When performing 

the gait analysis, removal of these errors is challenging. A detailed list of literature on the 

IMU sensor used for gait analysis can be seen in Chapter 4. 

3.6 Muscle activation during walking 

Gait disturbance is a major cause of impairment in PD patients. In addition to the spatial 

and temporal parameters, the changes in the muscle activation pattern of lower limb muscles 

are used to examine the clinical information related to the gait disorder and also as a measure 

to differentiate PD patients from control (Bailey et al., 2018). A coordinated pattern of muscle 

activity results in the transition from stance into walking. Normally muscles stretch when 

they move and reflex when they are at rest. But for PD patients muscles may not reflex, 

causing rigidity and difficulty to walk. The changes in muscle characteristics have a functional 

implication on the motor control and movement, thereby limiting the control of foot and stride 

length (Mitoma et al., 2000).  Thus, investigating the muscle activity of gait can reveal clinical 

information related to gait dysfunction in PD patients.  

3.7 Surface electromyogram (sEMG) 

The method of sEMG analysis is gaining its interest in research due to its non-invasive 

property of measurement. sEMG is the measure of the electrical activity of the muscle 

responsible for the movement. The muscle characteristics can provide information on the 

biomechanics and neuromuscular activity of walking. The analysis of sEMG of gait has 
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applications for rehabilitation and detecting pathological gait conditions (Amundsen et al., 

2018; Smeets et al., 2019).  

3.7.1 Anatomy and physiology of lower limb muscle 

The nervous system is responsible for controlling the voluntary and involuntary actions 

of the body. The nervous system is divided into two-Central Nervous system (CNS) and 

Peripheral Nervous System (PNS). The Central nervous system (CNS) comprising of the 

brain and spinal cord, is responsible for the transmission of signals to and from the CNS and 

to different parts of the body, with the help of nerves in PNS (Benjamin et al., 1986). The 

two nerves of PNS are motor and sensory. The motor nerve provides information from CNS 

to the body, used to control muscle and glands, while sensory nerves provide information 

from the body to the CNS about the physical sensation. Muscle systems in the lower limb are 

responsible for providing balance and support and help in forwarding propulsion of the body. 

A coordinated pattern of muscle activity results in the transition from stance into walking 

(Hamner et al., 2010; Neptune and McGowan, 2011). 

The main lower limb muscles that play an important role in controlling the locomotion 

and balance of the body are Tibialis anterior (TA) and Gastrocnemius muscle (GA) (Di Giulio 

et al., 2009). The gastrocnemius muscle is divided into  

• Lateral gastrocnemius (LG) muscle – is the calf muscle, that connects the 

femur and Achilles tendon on the lateral side (towards the side).  

• Medial gastrocnemius (MG) muscle - is the calf muscle, that connects the 

femur and Achilles tendon on the medial side (towards the center).  

The comparison between MG and lateral gastrocnemius (LG) muscle for control shows 

that MG activity is more when compared to LG during the gait-cycle (Chisholm et al., 2015; 

Cibulka et al., 2017; Dick et al., 2017). Hence, in this thesis, the activity of TA and MG 

muscle is studied, as shown in Figure 3.2.  
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Figure 3.2: The tibialis anterior and medial gastrocnemius muscle location in the leg. 

3.7.2 Tibialis anterior (TA) muscle 

TA is the long, narrow muscle connecting tibia and metatarsal bones of the leg. The 

muscle functions as a dorsiflexor of the foot, resulting in lifting the toes off the ground. This 

is an important motion while walking and helps in maintaining body balance while 

transferring weight from one leg to the other.  

3.7.3 Medial gastrocnemius (MG) muscle 

MG is the large, muscular belly located on the medial side of the leg. It is connected 

between the femur and Achilles tendon-bone which descend to the heel of the leg. MG muscle 

functions as a plantar flexor of the foot, that helps in pushing the body forward while walking.  

3.8 Muscle activity during gait in Parkinson’s disease 

The sEMG signal morphology of patients with PD is used as a differentiator from 

controls (Rissanen et al., 2007). The study on lower limb muscles of PD during walking 

shows that they have lower activation of gastrocnemius muscle during the stance phase of 

gait (Dietz et al., 1995), reduced ability to modulate their activation pattern (Milner et al., 

1979). Their activity has reduced modulation and is not symmetrical (Bailey et al., 2018). It 

Medial gastrocnemius muscle 

Tibialis anterior muscle 
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has also been shown that PD has reduced TA during the stance phase of gait (Dietz et al., 

1995) and reduced TA amplitude during late swing (Mazzetta et al., 2019). These changes in 

sEMG activity reflect the impairment in motor control and movement, further resulting in 

limited control of foot and stride length (Mitoma et al., 2000).  

3.8.1 Co-activation index (CI) 

Concurrent activation of agnostic- antagonistic muscles around the joints is referred to 

as co-activation. Co-activation of muscles stabilizes the joints and provides postural and 

movement stability (Latash, 2018), however, the excessive co-activation can produce 

negative work, reduce the net torque at the joint and increase rigidity (Busse et al., 2006).  

This is usually studied by analyzing the surface electromyogram (sEMG) that generates 

opposite torque during a task (Ervilha et al., 2012) and calculated as the Co-activation Index 

(CI). It has been observed that while CI increases for both, PD and the elderly, the mechanism 

appears to be very different. Increase in CI for the elderly due to increase in the muscle 

activation during mid stance (Schmitz et al., 2009), while in PD patients it is due to the 

reduction in the activity of lower limb muscle (Cioni et al., 1997). To better understand the 

co-activation in PD patients, it is essential to investigate the sub-phases of gait. The study 

with the elderly has revealed that there is a significant change to CI over the different sub-

phases of the gait (Schmitz et al., 2009) when compared to young control. However, such a 

study has not yet been done for PD patients.  

3.8.2 Asymmetry index (AI) 

Control gait is largely bilaterally symmetrical, though people have a lateral preference, 

which can be attributed to anatomical and neurological differences, resulting in small 

bilateral asymmetry (Pirker and Katzenschlager, 2017). However, motor impairment can 

cause enhanced bilateral asymmetry which can reduce the rhythmicity of walking. It has been 



20 

 

found that PD patients have higher gait asymmetry (Park et al., 2016; Cole et al., 2017), while 

the associated change in muscle activation strategy has not been investigated.  

Studies have observed that PD patients have higher asymmetry (Miller et al., 1996) 

compared to control while non-significant difference has been reported in other studies 

(Thaut et al., 1996). Both studies assessed had analyzed the gait asymmetry by considering 

the difference between right and left side mean value of the sEMG signal. These can result 

in incorrect analysis, as the difference between right and left leg may be due to a difference 

in leg dominance (Ankaralı et al., 2015). To overcome this, the Asymmetry index (AI) was 

introduced, where the higher to the lower side were compared and significant gait asymmetry 

was observed (Bailey et al., 2018). Nevertheless, these were not studied over different gait-

cycles. 

3.8.3 Modulation index (MI) 

Human gait requires modulation of the muscle activity over a large range which 

conserves energy and provides stability (Toney and Chang, 2016) and this is measured using 

Modulation Index (MI) (Zehr and Chua, 2000). It has been shown that PD patients have 

reduced modulation while maintaining posture (Lang et al., 2019). However, no study has 

investigated the modulation during the sub-phases of gait, which would help understand the 

muscle activation within each sub-phase.  
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Chapter 4 

4.  IMU for gait analysis of Parkinson’s disease patients: A 

multidisciplinary review 

Brief outline of the chapter: 

This chapter provided a multidisciplinary literature review on IMU sensors used for gait 

analysis. These are mainly divided into two parts- IMU sensor used for gait analysis and gait 

variability in PD patients. The effect of medication, rehabilitation and gait variability used 

for differentiating between PD and control are discussed.  

4.1 Introduction 

Parkinson’s disease patients have gait and postural impairment (Abraham et al., 2018; 

Marinus et al., 2018; Vetrano et al., 2018; Raccagni et al., 2019), are one of the major 

symptoms that are used for diagnosis and monitoring of the disease (Borzi et al., 2019; 

Buckley et al., 2019; Heijmans et al., 2019). Timely identification of gait and posture disorder 

symptoms and subsequent monitoring of its progress in these patients can prevent falls and 

related injuries (Modarresi et al., 2018; Fernandez et al., 2019). Identifying gait impairments 

requires special purpose gait analysis laboratories equipment, space, extensive software, and 

trained personnel. These are large and high-value facilities that are generally located in urban 

hospitals, limiting regular access for many PD patients (Ferrari et al., 2008; Godinho et al., 

2016). This limits regular access to these facilities for many PD patients due to economic and 

travel issues. To overcome this, it is necessary to have gait monitoring devices that are 

wireless and portable. The growth of micro-electro-mechanical systems (MEMS) and 

wireless technologies have led to miniaturized, portable, wireless inertial measurement unit 

(IMU) devices which are relatively inexpensive (Ciuti et al., 2015; Mancini et al., 2016; Qiu 

et al., 2018). One major application of MEMS IMUs is measuring human movement 

(Zihajehzadeh et al., 2014). Due to the small and portable nature of these devices, they can 
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easily be worn by the user while performing their regular activities (Weiss et al., 2011; Lowe 

and ÓLaighin, 2014; Weiss et al., 2014) and hence provide parameters of their natural gait 

impairment.  

Gait is one of the measures for the UPDRS III (Goetz et al., 2008) and is scored by a 

neurologist when evaluating the patient (Kerr et al., 2010; Matinolli et al., 2011; Adams and 

Leveson, 2012). One limitation of this approach is the subjectivity and thus the clinician bias 

in the evaluation (Yang et al., 2016). Hence, there is a need for quantifiable and easy to use 

gait analysis techniques to study PD patients. Wearable sensors that can record the spatial 

and temporal parameters of gait can be useful for gait analysis of PD patients. In the selection 

of suitable sensors, it is essential to identify those that are suitable for monitoring the 

clinically relevant parameters. However, there appears to be a significant difference between 

the engineering knowledge of the sensors and the requirements of the clinicians. One of the 

aims of this review is to present a multidisciplinary review to help bridge the gap between 

the clinicians and engineers for the appropriate selection of equipment and establish their 

strengths and limitations.  

This review has evaluated the papers that report the use of IMU for performing gait 

analysis of PD patients. This review also reports the works that have selected the appropriate 

choice of gait features and suitable measurement devices for characterizing gait in PD 

patients. The first step of this review was to identify the research that has been conducted to 

identify the suitable features that can distinguish between PD patients and control. The 

second step in this review was to identify the papers that report the use of IMU for gait 

analysis, with a focus on the work related to the identification of gait abnormalities of PD 

patients.  

This is a thematic and multidisciplinary review, which will help the clinicians find the 

engineering solutions to their requirements. It will also help the engineers better understand 

the clinical requirements and identify possible research opportunities. We believe that the 
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major impact of this review would be that it will bring together the end-users with the 

engineers and facilitate the translation of the technology for real clinical outcomes that will 

benefit the PD patients. 

4.2  Materials and methods 

This review reports the outcome of the search for the development and use of IMU for 

gait analysis over the past 10 years. The terms and keywords used for the literature search in 

Pubmed were (“Parkinson” OR “Parkinson’s disease”) AND (“inertia” OR “wearable 

sensors” OR “body-fixed sensor” OR “accelerometer” OR “gyroscope” OR “gait” OR 

“walk”) located within the title and/or abstract. The review was conducted with a focus on 

the use of IMU for Parkinson's application. The exclusion criteria were: (1) case studies, 

books, book chapters, conference articles, editorials and letters (2) articles reporting results 

less than 10 participants due to the low level of reliability and statistical validity that can be 

obtained from such results. Six recent review papers on wearable sensors technology in PD 

patients have also been considered in this review. 

The first section provides the summary table which briefly describes the aim and 

outcomes reported in each of these papers. This has been presented to facilitate the reader to 

make a high-level comparison between these papers. The next section provides an in-depth 

discussion of the papers reviewed, followed by identifying the needs and opportunities for 

future research. This section examines the key issues that have been highlighted by the 

referenced works, gaps in the research, and thus the potential for future research. Finally, a 

conclusion summarizes the key findings and the generic issues observed during the review.  
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4.3 Results 

The results have been presented in two sub-sections- the comparison table and the 

review of the papers. The comparison Table 4.1 and Table 4.2 lists all the papers that have 

been reviewed, and has five columns:  

• Serial number 

• Reference 

• Aim of the paper  

• Gait parameter significantly different between PD patients and control 

• Remarks of the paper 

Table 4.1: Part I. Comparison of the publications on IMU sensors used for gait analysis in PD patients. Each paper 

has been briefly summarized in the previous section. 

Sl. No Reference Aim of the paper Gait parameter significantly 

different between PD patients and 

control 

Remarks of the paper 

1 (Palmerini et 

al., 2013)  

Motor patterns of age-matched 

control and PD patients. 

Temporal measures, jerk, and 

angular velocity. 

Characterize PD motor 

impairment. 

2 (Esser et al., 

2013) 

Phase plot variability of age-

matched control and PD 

patients. 

Angular velocity, the standard 

deviation of angular velocity. 

Characterize PD motor 

impairment. 

3 (Herman et 

al., 2014) 

Gait and balance in PD subtype- 

Postural Instability Gait 

Disorder (PIGD), Tremor 

Dominant (TD) 

Gait speed, shorter strides, 

increased stride variability. 

 

PD subtype classification 

may be useful. 

4 (Djurić-

Jovicić et al., 

2014) 

IMU for studying the progress of 

the disease. 

Stride classification on each 

segment of the leg. 

IMU attached to shank was 

able to differentiate.  

5 (Brodie et 

al., 2015) 

IMU attached to the head. Increased transverse plane head 

oscillations. 

Characterize PD motor 

impairment. 

6 (Trojaniello 

et al., 2015) 

Gait temporal parameters in 

many diseases. 

Decreased accuracy in pathological 

groups. 

IMU attached to leg for 

highly impaired gait. 

7 (Curtze et al., 

2015) 

Response to levodopa on six 

domains of balance and gait. 

Arm swing and pace-related gait 

measures. 

Neural circuits control 

balance and gait is different. 

8 (Håkan et al., 

2015) 

Accelerometer cut points in PD 

patients. 

Optimal cut-points were obtained. Accelerometer cut points 

provided. 

9 (Kleiner et 

al., 2015) 

Automated Mechanical 

Peripheral Stimulation (AMPS) 

treatment in PD patients. 

Stride length, gait velocity. AMPS reduces motor 

impairment in PD patients.  
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10 (Del Din et 

al., 2016) 

Gait characteristics in PD 

patients. 

Variability of gait parameters. Variability was able to 

differentiate. 

11 (Ferrari et 

al., 2016) 

Implementation of Kalman filter 

in IMU. 

Root means square difference was 

2.9%. 

Method of accurate gait 

analysis. 

12 (Elshehabi et 

al., 2016) 

Effect of medication walking 

patterns. 

Gait velocity, step duration, peak 

velocity 

 

Dopaminergic medication 

affects PD. 

13 (Horak et al., 

2016) 

Gait characteristics in OFF/ ON 

medication of PD patients. 

Sway area, gait speed, and trunk 

motion 

 

Different parameter changes 

between OFF to ON. 

14 (Hatanaka et 

al., 2016) 

Gait comparison in Progressive 
Supranuclear Palsy (PSP) and 

PD patients. 

Similar hypokinetic gait in PSP 

and PD 

Reduced vertical 

displacement in PSP patients. 

15 (Curtze et al., 

2016) 

Balance and gait in PD patients 

and the effect of medication. 

Turning speed, gait speed, and 

stride length. 

 

Off-medication state is more 

related to disease severity  

16 (Micó-
Amigo et al., 

2017) 

Effect of walking distance in PD 

patients. 

Gait parameter classification 

obtained. 

Short distance gait 

assessment is useful. 

17 (Warlop et 

al., 2017) 

Nordic Walking (NW) walking 

in PD patients.  

Variance, gait speed, and cadence. NW improves gait 

parameters. 

18 (Ginis et al., 

2017)  

Effect of cueing and prolonged 

walking in PD patients. 

Less deviation in cadence. Cueing improves gait 

impairment.  

19 (de Souza 

Fortaleza et 

al., 2017) 

Effects of a dual-task on the gait 

of patients with freezing of gait 

(FOG+) and without freezing of 

gait (FOG−). 

FOG+ shorter stride length, slower 

stride velocity 

 

Dual-tasking affects FOG+.  

20 (Gougeon et 

al., 2017) 

NW walking in PD patients. Trunk frontal range of motion, 

peak velocity Cadence, gait speed 

and stride length  

NW can improve postural 

stability.  

21 (Kristina et 

al., 2017) 

Association of kinematic gait 

parameters with quality of Life. 

Use of assistive gait equipment Quality of life improves using 

assistive devices. 

22 (Montero-

Odasso et al., 

2017)  

Motor-cognitive profiles in PD 

patients. 

Gait speed and increased 

variability 

Gait impairment related to 

cognitive decline.   

23 (Johannes et 

al., 2017) 

Gait characteristics in PD 

patient’s disease progression. 

Stride length, gait speed, foot 

clearance decreased, stride time, 

stance time, variability 

Characterize PD motor 

impairment. 

24 (Rovini et 

al., 2017) 
Review on wearable sensors Five main fields were studied Overview of wearable 

sensors for studying PD 

patients.  

25 (Raccagni et 

al., 2018) 

Gait parameters study in many 

diseases. 

Gait speed, stride length Characterized PD, atypical 

parkinsonian disorders, 
progressive supranuclear 

palsy  

26 (Bertoli et 

al., 2018) 

Use of Trusted Events and 
Acceleration Direct and Reverse 

Integration (TEADRIP) 

Stride length means absolute errors 

on average 2%. 

Validated TEADRIP on 236 

patients. large population.  

27 (Zago et al., 

2018) 

Calibration of IMU in PD 

patients.  

No difference in stride length, 

double support, step duration  

IMU can be used for gait 

assessment.  

28 (Creaby and 

Cole, 2018) 

Review on walking 

biomechanics and falls 

Spatiotemporal, kinematic and 

muscle activation pattern 

Spatiotemporal and 

kinematic characterize fall in 

PD patients. 
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29 (Pau et al., 

2018) 

Laboratory and clinical gait 

assessment.  

Laboratory setting affected speed 

and stride length 

 

Gait assessment in the same 

environment reduces error. 

30 (Caramia et 

al., 2018) 

Classify between PD and control Range of motion (RoM) variability  The best result from the knee 

range of motion. 

31 (Felix et al., 

2018) 

IMU-based gait and balance 

assessment.   
Gait speed Gait speed related to PD 

patients. 

 

32 (Aich et al., 

2018) 

Calibration of IMU in PD 

patients.  
Classify between FOG+ and FOG -  IMU can assess FOG 

patients. 

33 (Keloth et 

al., 2019) 

Gait characteristics in PD 

patients walking pattern. 

The variance of gait interval IMU differentiate between 

PD and control. 

34 (Raffegeau et 

al., 2019) 

Review on the influence of dual-

tasking 

Single task and dual-task gait Dual tasking severely affects 

PD patients.  

35 (Brognara et 

al., 2019) 

Review on application of 

wearable sensors 

Gait parameters used for analysing 

PD patients 

IMU can be used for gait 

assessment. 

36 (Bailey et al., 

2018) 

Review of gait impairment in PD 

patients. 

Gait quantification with multiple 

gait features 

Gaps in gait impairment in 

PD patients. 

37 (Sweeney et 

al., 2019) 

Review on wearable cueing in 

PD patients. 

Auditory, visual, somatosensory 

cueing 

Effectiveness of cueing.  

Table 4.2: Part II. Comparison of the publication on the gait variability of the spatiotemporal parameter in PD 

patients. Each paper has been briefly summarized in the previous section. 

Sl. 

No 
Reference Aim of the paper Gait parameter significantly 

different between PD patients 

and control 

Remarks of the paper 

1 (Olmo and 

Cudeiro, 

2005) 

Effect of cueing in PD patients Step time variability Cueing can improve gait 

performance in PD patients. 

2 (Frenkel et 

al., 2005) 

Treadmill walking on gait 

variability. 
Stride and swing time variability Treadmill enhance gait 

rhythmicity 

 

3 (Baltadjieva 

et al., 2006) 

Gait characteristics in de Novo PD 

patients. 
Gait variability Altered gait pattern in de 

Novo PD patients. 

4 (Bartsch et 

al., 2007) 

The long-term fluctuation of gait 

timing in PD patients. 

Increased fluctuation in early 

PD, de Novo PD patients, 

Fluctuation in gait timing 

affects PD patients.  

5 (Henmi et 

al., 2009) 

Evaluate stride-stride variability in 

PD patients.  

Power spectrum  Spectral analysis may be 

used for studying PD gait. 

6 (Hausdorff, 

2009) 

Gait characterize in PD patients Stride length, gait variability Gait variability characterizes 

ON/OFF state PD. 

7 (Zampieri 

et al., 2010) 

Differentiate the early-to-mid stage 

of PD patients. 

Cadence  Variability was not able to 

differentiate. 

8 (Krishnan 

and Wu, 

2010) 

Gait variability in PD patients. Higher gait variability  Gait variability related to 

disease progression.  
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9 (Bryant et 

al., 2011) 

Effect of levodopa and walking 

speed in PD patients. 

Variability of step time, double 

support time, stride length, stride 

velocity  

Levodopa decreased gait 

variability in PD patients.  

10 (Roemmich 

et al., 2012) 

Gait variability during the first two 

steps of gait initiation 

Shorter steps, higher variability 

in step length, variability in 

swing time.  

High gait initiation 

variability in PD patients.  

11 (Hove et al., 

2012) 

Fractal scaling in PD patients.  Stride time fluctuation exponent  Reduced fractal scaling in 

PD patients. 

12 (Galna et 

al., 2013) 
Reliability of gait variability More reliable during continuous 

walking. 

Continuous walking and 

steps are not less than 30.   

13 (Kirchner et 

al., 2014) 

Fractal scaling under clinical 

conditions.  

Fractal exponents by stitching 

short sequences 

Stitching short sequences 

improved differentiating. 

14 (Bello et al., 

2014) 

Gait during treadmill and 

overground walking. 

Step length, step height, 

cadence, step width, and step 

width variability. 

Gait characteristics improve 

during treadmill walking.  

15 (Bryant et 

al., 2016) 

Effects of levodopa on gait 

variability. 

Variability of step time, swing 

time, stride length, stride 

velocity 

Variability of double support 

time not affected by 

levodopa.  

16 (Keloth et 

al., 2017) 

Gait variability based on disease 

severity. 

Stance, swing interval, self-

similarity parameter  

 

Less rhythmic gait for PD 

patients. 

17 (Rennie et 

al., 2018) 

Reliability of gait variability at slow 

and fast walking. 

Step width variability  PD was reliable at normal 

and fast gait speeds. 

The table is split into two parts: Part I examines “IMU sensors used for gait analysis”, 

and Part II reviews “Clinically relevant gait parameters for Parkinson’s disease”.  

Table I summarizes the thematic review for the IMU applications for PD gait analysis. 

It lists 33 papers that describe original research related to IMU for PD gait analysis and 4 

review papers. It highlights the clinical and engineering research on the use of IMU for PD 

gait. About half of the papers listed in this table (~17) report the clinical observations while 

16 describe the sensors and analysis aspects of the research. Table II is a selection of 17 

papers with the focus on gait variability of the spatiotemporal parameter in PD patients. This 

is a focused review of a very specific IMU features that have been highlighted in table I as 

being the most promising analysis method.  

Earlier reviews on similar topics have focused either from engineering or viewpoint 

only. While such reviews have the strength of having focused audience and agenda, these 

tend to miss out on the relationship between the engineering outcomes and the clinical 
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requirements. This thematic review has brought together articles from the two disciplines and 

shows the available solutions and potential research opportunities. 

Following the table, the next sub-section lists the highlights of each paper, and the gaps 

in the research reported in these papers. While this is a thematic review, in this section, the 

papers have largely been presented chronologically.  

4.4 Review of the papers 

4.4.1 Part I “IMU sensors used for gait analysis” 

4.4.1.1 Validation of IMU sensor 

IMU devices must be validated on PD patients to check the reliability, accuracy, and 

reproducibility of readings for gait analysis. (Esser et al., 2013; Palmerini et al., 2013) studied 

the reliability of IMU sensors to identify and quantify the gait of control and PD patients. 

(Palmerini et al., 2013) observed that the temporal measures and angular velocity can 

characterize PD from control using IMU sensors. However, the latter reference showed that 

spatial parameters cannot be used as a measure for the gait parameters to differentiate the two 

groups. The paper found a non-significant difference between the two groups for the gait 

features-cadence and stride length (Esser et al., 2013).  

In the latter years, Mico et al (2017) performed a validation study on the short distance 

walking using the IMU sensor. They assessed 5-meter walks of PD patients with a single 

IMU sensor and observed that the gait parameters could be classified against the disease 

conditions. It was concluded that the short distance walking measurements are informative, 

thus helping the clinical evaluation of gait (Micó-Amigo et al., 2017). Johannes et al (2107) 

on the other hand, validated the use of wearable sensors on many patients in each group based 

on the Hoehn and Yahr (H & Y) scale for studying the disease progression. They observed 

that the gait parameters- stride length, gait speed, foot clearance decreased, stance time, and 

stride time, and its variability increased with disease progression. They concluded that 
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wearable sensors can be used effectively to measure the gait parameter and to monitor the 

disease progression in PD patients (Johannes et al., 2017).  

Further, Pau et al (2018) studied the difference in the spatiotemporal parameters when 

walking was performed in a laboratory and clinical settings using the IMU sensor. They 

observed a decrease in gait speed and stride length (by 17% and 12% respectively) when 

passing from the clinical to the laboratory setting. They concluded that gait assessment should 

always be performed in the same conditions to avoid the error which could lead to inaccurate 

patient evaluation (Pau et al., 2018).  

4.4.1.2 Gait impairment in sub-types of PD patients and comparison with 

different groups 

IMU sensors have been used to investigate gait impairments in different patient groups 

and between subtypes of PD patients. The paper by Herman et al (2014), studied the changes 

to the gait parameter in PD subtypes- Postural Instability Gait Disorder (PIGD) and Tremor 

Dominant (TD). They observed that the gait parameters which were studied by them- gait 

speed, stride length, and stride variability, did not have a significant difference between 

Postural Instability and other groups. They also found that the gait of purely PIGD (p-PIGD) 

significantly differed from purely TD group (p-TD) with a reduction in gait speed, shorter 

strides, and increased stride variability. These findings suggest that the classification into p-

PIGD and p-TD may be useful, which is based on the criteria that the PIGD or TD score <1 

and no noticeable tremor in PIGD, and postural instability in TD groups (Herman et al., 

2014). A similar study by Trojaniello et al (2015), found the suitable location of the IMU to 

capture the changes due to disease. They estimated the gait parameters in different groups of 

people- elderly, post-stroke patients, PD patients, and Huntington’s disease patients using 

IMU positioned over the subject’s trunk. The stride time and step time error increased (4% 

and 8% to reference value measured using gold standard instrumented mat) for pathological 

gait when compared to the elderly control. The paper shows that when highly impaired gait 
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is analyzed, a method employing one IMU placed on the leg is preferred (Trojaniello et al., 

2015).  

In 2016, Hatanaka et al (2016) conducted a comparative gait analysis between PSP and 

PD patients. Although PSP and PD patients showed similar hypokinetic gait, PSP patients 

showed characteristically reduced vertical displacement and a higher acceleration than PD 

patients at the same cadence (Del Din et al., 2016). Raccagni et al (2018) on the other hand 

studied gait impairment between PD patients and atypical Parkinsonian disorder patients. 

They found that gait of atypical Parkinsonian disorder patients was more severely impaired 

than PD patients, with a reduction in gait speed and stride length of the patients (Raccagni et 

al., 2018).  

4.4.1.3 Effect of medication and different rehabilitation 

Medication and other intervention techniques are used to help improve the quality of 

life of PD patients. However, due to the complex nature of the disease, it is important to 

evaluate the effectiveness of the patient for different symptoms. The paper by Curtze et al 

(2015) studied the effect of medication on six domains of gait and balance- postural sway, 

gait pace, dynamic stability, gait initiation, arm swing, and turning in people with mild and 

severe PD. They found that gait parameters varied differently in response to levodopa, thus 

suggesting multiple neural control circuits control the gait and balance in PD patients (Curtze 

et al., 2015).  

The paper by Horak et al (2016) studied gait and balance parameters during ON/ OFF 

medication in PD patients and compared these with control patients. It was concluded that 

various balance and gait parameters are affected due to medication and there were significant 

differences between OFF to ON and between OFF and control patients (Horak et al., 2016). 

A similar study was conducted by Curtze et al (2016) which measured the relation between 

gait and balance to disease severity and the effect of the medication in PD patients (Curtze et 

al., 2016).  
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The different types of walking and relation to the effect of medication were studied 

using the IMU sensor. The paper by Elshehabi et al (2016) studied the effect of medication 

on straight walking and turning in a single task (ST) and dual-tasking (DT) using an IMU. 

They concluded that dopaminergic medication does not influence straight walking and 

turning in PD during DT. This shows that multitasking while walking has a limited effect 

from dopaminergic medication (Elshehabi et al., 2016).  

4.4.1.4 IMU sensor-based gait variability study 

Several studies that have used IMU sensors to measure the gait of PD patients have 

reported that variability in the gait parameters is an important feature and hence this is being 

considered as a separate topic in this review. The paper by Brodie et al (2015) observed an 

increase in stride-to-stride oscillation in PD, measured at the head using an IMU sensor. This 

shows that the uncontrolled head oscillation is linked to the gait impairment in PD (Brodie et 

al., 2015).  

The effect of dual-tasking in patients with and without FOG while walking was studied 

by De Souza et al (2017) found that the effect of dual-tasking on the gait parameters was 

more in patients with FOG (FOG+) when compared to those without FOG (FOG-). They 

observed a decrease in stride length, stride velocity and increase in variability of these 

parameters while walking for FOG+ patients while performing a dual-task when compared 

to single-task walking (de Souza Fortaleza et al., 2017). The relation to motor and cognitive 

tasks was later analyzed by Montero et al (2017) and they observed that gait assessment with 

dual tasking can help extract the cognitive and motor contribution in PD. They concluded 

that the dual-tasking while walking decreases the cognitive and motor loading, progression 

to dementia syndrome and result in falls and mortality in patients (Montero-Odasso et al., 

2017).  
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4.4.1.5 Recent review papers of the gait in PD patients 

There have been a few recent review articles on the gait of PD patients. These review 

articles are highly focused and while extremely useful, do not cover the topic from a 

multidisciplinary viewpoint. Below is the summary of these in the context of technologies 

for gait analysis for PD.  

The review paper by Rovini et al (2017) studied the use of wearable sensors in PD 

patients. The paper summarizes the use of wearable sensors in five main fields -early 

diagnosis of disease, tremor in PD patients, body movement analysis, motor fluctuation and 

long-term monitoring of PD patients. The paper demonstrates the need for monitoring the 

disease progression from beginning to the development of the disease, pharmacological 

therapy during disease progression and finally enhance the quality of life of PD patients 

(Rovini et al., 2017). The association between walking mechanism and related falls in PD 

patients is addressed in the review paper by Mark et al (2018). They found that those who 

have slower gait, walking speed, lower cadence, shorter strides, and more mediolateral head 

and pelvis motion have a higher risk of future falls. Thus, it was concluded that the 

spatiotemporal and kinematics parameters may have the potential to characterize falls in PD 

patients (Creaby and Cole, 2018).   

A systemic review on the effect of dual tasking in the gait of PD patients was performed 

by Tiphanie et al (2019). They demonstrated that dual-tasking deteriorates walking speed 

regardless of the type of dual-task performed by the PD patients (Raffegeau et al., 2019). A 

review paper by Brognora et al (2019) studied the importance of wearable sensors for 

characterizing gait in PD patients. They concluded that wearable sensors are the low-cost and 

non-invasive device that can be used for analyzing gait in PD patients (Brognara et al., 2019). 

While there are many review papers on the gait analysis in PD patients, there was no review 

conducted on identifying the suitable gait features that can distinguish between PD patients 

and control and on the use of IMU sensors for gait analysis to the identify gait abnormalities 



33 

 

in PD patients. The review is also subdivided into- validation of IMU sensors, gait 

impairment in sub-types of PD patients and comparison with different groups, the effect of 

medication and different rehabilitation, IMU sensor-based gait variability study, the effect of 

rehabilitation on gait variability, the effect of medication on gait variability and gait 

variability used for differentiating between PD patients and control.  

4.4.2 Part II “Gait variability in Parkinson disease patients” 

4.4.2.1 Effect of rehabilitation on gait variability 

Rhythmic Auditory Stimulation (RAS) and treadmill walking acts as a feedback circuit 

to the brain. The paper by Olmo and Cudeiro (2005) observed a significant difference in step 

time variability between PD and CO before and after rhythmic auditory stimulation. Thus, 

RAS can be suggested as a valuable method of improving the gait timing in PD patients 

(Olmo and Cudeiro, 2005). Similarly, the paper by Frenkel (2005) suggests that the treadmill 

may be used as an external cue to improve the gait characterize of PD patients. They observed 

a decrease in stride time variability when PD participants walk on a treadmill compared to 

overground walking. They concluded that the treadmill can be used as an external cue to 

improve the gait rhythm and thus reduce the gait variability (Frenkel et al., 2005). A similar 

observation was reported by Bello et al (2014) who studied the difference in spatiotemporal 

parameters during treadmill and overground walking and observed that the PD patients 

significantly increased their step-length and height and reduced their cadence, step-width and 

step-width variability on the treadmill (Bello et al., 2014).  

4.4.2.2 Effect of medication on gait variability in 

Levodopa or other dopamine medication have been found to affect the gait interval 

parameters in PD patients. PD patients with the active effect of medication are referred to as 

“ON state”, while the ones without medication effect are “OFF state”. The paper by 

Baltadjieva et al (2006) studied the gait interval of PD patients who were not treated with 

anti-Parkinson medication and compared these with the control. They found a significant 
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difference in double support and single limb support interval variability in PD patients with 

anti-Parkinson medication (Baltadjieva et al., 2006). A similar study by Bartsch et al (2007), 

analyzed the gait variability on PD patients who were not yet treated with medication and 

observed a significant difference in gait timing when compared to the control. These 

researchers have shown that there is a significant difference in the gait between the PD in 

OFF state and controls (Bartsch et al., 2007). Later, Bryant (2011) observed a decrease in 

step time, double support time, stride length and stride velocity variability after medication 

in PD patients. They also found that the variability of step-time and double support time is 

speed independent measures of gait (Bryant et al., 2011).  

The paper by Elshehabi et al (2016) studied the effect of medication on straight-line 

walking and turning during dual-task and they found that only gait velocity was able to 

differentiate between ON and OFF state of medication (Elshehabi et al., 2016). On a different 

walking pattern- forwarding and backward walking, the paper by Bryant in (2016) studied 

the effect of levodopa on gait variability on these walking pattern in PD patients and they 

found that the variability of step-time, swing-time, stride-length, and stride-velocity 

decreased significantly with walking after medication while double-support-time variability 

remained unchanged after levodopa administration (Bryant et al., 2016). From the above, it 

appears that the effect of medication on the gait of PD patients needs further investigation.  

4.4.2.3 Gait variability used for differentiating between case and control 

The measure of the gait parameters has been shown to differentiate between PD patients 

and age-matched controls. The paper by Henmi et al (2009) studied the spectral properties of 

gait variability in young, elderly and PD patients and found that the power spectrum of PD 

was 4 times larger than the other two groups. Thus, the method of spectral analysis of stride-

stride variability may be useful in differentiating PD patients from control (Henmi et al., 

2009). A similar study by Zampieri et al (2010) analyzed the difference in the temporal gait 

parameters of PD patients and age-matched during walking. They found that the only 
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significant difference between PD patients and controls was based on the cadence (Zampieri 

et al., 2010). In the same year, Krishnan et al (2010) developed a statistical model to describe 

the higher gait variability in PD patients. The increase in the inter-stride variability has been 

proposed for the diagnosis of PD and monitoring the progression of the disease (Krishnan 

and Wu, 2010).  

The paper by Del et al (2016) compared the gait characteristics in PD and control and 

found that there was a significant difference in gait variability while other gait features like 

step-velocity and swing-time were not able to differentiate between the two groups (Del Din 

et al., 2016). In contrast, Warlop et al (2017) observed a significant difference in gait speed, 

cadence and stride duration variability in PD ON state when compared to the control (Warlop 

et al., 2017). In the same year, Keloth et al (2017) studied the gait variability with different 

severity levels of PD and found greater variability and observed that the PD patients have 

less defined gait when compared to controls. They also found that among the stance and 

swing-phase of stride interval, the self-similarity was less for swing interval when compared 

to the stance interval of gait that decreased with the severity of PD. This suggests that PD has 

reduced periodicity and their gait is less rhythmic. It also showed that the patients seem to 

have a sense of urgency when in single-limb support and attempt to remain in the double 

support phase (Keloth et al., 2017).  

4.5 Discussion and future research 

The strength of this review is that it is multidisciplinary in nature, which has selected 

both, technical and clinical papers. This review has shown that there is number of researchers 

that have reported the investigation of IMU for the gait analysis and assessment of 

Parkinson’s disease. However, most of the studies have not progressed for implementation 

in the clinical assessment of the PD patients. The work identified some of the reasons for this 

difference and identified methods that may facilitate the translation of this technology from 

research to the clinical applications.  
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Of the papers reviewed, 41% used foot sensitive sensors, 32% used an IMU sensor, and 

only a few used the expensive motion capture camera systems for performing gait analysis. 

Several gait parameters for analyzing gait variability have been reported. Stride time, also 

known as gait duration, was used in 78% of the studies. The sub-intervals of gait duration, 

mainly stance time, swing time and double support time was used in 45% of studies. Cadence, 

the ratio of the number of steps to the time taken, was only used 9% for analyzing the gait 

variability. The variability of spatial parameters was studied based on stride-length (27%) 

and step-length (7%). Only 14% of the total articles reported on limb asymmetry. In the 

majority (82%) of these studies, the gait parameters were derived from direct gait 

measurement in the lab. While such measurements have shown very valuable outcomes only 

18% took the next step and used signal processing to filter the data and compute the gait 

parameters. This is surprising because the use of signal processing techniques can extract 

higher levels of valid signals from noise and improve the outcomes, identifying differences 

that would otherwise be invisible. The novel use of algorithms has the potential to be of 

clinical significance and to make any work more publishable. It may be possible to use 

existing data which has already been published and apply novel algorithms to obtain new or 

more robust outcomes. 

In any area of human studies, confounding factors can affect measurements, and this 

can dilute or can lead to incorrect conclusions and ruin the outcomes of the study. For 

example, if patient medication is not recorded and considered during the analysis, then an 

effective measurement and analysis method may show no statistical difference, which may 

be due to the effect of the medication, and not the measurement method. Other confounding 

factors include the UPDRS level of the patients, the period since the onset of the disease, 

wearing-off time of the medication, cognitive impairment and loading, use of caffeine or 

alcohol prior to the tests, and other medical conditions.  Other potential factors could be the 

gender, height, and race of the participants. Some of these factors can be controlled as part 

of the experimental design but others such as medication may split the patients into two or 
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more groups. This would lead to smaller groups which makes it more difficult to measure the 

statistical significance of the results. The basic demographic details of the participants such 

as age, height, and gender were specified in many of the articles (95%). Most of the studies 

(81% of the articles) have reported PD measurement based on H & Y scale details for 

studying the stages of PD patients while others have used UPDRS in addition to, or 

alternative to the measure of the severity of the disease (9 %). However, some studies did not 

report any one of these measures. Another limitation in many of these studies was that the 

medication history of the patients was only specified by 31% of the papers, and a large 

percentage of the articles failed to report this vital detail. Thus, a detailed comparison 

between many of these studies was not possible and it is difficult to make accurate 

conclusions. 

There is scope for new research that reworks the existing research papers to fully report 

and investigate the effects due to the confounding factors. This may require a larger number 

of patients than the previous studies, but the results will be far more impactful, and useful to 

clinicians because the importance and effects of the different factors will become clearer. 

There is also the possibility of taking the same patients but adding confounding factors to see 

the effect on any measurements. While some of the confounding factors have been listed 

above, other possibilities include the non-motor symptoms of PD such as dementia, 

depression, anxiety and emotional problems, natural day-to-day variation, and the patient 

mindset at the start of a session such as happy, sad, or bored. Such information would be a 

valuable guide to other researchers and help better plan clinical observations. It may well be 

that in the future, journals need to be more demanding that confounding factors be stated and 

included in any analysis. 

While reviewing the papers, we have noticed that there was a lack of consistency in the 

sensor specifications, the number of sensors, the placement of sensors, and the experimental 

protocol. The most common location of the sensor was on the feet and approximately 36% 
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of the papers used this location. Other common locations for the sensors included the shank 

(27%), and the chest and lower back position (18%). The articles used different experimental 

set-ups and methodologies for calculating the same spatiotemporal parameters and the 

variability of those parameters. It would be most valuable to survey these methods to identify 

the effectiveness and cost of each methodology and then propose one or more cost-effective 

strategies complete with the cost-benefits of each method. Such work is more likely to 

become useful in real clinical applications. 

Another point of difference between the papers was the calibration of IMUs. While 

some of the papers have calibrated and validated IMU sensors or compared them with a gold 

standard such as motion capture camera (Esser et al., 2013; Palmerini et al., 2013; Zago et 

al., 2018), many others have not. Without such calibration, there can be significant estimation 

errors that can affect the accuracy of the measurements and the validity of any conclusions. 

In the future, all better papers should either undertake this calibration of IMU devices or use 

methodologies from other researchers who have done such calibration. 

In some of the papers reviewed it was observed that gait variability was identified as 

an important gait measure that reflects the gait instability, rhythm and less motor control 

(Keloth et al., 2017; Keloth et al., 2019). It was also suggested that variability reduces with 

different interventions (Frenkel et al., 2005; Olmo and Cudeiro, 2005; Henmi et al., 2009). 

Other papers reported this variability to be insignificant (Zampieri et al., 2010; Elshehabi et 

al., 2016; Caramia et al., 2018). There is scope to study the clinical significance related to 

gait variability of PD subtypes and Parkinsonian disorders such as PIGD, TD, PSP during 

FOG and in relation to cognitive loading to prevent misdiagnosis.  

The evidence from the literature is that gait analysis using IMU can be very effective 

in evaluating PD patients but this review and discussions with our clinical partners have 

shown that these methods are not routinely used by clinicians. Thus, there is significant 
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opportunity for the translation of this proven technology such that it is used by clinicians for 

monitoring their patients.  

This chapter is based on the manuscript which is under review:  

Keloth S, Arjunan S, Radcliffe P and Kumar D IMU for gait analysis of Parkinson’s disease 

patients- A multidisciplinary review. Sensors. 
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Chapter 5  

5.  Changes in gait parameter with the severity of Parkinson’s 

disease 

Brief outline of the chapter: 

This chapter reports the measure of the changes in gait parameter based on the severity of the 

disease and compares these with age matched control. The differences between PD and 

control, and based on the severity of PD had been reported in this chapter. 

5.1 Introduction 

In comparison with control, PD patients have reduced stride length (Morris et al., 1998; 

Sofuwa et al., 2005) and walking speed (Sofuwa et al., 2005; Combs et al., 2014) with 

increased double support duration (Morris et al., 1994; Vieregge et al., 1997; Morris et al., 

2001; Ferrarin et al., 2002) during free ambulation on even surface. The increase in variability 

has been proposed for diagnostic and monitoring the progression of the disease. In this 

chapter, the variation in different gait intervals-stride interval, swing interval, stance interval, 

and double support interval is studied using two different method: a) using Detrending 

fluctuation analysis (DFA), which is a statistical method to find the self-similarity in patterns 

from a long-range correlated time series. b) using the Co-efficient of variation (CV). Both 

the methods detect the variation in the signal, with CV giving the amount of variability while 

DFA gives the structural complexity of the signal and the information on the correlation of 

signal at the instant to signal at any time. The long-range correlation in the signal is calculated 

using the self-similarity parameter (α).  

The other important factor of gait that can be obtained from the heel-strike data is the 

lateral asymmetry. There is a natural asymmetrical gait pattern in humans due to limb 

dominance (Gabbard and Hart, 1996; Arevalo et al., 2018). During walking, the non-
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dominant lower limb contributes more towards support and the dominant limb contribute 

more to propulsion (Hirokawa, 1989; Bracht-Schweizer et al., 2017). However, loss of limb 

coordination in producing rhythmic motion may cause pathological asymmetric gait (Sadeghi 

et al., 2001). This chapter reports the analysis of the four phases of the gait of PD and control, 

to identify which of these are most affected by disease and thus could be considered for 

diagnosing or monitoring the disease. This chapter also reports the lateral difference for the 

gait parameters for PD patients.  

5.2 Materials and methods 

5.2.1 Details of the dataset 

The study has investigated the public dataset (Goldberger et al., 2000) of the gait data 

of 31 participants: 16 control referred to as CON, 6 with early stages referred to as PD1 and 

9 with advanced stages of PD, referred to as PD2 (Moody et al., 2001). The severity of PD 

was based on the Hoehn and Yahr Scale (H&Y); PD1 corresponding to H&Y between 1 and 

2.5, and PD2 with H & Y scale between 3 and 4. The anthropometric details of participants 

are listed in Table 5.1.  

Table 5.1: Anthropometric details of participants 

Anthropometric parameter CON (n =16) PD1 (n=6) PD2 (n=9) 

Age (Years) 45.66±9.14 66±14.3 67.33±8.7 

Height (m) 1.83±0.085 1.88±0.12 1.85±0.17 

Weight (kg) 68.935±10.75 81.33±14.3 70.88±17.66 

Gender (male: female) 2:14 1:5 4:5 

The data was recorded using bi-lateral insole force sensors placed at the ankle of the 

participant. The participants walked at their preferred speed (no recording on the gait speed) 

along a level ground 160 m long for 6 min without stopping. The output was sampled 

continuously at a rate of 300Hz and analyzed the start and end times of stride. The first 30 s 

of each subject’s time series were removed to minimize any start-up effects. 
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5.2.2 Data analysis 

The database consists of the four gait parameters: stride interval, swing interval, stance 

interval, and double support interval, shown in figure 3.1. The first step was the visualization 

of the data which was done by plotting the histogram of the four parameters for each side and 

each participant. The next step was computing the mean and coefficient of variance of the 

four parameters for each participant both, right and left side and compute the lateral 

difference; mean stride interval (µst), mean swing interval (µsw), mean stance interval (µsta), 

mean double support interval (µds), variance stride interval (σst), variance swing interval (σsw), 

variance stance interval (σsta) and variance double support interval (σds): σds being common 

for left and right sides. The next step was to compute the self-similarity parameter using 

Detrending fluctuation analysis.  

The details of the different methods are given below: 

5.2.3 Histogram 

The histogram is a graphical visualization of the data, that can help to understand the 

shape and spread of the data.  

5.2.4 Coefficient of variance 

The coefficient of variance (CV) is the statistical measure of the dispersion of the data 

points around the mean of the data. This helps to understand the amount of variability 

associated with the data. CV is defined as the ratio of the standard deviation to the mean of 

the data.  

5.2.5 Detrending fluctuation analysis (DFA)  

The self-similarity parameter of the data was computed using DFA (Beran, 1994; 

Hausdorff et al., 1996) which is robust for non- stationary signals (Hausdorff et al., 1997). It 

is a statistical method to find the self-similarity in patterns from a long-range correlated time 

series. The self- similarity parameter can estimate the behavior of the time series to be 
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periodic or non-periodic. Randomness associated with the gait pattern due to the severity of 

the PD was investigated using DFA.  

The process of DFA is explained as follows: 

Step 1: The time series with N samples were integrated to get the cumulated sum(y(k)).  

Step 2: The series is divided into bins of size n (range 5 to 20). In each box, a least 

square straight line (also known as a trend, yn(k)) is fit to the data.  

Step 3: Next, the detrending is performed by subtracting the local trend from the 

integrated time series. The root mean square of detrended and integrated time series is 

calculated using the equation 1,  

𝐹(𝑛) = √
1

𝑁
∑ [𝑦(𝑘) − 𝑦𝑛(𝑘)]2𝑁

𝑘=1                 (1) 

Step 4: The scaling parameter (also known as self-similarity parameter) is the slope of 

the log-log graph and represented by α which is in the range 0-1. If 0.5< α <1, the data has a 

long-range self-similarity while if α < 0.5, the data is largely random. For a healthy individual 

the self-similarity parameter is in the range of 0.5< α <1 (Hausdorff et al., 1997). The 

hypothesis of the study is that the α value decreases with the severity of the disease.  

5.2.6 Percentage of stance and swing 

The stride interval was analyzed to determine the ratio of the stance and swing interval. 

This was performed to test whether there is a relative increase in the stance phase among the 

PD patients, and this increased with the severity of the disease.  

5.3 Statistical analysis  

The following statistical analysis test was conducted for this study 
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5.3.1 Normality test 

Before performing the statistical test, the Shapiro-Wilk test was conducted to check for 

normal distribution of the raw data by considering all the gait parameters. Shapiro-Wilk test 

provides the highest power of distribution when compared to other tests like Kolmogorov-

Smirnov test or Lilliefors correction (Ghasemi and Zahediasl, 2012).  

5.3.2 Non-parametric tests 

To test the significant difference between the groups, a non-parametric test Kruskal-

Wallis test was performed (Siegel, 1988). The variance and mean of gait intervals: variance 

stride interval (σst) and variance swing interval (σsw), variance stance interval (σsta), variance 

double support interval (σds), and mean stride interval (µst), mean swing interval (µsw), mean 

stance interval (µsta), mean double support interval (µds)  and the self-similarity parameter for 

a different group of participants were considered for checking the level of significance 

between the groups.  

5.4 Results 

5.4.1 Histogram 

A histogram was used for the graphical visualization of the data to understand the 

difference in shape and spread of the data in each group (Arora et al., 2015). The group 

representative histograms of stride, swing, stance, and double support interval of right-leg of 

the three groups; CON, PD1, and PD2, a randomly selected participant from each group are 

shown in figure 5.1. The distributions are unimodal for all four parameters and the CON 

participants have narrow distributions. The distributions of PD1 are less constricted 

compared to CON and that of PD2 was the most spread. These also show that there is a 

noticeable increase in the mean stride, stance, and double support intervals from CON to PD1 
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and PD2. However, a decrease in mean swing interval is observed with PD2 when is 

compared to CON.  

 

 

 

(a) Stride interval 

(b) Swing interval 

(c) Stance interval 
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Figure 5.1: Histogram plot of participants randomly selected from each group (a) stride, (b) swing, (c) stance and (d) 

double support interval for CON, PD1 and PD2 participants respectively 

5.4.2 Lateral differences 

Table 5.2 shows the mean and variance of the left and right leg of gait parameters for 

CON, PD1, and PD2 participants. The subscript denoted by ‘l’ and ‘r’ denotes the left and 

right leg values of gait parameters. This shows that while there is a small difference between 

the left and right leg parameters for all participant groups, however, the statistical analysis 

did not show any statistically significant lateral difference (p < 0.05). Hence further analysis 

was performed only on the right-leg data.  

Table 5.2: Comparison between left and right leg mean ±SD and variance ±SD of gait parameters for different groups 

Gait 

intervals 

Statistical 

parameter 

CON p-

value 

PD1 p-

value 

PD2 p-

value 

Stride 

interval 

µst, l 1.095 ± 0.093 0.462 1.215 ± 0.271 0.872 1.153 ± 0.123 0.894 

µst, r 1.071 ± 0.047 1.122 ± 0.102 1.147 ± 0.119 

σst, l 0.002 ± 0.003 0.497 0.005 ± 0.005 0.872 0.009 ± 0.010 0.964 

σst, r 0.001 ± 0.001 0.005 ± 0.004 0.007 ± 0.006 

Swing 

interval 

µsw, l 0.396 ± 0.039 0.282 0.389 ± 0.035 0.109 0.364 ± 0.063 0.757 

µsw, r 0.381 ± 0.030 0.368 ± 0.037 0.361 ± 0.067 

σsw, l 0.0004 ± 0.0002 0.763 0.0010 ±0.0005 1 0.002 ± 0.001 0.825 

σsw, r 0.0004 ± 0.0002 0.0009 ±0.0003 0.002 ± 0.001 

Stance 

interval 

µsta, l 0.682 ± 0.033 0.821 0.732 ± 0.078 0.336 0.791 ± 0.107 0.825 

µsta, r 0.689 ± 0.032 0.753 ± 0.089 0.778 ± 0.104 

σsta, l 0.002 ± 0.002 0.174 0.0042± 0.003 0.872 0.005 ± 0.004 0.658 

σsta, r 0.001 ± 0.001 0.004 ± 0.004 0.010 ± 0.017 

(d) Double support interval 
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5.4.3 Features of stride, swing, stance, and double support interval 

  

  

Figure 5.2: Bar chart showing mean stride, swing, stance, and double support interval for CON, PD1, and PD2 

participants (Significance (p) =non-significant (ns)). 
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Figure 5.3: Bar chart showing variance stride, swing, stance, and double support interval for CON, PD1, and PD2 

participants respectively (*p (Significance) < 0.05, ns (non-significant). 

Figure 5.2 shows the unnormalized group-mean for the four parameters; stride, swing, 

stance, and double support interval for the three groups; CON, PD1, and PD2 participants. 

Figure 5.3 shows the variance of the four gait phases; stride, swing, stance, and double-

support interval for CON, PD1, and PD2 participants, and the statistical significance results 

are shown in Table 5.3. From, figure 5.2, figure 5.3 and table 5.3, it is observed that,  

• The mean of all the four gait parameters; stride-interval, swing interval, stance-interval 

and double-support interval are the least of CON, higher for PD1, and the maximum for 

PD2. However, the difference is not statistically significant.  

• The variance of all the four gait parameters; stride-interval, swing interval, stance-interval 

and double-support interval are the least of CON, higher for PD1, and the maximum for 

PD2. The group-differences of all four parameters are statistically significant.  

Table 5.3: Comparison between mean (±SD) and variance (±SD) of gait parameters when CON, PD1, and PD2 

groups are compared 

Gait 

intervals 

Statistical 

parameter 

CON PD1 PD2 p-value  

µst, r 1.071 ± 0.047 1.122± 0.102 1.147 ± 0.119 0.194 
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Stride 

interval 

σst, r 0.001 ± 0.001 0.005 ± 0.004 0.007 ± 0.006 0.0005* 

Swing 

interval 

µsw, r 0.381 ± 0.030 0.368 ± 0.037 0.361 ± 0.067 0.518 

σsw, r 0.0004 ± 0.0002 0.0009 ± 0.0003 0.002 ± 0.001 0.00003* 

Stance 

interval 

µsta, r 0.689 ± 0.032 0.753 ± 0.089 0.778 ± 0.104 0.051 

σsta, r 0.001 ± 0.001 0.004 ± 0.004 0.010 ± 0.017 0.0004* 

Double 

support 

µds, r 0.301 ± 0.0308 0.363 ± 0.077 0.425 ± 0.1106 0.081 

σds, r 0.0020 ± 0.003 0.00441 ± 0.003 0.0090 ± 0.0094 0.005* 

5.4.4 Percentage stance and swing of stride interval 

   

Figure 5.4: Bar chart showing the percentage of stance, swing, and double support interval for different groups 

Figure 5.4 shows the percentage of stance, swing, and double support intervals for 

CON, PD1, and PD2 participants respectively, and the statistical significance is shown in 

Table 5.4. 

Table 5.4: Percentage of stance, swing, and double support interval for different groups 

Gait  CON (%) PD1 (%) PD2 (%) p-value 

Stance interval 63.85 ± 2.23 67.0 ± 3.08 67.76± 5.21 0.0295* 

Swing interval 35.63 ± 1.73 33.04 ± 3.80 32.23 ± 5.2 0.0492* 

Double support 

interval  

44.10 ± 3.58 49.20 ± 6.3 53.22 ± 8.15 0.0021* 

Figure 5.5 shows the bar chart representation of the mean self-similarity parameter with 

its standard deviation for control, PD1, and PD2. The self-similar properties of swing interval 

show the least value of α (in the range of 0.6) among the other phases of gait. The variations 
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in the self-similarity parameter are more significant in stride interval when compared with 

control and PD patients.  

5.4.5 Self-similarity parameter 

  

  

Figure 5.5: Mean (±SD) of the self-similarity parameter for CO, PD1, and PD2 during the stride, swing, stance, and 

double support intervals 

Table 5.5: Self-similarity parameter using DFA mean ± SD for control, PD1, and PD2 respectively with significance 

(p-value). 

Gait CO PD1 PD2 p-value 

 

Stride interval 

(αst) 

0.909±0.056 0.871±0.038 0.656±0.045 0.0001* 
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Stance interval 

(αsta) 

0.893±0.098 0.859±0.144 0.837±0.158 0.2860 

Double support 

(αds) 

0.885±0.097 0.856±0.074 0.774±0.116 0.0430* 

Table 5.5 lists the mean self -similarity parameter, α from the DFA of the three groups for 

the following gait intervals: 

• αst self-similarity parameter for stride interval,  

• αsw self-similarity parameter for swing interval,  

• αsta self-similarity parameter for stance interval,  

• αds self-similarity parameter for double support interval.  

The results show that for all the groups, 0.5< α <1 which indicates that the data could 

be chaotic and not random. It is also observed that α value for stance, swing, stride, and 

double support is lower in PD patients with advanced disease conditions. This indicates that 

PD patients have less defined gait and having less rhythmicity in their inter-stride, inter-

swing intervals, inter-stance, and inter-double support interval. Thus, it is observed that 

rhythmicity decreases, with smaller α and hence high severity of PD. 

Table 5.5 shows the Kruskal-Wallis test showed that the self-similarity parameter was 

significant (p = 0.0001) for stride interval, (p = 0.0192) for swing interval and double support 

interval (p = 0.0430). But stance interval was not showing any significance.  

5.5 Discussion 

5.5.1 Lateral difference 

The mean and variance of gait parameters- stride, stance, and swing interval of left and 

right leg was compared for analyzing the lateral difference. The results show that there is no 

bi-lateral difference in the mean and variance of the four parameters for CON and PD 

participants. However, observation from the data indicates that while there is lateral 
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asymmetry, the difference is small and not statistically significant and hence only one side is 

sufficient for analysis.  

5.5.2 Histogram method of visualization of data 

This study has shown that there is a difference in the histograms of CON, PD1, and 

PD2 groups and the spread of the distribution is greater for patients with higher severity of 

the disease. The analysis of the gait data reveals that there was no significant difference in 

the mean values of the gait parameters; stride interval, swing interval, stance-interval and 

double-support interval with the severity of the disease, but the variance of these were 

significantly higher for PD compared with CON. It is also observed that the variance 

increased with the severity of the disease.  

5.5.3 Analysis of mean and coefficient of variance of gait intervals 

The analysis has shown that there is no significant difference in the mean value of inter-

stride interval, there is a significant increase in its variance among the PD patients compared 

with the control, and the difference is greater for higher severity of the disease. This is in line 

with the observations of (Hausdorff et al., 1998; Hausdorff, 2005; Olmo and Cudeiro, 2005; 

Baltadjieva et al., 2006; Osamu et al., 2009; Krishnan and Wu, 2010; Ota et al., 2012; Keloth 

et al., 2017). The increased variability in stride-interval is associated with falls (Gray and 

Hildebrand, 2000; Hausdorff et al., 2003; Plotnik et al., 2011; Weaver et al., 2016; Johannes 

et al., 2017), and this finding shows that PD patients have a higher risk of falls.  

While earlier studies have shown that there is an increase in the double-support duration 

in the PD patients (Mirek et al., 2007; Dipaola et al., 2016), our findings did not find this 

increase to be statistically significant. We have shown that the variability of stance-interval 

and double-stance interval is higher for PD patients and increases with the severity of the 

disease. This increase in the variability indicates poor coordination and loss of rhythmicity 
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and may be considered for quantifying the severity of disease and monitoring the progress of 

the patients.  

This study has found that while there is no significant increase in the mean value of the 

stride intervals, there is a significant increase in the fraction of stance-interval compared with 

the swing-interval of PD patients, and this decreases with the severity of the disease. The 

percentage of stance-interval for PD2 patients increased by 3.91% while double-support 

interval by 9.12% and swing-interval decreased by 3.4% compared to CON participants. This 

may be attributed to a fear of falls and hence a sense of urgency for PD patients to remain in 

their double-support phase. The fraction may also be suitable for estimating the severity of 

the disease and monitoring the progress of the PD patients. The increase in the fraction of 

stance interval related to the increase in the severity of the disease. This can be done by 

measuring the fraction of stance interval or swing interval from the stride interval, in terms 

of percentage.  

5.5.4 Self-similarity parameter of gait interval 

For stride interval, the self-similarity is significantly higher for control (0.909±0.056) 

and decreases with the severity of PD patients, with PD1 (0.871±0.038) and PD2 

(0.656±0.045). This shows that the stride interval of PD is less periodic when compared to 

control. Similarly, the self-similarity for swing interval is higher for control (0.692±0.059) 

and decreases with the severity of PD, with PD1 (0.650±0.043) and PD2 (0.608±0.058). This 

confirms the hypothesis reported (Hausdorff et al., 1998; Georg et al., 1999) and observations 

of (Frenkel et al., 2005) who also found an order of increase in variability among PD patients, 

with the greater increase being in patients with higher severity of the disease (Hausdorff, 

2005; Baltadjieva et al., 2006; Osamu et al., 2009; Krishnan and Wu, 2010; Ota et al., 2012).   

For stance interval, the self-similarity is higher for control (0.893±0.098) and decreases 

with the severity of PD patients, with PD1 (0.859±0.144) and PD2 (0.837±0.158). Since the 

stance interval was not significant between the groups, this study has also investigated the 
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self-similarity in the double support interval of gait. The double support interval of gait is 

more self-similar for control (0.885±0.097) and less for PD participants, with PD1 

(0.856±0.074) and PD2 (0.774±0.116). Earlier studies (Mirek et al., 2007; Dipaola et al., 

2016) have shown that PD patients show a longer time of double support when compared to 

control. Thus, this study has confirmed that the double support interval of gait gave less self-

similarity for PD participants and decreases with the severity of the disease. This suggests 

there is a sense of urgency to remain in their support phase which could be due to the fear of 

fall.  

The significance of this study is that there is a decrease in the self-similarity parameter, α 

obtained from DFA, as the severity of the disease increases. Earlier studies have shown that 

α of ECG is smaller for people with cardiac disease (Absil et al., 1999) and change in α of 

EEG for people with Alzheimer’s disease (Stam et al., 2005).  It has been reported that during 

walking at their own pace, the steps were similar irrespective of the time for control  on a 

level surface (Hausdorff et al., 1996). This gives more self-similarity and the gait parameters 

for the control are well defined. The declined α in the gait of PD patients may be attributed 

to the impairment in the ability to generate more rhythmic movements (Schaafsma et al., 

2003), and thereby resulting in a higher chance of falls. This decrease in the self-similarity 

indicates poor coordination and loss of rhythmicity and altered balance in PD patients. Falls 

in PD may lead to injuries, hip fracture, fear of falling and restriction of daily activities. This 

results in loss of independence and increase chance of mortality in PD.  

5.6 Study limitations 

This work has demonstrated that there is a significant PD severity group difference in 

the gait parameters recorded using insole sensors. Effective use of this technique for 

monitoring the progress of the PD will require further investigation of the effect of factors 

such as age, gender, and fatigue. It is also essential to develop the framework for the selection 

of the device and the measurement protocol to ensure the reproducibility of the recordings. 
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5.7 Summary 

This chapter has investigated the gait interval difference between the PD and control, 

with the data taken from a public dataset (Goldberger et al., 2000). The results show that 

there is no bi-lateral difference in the gait parameters of PD patients when compared with the 

CON participant. It has found that the mean values of the four gait parameters are not 

statistically different for PD patients and CON; however, there is a significant increase in the 

variance of these gait parameters. The results have also shown that while the difference in 

the mean values of the gait parameters between the PD patients and CON is not significant, 

there is a significant increase in the fraction of the double-stance phase. The variance and 

fraction of the gait parameters can be used to measure the progress of the disease and estimate 

the severity of the disease.  

Secondly, this chapter discusses the self-similar parameter of the gait interval, to study 

the long-range correlation of the signal. The analysis shows that the self-similarity parameter 

is less in participants with the severity of the disease. Among the stance and the swing phase 

of the stride interval, the inter-stance self-similarity is more when compared to inter-swing. 

It is also observed that the non-periodicity of the inter-stride, inter-swing, inter-stance, and 

inter-double support intervals is higher among PD patients and least among the control. This 

shows that PD patients have less rhythmic gait patterns when compared to control. 

5.8 Clinical significance of the work in this chapter 

There are two novelties of the study presented in this chapter that can be used by the 

clinician to monitor the progression of the disease. The first is that the variance of gait interval 

is significantly higher for PD patients and increases with the severity of the disease. This 

increase in the variability indicates poor coordination and loss of rhythmicity and may be 

considered for quantifying the severity of disease and monitoring the progress of the patients.  
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The second finding of the study is that the PD patients show decreased self-similar 

patterns in double support interval of gait, suggesting that there are less rhythmic gait 

intervals and a sense of urgency to remain in support phase of gait by the PD patients.  

 

 

This chapter is based on the published papers:  

Keloth S, Arjunan S and Kumar D (2017) Computing the variations in the self-similar 

properties of the various gait intervals in Parkinson Disease patients. Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society: 2434-2437. 

Keloth S, Arjunan S and Kumar D (2020) Variance of the gait parameters and fraction of 

double-support interval for determining the severity of Parkinson’s disease. Applied Sciences 

10: 577. 
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Chapter 6 

6.  Changes in gait parameter and walking patterns between 

Parkinson’s disease and control 

Brief outline of the chapter: 

This chapter discuss the difference in gait parameters based on the walking pattern of 

Parkinson’s disease patient, age-matched control, and young control. The method of pre-

processing of gait signal, gait-cycle identification and gait feature extraction are explained in 

this chapter.  

6.1 Introduction 

Gait interval measurement has the advantage of being recorded by IMU, and these 

parameters have been considered for the diagnosis of PD patients (Blin et al., 1990; Frenkel 

et al., 2005; Hausdorff et al., 2007; Kirchner et al., 2014). However, these are influenced by 

several compounding factors, such as the height, weight, and age of the person (Hausdorff et 

al., 2008; Kim and Park, 2015; Hagovska and Olekszyova, 2016). The severity and duration 

of the disease can also influence the walking style of PD patients. The walking conditions 

and pattern of the path can also influence gait parameters (Seung et al., 2010; Emmanuel et 

al., 2018; Seung et al., 2018). While earlier studies have reported differences between PD 

and controls, numbers of these factors such as the walking pattern (Hausdorff, 2009; 

Almarwani et al., 2016) and its relation to an age-matched control (Haertner et al., 2018; 

Turcato et al., 2018) have not been considered.  

Some walking patterns such as turning are affected even in the early stages of PD 

patients, with increased turning arcs (Bengevoord et al., 2016), time to complete the turn 

(Huxham et al., 2008; Spildooren et al., 2013) and a larger number of steps taken to complete 

the turn (Crenna et al., 2007). The number of steps and peak speed during turning 
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significantly differed among control, mild PD, and severe PD patients (King et al., 2012). It 

has been suggested that turning is more likely to cause functional impairment than straight 

walking since turning involves inter-limb coordination for the re-orientation of the body 

towards a new direction, balance relation between posture and gait and modification of 

walking patterns (Herman et al., 2011; Maidan et al., 2017). The main consequence of turns 

in PD patients is lateral falls, which can result in an eight-fold increase in hip fractures 

compared with falls during straight walking (Mellone et al., 2016; Johannesdottir et al., 

2017). Thus, it is very important to evaluate the turning ability in PD patients and to 

investigate the effect of gait periods across different turns. During the UPDRS screening, 

neurologists observe their patients during the turn phase of their walks, but this is subjective 

and has not been quantified.  

Researchers have proposed indices to quantify the variability in gait by an index, called 

variability index (Mileti et al., 2018). One of the main indexes used for this purpose is the 

Gait Phase Quality Index (GPQI), which shows how a PD patient's gait pattern deviates from 

the control (Guzik et al., 2018). It is the Euclidean distance, in a space of gait phase 

distribution, between the point determined by the gait phases percentage of the examined 

stride and the point determined by the average distribution of gait phases among control. A 

GPQI value close to 0% represents a gait pattern very similar to the control (Mileti et al., 

2018).  

This chapter investigated the effect of age, PD patients, and walking patterns on gait 

intervals to identify the walking pattern parameters that showed large differences between 

PD and the control. The mean and variance of the four parameters were considered: stride 

interval, swing interval, stance interval, and double support interval. Experiments were 

conducted where the participants performed three walking patterns: straight line, U-turn, and 

turning around a point during a single walking trail. The group differences of the gait 
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parameters between PD patients, age-matched controls, and young control participants for 

the three walking patterns were obtained. 

6.2 Data recording 

A wireless Trigno Inertial measurement unit (IMU) (Delysis, Boston, USA) system 

was used for the data recording of study participants. IMU device has three channels each for 

acceleration, rotation, and magnetic field and one for surface electromyogram (sEMG). The 

sEMG electrodes are active electrodes with an inter-electrode distance of 20mm and 

bandwidth of 20-450 Hz. The maximum wireless operating range of the sensor is 20m. The 

sampling rate of the sEMG signals is 2000 samples/second, of the accelerometer, and 

gyroscope signals are 148.14 samples/second, and of the magnetometer, signals are 74.07 

samples/second.  

6.2.1 IMU calibration  

Before the start of the experiment, we have calibrated the IMU sensor to check for the 

accuracy of the sensor. IMU sensors have been reported for investigating the change of gait 

of PD patients (Sijobert et al., 2015). However, there was the number of potential 

inaccuracies that were not considered, the effect of gravity on the acceleration, and the drift 

correction on the rotational angle. The effect of gravity can be a significant issue when the 

accelerometer is attached to the shank and its angle is constantly changing over the gait-cycle. 

There can be several causes for the drift in the devices, such as noise, offset errors, or 

sensitivity to thermal changes. Even small amounts of noise, when integrated twice during 

the calculation of lateral displacement, can result in a significant error in the measurement. 

When performing gait analysis this error then becomes increasingly large when integrated 

over multiple gait-cycles. Another shortcoming of IMUs is that the accelerometer output has 

a gravitational component which is dependent on the angle of the sensor concerning the 

vertical. While IMUs can be calibrated to remove the gravitational component, such 
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calibrations assume that the direction of gravity concerning the sensor is steady, which 

however is not the case when the sensor is worn while people are walking. Thus, the standard 

approach of calibrating the IMU at the start of the experiment is necessary. 

We have developed an algorithm to address the issue of gravity and drift error 

associated with the IMU sensor. First, we use gyroscope data to obtain the angle made by the 

foot during the heel strike and used this to form a generalized equation for gravity correction. 

The data is then detrended to remove the drift and the corrected for the acceleration. These 

steps are described below. 

Step 1: Gravity Correction  

 

 

 

 

The first step is to correct the horizontal and vertical acceleration for gravity. Based on 

the knowledge that the foot is plantarflexed and inclined at β(t) to the ground at heel strike 

(Figure 6.1) the reference planes of the accelerometer, y, and z, are inclined at this angle. 

Hence it is essential to correct the acceleration recording to get the true vertical and horizontal 

accelerations about the fixed vertical and horizontal reference frames, V and H. The 

generalized equations for horizontal and vertical acceleration aligned to the reference frame 

are given by   

β(t)=∫ 𝜔(𝑡) 𝑑𝑡
𝑡𝑓𝑖𝑛𝑎𝑙

0
       (1) 

aV(t) = - az(t) sin (β(t)) + ay(t) cos (β(t)) - g    (2) 

aH(t)= az(t) cos (β(t)) - ay(t) sin (β(t))     (3) 

Figure 6.1: The angle, β, made by the foot during heel strike, with reference to the vertical, V, and horizontal, H, 

planes. The position of the accelerometer is represented by “o”, ay and az represent the acceleration planes 

relative to the accelerometer and g is the gravitational acceleration. 
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where ω(t) is the angular velocity from the gyroscope in the sagittal plane from the 

time of initial contact (t=0) till the time of final contact (tfinal), g is the acceleration due to 

gravity, az and ay are the accelerations in the reference plane of the IMU, aV (t) and aH (t) are 

the corresponding accelerations in the true vertical and horizontal planes, which are gravity 

corrected signals.  

 

 

 

 

 

 

 

 

Step 2: Drift Correction 

The second main problem related to IMU sensor after gravity correction are error due 

to the drift in the signal. There are number of causes for the drift in the signal, such as noise, 

offset error and sensitivity to thermal changes. These error when integrated can result in 

significant errors along with the desired signal, contributing to misinterpretation. In the case 

of gait signals, stride length is computed based on the estimation of total distance covered 

while walking (Yang and Li, 2012) and based on the assumption of periodicity and regularity 

in the gait-cycle. However, this is not the case with pathological gait. The total distance 

covered while walking is obtained by double integration of acceleration signal, measured 

from the IMU sensor. So, any drift present in the IMU data which may lead to inaccurate 

estimates of the stride length. Several studies have proposed solution to address these 

shortcomings. It was shown that kalman filtering can be used to remove low frequency drift  

Angular velocity (ω(t)) 

Rotational angle (β(t)) 

Selection of n point for the fit 

Linear interpolation (βn(t))  

Drift corrected signal=β(t)- β
n
(t) 

Figure 6.2: Flowchart showing the drift correction in the signal 

Integration 
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from the IMU orientation data (Foxlin et al., 1998; Luinge and Veltink, 2005). The main 

drawback of this method is error in the vertical axis was not significantly reduced. An 

alternative approach is to use complimentary filters to remove frequencies from the selected 

range of the spectrum, but this system has proved to be inaccurate when changes in gait speed 

and cadence occur (Hyde et al., 2008; Mahony et al., 2008). The studies (Mathie, 2003; 

Bourke et al., 2011) have shown a method of gravity separation from linear and rotational 

acceleration components through filtering techniques. However, this system has not been 

validated in terms of changes in the magnitude and frequency of the acceleration. To 

overcome these issues, it is important to correct for the drift in the signal.  

In this study,drift in the IMU data was corrected by performing linear interpolation, 

as shown in figure 6.2. Baseline fitting was performed to the computed rotational angle, β(t).  

Baseline fitting is similar to detrend operation. The main difference between the baseline 

fitting method used in this study and the detrending operation is that, the technique uses 

manual interpolation of data. The manual interpolation of data is advantage for non-periodic 

and irregular signal, as in the case pathological gait signal.  

As a first step, the noise from the accelerometer and gyrometer was corrected using a 

second-order bandpass Butterworth filter with a cut-off frequency of 0.01 Hz–20 Hz. To 

obtain the baseline-fit, requires the selection of the array on the rotational angle: β(t), with n 

points required for the fit. The n point on the signal was taken as 20, which best describes the 

fit. A baseline is then linearly interpolated from these selected points. After linear fitting, the 

compensated output is obtained by subtracting the original signal β(t) from the baseline fit. 

This compensated output has reduced drift and produces a more reliable estimate of the stride 

length.  
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Figure 6.3: Angular velocity and angle of the foot concerning time using raw IMU data a) before drift correction and 

b) after drift correction. 

Figure 6.3 represents the angular velocity and rotational angle of the foot signal (β(t)) 

concerning time. The left side of figure 6.3 shows the drifted rotational signal (represented 

in blue color) and the right side shows the drift corrected signal. It was observed from figure 

6.3 that there is a cumulative error in the estimate of the maximum angle, and which gets 

corrected after drift correction. 

6.3 Materials and methods 

The experimental protocol was approved by the RMIT University Human Research 

Ethics Committee (BSEHAPP 22-15). Please refer Appendix V for the copy of letter of 

approval. The aim and experimental protocol were explained to the participants and their 

written informed consent was obtained before the start of the experiment. The study 

investigated the gait data of 72 participants: 24 with Parkinson’s disease referred to as PD, 

24 age-matched controls referred to as CO and 24 young controls referred to as YC. All PD 

patients were recruited from the PD outpatient clinic at Dandenong Neurology, Melbourne, 

Australia, while the CO participants were from multiple aged-care facilities and recreation 

facilities, and YC were recruited from RMIT University through appropriately located 

posters. The PD participants were excluded from the study if there were any clinically 

observed or self-reported skeletal injuries, neurological, musculoskeletal diseases other than 

  

a b 
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PD, and UPDRS III > 50. An individual’s UPDRS III score >50 indicated that the patient 

had severe PD symptoms which were considered high-risk and unsuitable for the experiment 

by the human experiment’s ethics committee. The CO participants were recruited to match 

the age distribution and gender of the PD patients approximately. The age-matched control 

(CO) participants were with no reported or observable PD symptoms. To confirm the 

suitability of the participants as controls, they were assessed according to the guidelines of 

the motor examination section of the UPDRS III, Hoehn, and Yahr (H & Y) scale and their 

self-assessment. They were excluded if there were any signs of PD, clinically observed or 

self-reported skeletal injuries, neurological, musculoskeletal diseases.  

All PD patients were in their ON phase of the medication cycle. The number of 

participants in the experiment was based on the power calculation to achieve a statistical 

power of 80% (Nayak, 2010). The age group of participants considered for the study was 20–

80 years. The participants in the CO and YC groups were chosen such that the gender ratio 

(male: female) was similar to that of the PD group .  

Participant’s demographic data, medical history, psychiatric history, current 

medication, and PD history (duration, symptoms, previous medication time, progression) 

were collected and de-identified for their privacy. They were assessed according to the 

guidelines of the motor examination section of the UPDRS III, the intensity and disability 

scales from the Unified dyskinesia rating scale (UDysRS), Hoehn and Yahr (H & Y) scale 

and the cognitive test from the Montreal cognitive assessment (MoCA). Table 6.1 shows the 

clinical characteristics of the three groups. 

Table 6.1: The clinical characteristics in mean (± SD) of three group-PD, CO, YC. 

 

 
PD (n=24) CO (n=24) YC (n=24) p-value 

Demographic variables PD and CO 

Age (Years) 71.91 ± 8.64 67.25 ± 3.77 27.91 ± 2.43 0.17 

Gender (male/female) 17/7 17/7 18/6  

Height (cm) 169.26 ±8.89 166.54 ± 8.20 161.33 ± 4.26 0.23 
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Mass (kg)  81.25 ± 15.86 73.58 ± 12.46 60.29 ± 8.07 0.07 

Clinical variables 

Disease duration 

(Years) 

4.27 ± 3.15 - -  

UPDRS III 25.69 ± 10.95 0.41 ± 1.10 -  

UPDRS PIGD sub 

score 

5.29 ± 3.07 - -  

UDysRS 0.79 ± 1.35 - -  

H &Y 2.27 ± 0.94 - -  

Levodopa dosage 

(mg/day) 

456.72±148.23 - -  

Range of UPDRS III 9-48 0-5 -  

Range of H &Y 1-3 - -  

Tremor at rest (lower 

limb) 

0.125 ± 0.33 - -  

Rigidity (lower limb) 1.16 ± 0.83 - -  

Leg agility 1.27 ± 0.19 - -  

Gait  1.08 ± 0.77 - -  

Postural stability 1.41 ± 0.71 - -  

Body bradykinesia 1.04 ± 0.75 - -  

Cognitive variables 

Total MoCA 

score 

23.33 ± 5.30 27.33 ± 3.10 28.75 ± 1.35  

Visuospatial/ 

executive 

function 

3.5 ± 1.74 4.41 ± 1.13 4.95 ± 0.20  

Attention 4.70 ± 1.33 6 6  

Delayed recall 2.41 ± 1.97 3.62 ± 1.55 4.16 ± 1.00  

Orientation 5.56 ± 0.57 5.95 ± 0.20 5.62 ± 0.71  

The IMUs were placed on the Medial gastrocnemius (MG) muscle and Tibialis anterior 

(TA) muscles of the left and right legs as shown in figure 3.2 and the positioning was based 

on the SENIAM recommendation (Siddiqi et al., 2015). The sensor placed in the TA muscle 

was used to compute the gait intervals, which was considered the best location to study gait 

events (Rueterbories et al., 2010). The acceleration and angular velocity curves in the Medio-

Lateral (ML) axis of the IMU sensor placed in the TA muscle was further used for the 

calculation (Mitschke et al., 2018). The MG muscle data was used for the muscle parameter 

estimation. Please refer chapter 7. 
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6.3.1 Experimental protocol 

The protocol consisited of many straight line walking followed by turns, that resembles a 

daily walking pattern of human being. The protocol required the participants to walk along a 

path marked on the floor with white markers and as shown in figure 6.4. A 600 mm diameter 

obstacle was placed at points 5 and 7 to guide the participants to perform a U-turn and turn 

around a point respectively. The length of the straight-line walking segments was suitable for 

minimum 2 bipedal gait-cycles for all the participants. The approximate length of the straight-

line walking segments was 2m. The protocol required the participants to perform the walking 

twice. The walking path was a level concreted floor. The participants were asked to perform 

the task at their self-selected and comfortable walking speed. An assumption was made that 

the walking speed was constant throughout.  All participants were encouraged to familiarize 

themselves with the path and equipment before starting the recording. Assessments were 

video-recorded and taken for reference.  

 

Figure 6.4: Walkway. 1. Start position, 2. 60° turn, 3. 30° turn, 4. 90° turn, 5. U-turn, 6. 90° turn, 7. Turn around a 

point, 8. Turn from the spot, 1. Start position. 

6.3.2 Pre-processing of the signal 

The IMU recordings were pre-processed to remove noise and offset. The offset in the 

recordings was removed using MATLAB. Secondly, the noise in the accelerometer and 
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gyrometer was corrected using a second-order bandpass Butterworth filter with a cut-off 

frequency of 0.01 Hz–20 Hz.  

6.3.3 Turn identification 

 

Figure 6.5: Flowchart to distinguish the turns from straight walking. 

A change in the direction of walking is defined as a turn. To identify turns, the heel 

strike angular velocity in the Medio-Lateral (ML) axis of the IMU sensor placed in the TA 

muscle was considered for the study. The heel strike angle was calculated by the trapezoidal 

integration of the angular velocity curve of both the right and left limb. Finally, the change 

in the difference of the heel strike angle of the same limb was used to categorize straight 

walking and turns (England et al., 2015).  

There was a small but statistically insignificant difference between the right and left 

side (p > 0.05) for all participant groups and for further analysis only the dominant right leg 

was considered. The selection of the dominant side was based on the questionnaire. Out of 

24 PD and 24 YC, all were right dominant and for CO excluding one, all were right dominant. 

The flow chart describing the procedure to distinguish turns from straight walking is given 

in figure 6.5. 
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Figure 6.6 shows the absolute angle difference of one participant during walking. The 

turn was identified when the difference between the absolute angles of either right or left foot 

was greater than M + SE of the respective foot (England et al., 2015). 

 

Figure 6.6: Angle difference of one participant during walking 

6.3.4 Gait phase identification 

A gait-cycle is defined as the difference between the times of two consecutive heel 

strikes of the same leg. The heel strike is the moment when the heel touches the ground and 

is identified by the highest peak in the acceleration curve (Grech et al., 2016). PD patients 

have smaller heel strike angles when compared to the control (Ginis et al., 2017), and the 

heel strike can be confused with the start of the swing phase. To avoid false heel strike 

detection, the gyroscope signal was also used to detect the end of the swing phase (mid-

swing) represented as a peak in the gyroscope signal. The corresponding maximum peak in 

the accelerometer signal then represents the heel strike (Ferster et al., 2015).  
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Figure 6.7: Acceleration and angular velocity curves showing HS, TO and MS of one stride. 

Figure 6.7 shows the pre-processed acceleration and angular velocity curves in the 

mediolateral (ML) axis of the IMU sensor placed in the TA muscle, depicting the HS (heel 

strike), TO (toe-off) and MS (mid-swing) phases of gait.  

6.3.5 Gait feature extraction 

The study have considered the gait temperol parameters, as these are the considered to 

contribute more to the gait impariment in the early stages of the disease when compared to 

the spatial parameters of gait (Wahid et al., 2015). The following gait parameters were 

calculated from the right leg: 

• Number of steps during the turn (steps). 

• Total turn duration (s). 

• Cadence = total number of steps/total turn duration (steps/min) for turns and straight 

walking the total turn duration was the total duration of straight walking. 

• Stride duration– Time from HS to HS of the same foot (s). 

• Stance duration–Time from HS to TO of the same foot (s). 

• Swing duration–Time from TO to HS of the same foot (s). 

• Double support duration–Time from right HS to left TO + Time from left HS to right 

TO (s) 
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• The variance of gait intervals was computed using the coefficient of variance (σ), as 

it was found to be the most common method in analysing the gait fluctuation (Chau 

et al., 2005). The σ for each gait interval was calculated as the ratio of the standard 

deviation of the gait parameter to the mean of the gait parameter. The variance of the 

stride interval, swing interval, stance interval, and double support interval was 

represented as σst, σsw, σsta, and σds respectively. Similarly, the mean of the stride 

interval, swing interval, stance interval, and double support interval was represented 

as µst, µsw, µsta, and µds, respectively. 

• Gait Phase Quality Index (GPQI) was calculated using the following formula (Mileti 

et al., 2018):  

GPQI =  √∑ (𝐹𝐷𝑆𝑃𝐷 − 𝑚𝐹𝐷𝑆𝐶𝑂) + (𝑆𝑆𝑃𝐷 − 𝑚𝑆𝑆𝐶𝑂) + (𝑆𝐷𝑆𝑃𝐷 − 𝑚𝑆𝐷𝑆𝐶𝑂) + (𝑆𝑊𝑃𝐷 − 𝑚𝑆𝑊𝐶𝑂)2
𝑖 = 1  (1) 

where FDSPD, SSPD, SDSPD, SWPD represented the percentage gait phase of PD, 

mFDSPD, mSSPD, mSDSPD, mSWPD represented the average value of percentage gait phase of 

CO. The GPQI calculation was computed for PD, to access the effect of gait phase 

distribution and represented by GPQIPDO and for CO computed as the gait phase distribution 

of CO, which differed from the CO average and represented by GPQICO. Similarly, a 

calculation was performed concerning the average value of the percentage gait phase of YC. 

The corresponding GPQI value for PD was represented by GPQIPDY and compared with 

GPQIYC. The GPQI was calculated for each participant and the average values were plotted.  

6.3.6 Statistical analysis 

The Shapiro–Wilk test was performed to check for normal distribution of the data, as 

it gave the highest power of distribution when compared to other similar tests (Ghasemi and 

Zahediasl, 2012). The data was not normally distributed and all the statistical significance of 

the group-based difference was obtained using the Kruskal–Wallis (KW) test which is a non-

parametric test, recommended for comparing between multiple independent groups which 

have no normal distribution of data (Siegel, 1988). When significant differences were found, 
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a Bonferroni’s test was performed (Mileti et al., 2018). Cadence, total turn duration, number 

of steps, σst, σsw, σsta, σds, µst, µsw, µsta, and µds were analyzed using the KW test when checking 

for group difference. The Wilcoxon test was performed to assess the difference within a 

group. The significance level (p) was set as 0.05 for all the statistical tests performed. 

6.4 Results 

Figure 6.8 shows that there was an age-associated trend of reduced cadence, an 

increased number of steps, and total duration for the turning task. It was also seen that there 

was a significant difference between these parameters among PD patients and age-matched 

controls. The cadence was statistically insignificant between the groups for straight walking 

and hence not reported.  

a 

 

 

 

b 

   

Figure 6.8: Bar charts showing mean cadence, number of steps, and total turn duration for PD, CO, and YC 

participants for (a) U-turn and (b) Turn around a point (*p (Significance) < 0.05, ns (non-significant)). 
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Figure 6.9: Bar charts showing mean (SD) stride interval, swing interval, stance interval and double support interval for 

PD, CO and YC participants for (a) Straight walking (b) Turn around a point (c) U-turn (*p (Significance) < 0.05, ns 

(non-significant)). 

From figure 6.9, it can be seen that while some of the parameters did not show a 
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of walking– straight, turn around a point and U-turn. It was also observed that even when the 
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highest difference between PD patients and control, irrespective of the control being age-

matched or young, and this was the case for all the three gait tasks. This indicated that variance 

rather than the values of the gait interval parameters was suitable for differentiating between 

PD and control and may be suitable for the diagnosis of PD patients. It was also seen that the 

age-associated change in the variance was small when compared with the increase due to 

disease. 

a 

   
 

b 

    

c 

    

Figure 6.10: Bar charts showing variance (SD) of stride interval, swing interval, stance interval and double support 

interval for PD, CO and YC participants for (a) Straight walking (b) Turn around a point (c) U-turn (*p (Significance) < 

0.05). 
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show any significant difference in gait interval variance based on the walking pattern, except 

for double support interval variance. It was also seen that young control (YC), showed an 

insignificant difference in gait interval variance based on the walking pattern. Furthermore, the 

mean of the gait intervals was statistically insignificant based on the walking pattern, except 

for a few intervals as tabulated in table 6.2. 

Table 6.2: The comparison of mean and coefficient of variance of gait intervals for straight with U-turn and turn around 

a point for each participant group. The p-value is tabulated below. 

Participant 

Walking 

pattern 

(straight 

walking 

compared 

with) 

µst µsw µsta µds σst σsw σsta σds 

PD U-turn ns ns ns ns 0.001* ns 0.006* 0.000* 

Turn 

around a 

point 

ns ns ns ns 0.002* ns 0.005* 0.005* 

CO U-turn ns ns 0.04* ns ns ns ns 0.021* 

Turn 

around a 

point 

ns 0.045* ns ns ns ns ns 0.031* 

YC U-turn ns ns 0.047* ns ns ns ns ns 

Turn 

around a 

point 

ns ns ns ns ns ns ns ns 
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b 
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c 

 
Figure 6.11: Bar plot showing the mean (SD) GPQI for (a) straight walking, (b) U-turn, and (c) Turn around a point (*p 

(Significance) < 0.05). 

Figure 6.11 shows that there was a significant difference between GPQIPDO and 
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shown that there was no significant difference between cadence of PD freezers, non-freezers 

and controls during a 180-degree turn but, (Spildooren et al., 2010; Spildooren et al., 2012) 

found that cadence increased significantly in freezers when compared to non-freezers and 

control during 180- and 360-degree turns. Both the studies above were performed in an OFF-

period of medication while our study was with patients in their ON-state of medication. 

Literature (Morris et al., 1994; Chien et al., 2006) has shown the independence of cadence in 

PD ON and OFF period of medication when compared to the control. This study has confirmed 

that, cadence did not significantly differ between PD and CO, while the number of steps and 

total turn duration was statistically different between the PD and CO while performing a turn. 

Cadence also didn’t have a statistically significant difference between the groups for straight 

walking and hence was not reported.  

This study also investigated the group differences of gait intervals between PD, aged-

matched control, and young control during straight walking, taking a U-turn and turn around a 

point. The results showed that there were significant differences between PD and age-matched 

control, and between the young and older cohort for most of the parameters. However, the 

largest difference between PD and control, irrespective of age, was seen in the variance 

measured as the coefficient of variance of the gait interval rather than the mean values of the 

parameters and was observed for all the three walking tasks that were investigated. This shows 

that while there are age-associated changes to the gait parameters the difference in variance 

between PD and control is significant, even without considering the age, and the difference 

was much greater than all other parameters. In the case of PD patients, irrespective of any of 

the three aforementioned walking tasks, there is a significant decrease in the ability to generate 

gait rhythm. This supports the works of Redgrave et al. (Redgrave et al., 2010) who found that 

PD patients lose their habit control systems in the basal ganglia which leads to a greater 

dependence on voluntary control of ‘habitual’ activities such as walking due to which there is 

greater variability. Literature (Roemmich et al., 2012; Ringeval et al., 2015; Lin et al., 2016) 

also show that the presence of neurological disorders such as in PD has major effects in 

increasing gait variability. The increase in stride variability in gait was a unique indicator of 

the inability to produce gait rhythm (Hausdorff, 2005; Brach et al., 2008) and risk of falls (Rios 

et al., 2001; Skjaeret et al., 2016). Loss of dopamine in the substantia nigra leading to the 

excessive inhibition of the basal ganglia loop leads to the loss of habitual patterns (Redgrave 

et al., 2010) associated with walking and also causes rigid movement and decreased range of 

limb movement (Snijders et al., 2007). One observation from this study was that while PD had 
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a complex set of symptoms and its measure required a battery of tests (Goetz et al., 2008), 

where gait was only one factor to be considered, the results showed that the gait variability 

alone appeared to be suitable for differentiating between case and control. However, this 

requires extensive investigation before it can be considered for diagnostic purposes. 

Another important finding is based on the dependence of gait variability on the walking 

pattern for individual groups. The results showed that there was a significant increase in the 

stride interval, stance interval, and double support interval variance of gait for straight walking 

when compared to turns for PD patients. Literature (Earhart, 2013), shows that turning while 

walking is a challenging task that requires the control of balance. Significant differences in gait 

variability during turns can be related to FOG (Mancini et al., 2018) and as an early sign of the 

progression of disease in PD (Salarian et al., 2009; Spildooren et al., 2018). Age-matched 

control (CO) participants showed statistically insignificant differences in gait variance, except 

for double support interval based on the walking pattern. Thus, this study confirmed that gait 

in PD was disturbed based on the walking pattern.  

This study investigated the GPQI for the groups, which could be used to show how PD 

gait pattern deviates from control. The results showed that there was a significant difference in 

the GPQI value between PD and control. The GPQI value matched with the values reported in 

(Mileti et al., 2018) for straight walking. Thus, these scores can be used by clinicians to classify 

the severity of a pathological gait pattern by quantifying the deviation from the control 

(Ancillao et al., 2017) and also to quantify the effect of a treatment or even to evaluate the 

natural improvement in gait patterns over time (Guzik et al., 2018). Thus, this study confirmed 

that there was a significant difference in gait patterns between the PD patients and the control 

group. 

6.6 Limitations of this study 

There were two limitations of the present study: Sample size in gender calculation and 

only the ON-state PD was tested. While 24 PD and 24 age-matched controls were a decent size 

based on literature, this was not sufficient for gender and body size matching, which are factors 

that contribute to gait parameters. The other factor is that literature shows (Schaafsma et al., 

2003) that there is a significant effect caused by medication, where the difference may be even 

greater in the OFF state of medication. 
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6.7 Summary 

This chapter has investigated the effect of gait parameters on different walking patterns- 

during straight walking, U-turn and turn around a point on 24 PD, 24 CO, and 24 YC 

participants. The study showed that the variance of any of the gait interval parameters obtained 

using an IMU during any of the walking patterns could be used to differentiate between the 

gait of PD and CO, PD, and YC. This can facilitate the quantitative assessment of the patients 

and can be considered for e-health applications. 

6.8 Clinical significance of the study 

There are two novelties of the study which have the potential to make a significant 

difference to the clinical assessment of PD patients. The first is that this study has shown that 

both, straight-line walking and turning are suitable for the evaluation of PD patients, and hence 

either could be used. Thus, the practice of making the patient perform complicated turns 

(Mellone et al., 2016; Miller Koop et al., 2018) is not required for such a study. 

The second novelty is that this study has shown that by the use of IMU placed on the legs 

of the patients and measuring the gait period variance (On-Yee et al., 2017; Estep et al., 2018; 

Warlop et al., 2018), it is possible to identify PD patients while the patient performs simple 

walking. This has the potential to be used for population-based screening for early diagnosis 

of the disease.  

Another important finding of this study is that it showed that the gait variance of these 

parameters only showed the difference between PD and controls, irrespective of their age. 

Thus, while there are significant differences in the gait parameters between young and old, the 

variability due to age was not significant. 

 

 

This chapter is based on the published paper: 

Keloth S, Viswanathan R, Jelfs B, Arjunan S, Raghav S and Kumar D (2019) Which gait 

parameters and walking patterns show the significant differences between Parkinson's disease 

and healthy participants? Biosensors 9(2). 
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Chapter 7  

7.  Differentiating Parkinson’s disease using muscle activation 

strategies during walking 

Brief outline of the chapter: 

This chapter describes the difference in muscle activation of Parkinson’s disease patients, age-

matched control, and young control during walking. The different muscle parameters used for 

differentiating between the groups are studied in this chapter.  

7.1 Introduction 

PD is a neuromotor disorder with gait impairment and poor posture being common 

symptoms (Boonstra et al., 2008). PD patients are high-risk fallers and have an unsteady gait 

with shuffling, reduced strength, and increased rigidity (Hausdorff, 2009). Their gait has been 

found to have poor coordination, abnormal load distribution and difficulty to produce a normal 

“heel to toe” roll-over. There is a reduced pre-swing phase which is caused by decreased plantar 

forces at the forefoot, resulting in reduced leg acceleration during swing phase, stride length, 

and gait speed (Morris et al., 1998; Nieuwboer et al., 1999; Sofuwa et al., 2005). However, 

human gait is also influenced by the number of non-neurological factors such as orthopedics 

and it is possible to miss some of the gait impairment symptoms in the prodromal stage of the 

disease.  

Surface electromyography analysis of the gait has applications for rehabilitation and 

diagnosis of neuromotor pathological gait conditions (Mariani et al., 2013). Investigation of 

the muscle activity during the sub-phase of gait can reveal subtle and clinically significant 

patterns during loading, flat-foot, and pre-swing phases (Mariani et al., 2013).  

It is seen that PD patients have MG muscle activity during the stance phase of gait (Dietz 

et al., 1995) and reduced ability to modulate their activation pattern (Milner et al., 1979). Their 

activity has reduced modulation and is not symmetrical (Bailey et al., 2018). It has also been 

shown that PD patients have reduced TA activity during the stance phase (Dietz et al., 1995) 

and reduced TA amplitude during late swing (Mazzetta et al., 2019).  The changes in sEMG of 

TA and MG muscle reflect the impairment in motor control and movement, further resulting 

in limited control of foot and stride length (Mitoma et al., 2000).  
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PD patients have higher concurrent activation of agonist- antagonist muscles around the 

ankle, which is referred to as co-activation (Dietz et al., 1995);(Lang et al., 2019). Co-activation 

stabilizes the joints and provides postural and movement stability (Latash, 2018), but excessive 

co-activation can produce negative work, reduce the net torque at the joint and increase rigidity 

(Busse et al., 2006). This is studied by analyzing the sEMG of the opposing muscles (Ervilha 

et al., 2012) and calculated as the Co-activation Index (CI). While CI increases for both, PD 

patients and the elderly, an increase in CI for the elderly is associated with an increase in the 

muscle activation during mid-stance (Schmitz et al., 2009), while in PD patients it is 

accompanied with a reduction in the overall muscle activity. There is a significant change to 

CI over the different sub-phases of the gait for the elderly when compared to young (Schmitz 

et al., 2009). However, such a study has not yet been done for PD patients for straight-line 

walking through the level ground.  

PD patients have higher gait asymmetry (Park et al., 2016; Cole et al., 2017); (Bailey et 

al., 2018).  which however had not been found earlier, based on the sEMG envelope of the 

lower limbs (Thaut et al., 1996). Earlier studies (Miller et al., 1996; Thaut et al., 1996) had 

analyzed the gait asymmetry by considering the difference between right and left side mean 

value of the sEMG signal. These can result in incorrect analysis, as the difference between right 

and left leg may be due to a difference in leg dominance (Ankaralı et al., 2015). To overcome 

this, Asymmetry Index (AI) was introduced, where the ‘higher’ vs ‘lower’ sides were 

compared, and using this, significant gait asymmetry was observed (Bailey et al., 2018). 

Nevertheless, this does not show how this asymmetry changes over the gait-cycle.  

Symmetrical human gait requires modulation of muscle activity over a large range. This 

conserves energy and provides stability and is measured using the Modulation Index (MI). It 

has been shown that PD patients have reduced modulation while maintaining posture (Lang et 

al., 2019) but their MI during gait has not been reported.  

The variability of the sEMG envelope is an indicator of the steadiness of the muscle 

activity and can be an indicator of the poor coordination and smoothness of the contraction. 

However, this has been rarely reported in the literature. The only studies that report the 

assessment of sEMG variability are based on the shape rather than the overall variation of the 

signal, and the results have been contradictory. While one study observed significantly higher 

sEMG shape variability for PD (Miller et al., 1996) when compared to age-matched control 

but other studies did not (Thaut et al., 1996). Recent work by the author assessed sEMG 

variability using a coefficient of variance and observed higher gastrocnemius activity 
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variability was related to higher motor dysfunction in PD (Bailey et al., 2018) as measured 

using UPDRS III. However, such a study on the variability of muscles was not analyzed for 

the sub-phases of gait for PD patients and during different walking patterns. Thus, the lack of 

separation of the two groups based on variability may be due to the gross nature of the analysis, 

where the gait was not sub-divided in the different phases.  

The chapter has studied the muscle activation pattern of TA and MG muscle during 

different phases of gait in PD patients with early-stage Postural Instability and Gait Disturbance 

(PIGD) and controls, measured in a clinical setting using wearable sensors. Muscle activity of 

the agonist and antagonist muscles of the lower limb along with the gait data were recorded 

while the participants walked in a straight line inside the clinic. The muscle activation 

parameters that have been proposed in earlier studies- CI, AI, MI, and CV, were computed for 

the sub-phases of the gait: first double support (1DS), single support (SS) second double 

support phase (2DS) and swing (SW) phase.  

7.2 Material and methods 

The experimental protocol was approved by the RMIT University Human Research 

Ethics Committee (BSEHAPP 22-15). The details of the study and experimental protocol were 

explained to the participants and their written informed consent was obtained before the start 

of the experiment. The study has investigated the gait data of 72 participants: 24 with 

Parkinson’s disease referred to as PD, 24 age-matched controls referred to as CO, and 24 young 

controls referred to as YC. The detailed description of the database is given in section 6.3.  

7.2.1 Data recording 

The muscle activation strategy during gait is dependent on the selection of the muscles 

being investigated. The comparison between MG and LG muscle for control shows that MG 

activity is more when compared to LG during the gait-cycle (Chisholm et al., 2015). The IMUs 

were placed on the MG and TA muscles of the left and right legs. The sensor placed in the TA 

muscle was used to compute the gait intervals, which was considered as the best location to 

study the gait events (Rueterbories et al., 2010).  

7.2.2 Experiment protocol 

The protocol required the participants to walk along a path marked on the level floor with 

white markers. While the protocol consisted of straight-line walking followed by turn events, 

only the straight-line walking was considered in this study. The approximate straight-line 
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walking distance was 2m. All participants were encouraged to familiarize themselves with the 

path and equipment before starting the recording. Assessments were video-recorded and taken 

for reference. A detailed description of the experiment protocol has been reported in our earlier 

paper (Keloth et al., 2019) or refer section 6.3.1.  

7.2.3 Pre-processing of the signal 

The IMU and sEMG recordings were pre-processed to remove noise. The noise in the 

accelerometer and gyrometer was corrected using a second-order bandpass Butterworth filter 

with cut-off frequency 0.01Hz- 20 Hz. The noise in the sEMG was corrected using 20-500 Hz 

6th order Butterworth bandpass filter. 

7.2.4 Gait and sEMG feature extraction 

The computation of the gait parameter such as stride time, stance time, swing time, and 

double support time has been explained in detail in our earlier paper (Keloth et al., 2019). The 

following sEMG parameters were calculated as mentioned below: 

A. Normalization of sEMG features 

sEMG amplitude, frequency, and duration are affected by many factors such as electrode 

placements, subcutaneous fat thickness, muscle fiber type, and speed of the actions (Dreischarf 

et al., 2016). Normalization of sEMG signal reduces the inter-participant and inter- experiment 

differences and thus facilitates the comparison of sEMG between participants and across 

different muscles. Amplitude normalization of the muscle was done based on the peak root 

mean square (RMS) during the gait-cycle for each individual and each muscle separately 

(Halaki and Ginn, 2012). This method was found to be most efficient during walking (Yang 

and Winter, 1984). The data was then normalized in the time domain to make it possible to 

compare the different experiments and each gait-cycle corresponded to100 data points 

(Ghazwan et al., 2017). 

B. Co-activation index (CI) 

Simultaneous activation of the agonist-antagonist muscles around a joint is termed as co-

activation. This provides additional stability to the joint but also causes rigidity, makes the 

actions less efficient, and often such movements are not smooth (Gribble et al., 2003). Co-

activation index (CI) is the measure of co-activation, computed from the normalized sEMG of 

both TA and MG muscle.  A larger value of CI denotes the simultaneous activation of TA-MG 

muscles around the joints, which can result in altered mechanical properties of the limb 
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(Gribble et al., 2003). A smaller value of CI denotes the alternate activation of TA and MG 

muscle across the joint to help in smooth locomotion, referred to as reciprocal inhibition 

(Iwamoto et al., 2017).  

The TA-MG co-activation index (CI) was calculated by dividing the area of TA-MG 

overlap by the total area of TA-MG muscle as given in expression (1) (Unnithan et al., 1996).  

CI = 
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑇𝐴 𝑎𝑛𝑑 𝑀𝐺 𝑚𝑢𝑠𝑐𝑙𝑒

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑇𝐴 𝑚𝑢𝑠𝑐𝑙𝑒+ 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑀𝐺 𝑚𝑢𝑠𝑐𝑙𝑒
                    (1) 

CI was calculated for total gait-cycle (0-100%), stance, swing, and for the following sub-

phases- 1DS, SS, 2DS, and SW. Even though the patient number were unsuitable for severity-

based analysis, we divided PD patients according to their UPDRS III values to identify the 

possible trends. Table 7.1 shows the classification of groups based on the severity level.  

Table 7.1: Group based on the severity level 

Participant Number of 

participants 

UPDRS-III 

(Mean ± SD) 

H & Y  

(Mean ± SD) 

CO 24 - - 

PD 1 15 19.66 ± 6.65  1 to 2 

PD 2 9 35.88 ± 8.22 2.5 to 3 

C. Modulation index (MI) 

The modulation index (MI) is the measure of the range of muscle activation. MI was 

calculated from expression 2 

𝑀𝐼 =
𝑠𝐸𝑀𝐺𝑚𝑎𝑥−𝑠𝐸𝑀𝐺𝑚𝑖𝑛

𝑠𝐸𝑀𝐺𝑚𝑎𝑥
∗ 100                       (2) 

where sEMGmax was the maximum RMS of sEMG activity and sEMGmin was the 

minimum RMS of sEMG activity calculated for each TA and MG muscle, respectively. The 

larger value of MI denotes that the muscles produced a phasic burst of activity followed by 

relaxation and had a bigger range of activity during the movement. Smaller MI indicates that 

the muscle did not vary the activity significantly (Zehr and Chua, 2000).  

D. Asymmetry index (AI) 

Early-stage PD patients exhibit lateral asymmetry and based on this, we hypothesized 

asymmetrical muscle activity during their regular walking. The tendency of the person to use 

one side of the body involuntary motor task is called lateral preference (Carpes et al., 2010). 

Bilateral muscle asymmetry was calculated using the Asymmetry index (AI) as the absolute 

value from expression (3). AI was calculated using the sEMG RMS values of both right and 

left leg for the consistency with the state-of-the-art (Bailey et al., 2018). As a first step, the 
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sEMG-RMS of both TA and MG muscles for both, right and left leg was calculated separately. 

Secondly, the AI was calculated separately for TA and MG muscle by substituting the value of 

sEMG RMS in the expression (3), where leg 1 corresponds to the higher value of sEMG RMS 

and leg 2 corresponds to the lower value of sEMG RMS. 

𝐴𝐼 = 100 − (
𝑙𝑒𝑔 1

𝑙𝑒𝑔 2
∗ 100)                         (3) 

E. Coefficient of variance (CV)  

CV was calculated for both TA and MG muscle. Firstly, the RMS amplitude was 

calculated for each window, and then the mean CV across all windows was calculated for each 

phase of gait (Guidetti et al., 1996). CV was measured as the ratio of the standard deviation to 

the mean sEMG RMS, as in the expression (4). 

𝐶𝑉 % =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛 𝑅𝑀𝑆
∗ 100                         (4) 

 

7.2.5 Statistical analysis 

The Shapiro-Wilk test was performed to check the null hypothesis ‘data is normally 

distributed’ and this is accepted with p> α, α =0.05. The analysis showed that p<0.02, and thus 

the data was found to be not normal. The statistical significance of the demographic variables 

was performed using the non-parametric Mann-Whitney U test. Mann-Whitney U test was 

conducted to determine the difference in the demographic variables between PD and CO. The 

Mann-Whitney U test was performed to check the null hypothesis ‘the difference in 

demographic variables are equal’ between PD patients and CO. The statistical analysis results 

using Mann-Whitney U test shows non statistical significance difference for each demographic 

variable: age (p = 0.09), height (p = 0.13), weight (p = 0.09). The statistical significance of the 

group-based difference was obtained using the Kruskal-Wallis test which is a non-parametric 

test, recommended for comparing between multiple independent groups (Siegel, 1988). The 

spearman correlation study was performed to study the relation between sEMG features and 

clinical features. The criteria used to evaluate Spearman correlation coefficients were weak 

(values of 0.25 - 0.50), moderate (values of 0.50 - 0.75), and strong (values of 0.75 and above). 

7.3 Results 

Figure 7.1 shows the sEMG profile of TA muscle for PD patients, CO, and YC groups. 

TA muscle is more active in PD patients during the SW phase of gait when compared to age-
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matched controls and young control groups. TA was also found to be more active among the 

YC for all phases except the SS phase of gait.  

 
Figure 7.1: Plot showing the average sEMG profiles of TA muscle between a) PD and CO participants b) PD and YC 

participants c) CO and YC participants for sub-phases of the gait-cycle (first double support (1DS), single support (SS), 

second double support phase (2DS) and swing (SW) phase). 

Figure 7.2 shows the sEMG profile of MG muscle for PD, CO, and YC groups. It is 

observed that for PD patients, the MG muscle is less active compared to the other groups during 

all phases of gait. The decreased activation of MG muscle of PD patients shows their reduced 
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ability to modulate the activation pattern compared to healthy control. These changes in the 

MG muscle reflect the impariment in the motor control and movement. The physiology of 

walking shows that MG muscle functions as a plantar flexor of the foot, that helps in pushing 

the body forward while walking. The reduced activation of MG muscle can leads to the 

increased risk of falls in PD.   

 
Figure 7.2: Plot showing the average sEMG profiles of MG muscle between a) PD and CO participants b) PD and YC 

participants c) CO and YC participants for sub-phases of the gait-cycle (first double support (1DS), single support (SS), 

second double support phase (2DS) and swing (SW) phase) 
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The CI values were calculated for both the legs, however, the statistical test showed that 

there was no significant difference, thus only one side has been reported. From Figure 7.3 a) 

and b), it is seen that the average CI was significantly higher for PD patients when compared 

to the control group (CO and YC) for the total percentage of gait and during different gait 

phases - 1DS, SS, 2DS and SW. Figure 7.3 c) shows that the average CI was significantly 

higher for different levels of severity- PD1, PD2 when compared to the age-matched control 

(CO). 
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c 

 

Figure 7.3: Bar plot showing average CI changes for a) total percentage of gait-cycle b) for sub-phases of the gait-cycle 

for PD, CO, and YC participant c) based on the severity of PD respectively 

For total gait-cycle (0-100%), the average MI for TA muscle was 66.19 ± 12.3, 72.81± 

10.21, and 80.45± 8.91 for PD patients, CO, and YC participants respectively, while that for 

MG muscle was 71.13 ± 14.3, 83.20 ± 9.81, and 88.37 ±7.64 for PD patients, CO and YC 

participants, as shown in Figure 7.4a and Figure 7.4b. Figure 7.4c and Figure 7.4d shows the 

average MI of both TA and MG for the 4 sub-phases of gait. The between-group differences 

for both were significant with p<0.05. When considering the four sub-phases of the gait, MI of 

PD patients for TA muscle was lower for 3 sub-phases of gait (SS, 2DS, SW) and higher for 

1DS. For MG muscle, the MI value was lower for all 4 sub-phases of gait (1DS, SS, 2DS, and 

SW).  
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c 

 

d 

 

Figure 7.4: Average MI values of TA and MG muscle for the total percentage of the gait-cycle (a, b) different gait-cycle (c, 

d) respectively, (*p (Significance) < 0.05). 

Table 7.2: Correlation study on sEMG features and clinical features 

Clinical variables Total CI Total MI-TA muscle 

Postural stability 0.612 (0.054) 0.658(0.023) 

Rigidity (lower limb) 0.682 (0.011) 0.881 (0.033) 

Gait 0.870 (0.002) 0.794 (0.002) 

Body bradykinesia 0.880 (0.006) 0.612(0.015) 

UPDRS PIGD  0.852 (0.018) 0.784(0.012) 

Year of disease 0.565 (0.003) 0.683 (0.07) 

H & Y Scale 0.322 (0.241) 0.569 (0.061) 

UPDRS III 0.385 (0.157) 0.722 (0.017) 

The r (p-value)- Spearman correlation coefficients(r) are indicated with the level of significance (p). 

 

Table 7.2 shows the correlation study between sEMG features (mainly total CI and MI) 

and clinical features. The correlation coefficient and statistical significance values are reported. 

Total CI values showed a strong significant correlation with the clinical features- gait, 

bradykinesia, and UPDRS PIGD, while total MI of TA muscle was related to rigidity, gait, and 

UPDRS PIGD. The MI of MG muscle and AI of both TA and MG muscle was not significantly 

correlated with clinical features and hence not reported. 
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d 

 

Figure 7.5: Average AI of TA and MG muscle for different gait-cycle based on RMS value (a, b) respectively 

Figure 7.5 shows the average AI values for the total percentage of the gait-cycle (a, b) 

and different phases of gait (c, d) of TA and MG muscle for PD, CO, and YC groups. It was 

observed that 17 PD patients (17 out of 24), 12 CO (12 out of 24), and 4 YC (4 out of 24) had 

left side higher than the right, even though all were right-side dominant. Thus, AI was 

calculated using RMS values of sEMG for consistency with the references on the field. It was 

seen that PD patients had significantly higher AI when compared to the control for total gait-

cycle (0-100%), as shown in Figure 7.5a and Figure 7.5b. We also observed a significant 

difference in AI for all sub-phases of gait between the PD patients and control (p<0.05), except 

during the 1DS, as shown in Figure 7.5c and Figure 7.5d. For PD patients, the highest 

asymmetry among the different sub-phases of gait was observed during the swing phase of gait. 

We noticed a higher value of sEMG RMS in left side for PD (17 patients out of 24), CO (12 

out of 24) and YC (4 out of 24).  
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a 

 

b 

 

Figure 7.6: Variability in the muscle activation of a) TA and b) MG muscle compared between PD and control for 

different gait-cycle. 

Figure 7.6 shows the variability of muscle pattern of TA and MG muscle compared 

between PD and CO, PD and YC for different gait-cycles. Results show that the muscle 

variability of TA is significantly different between PD and CO, PD and YC for all the 

percentage of the gait-cycle (1DS, SS, 2DS, SW). It also shows that TA variability is highest 

for PD patients when compared to control. Results of MG muscle shows that the variability of 

muscle pattern significantly differed between PD and CO, PD, and YC for all the percentage 

of the gait-cycle (1DS, SS, 2DS, SW), except at SS and 2DS phase of the gait-cycle. It also 

shows that MG variability is highest for PD patients when compared to controls.  

Table 7.3: The table showing the statistical significance (p) between PD and CO, PD and YC for different sEMG 

features. 

sEMG features Gait-cycle p-value p-value 
 

 PD and CO PD and YC 

CI 1DS 0.000 0.000 

SS 0.042 0.015 

2DS 0.030 0.024 

SW 0.033 0.024 

 AI-TA muscle 1DS 0.057 0.049 

SS 0.048 0.042 

2DS 0.045 0.045 

SW 0.003 0.002 

AI-MG muscle 1DS 0.052 0.049 

SS 0.042 0.042 

2DS 0.048 0.042 
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SW 0.03 0.024 

MI- TA muscle 1DS 0.030 0.045 

SS 0.042 0.033 

2DS 0.036 0.027 

SW 0.039 0.021 

MI-MG muscle 1DS 0.042 0.036 

SS 0.045 0.039 

2DS 0.048 0.033 

SW 0.045 0.035 

The co-activation index (CI), Asymmetry index (AI) and Modulation index (MI ) for both Tibialis anterior 

(TA) and Medial gastrocnemius (MG) muscles for sub-phases of gait-cycle -first double support (1DS), 

single support (SS), second double support phase (2DS) and swing (SW) phase are represented below. 

Table 7.3 shows the statistical significance value between PD and CO, PD, and YC group 

for different sEMG features.  

7.4 Discussion 

It is common for Parkinson’s disease patients to suffer lateral asymmetry and gait 

impairment in the early stage of the disease. The decline of posture instability and gait quality 

(PIGD) is one of the important parameters for monitoring the progression of the disease. PD 

gait is characterized by an abnormal loading response (Hughes et al., 1990), reduction of pre-

swing phase, worsening stride length and gait speed (Nieuwboer et al., 1999), but many of 

these symptoms are not visually noticeable in the early stage of the disease. The investigation 

of these indices requires the analysis of their sub-phases of gait which has been shown in other 

disease conditions (Shimada et al., 2005; Chow et al., 2012) to be useful in identifying subtle 

changes and useful for detecting people who may be at risk of falls (Cole et al., 2017) and 

pathological changes (Mariani et al., 2013).  

Changes to the gait may have a number of factors, many of which are not neurological, 

and hence gait analysis has its limitations. To overcome this limitation, earlier studies have the 

neuromuscular strategies of PD patients. These studies investigated the neuromuscular over the 

gait-cycle (Cioni et al., 1997; Bello et al., 2019) and observed changes to the amplitude and 

timing of muscle activation strategies between PD and control, and due to levodopa. Bailey et 

al (Bailey et al., 2018) found changes to the symmetry and modulation of the activation 
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averaged over the complete gait-cycle. Bello et al found differences in the co-activation for the 

sub-phases of gait between PD and controls (Cioni et al., 1997; Bello et al., 2019).  

This study has combined the strengths of the earlier studies and investigated all the 

parameters proposed in the earlier studies to measure the differences between PD patients with 

low PIGD (average 5.29), age-matched controls, and young controls for the different sub-

phases of the gait-cycle. Relative muscle activity, co-activation index, sEMG modulation, and 

gait asymmetry for the sub-phases of gait were computed for the three groups. To ensure that 

the works were easy to translate and introduced for clinical practice, the recordings were 

performed while the patients walked on the level floor of a medium-size clinic using wearable 

sensors. The observations are discussed below in 4 sections. 

7.4.1 Muscle activity profile of TA and MG muscle  

In line with the state of art, the age-matched controls exhibit greater activation of TA 

during midstance (Schmitz et al., 2009) while PD patients have reduced activation of TA during 

stance (Dietz et al., 1995). Only one notable observation in this study was derived from the 

muscle activity profile; there was the hyperactivity of TA during the early and mid-swing 

phases of gait for PD patients when compared to the control. Another observation was that the 

RMS of MG was less for PD during all gait phases when compared to the control.   

7.4.2 Co-activation of TA and MG muscle 

Our results are in line with the state of the art where it was reported that the PD patients 

exhibit increased co-activation (Dietz et al., 1995) compared to controls, and older controls 

have higher CI compared to young controls (Mazzetta et al., 2019). Increased co-activation is 

reported as a neuromotor strategy when postural stability is challenged (Lamontagne et al., 

2000).  

The investigation of CI during the 4 sub-phases show that for all groups, the 1DS had the 

lowest CI, and highest CI was during SS, which may be explained in terms of the need for 

stabilization of the muscles during that phase of gait (Lamontagne et al., 2000). It was also 

observed that the CI was significantly higher for all sub-phases of gait with the greatest 

difference being during the 1DS (p<0.001) while CI of controls (irrespective of age) modulated 

over the cycle. This can be interpreted that PD patients appear to need extra ankle joint support 

all the time, while controls need that only during the SS phase. 

The investigation of CI based on the severity of disease shows that there was a significant 

difference between CO and PD1, CO and PD2 (p<0.05). Excessive co-activation of the ankle 
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muscle may be the cause of gait impairment, and maybe the precursor to observable symptoms. 

The significant difference between PD in stage 1 and controls shows that there is the potential 

of using CI of the TA and MG muscle to detect the disease conditions before it is manifested 

as a clinically observable symptom.  

Increased co-activation of agonist-antagonist muscles results in the stiffening of legs and 

impaired gait in PD patients (Dietz et al., 1995). Our results also show that the increase in co-

activation strongly correlated with the clinical features - bradykinesia, gait, and UPDRS PIGD. 

UPDRS PIGD item can be considered as a simple clinical measure of assessing balance and 

gait (Kelly et al., 2015). Thus, excessive co-activation of ankle muscle may cause gait 

impairment and increase the risk of falls, leading to loss of independence in PD patients. The 

results show that there is the potential of using CI for monitoring the progression of the disease, 

but longitudinal studies need to be conducted to validate this. 

7.4.3 sEMG modulation of TA and MG muscle 

Modulation index (MI) describes the ability to activate and inhibit the muscle as required 

for the movement, the higher value indicates the greater neuromuscular control (Lang et al., 

2019). The investigation in the sub-phases of the gait reveals that in the 1DS phase, MI for TA 

muscle is significantly higher for PD patients when compared to control. These show that TA 

muscle activity was largely modulated at the 1DS phase of gait and these abnormal modulations 

of TA muscle would have inhibited the step-step transition in walking. The MI for MG muscle 

was lower for PD patients during all sub-phase of gait. The reduced ability to regulate muscle 

activation may be linked to the impairment in the proprioceptive system (Kurz et al., 2018), 

resulting in poor modulation of muscle (Miranda et al., 2019).  

Another finding was that the MI-TA muscle strongly correlated with the clinical features- 

rigidity, gait, and UPDRS PIGD score. Lack of modulation of the muscle activity indicates that 

the muscle does not relax properly, leading to increase work-done, and manifesting as rigidity.  

7.4.4 Gait lateral asymmetry of TA and MG muscle 

In the state of art, it has been shown that PD patients have higher bilateral asymmetry of 

gait (Park et al., 2016), and have an increased AI averaged over the gait-cycle (Debaere et al., 

2004). Ours is the first study where the AI of the sub-phases of gait has been investigated. The 

results confirm that the AI value of PD patients is higher than controls. It also shows that for 

control participants, the AI value was approximately the same for all the sub-phases. While for 
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PD patients, AI value was significantly higher during the SW phase for TA muscle and during 

SS and SW phase for MG muscle. 

This shows that for PD patients, the unsupported phase of gait is highly 

asymmetrical.  Increased asymmetry and reduced modulation of muscle could be based on the 

reduced ability of basal ganglia to generate repetitive and habitual movements (Debaere et al., 

2004).   

7.4.5 Variability of TA and MG muscle 

In PD patients, the magnitude of variability in gait is a significant parameter that helps in 

identifying the dynamic features. We have seen a significant difference in the variability of TA 

muscle for all phases of gait. The highest variability of muscle pattern was observed for PD 

patients when compared to control both for TA and MG muscles. Signals with a high CV reflect 

a greater amount of fluctuations or adjustments of the neuromuscular system (Hunter et al., 

2016). Muscle activity with increased variation over the gait-cycle may also suggest an 

inefficient gait and suggesting PD patients could have higher energy usage for similar work. 

7.5 Summary 

This chapter has reported the sEMG characteristics of TA and MG muscle of 24 PD, 24 

CO, and 24 YC participants. This study has found that there is a significant higher co-activation 

of the TA and MG muscles, reduced modulation, and increased in asymmetry in PD patients 

compared with age-matched controls of the sub-phases of the gait-cycle. It has also found that 

there was no significant difference in these parameters due to age among controls, i.e. age-

matched controls and young controls which indicates that these changes are not age-related. 

While many of the PD patients had low posture and gait difficulty scores (5.29+3.07), the 

difference in the sEMG was very significant. The difference was also observed for both, stage 

1 and stage 2 PD patients and this indicates that there is the potential to use sEMG of the TA 

and MG muscles for prodromal detection of gait abnormalities in PD patients, for early 

diagnosis of PD, and also for monitoring the progression of PD. This has the advantage over 

observing the gait parameter which may have the number of confounding factors. Another 

advantage of this method is that this can be investigated during the level, straight-line short 

distance walking inside an office using wearable sensors.   
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7.6 Limitation of the study 

There are three limitations of the present study: reduced walking distance, only PD-ON 

state patients were tested, and postural instability was assessed only using the UPDRS PIGD 

score. Even though, we found a significant difference in the muscle characteristics of PD 

patients when compared to control, the walking distance considered for the study may be 

insufficient to address the walking style in PD patients. Medication can also significantly affect 

the tonic state of muscle, where the difference may be even greater in the OFF state of 

medication. Secondly, UPDRS PIGD scores are simple clinical assessment measures for 

postural instability. 

7.7 Novelty and clinical significance of the study 

There are two novelties of the present study which show the importance of monitoring 

sEMG of gait. The first is that there was a significant difference in the CI of age-matched 

control between stage 1 and stage 2 of PD patients. This indicates that there is a potential for 

sEMG to be used for detecting and monitoring the disease.   

The second novelty of the study is that the asymmetrical activation of muscle is observed 

in both the TA and MG muscle, which is more pronounced in the swing phase of gait. This 

shows the reduced ability of PD patients to generate repetitive movements during the 

unsupported phase of gait. These findings on asymmetry can be used as a marker for analyzing 

the improvement by pharmacological treatment and rehabilitation of PD patients.  

 

This chapter is based on the manuscript which is under review and conference paper accepted 

for publication: 

Keloth S, Arjunan S, Raghav S and Kumar D Detection of Parkinson’s disease using muscle 

activation strategies during walking. IEEE TNSRE . 

Keloth S, Arjunan S, Raghav S, Radcliffe P and Kumar D (2020) Differenciating between 

Parkinson’s disease patient and controls using varability in muscle activation during walking 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society.  
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Chapter 8 

8.  Conclusion 

Brief outline of the chapter: 

This chapter provides the conclusion of the research work and the future work related to this 

research is proposed.  

8.1 Introduction 

PD is a movement disorder that causes difficulty in movement, postural instability, 

muscle rigidity, and reduced gait speed. These are the major cause of disability, falls and 

reduced quality of life. Gait assessment is important in diagnosing and monitoring the disease. 

Gait is one of the measures for the UPDRS III (Goetz et al., 2004; Goetz et al., 2008) and is 

scored by clinical observations to determine the severity of disease and efficacy of treatment. 

However, this is a subjective test and requires extensive time effort, and there is a need for 

quantifiable gait analysis to study PD patients.  

8.2 Main contribution 

This thesis has addressed the following research questions: 

Q1. How does the gait parameters vary with the severity of PD?  

Studies have quantified the difference in the gait parameter of PD and control (Hausdorff 

et al., 1998; Rios et al., 2001; Hausdorff et al., 2003; Hausdorff et al., 2007), while the 

relationship between gait parameters and the severity of the disease is not studied (Investigated 

in Chapter 5). 

The main contribution from chapter 5 is listed below: 

There are two novelties of the study that can be used by the clinician to monitor the 

progression of the disease.  

• The first is that the variance of gait interval is significantly higher for PD patients 

and increases with the severity of the disease. This increase in the variability 

indicates poor coordination and loss of rhythmicity and may be considered for 

quantifying the severity of disease and monitoring the progress of the patients.  
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• The second finding of the study is that the PD patients show decreased self-

similar patterns in double support interval of gait, suggesting that there are less 

rhythmic gait intervals and a sense of urgency to remain in support phase of gait 

by the PD patients.  

Q2. How does the gait parameter vary during straight walking, U-turn, and turn around 

a point between PD patients and control? 

Turning movements in PD have reported increased turning time, turn arc (Crenna et al., 

2007; Huxham et al., 2008; Spildooren et al., 2013) and the number of steps to complete the 

turn.  The main consequence of turns in PD is lateral falls, which can result in an eight-fold 

increase in hip fractures compared with falls during straight walking. It is very important to 

evaluate the turning ability in PD and to investigate the effect of gait intervals across different 

turns, which has not yet been done (Investigated in Chapter 6).  

The main contribution of Chapter 6 is: 

There are two novelties of the study which have the potential to make a significant 

difference to the clinical assessment of PD patients.  

• The first is that this study has shown that both, straight-line walking and turning 

are suitable for the evaluation of PD patients, and hence either could be used. 

Thus, the practice of making the patient perform complicated turns (Mellone et 

al., 2016; Mancini et al., 2018) is not required for such a study. 

• The second novelty is that this study has shown that by the use of IMU placed on 

the legs of the patients and measuring the gait period variance (On-Yee et al., 

2017; Estep et al., 2018; Warlop et al., 2018), it is possible to identify PD patients 

while the patient performs simple walking. This has the potential to be used for 

population-based screening for early diagnosis of the disease. Another important 

finding of this study is that it showed that the gait variance of these parameters 

only showed the difference between PD and controls, irrespective of their age. 

Thus, while there are significant differences in the gait parameters between young 

and old, the variability due to age was not significant. 

Q3. How does Tibialis anterior (TA) and Medial gastrocnemius (MG) muscle activation 

vary between PD and control for different phases of gait?  

A coordinated pattern of muscle activity results in the transition from stance into walking. 

The co-activation studies of muscles will help to understand the stiffness and rigidity across 



99 

 

the joints. Normally muscles stretch when they move and reflex when they are at rest. But for 

PD muscles may not reflex, causing rigidity and difficulty to walk (Busse et al., 2006). To 

better understand the muscle activation pattern in PD patients, it is essential to investigate the 

muscle features during gait events (Investigated in Chapter 7). 

The main contribution of Chapter 7 is: 

There are two novelties of the present study which show the importance of monitoring 

the sEMG of gait.  

• The first is that there was a significant difference in the CI of age-matched control 

between stage 1 and stage 2 of PD patients. This indicates that there is a potential 

for sEMG to be used for detecting and monitoring the disease.  

• The second novelty of the study is that the asymmetrical activation of muscle is 

observed in both the TA and MG muscle, which is more pronounced in the swing 

phase of gait. This shows the reduced ability of PD patients to generate repetitive 

movements during the unsupported phase of gait. These findings on asymmetry 

can be used as a marker for analyzing the improvement by pharmacological 

treatment and rehabilitation of PD patients. 

8.3 Limitation and future work 

The study has found that the gait and muscle parameters can be used for quantitative gait 

analysis in Parkinson’s disease patients. There were a few limitations of the present study: 

Sample size in gender calculation and only the ON-state PD was tested. While 24 PD and 24 

age-matched controls were a decent size based on literature, this was not sufficient for gender 

and body size matching, which are factors that contribute to gait parameters. The other factor 

is that literature shows (Schaafsma et al., 2003) that there is a significant effect caused by 

medication, where the difference may be even greater in the OFF state of medication. The 

future work can consider the effect of medication on the gait parameters while performing 

different turning task.  

 

 

 

 



100 

 

References 

Abraham A, Hart A, Andrade I and Hackney ME (2018) Dynamic neuro-cognitive imagery improves 

mental imagery ability, disease severity, and motor and cognitive functions in people with 

Parkinson's disease. Neural Plasticity 2018: 6168507. 

Absil PA, Sepulchre R, Bilge A and Gerard P (1999) Nonlinear analysis of cardiac rhythm 

fluctuations using DFA method. Physica A 272: pp. 235-244. 

Adams ST and Leveson SH (2012) Clinical prediction rules. British Medical Journal 344: 8312-8320. 

Aich S, Pradhan PM, Park J, Sethi N, Vathsa VSS and Kim HC (2018) A validation study of Freezing 

of Gait (FoG) detection and machine-learning-based FoG prediction using estimated gait 

characteristics with a wearable accelerometer. Sensors (Basel, Switzerland) 18(10): E3287. 

Allcock LM, Rowan EN, Steen IN, Wesnes K, Kenny RA and Burn DJ (2009) Impaired attention 

predicts falling in Parkinson's disease. Parkinsonism & Related Disorder 15(2): 110-115. 

Almarwani M, VanSwearingen JM, Perera S, Sparto PJ and Brach JS (2016) Challenging the motor 

control of walking: Gait variability during slower and faster pace walking conditions in 

younger and older adults. Archives of Gerontology and Geriatrics 66: 54-61. 

Amundsen HSL, Van Acker GM, Luchies CW and Cheney PD (2018) Muscle synergies obtained 

from comprehensive mapping of the cortical forelimb representation using stimulus triggered 

averaging of EMG activity. The Journal of Neuroscience 38(41): 8759-8771. 

Ancillao A, van der Krogt MM, Buizer AI, Witbreuk MM, Cappa P and Harlaar J (2017) Analysis of 

gait patterns pre- and post- Single Event multilevel surgery in children with cerebral palsy by 

means of offset-wise movement analysis profile and linear fit method. Human Movement 

Science 55: 145-155. 

Ankaralı MM, Sefati S, Madhav MS, Long A, Bastian AJ and Cowan NJ (2015) Walking dynamics 

are symmetric (enough). Journal of the Royal Society, Interface 12(108): 20150209. 

Arevalo AJ, Lynn KS, Bagley RJ, Brown EL, Costa BP and Galpin JA (2018) Lower-limb 

dominance, performance, and fiber type in resistance-trained men. Medicine & Science in 

Sports & Exercise 50(5): 1054-1060. 

Arora P, Srivastava S, Arora K and Bareja S (2015) Improved gait recognition using gradient 

histogram gaussian image. Procedia Computer Science 58: 408-413. 

Bailey CA, Corona F, Murgia M, Pili R, Pau M and Cote JN (2018) Electromyographical gait 

characteristics in Parkinson’s disease: effects of combined physical therapy and rhythmic 

auditory stimulation. Frontiers in Neurology 9(211). 

Balash Y, Peretz C, Leibovich G, Herman T, Hausdorff JM and Giladi N (2005) Falls in outpatients 

with Parkinson's disease: frequency, impact and identifying factors. Journal of Neurology 

252(11): 1310-1315. 

Baltadjieva R, Giladi N, Gruendlinger L, Peretz C and Hausdorff JM (2006) Marked alterations in the 

gait timing and rhythmicity of patients with de novo Parkinson’s disease. European Journal 

of Neuroscience 24: 1815-1820. 



101 

 

Baron EI, Miller Koop M, Streicher MC, Rosenfeldt AB and Alberts JL (2018) Altered kinematics of 

arm swing in Parkinson's disease patients indicates declines in gait under dual-task 

conditions. Parkinsonism and Related Disorders 48: 61-67. 

Bartsch, Plotnik M, Kantelhardt JM, Havlin S and Giladi N (2007) Fluctuation and synchronization of 

gait intervals and gait force profiles distinguish stages of parkinson’s disease. Physica A 383: 

455–465. 

Bello O, Marquez G and Fernandez-Del-Olmo M (2019) Effect of treadmill walking on leg muscle 

activation in Parkinson's disease. Rejuvenation Research 22(1): 71-78. 

Bello O, Sánchez JA, Vazquez-Santos C and Fernandez-Del-Olmo M (2014) Spatiotemporal 

parameters of gait during treadmill and overground walking in Parkinson’s disease. Journal of 

Parkinson's Disease 4: 33-36. 

Bengevoord A, Vervoort G, Spildooren J, Heremans E, et al. (2016) Center of mass trajectories 

during turning in patients with Parkinson's disease with and without freezing of gait. Gait & 

Posture 43: 54-59. 

Benjamin M, Evans EJ and Copp L (1986) The histology of tendon attachments to bone in man. 

Journal of Anatomy 149: 89. 

Beran J (1994) Statistics for Long-Memory Processes. New York: Chapman & Hall. 

Bertoli M, Cereatti A, Trojaniello D, Avanzino L, et al. (2018) Estimation of spatio-temporal 

parameters of gait from magneto-inertial measurement units: multicenter validation among 

Parkinson, mildly cognitively impaired and healthy older adults. Biomedical Engineering 

Online 17(1). 

Blin O, Ferrandez AM and Serratrice G (1990) Quantitative analysis of gait in Parkinson patients: 

Increased variability of stride length. Journal of Neurological Science 98: 91–97. 

Bloem BR, Grimbergen YA, Cramer M, Willemsen M and Zwinderman AH (2001) Prospective 

assessment of falls in Parkinson's disease. Journal of Neurology 248(11): 950-958. 

Boonstra T, Kooij H, Munneke M and Bloem B (2008) Gait disorders and balance disturbances in 

Parkinson's disease: Clinical update and pathophysiology. Current Opinion in Neurology 21: 

461-471. 

Borg Mo (2006). DA-loops in PD [Online]. Available: https://commons.wikimedia.org/wiki/File:DA-

loops_in_PD.jpg [Accessed 03/10 2019]. 

Borzi L, Varrecchia M, Olmo G, Artusi CA, et al. (2019) Home monitoring of motor fluctuations in 

Parkinson’s disease patients. Journal of Reliable Intelligent Environments 5(3): 145-162. 

Bourke A, Donovan K, Clifford A, Olaighin G and Nelson J (2011) Optimum gravity vector and 

vertical acceleration estimation using a tri-axial accelerometer for falls and normal activities. 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society 

11: 7896-7899. 

Brach JS, Studenski S, Perera S, VanSwearingen JM and Newman AB (2008) Stance time and step 

width variability have unique contributing impairments in older persons. Gait & Posture 

27(3): 431-439. 

https://commons.wikimedia.org/wiki/File:DA-loops_in_PD.jpg
https://commons.wikimedia.org/wiki/File:DA-loops_in_PD.jpg


102 

 

Bracht-Schweizer K, Freslier M, Krapf S and Romkes J (2017) Visual targeting one step before force 

plates has no effect on gait parameters in orthopaedic patients during level walking. Gait & 

Posture 58: 13-18. 

Brodie M, Canning CG, Beijer TR and Lord SR (2015) Uncontrolled head oscillations in people with 

parkinson’s disease may reflect an inability to respond to perturbations while walking. 

Physiological Measurement 36(5): 873-881. 

Brognara L, Palumbo P, Grimm B and Palmerini L (2019) Assessing gait in parkinson’s disease using 

wearable motion sensors: a systematic review. Diseases 7(1): 18. 

Bryant MS, Rintala DH, Hou JG, Charness AL, et al. (2011) Gait variability in Parkinson's disease: 

influence of walking speed and dopaminergic treatment. Neurological Research 33(9): 959-

964. 

Bryant MS, Rintala DH, Hou JG, Collins RL and Protas EJ (2016) Gait variability in Parkinson's 

disease: levodopa and walking direction. Acta Neurologica Scandinavica 134(1): 83-86. 

Buckley C, Alcock L, McArdle R, Rehman RZU, et al. (2019) The role of movement analysis in 

diagnosing and monitoring neurodegenerative conditions: insights from gait and postural 

Ccontrol. Brain Science 9(2): 34. 

Busse ME, Wiles CM and van Deursen RW (2006) Co-activation: its association with weakness and 

specific neurological pathology. Journal of NeuroEngineering and Rehabilitation 3: 26. 

Caramia C, Torricelli D, Schmid M, Munoz-Gonzalez A, et al. (2018) IMU-based classification of 

Parkinson's disease from gait: a sensitivity analysis on sensor location and feature selection. 

IEEE Journal of Biomedical and Health Informatics 22(6): 1765-1774. 

Carpes FP, Mota CB and Faria IE (2010) On the bilateral asymmetry during running and cycling - a 

review considering leg preference. Physical therapy in sport : official journal of the 

Association of Chartered Physiotherapists in Sports Medicine 11(4): 136-142. 

Carpinella I, Crenna P, Calabrese E, Rabuffetti M, et al. (2007) Locomotor function in the early stage 

of Parkinson's disease. Neural Systems and Rehabilitation Engineering, IEEE Transactions 

on 15(4): 543-551. 

Chau T, Young S and Redekop S (2005) Managing variability in the summary and comparison of gait 

data. Journal of NeuroEngineering and Rehabilitation 2: 22. 

Chien SL, Lin SZ, Liang CC, Soong YS, et al. (2006) The efficacy of quantitative gait analysis by the 

GAITRite system in evaluation of parkinsonian bradykinesia. Parkinsonism and Related 

Disorders 12(7): 438-442. 

Chisholm AE, Qaiser T and Lam T (2015) Neuromuscular control of curved walking in people with 

stroke: Case report. Journal of Rehabilitation Research and Development 52(7): 775-783. 

Chow JW, Yablon SA and Stokic DS (2012) Coactivation of ankle muscles during stance phase of 

gait in patients with lower limb hypertonia after acquired brain injury. Clinical 

Neurophysiology 123(8): 1599-1605. 

Cibulka M, Wenthe A, Boyle Z, Callier D, et al. (2017) Variation in medial and lateral gastrocnemius 

muscle activity with foot position. International Journal of Sports Physical Therapy 12(2): 

233-241. 



103 

 

Cioni M, Richards CL, Malouin F, Bedard PJ and Lemieux R (1997) Characteristics of the 

electromyographic patterns of lower limb muscles during gait in patients with Parkinson's 

disease when OFF and ON L-Dopa treatment. The Italian Journal of Neurological Sciences 

18: 195–208. 

Ciuti G, Ricotti L, Menciassi A and Dario P (2015) MEMS sensor technologies for human centred 

applications in healthcare, physical Activities, safety and environmental sensing: a review on 

research activities in Italy. Sensors (Basel, Switzerland) 15(3): 6441-6468. 

Cole MH, Sweeney M, Conway ZJ, Blackmore T and Silburn PA (2017) Imposed faster and slower 

walking speeds influence gait stability differently in Parkinson fallers. Archives of Physical 

Medicine and Rehabilitation 98(4): 639-648. 

Combs SA, Diehl MD, Filip J and Long E (2014) Short-distance walking speed tests in people with 

Parkinson disease: reliability, responsiveness, and validity. Gait & Posture 39(2): 784-788. 

Contreras A and Grandas F (2012) Risk of falls in Parkinson's disease: a cross-sectional study of 160 

patients. Parkinson's Disease 2012: 1-10. 

Creaby MW and Cole MH (2018) Gait characteristics and falls in Parkinson's disease: a systematic 

review and meta-analysis. Parkinsonism and Related Disorders 57: 1-8. 

Crenna P, Carpinella I, Rabuffetti M, Calabrese E, et al. (2007) The association between impaired 

turning and normal straight walking in Parkinson's disease. Gait & Posture 26(2): 172-178. 

Curtze C, Nutt JG, Carlson-Kuhta P, Mancini M and Horak FB (2016) Objective gait and balance 

impairments relate to balance confidence and perceived mobility in people with Parkinson 

disease. Physical Therapy 96(11): 1734-1743. 

Curtze C, Nutt JG, Carlson‐Kuhta P, Mancini M and Horak FB (2015) Levodopa is a double‐
edged sword for balance and gait in people with Parkinson's disease. Movement Disorders 

30(10): 1361-1370. 

de Souza Fortaleza AC, Mancini M, Carlson-Kuhta P, King LA, et al. (2017) Dual task interference 

on postural sway, postural transitions and gait in people with Parkinson’s disease and freezing 

of gait. Gait & Posture 56: 76-81. 

Debaere F, Wenderoth N, Sunaert S, Van Hecke P and Swinnen SP (2004) Cerebellar and premotor 

function in bimanual coordination: parametric neural responses to spatiotemporal complexity 

and cycling frequency. NeuroImage 21(4): 1416-1427. 

Del Din S, Godfrey A and Rochester L (2016) Validation of an accelerometer to quantify a 

comprehensive battery of gait characteristics in healthy older adults and Parkinson's disease: 

toward clinical and at home use. IEEE Journal of Biomedical and Health Informatics 20(3): 

838-847. 

Di Giulio I, Maganaris C, Baltzopoulos V and Loram I (2009) The proprioceptive and agonist roles of 

gastrocnemius, soleus and tibialis anterior muscles in maintaining human upright posture. The 

Journal of Physiology 587: 2399-2416. 

Dick TJM, Biewener AA and Wakeling JM (2017) Comparison of human gastrocnemius forces 

predicted by Hill-type muscle models and estimated from ultrasound images. The Journal of 

Experimental Biology 220(9): 1643-1653. 



104 

 

Dietz V, Zijlstra W, Prokop T and W B (1995) Leg muscle activation during gait in Parkinson’s 

disease: adaptation and interlimb coordination. Electroencephalography and Clinical 

Neurophysiology 97: 408-415. 

Dipaola M, E. E. Pavan, A. Cattaneo, G. Frazzitta, et al. (2016) Mechanical energy recovery during 

walking in patients with parkinson disease. PLoS ONE 11(6): e0156420. 

Dipiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG and Posey LM (2014). Pharmacotherapy: a 

pathophysiologic approach. McGraw-Hill Education New York. 

Djurić-Jovicić MD, Jovicić NS, Radovanović SM, Kresojević ND, Kostić VS and Popović MB (2014) 

Quantitative and qualitative gait assessments in Parkinson's disease patients. Vojnosanitetski 

Pregled 71(9): 809-816. 

Dreischarf M, Shirazi-Adl A, Arjmand N, Rohlmann A and Schmidt H (2016) Estimation of loads on 

human lumbar spine: a review of in vivo and computational model studies. Journal of 

Biomechanics 49(6): 833-845. 

Earhart GM (2013) Dynamic control of posture across locomotor tasks. Movement Disorder 28(11): 

1501-1508. 

Economics DA (2015) Living with Parkinson’s disease: an updated economic analysis 2014. 

Canberra: Parkinson’s Australia Inc. 

Elshehabi M, Maier KS, Hasmann SE, Nussbaum S, et al. (2016) Limited effect of dopaminergic 

medication on straight walking and turning in early-to-moderate Parkinson's disease during 

single and dual tasking. Frontiers in Aging Neuroscience 8(4). 

Emmanuel S, Kunzler MR, Bobbert MF, Duysens J and Carpes FP (2018) 30 min of treadmill 

walking at self-selected speed does not increase gait variability in independent elderly. 

Journal of Sports Sciences 36(11): 1305-1311. 

England SE, Verghese J, Mahoney JR, Tranntzas C and Holtzer R (2015) Three-level rating of turns 

while walking. Gait & Posture 41(1): 300-303. 

Ervilha UF, Graven Nielsen T and Duarte M (2012) A simple test of muscle coactivation estimation 

using electromyography. Brazilian Journal of Medical and Biological Research 45(10): 977-

981. 

Esser P, Dawes H, Collett J and Howells K (2013) Insights into gait disorders: Walking variability 

using phase plot analysis, Parkinson's disease. Gait & Posture 38(4): 648-652. 

Estep A, Morrison S, Caswell S, Ambegaonkar J and Cortes N (2018) Differences in pattern of 

variability for lower extremity kinematics between walking and running. Gait & Posture 60: 

111-115. 

Felix PB, Jennifer S, Kristina B, Markus AH, et al. (2018) Wearables for gait and balance assessment 

in the neurological ward - study design and first results of a prospective cross-sectional 

feasibility study with 384 inpatients. BMC Neurology 18(1): 1-8. 

Fernandez NB, Hars M, Trombetti A and Vuilleumier P (2019) Age-related changes in attention 

control and their relationship with gait performance in older adults with high risk of falls. 

NeuroImage 189: 551-559. 

Ferrari A, Benedetti MG, Pavan E, Frigo C, et al. (2008) Quantitative comparison of five current 

protocols in gait analysis. Gait & Posture 28(2): 207-216. 



105 

 

Ferrari A, Ginis P, Hardegger M, Casamassima F, Rocchi L and Chiari L (2016) A mobile kalman-

filter based solution for the real-time estimation of spatio-temporal gait parameters. IEEE 

Transactions On Neural Systems And Rehabilitation Engineering 24(7): 764-773. 

Ferrarin M, Lopiano L, Rizzone M, Lanotte M, Bergamasco B and Recalcati M (2002) Quantitative 

analysis of gait in Parkinson’s disease: a pilot study on the effects of bilateral sub-thalamic 

stimulation. Gait & Posture 16(2): 135–148. 

Ferrucci L, Bandinelli S, Benvenuti E, Di Iorio A, et al. (2000) Subsystems contributing to the decline 

in ability to walk: bridging the gap between epidemiology and geriatric practice in the 

InCHIANTI study. Journal of the American Geriatrics Society 48(12): 1618-1625. 

Ferster M, Mazilu S and Troester G (2015) Gait parameters change prior to freezing in Parkinson's 

disease: a data-driven study with wearable inertial units. 10th International Conference on 

Body Area Networks (Bodynets) 3: 159-166  

Foxlin E, Harrington M and Altshuler Y (1998) Miniature 6-DOF inertial system for tracking HMDs. 

Aerosense 3362: 1-15. 

Frenkel S, Giladi N, Peretz C, Herman T, Gruendlinger L and Hausdorff JM (2005) Effect of gait 

speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time 

respond differently. Journal of NeuroEngineering and Rehabilitation 2: 23-26. 

Frenkel S, Giladi N, Peretz C, Herman T, Gruendlinger L and Hausdorff JM (2005) Treadmill 

walking as an external pacemaker to improve gait rhythm and stability in Parkinson's disease. 

Movement Disorder 20(9): 1109-1114. 

Gabbard C and Hart S (1996) A question of foot dominance. The Journal of General Psychology 123: 

289–296. 

Galna B, Lord S and Rochester L (2013) Is gait variability reliable in older adults and Parkinson's 

disease? Towards an optimal testing protocol. Gait & Posture 37(4): 580-585. 

Georg E, Michaela H, Leonie K, Thomas T, W J and P W (1999) Interference of rhythmic constraint 

on gait in healthy subjects and patients with early parkinson's disease: evidence for impaired 

locomotor pattern generation in early Parkinson's disease. Movement Disorders 14(4): 619–

625. 

Ghasemi A and Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-

statisticians. International Journal of Endocrinology and Metabolism 10(2): 486-489. 

Ghazwan A, Forrest SM, Holt CA and Whatling GM (2017) Can activities of daily living contribute 

to EMG normalization for gait analysis? PLoS ONE 12(4): e0174670-e0174670. 

Ginis P, Heremans E, Ferrari A, Dockx K, Canning CG and Nieuwboer A (2017) Prolonged walking 

with a wearable system providing intelligent auditory input in people with Parkinson’s 

disease. Frontiers in Neurology 8: 128. 

Ginis P, Pirani R, Basaia S, Ferrari A, et al. (2017) Focusing on heel strike improves toe clearance in 

people with Parkinson's disease: an observational pilot study. Physiotherapy 103(4): 485-490. 

Godinho C, Domingos J, Cunha G, Santos AT, et al. (2016) A systematic review of the characteristics 

and validity of monitoring technologies to assess Parkinson’s disease. Journal of 

NeuroEngineering and Rehabilitation 13(1): 24. 



106 

 

Goetz CG, Nutt JG and Stebbins GT (2008) The Unified Dyskinesia Rating Scale: presentation and 

clinimetric profile. Movement Disorder 23(16): 2398-2403. 

Goetz CG, Poewe W, Rascol O, Sampaio C, et al. (2004) Movement Disorder Society Task Force 

report on the Hoehn and Yahr staging scale: status and recommendations. Movement Disorder 

19(9): 1020-1028. 

Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, et al. (2008) Movement Disorder Society-

sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale 

presentation and clinimetric testing results. Movement Disorder 23(15): 2129-2170. 

Goldberger AL, Amaral LA, Glass L, Hausdorff JM, et al. (2000) PhysioBank, PhysioToolkit, and 

PhysioNet: components of a new research resource for complex physiologic signals. 

Circulation 101(23): E215-220. 

Gottschall JS and Kram R (2005) Energy cost and muscular activity required for leg swing during 

walking. Journal of Applied Physiology 99(1): 23-30. 

Gougeon M-A, Zhou L and Nantel J (2017) Nordic Walking improves trunk stability and gait spatial-

temporal characteristics in people with Parkinson disease. NeuroRehabilitation 41(1): 205-

210. 

Gray P and Hildebrand K (2000) Fall risk factors in Parkinson's disease. Journal of Neuroscience 

Nursing 32(4): 222-228. 

Grech C, Formosa C and Gatt A (2016) Shock attenuation properties at heel strike: implications for 

the clinical management of the cavus foot. Journal of Orthopaedics 13(3): 148-151. 

Gribble PL, Mullin LI, Cothros N and Mattar A (2003) Role of cocontraction in arm movement 

accuracy. Journal of Neurophysiology 89(5): 2396-2405. 

Griffin L, West D and West B (2000) Randomstride intervals with memory. Journal of Biological 

Physics 26(3): 185-202. 

Guidetti L, Rivellini G and Figura F (1996) EMG patterns during running: Intra- and inter-individual 

variability. Journal of Electromyography and Kinesiology 6(1): 37-48. 

Guzik A, Druzbicki M, Przysada G, Szczepanik M, Bazarnik-Mucha K and Kwolek A (2018) The use 

of the Gait Variability Index for the evaluation of individuals after a stroke. Acta of 

Bioengineering and Biomechanics 20(2): 171-177. 

Haertner L, Elshehabi M, Zaunbrecher L, Pham MH, et al. (2018) Effect of fear of falling on turning 

performance in Parkinson’s disease in the lab and at home. Frontiers in Aging Neuroscience 

10: 78. 

Hagovska M and Olekszyova Z (2016) Relationships between balance control and cognitive 

functions, gait speed, and activities of daily living. Zeitschrift für Gerontologie und Geriatrie 

49(5): 379-385. 

Håkan N, Martin Benka W, Erika F, Agneta S and Maria H (2015) Accelerometer cut points for 

physical activity assessment of older adults with Parkinson's disease. PLoS ONE 10(9): 

e0135899. 

Halaki M and Ginn K (2012) Normalization of EMG signals: to normalize or not to normalize and 

what to normalize to? Computational Intelligence in Electromyography Analysis — A 

Perspective on Current Applications and Future Challenges: 175-194. 



107 

 

Hamner SR, Seth A and Delp SL (2010) Muscle contributions to propulsion and support during 

running. Journal of Biomechanics 43(14): 2709-2716. 

Hatanaka N, Sato K, Hishikawa N, Takemoto M, et al. (2016) Comparative gait analysis in 

progressive supranuclear palsy and Parkinson's disease. European Neurology 75(5-6): 282-

289. 

Hausdorff JM (2005) Gait variability: methods, modeling and meaning. Journal of NeuroEngineering 

and Rehabilitation 2:19: 2:9. 

Hausdorff JM (2009) Gait dynamics in Parkinson’s disease: common and distinct behavior among 

stride length, gait variability, and fractal-like scaling. Chaos: An Interdisciplinary Journal of 

Nonlinear Science 19(2): 026113. 

Hausdorff JM, Balash J and Giladi N (2003) Effects of cognitive challenge on gait variability in 

patients with Parkinson's disease. Journal of Geriatric Psychiatry and Neurology 16(1): 53-

58. 

Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY and Goldberger AL (1998) Gait variability and 

basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's and 

Huntington's disease. Movement Disorder 13: 428-437. 

Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C and Giladi N (2007) Rhythmic 

auditory stimulation modulates gait variability in Parkinson's disease. European Journal of 

Neuroscience 26(8): 2369-2375. 

Hausdorff JM, Mitchell SL, Firtion R, Peng CK, et al. (1997) Altered fractal dynamics of gait: 

reduced stride-interval correlations with aging and Huntington’s disease. Journal of Applied 

Physiology 82: 262-269. 

Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY and Goldberger AL (1996) Fractal dynamics of 

human gait: stability of long-range correlations in stride interval fluctuations. Journal of 

Applied Physiology 80: 1448-1457. 

Hausdorff JM, Schaafsma JD, Balash Y, Bartels AL, Gurevich T and Giladi K (2003) Impaired 

regulation of stride variability in Parkinson's disease subjects with freezing of gait. 

Experimental Brain Research 149: 187-194. 

Hausdorff JM, Schweiger A, Herman T, Yogev-Seligmann G and Giladi N (2008) Dual-task 

decrements in gait: contributing factors among healthy older adults. The Journals of 

Gerontology. Series A, Biological Sciences and Medical Sciences 63(12): 1335-1343. 

Hauser RA (2006) Long-term care of Parkinson's disease. Strategies for managing "wearing off" 

symptom re-emergence and dyskinesias. Geriatrics 61(9): 14-20. 

Heijmans M, Habets JGV, Herff C, Aarts J, et al. (2019) Monitoring Parkinson’s disease symptoms 

during daily life: a feasibility study. Parkinson's Disease 5(1): 21. 

Helmich RC, Hallett M, Deuschl G, Toni I and Bloem BR (2012) Cerebral causes and consequences 

of parkinsonian resting tremor: a tale of two circuits? Brain: A Journal of Neurology 135(11): 

3206-3226. 

Henmi O, Shiba Y, Saito T, Tsuruta H, et al. (2009) Spectral analysis of gait variability of stride 

interval time seires: comparison of young, elderly and Parkinson's disease patients. Journal of 

Physical Therapy Science 21(2): 105-111. 



108 

 

Herman T, Giladi N and Hausdorff JM (2011) Properties of the 'timed up and go' test: more than 

meets the eye. Gerontology 57(3): 203-210. 

Herman T, Weiss A, Brozgol M, Giladi N and Hausdorff JM (2014) Gait and balance in Parkinson’s 

disease subtypes: objective measures and classification considerations. Journal of Neurology 

261(12): 2401-2410. 

Hirokawa S (1989) Normal gait characteristics under temporal and distance constraints. Journal of 

Biomedical Engineering 11(6): 449-456. 

Hobert MA, Nussbaum S, Heger T, Berg D, Maetzler W and Heinzel S (2019) Progressive gait 

deficits in Parkinson’s disease: a wearable-based biannual 5-year prospective study. Frontiers 

in Aging Neuroscience 11(22). 

Horak FB, Mancini M, Carlson-Kuhta P, Nutt JG and Salarian A (2016) Balance and gait represent 

independent domains of mobility in Parkinson disease. Physical Therapy 96(9): 1364. 

Hove MJ, Suzuki K, Uchitomi H, Orimo S and Miyake Y (2012) Interactive rhythmic auditory 

stimulation reinstates natural 1/ f timing in gait of Parkinson's patients. PLoS ONE 7(3): 

e32600. 

Hughes JR, Bowes SG, Leeman AL, O'Neill CJ, et al. (1990) Parkinsonian abnormality of foot strike: 

a phenomenon of ageing and/or one responsive to levodopa therapy? British Journal of 

Clinical Pharmacology 29(2): 179-186. 

Hunter SK, Pereira HM and Keenan KG (2016) The aging neuromuscular system and motor 

performance. Journal of Applied Physiology 121(4): 982-995. 

Huxham F, Baker R, Morris ME and Iansek R (2008) Head and trunk rotation during walking turns in 

Parkinson's disease. Movement Disorder 23: 1391–1397. 

Hyde RA, Ketteringham LP, Neild SA and Jones RJS (2008) Estimation of Upper-Limb Orientation 

Based on Accelerometer and Gyroscope Measurements. IEEE Transactions on Biomedical 

Engineering 55(2): 746-754. 

Iwamoto Y, Takahashi M and Shinkoda K (2017) Differences of muscle co-contraction of the ankle 

joint between young and elderly adults during dynamic postural control at different speeds. 

Journal of Physiological Anthropology 36(1). 

Jankovic (2008) Parkinson's disease: clinical features and diagnosis. Journal of Neurology 79(4): 368-

376. 

Johannes CMS, Jens B, Franz M, Julia G, et al. (2017) Wearable sensors objectively measure gait 

parameters in Parkinson's disease. PLoS ONE 12(10): e0183989. 

Johannesdottir F, Thrall E, Muller J, Keaveny TM, Kopperdahl DL and Bouxsein ML (2017) 

Comparison of non-invasive assessments of strength of the proximal femur. Bone 105: 93-

102. 

Kelly VE, Johnson CO, McGough EL, Shumway-Cook A, et al. (2015) Association of cognitive 

domains with postural instability/gait disturbance in Parkinson's disease. Parkinsonism and 

Related Disorders 21(7): 692-697. 

Keloth S, Arjunan SP and Kumar D (2017) Computing the variations in the self-similar properties of 

the various gait intervals in Parkinson disease patients. Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society 2017: 2434-2437. 



109 

 

Keloth S, Viswanathan R, Jelfs B, Arjunan S, Raghav S and Kumar D (2019) Which gait parameters 

and walking patterns show the significant differences between Parkinson's disease and healthy 

participants? Biosensors 9(2). 

Kerr GK, Worringham CJ, Cole MH, Lacherez PF, Wood JM and Silburn PA (2010) Predictors of 

future falls in Parkinson disease. Journal of Neurology 75(2): 116-124. 

Kim SD, Allen NE, Canning CG and Fung VS (2013) Postural instability in patients with Parkinson's 

disease. Epidemiology, pathophysiology and management. CNS Drugs 27(2): 97-112. 

Kim SG and Park JH (2015) The effects of dual-task gait training on foot pressure in elderly women. 

Journal of Physical Therapy Science 27(1): 143-144. 

King L, Mancini M, Priest K, Salarian A, Rodrigues-de-Paula F and Horak F (2012) Do clinical 

scales of balance reflect turning abnormalities in people with Parkinson's disease? Journal of 

Neurologic Physical Therapy 36(1): 25. 

Kirchner M, Schubert P, Liebherr M and Haas CT (2014) Detrended fluctuation analysis and adaptive 

fractal analysis of stride time data in Parkinson's disease: stitching together short gait trials. 

PLoS ONE 9(1): e85787. 

Kleiner A, Galli M, Gaglione M, Hildebrand D, et al. (2015) The Parkinsonian gait spatiotemporal 

parameters quantified by a single inertial sensor before and after automated mechanical 

peripheral stimulation treatment. Parkinson's Disease 2015. 

Krishnan S and Wu Y (2010) Statistical analysis of gait rhythm in patients with Parkinson’s disease. 

IEEE Transactions On Neural Systems And Rehabilitation Engineering 18(No. 2): 150-158. 

Kristina B, Felix B, Jennifer S, Markus AH, et al. (2017) No relevant association of kinematic gait 

parameters with health-related quality of life in Parkinson's disease. PLoS ONE 12(5): 

e0176816. 

Kurz E, Faude O, Roth R, Zahner L and Donath L (2018) Ankle muscle activity modulation during 

single-leg stance differs between children, young adults and seniors. European Journal of 

Applied Physiology 118(2): 239-247. 

Lacquaniti F, Grasso R and Zago M (1999) Motor patterns in walking. Physiology 14(4): 168-174. 

Lamontagne A, Richards CL and Malouin F (2000) Coactivation during gait as an adaptive behavior 

after stroke. Journal of Electromyography and Kinesiology 10(6): 407-415. 

Lamoreux LW (1971) Kinematic measurements in the study of human walking. Bulletin of 

Prosthetics Research 10(15): 3-84. 

Lang KC, Hackney ME, Ting LH and McKay JL (2019) Antagonist muscle activity during reactive 

balance responses is elevated in Parkinson's disease and in balance impairment. PLoS ONE 

14(1): e0211137-e0211137. 

Latash ML (2018) Muscle coactivation: definitions, mechanisms, and functions. Journal of 

Neurophysiology 120(1): 88-104. 

Latt MD, Lord SR, Morris JG and Fung VS (2009) Clinical and physiological assessments for 

elucidating falls risk in Parkinson's disease. Movement Disorder 24(9): 1280-1289. 



110 

 

Lin CC, Creath RA and Rogers MW (2016) Variability of anticipatory postural adjustments during 

gait initiation in individuals with Parkinson disease. Journal of Neurologic Physical Therapy 

40(1): 40-46. 

Lowe SA and ÓLaighin G (2014) Monitoring human health behaviour in one's living environment: A 

technological review. Medical Engineering & Physics 36(2): 147-168. 

Luinge J and Veltink P (2005) Measuring orientation of human body segments using miniature 

gyroscopes and accelerometers. Medical and Biological Engineering and Computing 43: 

273–282. 

Mahony R, Hamel T and Pflimlin JM (2008) Nonlinear Complementary Filters on the Special 

Orthogonal Group. IEEE Transactions on Automatic Control 53(5): 1203-1218. 

Maidan I, Bernad-Elazari H, Giladi N, Hausdorff JM and Mirelman A (2017) When is higher level 

cognitive control needed for locomotor tasks among patients with Parkinson’s disease? Brain 

Topography 30(4): 531-538. 

Mancini M, Chiari L, Holmstrom L, Salarian A and Horak FB (2016) Validity and reliability of an 

IMU-based method to detect APAs prior to gait initiation. Gait & Posture 43: 125-131. 

Mancini M, Smulders K, Harker G, Stuart S and Nutt JG (2018) Assessment of the ability of open- 

and closed-loop cueing to improve turning and freezing in people with Parkinson’s disease. 

Scientific Reports 8(1): 12773. 

Mancini M, Weiss A, Herman T and Hausdorff JM (2018) Turn around freezing: community-living 

turning behavior in people with Parkinson’s disease. Frontiers in Neurology 9(18): 1-9. 

Mariani B, Rouhani H, Crevoisier X and Aminian K (2013) Quantitative estimation of foot-flat and 

stance phase of gait using foot-worn inertial sensors. Gait & Posture 37. 

Marinus J, Zhu K, Marras C, Aarsland D and van Hilten JJ (2018) Risk factors for non-motor 

symptoms in Parkinson's disease. The Lancet Neurology 17(6): 559-568. 

Mathie MJ (2003) Monitoring and interpreting human movement patterns using a triaxial 

accelerometer. Faculty of Engineering Sydney: The University of New South Wales. 

Matinolli M, Korpelainen JT, Sotaniemi KA, Myllyla VV and Korpelainen R (2011) Recurrent falls 

and mortality in Parkinson's disease: a prospective two-year follow-up study. Acta 

Neurologica Scandinavica 123(3): 193-200. 

Mazzetta I, Zampogna A, Suppa A, Gumiero A, Pessione M and Irrera F (2019) Wearable sensors 

system for an improved analysis of freezing of gait in Parkinson's disease using 

electromyography and inertial signals. Sensors (Basel, Switzerland) 19(4): 948. 

Mellone S, Mancini M, King LA, Horak FB and Chiari L (2016) The quality of turning in Parkinson’s 

disease: a compensatory strategy to prevent postural instability? Journal of NeuroEngineering 

and Rehabilitation 13(1): 39. 

Menz HB, Lord SR and Fitzpatrick RC (2003) Acceleration patterns of the head and pelvis when 

walking on level and irregular surfaces. Gait & Posture 18(1): 35-46. 

Micó-Amigo M, Kingma I, Faber G, Kunikoshi A, et al. (2017) Is the assessment of 5 meters of gait 

with a single body-fixed-sensor enough to recognize idiopathic Parkinson’s disease-

associated gait? Annals of Biomedical Engineering 45(5): 1266-1278. 



111 

 

Mileti I, Germanotta M, Di Sipio E, Imbimbo I, et al. (2018) Measuring gait quality in Parkinson's 

disease through real-time gait phase recognition. Sensors (Basel, Switzerland) 18(3): 919. 

Miller Koop M, Ozinga SJ, Rosenfeldt AB and Alberts JL (2018) Quantifying turning behavior and 

gait in Parkinson’s disease using mobile technology. IBRO reports 5: 10-16. 

Miller RA, Thaut MH, McIntosh GC and Rice RR (1996) Components of EMG symmetry and 

variability in parkinsonian and healthy elderly gait. Electroencephalography and Clinical 

Neurophysiology 101(1): 1-7. 

Milner HS, Fisher MA and Weiner WJ (1979) Electrical properties of motor units in Parkinsonism 

and a possible relationship with bradykinesia. Journal of Neurology, Neurosurgery, and 

Psychiatry 42(1): 35-41. 

Miranda Z, Pham A, Elgbeili G and Barthélemy D (2019) H-reflex modulation preceding changes in 

soleus EMG activity during balance perturbation. Experimental Brain Research 237(3): 777-

791. 

Mirek E, Rudzinska M and Szczudlik A (2007) The assessment of gait disorders in patients with 

Parkinson's disease using the three-dimensional motion analysis system Vicon. Neurologia i 

Neurochirurgia Polska 41(2): 128-133. 

Mitoma H, Hayashi R, Yanagisawa N and H T (2000) Characteristics of parkinsonian and ataxic 

gaits: a study using surface electromyograms, angular displacements and floor reaction forces. 

Journal of Neurological Science 174: 22–39. 

Mitschke C, Kiesewetter P and Milani T (2018) The effect of the accelerometer operating range on 

biomechanical parameters: stride length, velocity, and peak tibial acceleration during running. 

Sensors (Basel, Switzerland) 18(1): 130. 

Mochon S and McMahon TA (1980) Ballistic walking. Journal of Biomechanics 13(1): 49-57. 

Modarresi S, Divine A, Grahn JA, Overend TJ and Hunter SW (2018) Gait parameters and 

characteristics associated with increased risk of falls in people with dementia: a systematic 

review. International Psychogeriatrics: 1-17. 

Montero-Odasso M, Pieruccini-Faria F, Bartha R, Black S, et al. (2017) Motor phenotype in 

neurodegenerative disorders: gait and balance platform study design protocol for the ontario 

neurodegenerative research initiative. Journal of Alzheimer's Disease 59(2): 707-721. 

Moody GB, Mark RG and Goldberger AL (2001) PhysioNet: A web-based resource for the study of 

physiologic signals. IEEE Engineering in Medicine and Biology Society 20(3): 70–75. 

Morris M, Iansek R, Matyas T and Summers J (1994) The pathogenesis of gait hypokinesia in 

Parkinson's disease. Brain: A Journal of Neurology 117(5): 1169-1169. 

Morris M, Iansek R, Matyas T and Summers J (1998) Abnormalities in the stride length-cadence 

relation in parkinsonian gait. Movement Disorder 13(1): 61-69. 

Morris ME and Dreher T (2018) Gait and posture virtual special issue “gait complexity in Parkinson’s 

disease”. Gait & Posture. 

Morris ME, Morris S and Iansek R (2001) Reliability of measurements obtained with the timed "up & 

go" test in people with Parkinson disease. Physical Therapy 81(2): 810-818. 



112 

 

Morris ME, R. Lansek, T. A. Matyas and Summers JJ (1994) Ability to modulate walking cadence 

remains intact in Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry 

57: 1532-1534. 

Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, et al. (2005) The Montreal Cognitive 

Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the 

American Geriatrics Society 53(4): 695-699. 

Nayak BK (2010) Understanding the relevance of sample size calculation. Indian journal of 

ophthalmology 58(6): 469-470. 

Neptune RR and McGowan CP (2011) Muscle contributions to whole-body sagittal plane angular 

momentum during walking. Journal of Biomechanics 44(1): 6-12. 

Nieuwboer A, De Weerdt W, Dom R, Peeraer L, et al. (1999) Plantar force distribution in 

Parkinsonian gait: a comparison between patients and age-matched control subjects. 

Scandinavian Journal of Rehabilitation Medicine 31(3): 185-192. 

Olmo D and Cudeiro J (2005) Temporal variability of gait in Parkinson disease: effects of a 

rehabilitation programme based on rhythmic sound cues. Parkinsonism and Related 

Disorders 11(1): 25-33. 

On-Yee L, Halko MA, Zhou J, Harrison R, Lipsitz LA and Manor B (2017) Gait speed and gait 

variability are associated with different functional brain networks. Frontiers in Aging 

Neuroscience 9: 390-390. 

Osamu H, Yoshitaka S, Toyokazu S and Harukazu T (2009) Spectral analysis of gait variability of 

stride interval time seires: comparison of young, elderly and Parkinson's disease patients. 

Journal of Physical Therapy Science 21: 105-111. 

Ota L, Uchitomi H, Hove MJ and Orimo S (2012) Evaluation of severity of Parkinson's disease using 

stride interval variability. International Conference on Complex Medical Engineering 4: 521-

526. 

Owings TM and Grabiner MD (2004) Variability of step kinematics in young and older adults. Gait & 

Posture 20(1): 26-29. 

Palakurthi B and Burugupally SP (2019) Postural instability in Parkinson’s disease: a review. Brain 

Sciences 9(9): 239. 

Palmerini L, Mellone S, Avanzolini G, Valzania F and Chiari L (2013) Quantification of motor 

impairment in Parkinson's disease using an instrumented timed up and go test. IEEE 

Transactions On Neural Systems And Rehabilitation Engineering 21(4): 664-673. 

Park K, Roemmich RT, Elrod JM, Hass CJ and Hsiao-Wecksler ET (2016) Effects of aging and 

Parkinson's disease on joint coupling, symmetry, complexity and variability of lower limb 

movements during gait. Clinical biomechanics (Bristol, Avon) 33: 92-97. 

Pau M, Corona F, Pili R, Casula C, et al. (2018) Quantitative assessment of gait parameters in people 

with Parkinson's disease in laboratory and clinical setting: are the measures interchangeable? 

Neurology International 10(2): 7729-7729. 

Perry J (1992). Gait analysis: normal and pathological function. Thorofare, New Jersey: SLACK Inc. 

Pirker W and Katzenschlager R (2017) Gait disorders in adults and the elderly : A clinical guide. 

Wiener klinische Wochenschrift 129(3-4): 81-95. 



113 

 

Plotnik M, Giladi N and Hausdorff JM (2011) Postural instability and fall risk in Parkinson’s disease: 

impaired dual tasking, pacing, and bilateral coordination of gait during the ‘‘ON’’ medication 

state. Experimental Brain Research 210: 529–538. 

Politis M, Wu K, Molloy S, Bain P, Chaudhuri KR and Piccini P (2010) Parkinson's disease 

symptoms: the patient's perspective. Movement Disorders 25(11): 1646-1651. 

Qiu S, Liu L, Zhao H, Wang Z and Jiang Y (2018) MEMS inertial sensors based gait analysis for 

rehabilitation assessment via multi-sensor fusion. Micromachines 9(9): 442. 

Raccagni C, Gaßner H, Eschlboeck S, Boesch S, et al. (2018) Sensor‐based gait analysis in atypical 

parkinsonian disorders. Brain and Behavior 8(6). 

Raccagni C, Nonnekes J, Bloem BR, Peball M, et al. (2019) Gait and postural disorders in 

parkinsonism: a clinical approach. Journal of Neurology 2: 23. 

Raffegeau TE, Krehbiel LM, Kang N, Thijs FJ, et al. (2019) A meta-analysis: Parkinson's disease and 

dual-task walking. Parkinsonism and Related Disorders 62: 28-35. 

Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz M, et al. (2010) Goal-directed and habitual 

control in the basal ganglia: implications for Parkinson's disease. Nature Reviews 

Neuroscience 11(11): 760. 

Rennie L, Löfgren N, Moe-Nilssen R, Opheim A, Dietrichs E and Franzén E (2018) The reliability of 

gait variability measures for individuals with Parkinson’s disease and healthy older adults – 

The effect of gait speed. Gait & Posture 62: 505-509. 

Richardson JK, Thies SB, Demott TK and Ashton‐Miller JA (2004) Interventions improve gait 

regularity in patients with peripheral neuropathy while walking on an irregular surface under 

low light. Journal of the American Geriatrics Society 52(4): 510-515. 

Ringeval F, Eyben F, Kroupi E, Yuce A, et al. (2015) Prediction of asynchronous dimensional 

emotion ratings from audiovisual and physiological data. Pattern Recognition Letters 66: 22-

30. 

Rios DA, Hausdorff JM and K. EH (2001) Gait variability and fall risk in community-living older 

adults: a 1-year prospective study. Archives of Physical Medicine and Rehabilitation 82(8): 

1050-1060. 

Rissanen S, Kankaanpa M, Tarvainen M, Nuutinen J, et al. (2007) Analysis of surface EMG signal 

morphology in Parkinson’s disease. Physiological Measurement 28: 1507–1521. 

Roberts M, Mongeon D and Prince F (2017) Biomechanical parameters for gait analysis: a systematic 

review of healthy human gait. Physical Therapy and Rehabilitation 4(1): 6. 

Roemmich RT, Nocera JR, Vallabhajosula S, Amano S, et al. (2012) Spatiotemporal variability 

during gait initiation in Parkinson's disease. Gait & Posture 36(3): 340-343. 

Romero V, Fitzpatrick P, Roulier S, Duncan A, Richardson MJ and Schmidt R (2018) Evidence of 

embodied social competence during conversation in high functioning children with autism 

spectrum disorder. PLoS ONE 13(3): e0193906. 

Rovini E, Maremmani C and Cavallo F (2017) How wearable sensors can support Parkinson's disease 

diagnosis and treatment: a systematic review. Frontiers in Neuroscience 11: 555. 



114 

 

Rueterbories J, Spaich EG, Larsen B and Andersen OK (2010) Methods for gait event detection and 

analysis in ambulatory systems. Medical Engineering and Physics 32(6): 545-552. 

Sadeghi H, Allard P and M. D (2001) Lower limb muscle power relationships in bilateral able-bodied 

gait. Physiological Therapeutics 80(11): 821-830. 

Salarian A, Zampieri C, Horak FB, Carlson-Kuhta P, Nutt JG and Aminian K (2009) Analyzing 180 

degrees turns using an inertial system reveals early signs of progression of Parkinson's 

disease. IEEE Engineering in Medicine and Biology Society 2009: 224-227. 

Schaafsma, Joanna D, Giladi N, Balash Y, et al. (2003) Gait dynamics in Parkinson's disease: 

relationship to Parkinsonian features, falls and response to levodopa. Journal of Neurological 

Science 212: 47-53. 

Schmitz A, Silder A, Heiderscheit B, Mahoney J and Thelen DG (2009) Differences in lower-

extremity muscular activation during walking between healthy older and young adults. 

Journal of Electromyography & Kinesiology 19(6): 1085-1091. 

Schwartz MH, Trost JP and Wervey RA (2004) Measurement and management of errors in 

quantitative gait data. Gait & Posture 20(2): 196-203. 

Seung K, Hausdorff JM and Ferrucci L (2010) Age-associated differences in the gait pattern changes 

of older adults during fast-speed and fatigue conditions: results from the Baltimore 

longitudinal study of ageing. Age and ageing 39(6): 688-694. 

Seung K, Jerome GJ, Simonsick EM, Studenski S, Hausdorff JM and Ferrucci L (2018) Differential 

associations between dual-task walking abilities and usual gait patterns in healthy older 

adults—results from the baltimore longitudinal study of aging. Gait & Posture 63: 63-67. 

Shimada Y, Ando S, Matsunaga T, Misawa A, et al. (2005) Clinical application of acceleration sensor 

to detect the swing phase of stroke gait in functional electrical stimulation. The Tohoku 

Journal of Experimental Medicine 207. 

Shipston O, Hoeritzauer I, Edwards M, Reuber M, Carson A and Stone J (2019) Screening for 

functional neurological disorders by questionnaire. Journal of Psychosomatic Research 119: 

65-73. 

Siddiqi A, Arjunan SP and Kumar D (2015) Improvement of isometric dorsiflexion protocol for 

assessment of tibialis anterior muscle strength. MethodsX 2: 107-111. 

Siegel C (1988). Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill. 

Sijobert B, Benoussaad M, Denys J, Gibollet R, Geny C and Coste C (2015) Implementation and 

validation of a stride length estimation algorithm, using a single basic inertial sensor on 

healthy subjects and patients suffering from Parkinson’s disease. Health 7: 704-714. 

Skjaeret N, Nawaz A, Morat T, Schoene D, Helbostad JL and Vereijken B (2016) Exercise and 

rehabilitation delivered through exergames in older adults: an integrative review of 

technologies, safety and efficacy. International Journal of Medical Informatics 85(1): 1-16. 

Smeets A, Malfait B, Dingenen B, Robinson MA, et al. (2019) Is knee neuromuscular activity related 

to anterior cruciate ligament injury risk? A pilot study. The Knee 26(1): 40-51. 

Snijders AH, van de Warrenburg BP, Giladi N and Bloem BR (2007) Neurological gait disorders in 

elderly people: clinical approach and classification. The Lancet Neurology 6(1): 63-74. 



115 

 

Sofuwa O, Nieuwboer A, Desloovere K, Willems AM, Chavret F and Jonkers I (2005) Quantitative 

gait analysis in Parkinson's disease: comparison with a healthy control group. Archives of 

Physical Medicine and Rehabilitation 86(5): 1007-1013. 

Solomont J, Kowall N and Hausdorff JM (2003) Influence of executive function on locomotor 

function: divided attention increases gait variability in Alzheimer's disease. Journal of the 

American Geriatrics Society 51: 1633-1637. 

Spildooren J, Vercruysse S, Desloovere K, Vandenberghe W, Kerckhofs E and Nieuwboer A (2010) 

Freezing of gait in Parkinson's disease: the impact of dual-tasking and turning. Movement 

Disorder 25(15): 2563-2570. 

Spildooren J, Vercruysse S, Heremans E, Galna B and Desloovere K (2013) Head-pelvis coupling is 

increased during turning in patients with Parkinson's disease and freezing of gait. Movement 

Disorder 28: 619–625. 

Spildooren J, Vercruysse S, Meyns P, Vandenbossche J, et al. (2012) Turning and unilateral cueing in 

Parkinson's disease patients with and without freezing of gait. Neuroscience 207: 298-306. 

Spildooren J, Vinken C, Van Baekel L and Nieuwboer A (2018) Turning problems and freezing of 

gait in Parkinson's disease: a systematic review and meta-analysis. Disability & 

Rehabilitation 1: 1-11. 

Stacoff A, Diezi C, Luder G, Stüssi E and Kramers-de Quervain IA (2005) Ground reaction forces on 

stairs: effects of stair inclination and age. Gait & Posture 21(1): 24-38. 

Stam CJ, Montez T and Jones BF (2005) Disturbed fluctuation of restingstate EEG synchronization in 

Alzheimer disease. Clinical Neurophysiology 116: pp. 708–715. 

Sweeney D, Quinlan LR, Browne P, Richardson M, Meskell P and G OL (2019) A technological 

review of wearable cueing devices addressing freezing of gait in Parkinson's disease. Sensors 

(Basel, Switzerland) 19(6). 

Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J and Brault JM (1996) Rhythmic auditory 

stimulation in gait training for Parkinson's disease patients. Movement Disorder 11(2): 193-

200. 

Toney ME and Chang Y-H (2016) The motor and the brake of the trailing leg in human walking: leg 

force control through ankle modulation and knee covariance. Experimental Brain Research 

234(10): 3011-3023. 

Trojaniello D, Ravaschio A, Hausdorff JM and Cereatti A (2015) Comparative assessment of different 

methods for the estimation of gait temporal parameters using a single inertial sensor: 

application to elderly, post-stroke, Parkinson's disease and Huntington's disease subjects. Gait 

& Posture 42(3): 310-316. 

Turcato AM, Godi M, Giardini M, Arcolin I, et al. (2018) Abnormal gait pattern emerges during 

curved trajectories in high-functioning Parkinsonian patients walking in line at normal speed. 

PLoS ONE 13(5): e0197264. 

Umberger BR (2010) Stance and swing phase costs in human walking. Journal of the Royal Society, 

Interface 7(50): 1329-1340. 

Unnithan VB, Dowling JJ, Frost G, Volpe Ayub B and Bar-Or O (1996) Cocontraction and phasic 

activity during gait in children with cerebral palsy. Electroencephalography and Clinical 

Neurophysiology 36(8): 487-494. 



116 

 

Van Emmerik, Richard EA, Ducharme SW, Amado AC and Hamill J (2016) Comparing dynamical 

systems concepts and techniques for biomechanical analysis. Journal of Sport and Health 

Science 5(1): 3-13. 

Vetrano DL, Pisciotta MS, Laudisio A, Lo Monaco MR, et al. (2018) Sarcopenia in Parkinson 

disease: comparison of different criteria and association with disease severity. Journal of the 

American Medical Directors Association 19(6): 523-527. 

Vieregge P, Stolze H, Klein C and Heberlein I (1997) Gait quantitation in Parkinson’s disease-

locomotor disability and correlation to clinical rating scales. Journal of Neural Transmission 

104(2–3): 237–248. 

Wahid MF, Begg R, Hass C, Halgamuge S and Ackland D (2015) Classification of Parkinson’s 

Disease Gait Using Spatial-Temporal Gait Features. IEEE Journal of Biomedical and Health 

Informatics 19: 1-1. 

Warlop T, Detrembleur C, Lopez M, Stoquart G, Lejeune T and Jeanjean A (2017) Does nordic 

walking restore the temporal organization of gait variability in Parkinsons disease? Journal of 

NeuroEngineering and Rehabilitation 14(1). 

Warlop T, Detrembleur C, Stoquart G, Lejeune T and Jeanjean A (2018) Gait complexity and 

regularity are differently modulated by treadmill walking in Parkinson's disease and healthy 

population. Frontiers in Physiology 9: 68. 

Weaver TB, Robinovitch SN, Laing AC and Yang Y (2016) Falls and Parkinson’s disease: evidence 

from video recordings of actual fall events. Journal of the American Geriatrics Society 64: 

96–101. 

Weiss A, Herman T, Giladi N and Hausdorff JM (2014) Objective assessment of fall risk in 

Parkinson's disease using a body-fixed sensor worn for 3 days. PLoS ONE 9(5): e96675-

e96675. 

Weiss A, Sharifi S, Plotnik M, van Vugt JP, Giladi N and Hausdorff JM (2011) Toward automated, 

at-home assessment of mobility among patients with Parkinson disease, using a body-worn 

accelerometer. Neurorehabilitation and Neural Repair 25(9): 810-818. 

Wilhelm W and Eduard W (1992). Mechanics of the human walking apparatus. Springer-Verl Berlin 

etc. 

Yang AC, Tsai SJ, Lin CP, Peng CK and Huang NE (2018) Frequency and amplitude modulation of 

resting-state fMRI signals and their functional relevance in normal aging. Neurobiology of 

Aging 70: 59-69. 

Yang J and Winter DA (1984) Electromyographic amplitude normalization methods: Improving their 

sensitivity as diagnostic tools in gait analysis. Archives of Physical Medicine and 

Rehabilitation 65: 517-521. 

Yang K, Xiong WX, Liu FT, Sun YM, et al. (2016) Objective and quantitative assessment of motor 

function in Parkinson's disease-from the perspective of practical applications. Annals of 

Translational Medicine 4(5): 90. 

Yang S and Li Q (2012) Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic 

Review. Sensors (Basel, Switzerland) 12: 6102-6116. 



117 

 

Zago M, Sforza C, Pacifici I, Cimolin V, et al. (2018) Gait evaluation using inertial measurement 

units in subjects with Parkinson’s disease. Journal of Electromyography and Kinesiology 42: 

44-48. 

Zampieri C, Salarian A, Carlson-Kuhta P, Aminian K, Nutt JG and Horak FB (2010) The 

instrumented timed up and go test: potential outcome measure for disease modifying therapies 

in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry 81(2): 171. 

Zehr EP and Chua R (2000) Modulation of human cutaneous reflexes during rhythmic cyclical arm 

movement. Experimental Brain Research 135(2): 241-250. 

Zihajehzadeh S, Loh D, Lee M, Hoskinson R and Park EJ (2014) A cascaded two-step kalman filter 

for estimation of human body segment orientation using MEMS-IMU. IEEE Engineering in 

Medicine and Biology Society 2014: 6270-6273. 

 

 

 

 

 

 

 

 

 

 

 



118 

 

Appendices 

I. Rating scale-UPDRS III 

 Rating 

Scale 0 

Rating Scale 1 Rating Scale 2 Rating Scale 3 Rating Scale 4 

 

Speech Normal Slight loss of 

expression, 
diction and/or 

volume 

Monotone, 

slurred but 
understandable; 

moderately 

impaired 

 

Marked 

impairment, 
difficult to 

understand 

Unintelligible 

Facial 

Expression 

Normal Minimal 
hypomimia, could 

be normal “poker 

face” 

Slight but 
definitely 

abnormal 

diminution of 

facial expression 

Moderate 
hypomimia, lips 

parted some of the 

time 

Masked or 
fixed facies 

with severe or 

complete loss 
of facial 

expression; 

lips parted ¼ 

inch or more 

 

Tremor at rest 
(Right upper 

limb) 

Absent Slight and 
infrequently 

present  

Mild in 
amplitude and 

persistent. Or 

moderate in 
amplitude, but 

only 

intermittently 

present 

 

Moderate in 
amplitude and 

present most of 

the time 

Marked in 
amplitude and 

present most 

of the  time 

Tremor at rest 
(Left upper 

limb) 

Absent Slight and 
infrequently 

present  

Mild in 
amplitude and 

persistent. Or 

moderate in 
amplitude, but 

only 

intermittently 

present 

 

Moderate in 
amplitude and 

present most of 

the time 

Marked in 
amplitude and 

present most 

of the  time 

Tremor at rest 
(Right lower 

limb) 

Absent Slight and 
infrequently 

present  

Mild in 
amplitude and 

persistent. Or 

moderate in 
amplitude, but 

only 

intermittently 

present 

 

Moderate in 
amplitude and 

present most of 

the time 

Marked in 
amplitude and 

present most 

of the  time 

Tremor at rest 
(Left lower 

limb) 

Absent Slight and 
infrequently 

present  

Mild in 
amplitude and 

persistent. Or 

moderate in 
amplitude, but 

only 

intermittently 

present 

 

Moderate in 
amplitude and 

present most of 

the time 

Marked in 
amplitude and 

present most 

of the  time 
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Action or 

postural tremor 

of hands (Right 

upper limb) 

Absent Slight present 

with action 

Moderate in 

amplitude, 

present with 

action 

Moderate in 

amplitude with 

posture holding as 

well as action 

 

Marked in 

amplitude; 

interferes with 

feeding 

Action or 
postural tremor 

of hands (Left 

upper limb) 

Absent Slight present 

with action 

Moderate in 
amplitude, 

present with 

action 

Moderate in 
amplitude with 

posture holding as 

well as action 

 

Marked in 
amplitude; 

interferes with 

feeding 

Rigidity 

(Judged on 
passive 

movement or 
major joints 

with patient 

relaxed in 
sitting position. 

Cogwheeling to 

be ignored) 

(Neck) 

 

Absent 

 

 

Slight or 

detectable only 
when activated by 

mirror or other 

movements 

Mild to moderate Marked, but full 

range of motion 

easily achieved 

Severe, range 

of motion 
achieved with 

difficult 

Rigidity 
(Judged on 

passive 

movement or 
major joints 

with patient 

relaxed in 
sitting position. 

Cogwheeling to 

be ignored) 
(Right upper 

limb) 

 

Absent 

 

 

Slight or 
detectable only 

when activated by 

mirror or other 

movements 

Mild to moderate Marked, but full 
range of motion 

easily achieved 

Severe, range 
of motion 

achieved with 

difficult 

Rigidity 

(Judged on 

passive 
movement or 

major joints 

with patient 
relaxed in 

sitting position. 

Cogwheeling to 
be ignored) 

(Left upper 

limb) 

 

Absent 

 

 

Slight or 

detectable only 

when activated by 
mirror or other 

movements 

Mild to moderate Marked, but full 

range of motion 

easily achieved 

Severe, range 

of motion 

achieved with 

difficult 

Rigidity 

(Judged on 
passive 

movement or 

major joints 
with patient 

relaxed in 

sitting position. 
Cogwheeling to 

be ignored) 

(Right lower 

limb) 

 

Absent 

 

 

Slight or 

detectable only 
when activated by 

mirror or other 

movements 

Mild to moderate Marked, but full 

range of motion 

easily achieved 

Severe, range 

of motion 
achieved with 

difficult 
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Rigidity 

(Judged on 

passive 
movement or 

major joints 

with patient 
relaxed in 

sitting position. 

Cogwheeling to 
be ignored) 

(Left lower 

limb) 

 

Absent 

 

 

Slight or 

detectable only 

when activated by 
mirror or other 

movements 

Mild to moderate Marked, but full 

range of motion 

easily achieved 

Severe, range 

of motion 

achieved with 

difficult 

Finger taps 
(Patient taps 

thumb with 

index finger in 
rapid 

succession) 

(Right Side) 

Normal  Mild slowing 
and/or reduction 

in amplitude 

Moderate 
impaired. 

Definite and 

early fatiguing. 
May have 

occasional 

arrests in 

movement 

 

Severely impaired. 
Frequent 

hesitation in 

initiating 
movements or 

arrests in ongoing 

movement 

 

Can barely 
perform the  

task 

Finger taps 
(Patient taps 

thumb with 

index finger in 
rapid 

succession) 

(Left Side) 

Normal  Mild slowing 
and/or reduction 

in amplitude 

Moderate 
impaired. 

Definite and 

early fatiguing. 
May have 

occasional 

arrests in 

movement 

 

Severely impaired. 
Frequent 

hesitation in 

initiating 
movements or 

arrests in ongoing 

movement 

 

Can barely 
perform the 

task 

Hand 
movements 

(Patient opens 

and closes 
hands in rapid 

succession) 

(Right Side) 

 

Normal Mild slowing 
and/or reduction 

in amplitude 

Moderately 
impaired. 

Definite and 

early fatiguing. 
May have 

occasional 

arrests in 
ongoing 

movement 

Severely impaired. 
Frequent 

hesitation in 

initiating 
movements or 

arrests in ongoing 

movement 

 

Can barely 
perform the 

task 

Hand 
movements 

(Patient opens 

and closes 
hands in rapid 

succession) 

(Left Side) 

Normal Mild slowing 
and/or reduction 

in amplitude 

Moderately 
impaired. 

Definite and 

early fatiguing. 
May have 

occasional 

arrests in 
ongoing 

movement 

Severely impaired. 
Frequent 

hesitation in 

initiating 
movements or 

arrests in ongoing 

movement 

 

Can barely 
perform the 

task 

Rapid 
alternating 

movements of 

hands 
(Pronation-

supination 

movements of 
hands, vertically 

and 

horizontally, 
with as large an 

amplitude as 

possible, both 
hands 

simultaneously) 

(Right Side) 

Normal Mild slowing 
and/or reduction 

in amplitude 

Moderately 
impaired. 

Definite and 

early fatiguing. 
May have 

occasional 

arrests in 

movement 

Severely impaired. 
Frequent 

hesitation in 

initiating 
movements or 

arrests in ongoing 

movement 

Can barely 
perform the 

task 
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Rapid 

alternating 

movements of 
hands 

(Pronation-

supination 
movements of 

hands, vertically 

and 
horizontally, 

with as large an 

amplitude as 
possible, both 

hands 

simultaneously) 

(Left Side) 

 

Normal Mild slowing 

and/or reduction 

in amplitude 

Moderately 

impaired. 

Definite and 
early fatiguing. 

May have 

occasional 
arrests in 

movement 

Severely impaired. 

Frequent 

hesitation in 
initiating 

movements or 

arrests in ongoing 

movement 

Can barely 

perform the 

task 

Leg agility 
(Patient taps 

heel on the 

ground in rapid 
succession 

picking up 

entire leg. 
Amplitude 

should be at 

least 3 inches) 

(Right Side) 

Normal Mild slowing 
and/or reduction 

in amplitude 

Moderately 
impaired. 

Definite and 

early fatiguing.  
May have 

occasional 

arrests in 

movement 

Severely impaired. 
Frequent 

hesitation in 

initiating 
movements or 

arrests in ongoing 

movement 

Can barely 
perform the 

task 

Leg agility 

(Patient taps 
heel on the 

ground in rapid 

succession 
picking up 

entire leg. 

Amplitude 
should be at 

least 3 inches) 

(Left Side) 

Normal Mild slowing 

and/or reduction 

in amplitude 

Moderately 

impaired. 
Definite and 

early fatiguing.  

May have 
occasional 

arrests in 

movement 

Severely impaired. 

Frequent 
hesitation in 

initiating 

movements or 
arrests in ongoing 

movement 

Can barely 

perform the 

task 

Arising from 

chair (Patient 

attempts to rise 
from a straight 

backed chair, 

with arms 
folded across 

chest) 

 

Normal Slow; or may 

need more than 

one attempt 

Pushes self-up 

from arms of 

seat 

Tends to fall back 

and may have to 

try more than on 
time, but can get 

up without help 

Unable to arise 

without help 

Posture Normal 

erect 

Not quite erect, 

slightly stooped 

posture; could be 
normal for older 

person 

 

Moderately 

stooped posture 

with kyphosis; 
can be 

moderately 
leaning to one 

side 

Severely stooped 

posture with 

kyphosis; can be 
moderately 

leaning to one side 

Marked 

flexion with 

extreme 
abnormality of 

posture 
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Gait 

 

 

Normal Walks slowly, 

may shuffle with 

short steps, but no 
festination 

(hastening steps) 

or propulsion 

Walks with 

difficulty, but 

requires little or 
no assistance; 

may have some 

festination, short 
steps, or 

propulsion 

Severe disturbance 

of gait, requiring 

assistance 

Cannot walk at 

all, even with 

assistance 

II. Rating scale- Modified Hoehn and Yahr staging (H & Y) 

Stages Signs 

Stage 0 No signs of disease 

Stage 1 Unilateral disease 

Stage 1.5 Unilateral plus axial involvement 

Stage 2 Bilateral disease, without impairment of balance 

Stage 2.5 Mild bilateral disease, with recovery on pull test 

Stage 3  Mild to moderate bilateral disease; some postural instability; physically 

independent 

Stage 4 Severe disability but still able to walk or stand unassisted 

Stage 5 Bedridden and need wheelchair for mobility 

III. Rating scale-Unified dyskinesia rating scale (UDysRS) 

0=No dyskinesia 
1=Questionable or mild dyskinesia 
2=Moderate dyskinesia with movements which are not intrusive nor distort voluntary movements 
3=Severe dyskinesia which disturbs but does not prohibit posture or voluntary movements 
4=Incapacitating dyskinesia which prohibits some postures and voluntary movements 
 

Impairment 

Score 

Communication Drinking Dressing Ambulation Highest 

Score 

Face     (16) 

Neck     (17) 

R Arm/ 

Shoulder 

    (18) 

L Arm/ 

Shoulder 

    (19) 

Trunk     (20) 

R Leg/ Hip     (21) 
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L Arm/ Hip     (22) 

 

DISABILITY SCALE  
Communication 
             0=No dyskinesia 
             1=Dyskinesia present but does not impair communication 
             2=Dyskinesia impairs communication but patient is fully understandable 

             3=Dyskinesia interferes with communication such that parts of communication cannot be understood 

but overall content is understandable 
             4=Dyskinesia interferes with comprehension of overall communication 

Drinking from a cup 
              0=No dyskinesia observed 
              1=Dyskinesia present but it does not affect performance of the task 
              2=Dyskinesia affect the smooth performance but causes no splashing or spilling 
              3=Dyskinesia affects performance such that patient spills a few drops of water 
              4=Dyskinesia affects performance such that patient spills more than a few drops or dyskinesia cause 

coughing  

    or choking. 
Dressing 
              0=No dyskinesia observed 
              1=Dyskinesia present but does not interfere with or slow dressing 
              2=Dyskinesia affects smooth performance of task but the performance is at most minimally slowed 
              3=Dyskinesia interferes and slows performance but it is completed within 60 seconds 
              4=Dyskinesia precludes completing the task within 60 second 

Ambulation 
              0=No dyskinesia observed 
              1=Mild dyskinesia present but does not alter normal synchrony or cadence 
              2=Dyskinesia is present which alters the normal cadence of rising, sitting or walking but does not 

slow overall performance. 
                3=Dyskinesia is present which disrupts or distorts arising, sitting or walking. Performance is slowed.    

Patient is able to rise and walk without imminent danger of falling.  

              4=Dyskinesia prohibits walking safely without assistance 
 

(23) 

(24) 

(25) 

(26) 
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IV. Montreal cognitive assessment (MoCA) 

 
V.  Letter of approval 

 

 

18 August 2017  
 
Professor Dinesh Kant Kumar  
School of Engineering  
REMIT University  
 
Dear Prof Kumar  
BSEHAPP 22-15 KUMAR Analysis of handwriting and gait in Parkinson’s and multiple sclerosis  
 
Thank you for requesting an amendment to your Human Research Ethics project titled: Analysis of 
handwriting and gait in Parkinson’s and multiple sclerosis, which was originally approved by 
Science Engineering and Health CHEAN in 2015 for a period of 2 years.  
I am pleased to inform you that the CHEAN has approved your amendment as outlined in your 
request and the title will now be changed to “Understanding health  
behaviours in people diagnosed with diabetes.”  
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The CHEAN notes and thanks you for providing all documentation that incorporates these 
amendments. This documentation will be appended to your file for future reference and your 
research may now continue.  
 
The committee would like to remind you that:  
All data should be stored on University Network systems. These systems provide high levels of 
manageable security and data integrity, can provide secure remote access, are backed up on a 
regular basis and can provide Disaster Recover processes should a large scale incident occur. The use 
of portable devices such as CDs and memory sticks is valid for archiving; data transport where 
necessary and for some works in progress; The authoritative copy of all current data should reside 
on appropriate network systems; and the Principal Investigator is responsible for the retention and 
storage of the original data pertaining to the project for a minimum period of five years.  
Final reports are due within six months of the project expiring or as soon as possible after your 
research project has concluded.  
 
The annual/final reports forms can be found at:  
www.rmit.edu.au/staff/research/human-research-ethics  
 

Yours faithfully,  
 

Associate Professor Barbara Polus  
Chair, Science Engineering & Health  
College Human Ethics Advisory Network  
 


