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GT-Air Air expanded graphene 

GT-CO CO reduced graphene 

GT-H2 Hydrogen reduced graphene 

GT-N2 Nitrogen-expanded graphene 

h Hour 

Hz  Hertz (unit of frequency) 

1 cycle/second 

H2  Hydrogen (a reducing gas) 

Hg  Mercury 

J Joule (unit of energy) 

k  Kilo (103) 

K  Kelvin (unit of temperature) 

N2  Nitrogen (inert gas) 

m  Metre  

Milli (10 -3) when used with 

other units e.g. mm, mL 

mf Modulated force 

M  Mega (106) 

MD  Melt dispersion 

MD Molecular Dynamics 

min Minute 

MWCNT Multi-walled carbon nanotubes 

n  Nano (10-9) 

N Newton (unit of force) 

NMR Nuclear magnetic resonance 

Oxidation Loss of electrons (oxidant) 

p  Pico (10-12) 

Pa  Pascal (unit of pressure) 

PAH Polycyclic aromatic hydrocarbon 

PAW Projector augmented wave 

(method) 

PC  Polycarbonate 

PES   Poly(ether sulfone) 

PET Poly(ethylene terephthalate) 

PS Polystyrene  

PTFE  Polytetrafluoroethylene 

Reduction Gain of electrons (anti-oxidant) 

RPM Revolutions per minute 

s Second 

SBS  Poly(styrene-b-butadiene-b-

styrene) 

SD  Solvent dispersion 

SEM  Scanning electron microscope 

SS-MA Stress-strain (tensile) 

mechanical analysis 

T  Tera (1012) 

Tb  Temperature boiling 
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Tg Temperature glass transition: 

change from hard (glassy) to 

soft (rubberlike)1 

Tm  Temperature melting 

TM Thermomechanometry 

TD  Top down 

TEM  Transmission electron 

microscope 

TGA Thermo gravimetric analysis 

(thermogravimetry) 

TMA  Thermomechanical analysis 

US  Ultrasonication/ultrasonicator 

UV Ultraviolet (10 – 380 nm) 

V  Volts (unit of electromotive 

force) 

W Watt (unit of power) 1 J/s 

WAXS Wide-angle X-ray Scattering 

(aka XRD) 

w/w  weight/weight 

XPS X-ray photoelectron 

spectroscopy 

XRD   X-ray diffraction (aka WAXS) 
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Summary 
The aim of this research was to prepare graphenes, to reactively modify their surface to 

enhance exfoliation and to facilitate bonding to chosen matrix polymers, to characterise the 

prepared materials and determine their physical and mechanical properties. This investigation 

was motivated by the exceptional performance characteristics of graphene to find new ways 

of creating and dispersing graphene in polymers, so polymer-graphene composites were 

fabricated. Composites enhanced by the properties of graphene were prepared inspired by the 

unique nanostructure of graphene that imparts high strength, stiffness and resistance to 

deformation. 

Graphenes were prepared using thermal expansion in an oxidising atmosphere (air), an inert 

atmosphere (nitrogen N2) and a reducing atmosphere (hydrogen H2 or carbon monoxide CO). 

The reduction of graphene using thermal expansion with simultaneous CO reduction was 

granted a provisional patent (Appendix A). 

The graphenes were characterised using thermogravimetry (TGA), Raman spectroscopy, 

electrical resistance and surface energy measurements. All graphenes showed a mass loss in 

TGA which was attributed to oxygen-containing functional groups present on the graphene 

surface. The mass loss was lowest for the inert and reducing atmospheres. Raman 

spectroscopy (using the D/G peak ratio) showed that graphene had the fewest defects in the 

order CO<H2<N2<air and produced the fewest layers (as measured using the highest 2D/G 

ratio) under a CO reducing atmosphere. The electrical resistance (as measured using a 

compressed pellet) was lowest for graphene prepared under a reducing or inert atmosphere 

and highest under air. The contact angle was measured and used to calculate the surface 

energy which was found to be lower when produced under a reducing or inert atmosphere 

and highest when produced under air (CO<N2<H2<air). This increased hydrophobicity was 

consistent with a reduction in surface oxides, healing of surface defects and scrolling of 

graphenes, which was supported by transmission electron microscopy (TEM). The graphene 

produced had a surface area greater than commercially produced graphene. All of this 

suggests that the CO reduced graphene is superior to other graphene production methods. 

The graphenes were then used to produce four different polymer composites including a 

thermoplastic elastomer (poly(styrene-b-butadiene-b-styrene); SBS at two compositions), a 

semi-crystalline thermoplastic (polyethylene terephthalate; PET at two compositions) and 
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two high-performance amorphous polymers (polycarbonate (PC) and poly(ether sulfone) 

(PES)). The composites were prepared by dispersion of the graphene into polymer solutions 

using ultrasonication and high torque melt dispersion. 

The SBS-graphene (1 %·w/w) composites were produced using graphenes prepared in air, N2 

and H2 and using solvent dispersion (SD). The greatest changes occurred using the H2 

reduced graphene which showed increased stored energy (storage modulus), energy 

absorption (loss modulus) and damping (tan delta) in SBS. The damping effect (move to a 

more liquid state and greater free volume) was largest at low temperatures as a result of the 

large size of the graphene sheets used. Functionalising the graphene with Fe3O4 before 

combining it with SBS resulted in a composite that displayed magnetic properties. 

The SBS-graphene (0-20 %·w/w) composites were produced using GT-CO reduced 

graphenes and using solvent dispersion. Stress-strain measurements showed a progressive 

decrease in deformation and increase in damping as the graphene content increased 

suggesting uniform dispersion in the SBS. The presence of aromatic interactions and 

hydrogen bonding between the SBS and graphene was supported by density functional theory 

calculations. Some scrolling of graphene was observed in this SBS composite. 

The PET-graphene (1 %·w/w) composites produced using the GT-H2 reduced graphene were 

prepared using solvent dispersion (with ultrasonication) and melt dispersion (without 

ultrasonication). Nucleation of PET did not occur using the low defect graphene although 

oxygen permeation of the composite increased which was attributed to an increased free 

volume. The results suggested that using a combination of ultrasonication and melt dispersion 

of graphene to produce the composite would increase the exfoliation and dispersion further. 

The PET-graphene (1 %·w/w) composites using GT-CO reduced graphenes were prepared 

using melt dispersion (MD) alone or combined with ultrasonication. When using 

ultrasonication graphene agglomeration in PET was diminished, and reduction of the 

graphene could be seen by a darkening of the colour of the composite. PET deformation 

(ductility) increased with ultrasonication and melt dispersion of graphene. 

The PC-graphene (0.1 %·w/w) composites using GT-H2 or GT-CO reduced graphene with 

low filler content were prepared using melt dispersion with ultrasonication. The storage 

modulus of PC-graphene composites was greater than PC alone indicating stronger interfacial 

interactions existed with graphene. The time-dependent loss of energy (loss modulus) and 



Summary 

xxxii 

damping (greater liquid properties) increased when graphene was added to PC. The increase 

in damping suggested an increase in free volume. DFT calculations indicated that the 

interactions between graphene and PC were due to a combination of π-π and CH/π bonding. 

Despite being relatively weak, the interaction of the aromatic rings and the H atoms on the 

methyl groups, in the monomer, both play a significant role in the attraction with graphene. 

The PES-graphene (1 %·w/w) composites using GT-H2 or GT-CO reduced graphenes were 

prepared using solvent dispersion with ultrasonication.  GT-CO reduced graphene showed 

evidence of rolling or scrolling in PES which increases cross-sectional area. Interactions 

between PES GT-CO increased indicating a move to a more solid state and an increase in 

elasticity. The results demonstrated that PES binds well with graphene using only non-

covalent bonding. 

In each case, the polymer-graphene composites demonstrated good dispersion which 

establishes that π-interactions and hydrogen bonding are an effective way to disperse 

graphene.  Where similar or comparable data was found for covalent bonding, it 

demonstrated that non-covalent bonding gave similar results. By using only non-covalent 

bonding, the pristine nature of the graphene was maintained creating low defect polymer-

graphene composites. Low defect graphenes have advantages such as improved electrical and 

thermal conductivity, fewer contaminants, greater biocompatibility and the benefit of a less 

dangerous processing method. The optimal processing method combined ultrasonication and 

melt dispersion which are synergistic reducing (signalled by darker colour) and exfoliating 

graphene further. The scrolling of low defect GT-CO reduced graphene is of particular 

interest because the increased cross-sectional area gives it the potential to improve thermal 

and electrical conductivity. 
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Chapter 1 Introduction 
1.1 Overview 

Graphene was first proven to exist in 2004. It is the strongest material known with a Young’s 

modulus of 1 TPa and ultimate strength of 130 GPa2. It has a greater surface area (2630 m2/g) 

and is more electrically conductive (6000 S/cm)3 than any other material. Graphene is 

impermeable to gases4, resists high temperatures (estimated Tm = 4900 K)5 and is highly 

thermally conductive (5000 W/(m·K))3. It has been the most cited substance in science since 

the 2010 Nobel Prize in Physics was awarded to Andre Geim and Konstantin Novoselov for 

exfoliating one layer of graphene from a pencil (graphite) using adhesive tape (demonstrating 

weak interlayer forces) and obtaining an image of the graphene6.  

1.1.1 Structure 

Graphene is a form of carbon, with a structure of one-atom-thick planar sheets of sp2-bonded 

carbon atoms that are densely packed in a hexagonal crystal lattice (aka a single graphite 

layer). The aromatic rings which make up graphene sheets are the basic structural component 

of Buckminsterfullerenes (which also contain some five-membered rings), carbon nanotubes 

and graphite. Graphite is just many layers of graphene (0.3337 - 0.335 nm gap) stacked in an 

offset manner (Figure 1-1). The in-plane covalent bonds between carbon atoms are some of 

the strongest in nature (~5.9 eV, stronger than diamond) while the interlayer van der Waals 

forces (~50 meV) in graphite are some of the weakest8.  

a b c   

Figure 1-1 a) Graphene is a sheet of single carbons bonded together in a honeycomb structure 

b) AB (Bernal) stacking of graphite8 c) Graphite (many layers of graphene)  

Graphene is defined as a single layer, but few layers (~2 or 3) or even multi-layers (up to 10 

layers9, 10 or more11, 12) are commonly called graphene because they still retain many 

exceptional properties of graphene. For example, each layer of multi-layer graphene absorbs 



Chapter 1: Introduction 
 

2 

2.3 %3, 13 of light (single layer graphene 2.6 %14). Thus touch screens (for mobile phones) 

made of ten-layer graphene (replacing indium tin oxide) would still transmit ~77 % of light. 

1.1.2 History 

Carbon nanocomposites have traditionally been used in the rubber industry where many 

elastomers are compounded with carbon blacks (carbon particles of nano-dimension). It is 

now known that carbon nanotubes, composed of cylinders of fused hexagonal aromatic 

carbon rings, are responsible for the flexibility, strength and extreme sharpness of the near 

legendary Damascus steel swords15, 16. Expandable graphites intercalated with oxides are 

used commercially in fire-retardant composites17, 18.  

1.1.3 Future 

Graphenes are currently being produced in semi-commercial quantities, are already available 

in some commercial products and are expected to become a common component of advanced 

materials shortly. Graphenes are of great interest because they are simpler and cheaper to 

produce in large quantities while offering superior benefits to nanotubes for most uses. 

Graphenes have immediate applications in polymers, other composites and electronics. 

Graphenes can strengthen other materials, improve electron mobility, decrease gas 

permeation, improve flexibility, improve temperature resistance, improve durability and 

reduce mass.  Graphenes are of theoretical interest since the individual sheets have a 

thickness of one carbon atom. Graphenes have an enormous surface energy since the surface 

to volume ratio is at a maximum at only one atom of carbon thick, but extending to relatively 

large lateral distances. Because graphenes have immediate commercial applications, they are 

likely to be commercialised more rapidly than any other recent discovery. 

1.1.4 Polymers 

Recently other nano-carbons have become available and are being evaluated for performance 

in polymers. Nano-carbons have been used in many polymers including epoxy resins19, 

polypropylene20 and polycarbonate21. Nano-carbons are not particulates but are of nanoscale 

in at least one dimension. Graphenes are 2D single layers of fused hexagonal aromatic carbon 

rings in great sheets which can form percolated22 (conductive) networks in polymers at low 

concentration and are of nano-thickness.  

This work describes the creation of polymer-graphene composites. The polymers were 

chosen so that they had aromatic groups in the structure making dispersion easier. The 
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polymers chosen avoided cross linking to ensure enhanced properties could only be attributed 

to the nano-carbon. The polymers were amorphous (no crystallinity or low crystallinity) so 

that interpretation could be simplified and so the graphene did not act as a source of 

nucleation.  

Poly(styrene-b-butadiene-b-styrene), poly(ethylene terephthalate), polycarbonate and 

poly(ether sulfone) had the necessary characteristics to make good test polymers. 

1.2 Rationale 

Nanostructured materials are currently showing many potential applications. Nanostructured 

fillers provide high surface areas for functional processes to take place. Nanoparticles may be 

able to adsorb other molecules when placed at a surface or provide conductive pathways at 

relatively low concentration. An understanding of the underlying principles which determine 

production and dispersion of graphene is often lacking. Such knowledge can be used as a 

source of guidelines and ideas for the fabrication of new high-performance composites. 

1. Nanocomposites are made from exfoliated layered structure fillers. In this project 

the layer material is graphene, and the oxidation of the layer surfaces has 

facilitated exfoliation. Exfoliation is assisted by interaction with the liquid in 

which it is being dispersed and by shear forces. 

2. Nanocomposites are two-phase materials formed from a nanoparticle dispersed 

phase and a polymeric continuous phase. Nanocomposites provide a large surface 

area to volume ratio so that particle interactions with the matrix phase and with 

substances at the surface can be maximised.  

3. The application for nanocomposites in this project is focused on their stiffening 

action. The presence of small active graphene particles embedded in a continuous 

polymeric matrix surface will be studied. The preparation of the nanoparticles in 

the polymeric phase will be the main part of the research, coupled with the 

characterisation of their structure and interaction with other substances from the 

liquid or gaseous state, or heat and light as physical interactions. The 

nanocomposites may be extruded as films or coated onto a surface. 
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1.3 Aim 

The aim of this work was to prepare graphenes, reactively modify the surface to enhance 

exfoliation and facilitate bonding to chosen matrix polymers, characterise the prepared 

materials and determine physical and mechanical properties. 

1.4 Objectives 

The key objectives were to: 

1. prepare low defect graphenes and enhance interfacial bonding to polymers; 

2. prepare nanoparticle-graphene–polymer composites using π-interactions to bond with a 

chosen polymer; 

3. prepare nanoplatelet graphene–polymer structures to develop thermally stable 

compositions, extruded profiles and mouldings; 

4. measure composition by mass loss and thermal stability using thermogravimetry; 

5. characterise the nanocomposites using materials characterisation instruments, such as 

Raman spectroscopy; 

6. study the structure of the nanoparticle composites by wide angle X-ray diffraction to 

measure the inter-particle distance and the degree to which the layered structures have 

been separated and dispersed23; 

7. view the microstructure of the composites using scanning electron microscopy and 

transmission electron microscopy; 

8. determine composite mechanical and viscoelastic performance with static, dynamic and 

modulated mechanical analysis with a variation of geometry, force, deformation, 

frequency and temperature; 

9. model aromatic polymer-graphene interactions. 

1.5 Research Questions 

1. Can low defect graphene be created by thermal expansion or by repair? 

2. Can graphene be dispersed in many polymers with aromatic rings using π-interactions? 

3. Can aromatic solvents disperse graphenes in many aromatic polymers using π-

interactions? 

4. Can many weak π-interactions between graphene and a polymer provide effective 

dispersion and meaningful reinforcement? 
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5. What properties improve in polymers when low defect graphene is added? 

6. Is there an optimal volume fraction of graphene for intermolecular interactions and 

surface adsorption of polymers? That is, do the properties of aromatic polymers change as 

the concentration of graphene increases? 

7. Does the performance of aromatic polymers with low defect graphene exceed that with 

high defect graphene? 

1.6 Thesis Structure 

This thesis contains 11 chapters:  

Chapter 1 is a general introduction describing the aims and objectives. 

Chapter 2 is a review of relevant published literature. 

Chapter 3 describes the experimental equipment and instruments used in this research. 

Chapter 4 discusses the production of graphene. 

Chapter 5 and 6 discusses the production SBS-graphene composites. Firstly different 

production methods are compared. Then a low defect graphene was dispersed in SBS at 1- 20 

%·w/w to establish how loading affects the properties. 

Chapters 7 and 8 discuss PET-graphene composites. PET with glass fibre was compared 

using solvent and melt dispersion of graphene in chapter 7. PET without glass fibre was 

compared with and without ultrasonication of graphene in chapter 8. 

Chapter 9 discusses polycarbonate-graphene composites using very low loadings of 

0.1 %·w/w. Melt dispersion and ultrasonication were used to optimise the dispersion of 

graphene in the polymer. 

Chapter 10 discusses PES-graphene composites. Solvent dispersion and ultrasonication were 

used to disperse the graphene.  

Chapter 11 presents the conclusion of the thesis and recommendations for future work. 



Chapter 1: Introduction 
 

6 

 

Figure 1-2 Flow chart of thesis structure 
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Chapter 2 Literature Review 
2.1 Introduction 

This literature review provides an overview of graphene, details of its properties, production, 

reduction, solvation, characterisation, metals, polymers, biocompatibility and applications. 

Graphene was discovered in 2004, and Andre Geim and Konstantin Novoselov were 

recognised in 2010 with a Nobel Prize in Physics for separation of individual graphene sheets 

by a physical adhesion method24, 25. Graphene is a one-atom-thick layer of aromatic carbon 

atoms arranged in a regular hexagonal pattern. It is the stiffest and strongest material yet 

discovered (tensile modulus 1 TPa and Ultimate Strength 130 GPa)2,26 is more electrically 

conductive (6000 S/cm) than any other material2, exceptionally thermally conductive 

(5000 W/m·K)3, 4 and its properties (decomposition-resistant to Tm ~4900 K5, large surface 

area 2630 m2/g2, impermeable to gases4 yet permeable to H2O
27) make it attractive for 

inclusion in composites provided suitable reactions, dispersants and dispersion techniques 

can be developed.  

Graphenes can be exfoliated to a high degree to release individual graphene sheets to provide 

the optimum properties. Graphene sheets have extreme surface energy due to all carbon 

atoms being at a surface but are especially reactive at the edges28. The large surface and high 

energy need to be stabilised to prevent flocculation (due to van der Waals forces) and to 

facilitate dispersion in a matrix phase. The unique properties of a graphene decrease as 

graphene sheets agglomerate but remain useful while under ten layers9.  

 

Figure 2-1 Typical oxygen functional groups found at the edges and in the plane of graphene 

Oxygen functional groups (Figure 2-1) are commonly found at the edges of graphene, and 

these are primarily hydroxyl, carbonyl and carboxylic acid groups29. In the plane epoxides 
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and hydroxyls are more common22, 30. These defects can be reacted to graft other molecules 

onto graphene. Examples of reagents that can be reacted to graft onto graphene are 

isocyanates (R-N=C=O) with hydroxyl groups (to graft urethane)4, the hydroxyl group of 

poly(vinyl alcohol) (PVA) with carboxylic acid31, amide groups (NH2) in chitosan which 

react with carbonyl32 and end-amine (R1-NR2R3) groups in a commercial long chain 

surfactant which react with epoxide groups33. 

2.1.1 Opportunities 

 

Figure 2-2 Graphene to buckminsterfullerenes, nanotubes and graphite3, 10  

Carbon allotropes (Figure 2-2) such as graphene, carbon nanotubes and Buckminsterfullerene 

are exceptionally high-performance nanomaterials. In particular, graphene has the highest 

tensile modulus, is stable at extreme temperatures and is highly conductive. Graphene needs 

to be supported in a matrix such as a polymer to give cohesion and allow its exceptional 

properties to be revealed. Graphene is more effective than traditional graphite for 

reinforcement of thermoplastics. Graphene has been found to conduct electricity when at low 

concentrations (0.02 % w/w) in polymer matrices34. Applications for such conductive 
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polymer composites may include co-axial cables and electrostatic resistant films or 

mouldings.  

2.1.2 Challenges 

Formation of graphene nanostructures from graphite or carbon is the first challenge. The 

second challenge is to keep graphene dispersed so that it retains its unique properties. The 

exact solutions to these problems will vary depending on the intended purpose for the 

graphene.  

2.1.3 Potential 

Graphene is currently expensive and cannot be produced cheaply in quantity due to a lack of 

suitable method35. Graphene is resistant to dispersion in polymers and typically contains up to 

40 % structural defects30, 36. These defects are holes and oxidised carbons at the edges or in 

the plane. The current research is aimed at producing larger amounts of graphene, finding 

new methods of dispersing it in polymers and producing low defect graphenes. This research 

will lead to stronger and lighter polymers with properties such as decreased gas permeation or 

increased conductivity. Areas such as aerospace currently have problems with fatigue and 

cracking of polymers (e.g. carbon fibre reinforced polymers) which such work can potentially 

eliminate. 

2.2 Properties 

 

a b  

Figure 2-3 a) Double-layer graphene sheet illustrated using coronene b) Model of graphene 

showing sheet distortion from planarity due to high surface energy 

Graphene sheets37
, CmHn where the ratio of carbon to hydrogen varies according to the size of 

the sheet (Figure 2-3), are extended conjugated systems that are 10 – 100 times larger than 

the size of common organic molecules. Defect free graphene is a pure aromatic carbon 
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system which is non-polar. Its properties include optical absorption including beyond the far 

infrared (2.3 % of incident white light is absorbed by one layer). This broad optical 

absorption has implications for non-degrading organic photonics components. Graphene is 

especially reactive along the edges.28 Most properties typical of graphenes are lost when 

much more than ten graphene sheets agglomerate9.  

The chemistry of carbon allotropes such as nanotubes38 and buckminsterfullerenes is often 

identical to that of graphenes. Thus it is common to look to these allotropes when looking for 

supporting literature for graphene37, 39. 

2.3 Production 

Graphene production can be characterised as: 

1. Bottom up – building graphene one carbon atom at a time  

2. Top down – separating or exfoliating graphite or graphite derivatives3 

2.3.1 Top Down 

The most common top-down methods are: 

1. Chemical exfoliation (which requires a further reduction)40 

2. Mechanical exfoliation by removing one layer at a time from graphite with adhesive 

tape25. 

 

Figure 2-4 Preparation of graphene sheets41 

A top down (Figure 2-4) approach holds the greatest promise for creating large amounts of 

graphene. 
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2.3.1.1 Chemical Exfoliation 

Graphene can be created, by oxidising graphite with nitric acid and other oxidative acid 

mixtures such as sodium perchlorate or potassium permanganate42 in sulphuric acid (usually a 

modified Hummers method)40, 43.  

The resulting graphite oxide has interlayer oxidised carbons giving weakened interlayer 

adhesion (increasing interlayer spacing and weakening of van der Waals forces44). If this 

oxidation is allowed to continue, it results in individual sheets of graphene. As a result, 

exfoliated-graphene sheets are often referred to as graphene oxide (GO)9, 45.  

Graphite intercalation compounds (GIC’s Figure 2-5a) can involve any one of over 100 

intercalators which can be either donor compounds (reducing alkali metals) or acceptor 

compounds (oxidising sulphuric or nitric acids)46.  The degree of intercalation is described by 

a stage number (1, 2, 3…) which refers to how many layers of carbon there are between each 

intercalated layer44.  

2.3.1.2 Thermal Exfoliation 

If the oxidation of graphite is halted before exfoliation is complete, it becomes expandable. 

A minimum graphite particle size of 75 µm2 is required for efficient intercalation and 

expansion46. Heating rapidly to temperatures of 220 °C or higher (depending on the level of 

oxidation) causes the graphite layers to separate into individual oxidised graphene sheets or 

bundles of sheets by the expansion of gases (thermal shock)47. The sheets are still partially 

attached in accordion-like structures (aka worms). 

Graphite oxide (Figure 2-5b) is the raw material of choice because oxidation weakens 

graphene stacks and affords easy dispersion of functionalised graphenes in both aqueous and 

organic media. Thermal methods require the heating of graphite oxide: the higher the 

temperature, the purer the graphene sheets produced (>230 °C to ~3000 °C). Impure 

graphene sheets contain oxygen and other impurities such as sulphur that are volatised at 

higher temperatures. Treatment of expanded graphite oxide (EGO) at 1000 °C over 8 h 

increased carbon content from 81 % to 97 % (initially expanded at 600 °C) and lowered 

resistivity from 1600 to 50	Ω.cm48. 
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a  

b c  

Figure 2-5 a) Expandable graphite49 showing intercalation (small molecules introduced 

between layers) b) SEM of graphite oxide before thermal expansion c) after thermal 

expansion50 

2.3.1.3 Sonic Exfoliation 

Sonication can be used for exfoliation of graphite, but graphene is fragmented, which is 

undesirable. However, sonication of graphite using N,N-dimethylformamide returned up to 

50 % monolayer flakes28, 51. An added advantage of sonic exfoliation of graphene oxide is 

increased reduction52 with hot spots of up to 5000 K, pressures of ~ 1000 bar and cooling 

rates of  >1010 K/s53. 

2.3.2 Bottom Up 

Bottom-up (BU) graphene production offers exquisite control of graphene edges which is 

lacking in top-down (TD) approaches54. The most popular method of bottom-up graphene 

production is chemical vapour deposition (CVD) and involves the deposition of gaseous 
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carbonaceous feedstock onto a metallic substrate. It is of interest mainly because it holds the 

promise of creating large films of graphene25, 55, 56.  

The alternative bottom-up method is using molecular precursors where some source of 

polycyclic aromatic hydrocarbons (PAH) is used to build tiny (3-12 nm) graphenes30, 57. BU 

approaches usually produce relatively small masses of graphene with large continuous 

surface area which are suitable for many applications such as electronics. However, large 

area synthesis methods (including CVD) typically yield small grain sizes and high resistance 

grain boundaries which create high sheet resistance58.  

 

Figure 2-6 Synthesis of graphene nanoribbon using PAH molecular precursors57 

2.4 Reduction of Oxidised Graphene 

Chemical exfoliation of graphene results in highly oxidised graphite (brown) which needs 

reduction before becoming less oxidised graphene (black). 

2.4.1 Chemical Reduction 

Chemical reduction of graphene is the most commonly used reduction method. The most 

common chemical reducing agent cited is hydrazine59, which is highly toxic.  

2.4.2 Microwave Activated Chemical Reduction 

Microwave irradiation (MWI) from a household microwave can be used to reduced oxidised 

graphenes: graphite oxide is sonicated in deionised water, and a reducing agent is added 
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(100 µL hydrazine hydrate, ethylenediamine or ammonium hydrate). The microwave is 

operated at full power (1000 W at 2.45 GHz) for 60 s (10 s on, 20 s stir: repeat 6 times). The 

yellow GO dispersion changes to black indicating a chemical reduction to graphene. The 

graphene is separated with a centrifuge at 5000 rpm (15 min) and dried overnight under 

vacuum. Supporting metal nanoparticles can prevent the formation of stacked graphitic 

structures (nanoparticles act as spacers) thus increasing surface area. Graphene sheets 

supporting nanoparticles of Pd, Cu, Pd, Cu, Au, Ag and much more have been created. 

Simultaneous reduction of the metal salt with GO results in well-dispersed nanoparticles on 

the graphene sheets: nanoparticles tend to assemble at the edges of the graphene sheets and 

between folded sheets60. 

2.4.3 Biomaterial Enhanced Reduction 

Some green (low toxicity) methods of reduction have been used: L-tryptophan (an amino acid 

with an aromatic indole group) which was used to keep graphene in suspension (in water) 

using π-π interactions while the graphene was reduced with ascorbic acid61. Tea has been 

used to reduce graphene oxide62.  

2.4.4 Thermally Induced Reduction 

Thermal reduction63 using expandable graphite64 can be utilised for graphene production. 

Gases such as nitrogen65 (inert), hydrogen64 (reducing) or carbon monoxide66 (reducing) can 

be used to remove oxides, reduce graphene further or heal the graphene. 

Ultrasonication of graphene oxide reduces the number of GO bonds and increases the number 

of C-C bonds by at least 2 fold presumed to be by in-situ thermal reduction at the cavitating 

bubble-water interface52.  

Visible light from a xenon flash, from a common digital camera, can instantly trigger a 

chemical-free reduction (with expansion) of graphite oxide by photothermal heating35.  

Lasers (visible monochromatic light) reduce graphene oxide cheaply, safely and effectively67. 

2.4.5 Gamma Radiation Activation Under an Inert or Reducing Gas 

Gamma irradiation has been used to reduce graphene oxide under N2 or H2. The conductivity 

was improved 400 times, and the C/O ratio increased from 2.37 to 6.25 when using H2. The 

reduction mechanism using H2 was selective with mainly epoxy and hydroxyl groups being 

affected64. 
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2.5 Solvation Assisted Dispersion 

Solvents are often used to keep graphenes dispersed (without functionalisation) till they can 

be used or as part of the exfoliation process. A good solvent prevents graphenes from 

aggregating and forming graphite. Polar solvents are most effective at dispersing graphene.  

Common solvents are listed in order of decreasing solvation (Figure 2-7):  

 

Figure 2-7 Solvents (from left to right) a) 1-methyl-2-pyrrolidone (NMP) b) dimethyl 

sulfoxide (DMSO) c) dimethyl formamide (DMF) d) ɣ-butyrolactone (GBL) e) water (H2O)68 

All except water are dipolar (electrically neutral but having a partial positive and negative 

charge) aprotic (hydrogen is not bound to oxygen or nitrogen) organic solvents. Water is a 

protic solvent whose solubility is enhanced by the polar oxide groups common on graphene. 

More recently organic amine-based solvents have outperformed NMP and surfactants for 

dispersing graphene listed in order of decreasing solvation (Figure 2-8) 

 

O

N
H

O

O

N

Oc d  

Figure 2-8 a) 3,3′-aminobis(N,N-dimethylpropylamine) (DMPA) b) N-[3-

(dimethylamino)propyl]methacrylamide (DMAPMA) c) 2-(tert-butylamino)ethyl 

methacrylate (BAEMA) d) 2-(dimethylamino)ethyl methacrylate (MAEMA) 
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DMPA outperforms NMP by dispersing 50 % more graphene. Importantly DMAPMA, 

BAEMA and MAEMA are cheaper and less hazardous compared to NMP while dispersing 

more graphene69. 

2.5.1 Dispersion 

2.5.1.1 Liquid Dispersion 

Solvent dispersion can be used to prepare a polymer-graphene composite by mixing with a 

polymer solution, then precipitating. Graphene oxide sheets can be reduced to graphene while 

dispersed in a liquid. These graphene sheets tend to flocculate, but if they can be dispersed in 

a polymer solution, then graphene–polymer nanocomposites can be formed45. Polymers such 

as poly(vinyl alcohol)(PVA) are sometimes used to coat the graphene and keep the layers that 

have separated from flocculating (agglomerating) together. 

Separation of graphene sheets and dispersion in an organic liquid62 can be achieved with high 

shear. Graphene sheets functionalised at their edges with short branched alkanes (aka 

paraffin) afford stable dispersion in oils48, 70. Alkyl functionalised graphene showed largely 

enhanced lipophilicity71. 

Graphene is more likely to disperse in solvents which minimise interfacial tension. Graphene 

has a surface energy of 46.7 mN/m (GO 62.1 mN/m)72 which is similar to NMP 40 mN/m, 

DMF 37.1 mN/m, GBL 35.4 mN/m and o-dichlorobenzene 37 mN/m. Water has a surface 

energy of ~72 mN/m which is closer to that of GO42, 72. Thus low interfacial tension is why 

GO is hydrophilic, but pristine graphene is hydrophobic. 

2.5.1.2 Melt Dispersion 

High shear in polymer solutions can be used for graphene dispersion and exfoliation. Melt 

compounding of isotactic poly(propylene), poly(styrene-co-acrylonitrile), polyamide-6 

(nylon) and polycarbonate (PC). The degree of exfoliation with thermally reduced GO 

(TrGO) (based on theoretical surface area) has been estimated at around 50 %48. 

2.5.1.3 Chemical Dispersion 

Functionalising graphene can help keep layers separated. Functionalisation can be either by 

π-π (non-covalent) stacking or C-C covalent coupling reactions28. The π-π interactions 

increased in strength when the number of hydrogen atoms in benzene-like molecules 

increased73. Hydrogen bonding (CH/π) can also occur between a soft acid (CH) and a soft 
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base (π group) or hard acids (OH or NH) and soft bases (π-systems) increasing the amount of 

non-covalent bonding interactions (Figure 2-9)74. 

a           b  

Figure 2-9 Hydrogen bonding demonstrating π-interactions a) OH-π b) NH2-π (modified)74 

Graphene can be functionalised with many groups including fluorinated compounds75. Non-

ionic and ionic surfactants can be used to disperse graphene but add a potential contaminant 

while increasing complexity and thus cost42.  

2.6 Characterisation 

2.6.1 Raman Spectroscopy 

Raman spectroscopy is considered the most useful characterisation technique for graphene 

because it quantifies many structural differences (vibrations of covalent bonds) that even an 

electron microscope cannot resolve. The Raman spectrum of graphene is characterised by 

three peaks: D (Defects: sp3 bonds, vacancies, implanted atoms76, 77), G (in-plane vibration of 

sp2 bonds) and 2D (second order of the D peak). The D peak is found at ~1300 cm-1, the G 

peak at ~1600 cm-1 and the 2D peak at ~ 2600 cm-1. 

a b  

Figure 2-10 a) Surface enhanced, with gold, Raman spectra of single layer graphene (upper) 

compared with no enhancement (lower) showing G and 2D peaks 785 nm b) Trilayer 

graphene-enhanced (upper) 2x magnified (lower) 633 nm (4 mW with 1 s exposure 

alpha300 S)78. 
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The D peak intensity79 (lower is better) indicates the number of defects in graphene and 

defects are a measure of the quality of the graphene. The 2D peak height (higher is better) 

and shape (straight sides are better) can be used to determine the number of layers of 

graphene (Figure 2-10). 

The differences between graphenes can be quantified using D/G80 (lower means fewer 

defects) or 2D/G81 (higher means fewer layers) ratios. The 2D peak is higher than, or of 

similar height, to the G peak with monolayer graphene82. With two or three layer graphene 

the 2D peak is lower than the G peak78. 

The peak height and position vary according to the wavelength used. Commonly used 

wavelengths are ~532, 633 and 785 nm. Signal intensity varies with spot size, intensity and 

the instrument used. Signals can be boosted further by using a substrate of gold78. 

2.6.2 Edges 

Graphene edges can be ordered either in a zig-zag or an armchair configuration. Armchair 

edges are a significant source of defects77. Zig-zag edges do not generate a Raman D peak83. 

Thus identifying the proportions of the two types is of particular interest. 

a  b c  

Figure 2-11 a) Graphene, and carbon nanotubes b) Armchair (5,5) c) zig-zag (9,0) 

2.6.3 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is a highly selective characterisation technique 

because it views such a small area it is not representative of the overall material or even the 

test specimen. However, it is capable of resolving individual graphene layers and allows the 

surface of the graphene to be viewed. Thus TEM allows Raman spectra to be reconciled with 
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images of the surface. Images are invaluable in resolving differences of opinion on graphene 

structure84. 

2.6.4 Scrolling 

Graphene scrolls (Figure 2-12) have very little written about them. The lack of articles may 

reflect the difficulty in producing graphene scrolls in volume or with any consistency. Most 

work has been theoretical. One reason they are of interest is that the open ends and edges 

facilitate hydrogen storage. These open ends would be useful in supercapacitors and batteries. 

The π-π interactions between the inner and outer surfaces affect the electron transport and 

optical properties85. Graphenes with fewer layers are more prone to scrolling to minimise 

surface energy. They have been observed in epoxy (with decreased fracturing) and 

polyurethane (with decreased gas permeability)4, 86.  

Ultrasonication was used to provide the necessary activation energy to graphene oxide to 

form nano-scrolls. Ultrasonication frequency, power density and duration were observed to 

control the dimensions of the scrolls. A thermal reduction (bubble vapour T ~ 4000 K and 

bubble interface ~800 K) during ultrasonication was suggested responsible for increasing 

C-C (sp2) bonding at least two-fold (decreased C-O bonds). The results suggested that 

graphene with fewer defects had a lower scrolling activation energy. The work was identified 

as important for adsorptive (water purification) and capacitive processes52. 

 

Figure 2-12 Graphene scrolls (one-sided, diagonal and two-sided)85 

2.6.5 Other 

Other useful characterisation techniques are conductivity, atomic-force microscopy (AFM: 

number of layers and lateral sizes)47, 87 and scanning electron microscopy (SEM)88. Less 

common are thermogravimetry (TGA)87, contact angle, X-ray photoelectron spectroscopy 

(XPS: carbon ratios)89, surface area (Brunaer Emmett Teller (BET))90, nuclear magnetic 
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resonance (NMR)91, optical microscopy and particle sizing. Techniques such as Fourier 

transform infrared spectroscopy (FTIR)87 and wide-angle x-ray scattering (WAXS)91 are 

usually only used once graphene is functionalised or dispersed in a polymer.  

It is normal for two or more characterisation techniques to be combined when testing 

graphene as each test elicits different information. 

2.7 Metal-Graphene Combinations 

Single atomic layers of graphene have been used to strengthen metals such as copper (flow 

stress +250 %) and nickel (flow stress +230 %) by layering using CVD92. An alternative 

method used graphene encapsulated SiC particles added to an aluminium matrix which 

resulted in a 45 % increase in yield strength and 85 % increase in tensile ductility93.   

A graphene coating suppresses the oxidation of metals (the reduction of oxygen) making it 

the thinnest known corrosion protection94. Graphene coating of nickel improved resistance to 

microbial induced corrosion by a factor of ~10 when compared to polyurethane (PU) and 

~100 compared to parylene-C95. 

2.8 Polymer-Graphene Composites 

Single sheets of graphene are not stable and tend to agglomerate. Dispersion in polymers 

helps stabilise graphene and can use π-π interactions45 although covalent bonding is a more 

common approach22. 

Dispersion in polymers provides one way to harness graphenes properties96. For example, 

thermoplastic elastomer compounds based on block copolymers have low initial modulus and 

durability97. Carbon nanocomposites can have enhanced thermal stability98 and mechanical 

properties due to the large surface area to volume ratio of the carbon nanotubes or graphene 

sheets.  

Graphenes have been incorporated into many different polymers including cellulose 

(enhanced conductivity)99, chitosan (tensile strength +200 %)100, rubber (increased tensile 

strength)101, epoxy (fracture toughness +900 % and improved tensile properties)11, 102, 

polyurethane (improved EMI shielding)103, polycarbonate (PC; improved thermal 

conductivity in foams)104, polysulphone (PES; decreased filter fouling)105, poly(ethylene 

terephthalate) (PET; decreased oxygen transmission)106, nylon (improved ultimate tensile 
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strength, elongation at break, impact strength, toughness and permeation resistance)107, 

polystyrene (conductivity at 0.1 %·v/v)96, poly(styrene-b-butadiene-b-styrene) 

(SBS; 0.25 %·v/v electrical percolation threshold)39 and many others. 

2.8.1 Thermoplastic Elastomers 

Thermoplastic elastomers are two-phase materials with the main elastomeric phase being the 

continuous phase, while a dispersed phase provides physical crosslinks for cohesion as the 

matrix is reversibly stretched. The properties of each can be enhanced with filler that 

provides a retardation of molecular segment motions and binds molecules together. Carbon 

nanocomposites are proposed to be particularly active fillers in these elastomers108, 109.  

More details about the SBS, PET, PC and PES that were used in this work are provided in the 

relevant chapters along with why they were chosen. In this work graphenes produced under 

different conditions are compared within the one polymer. 

a  

b

CHH2C

n

CHH2CH2C

n

CH2

C C
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Figure 2-13 SBS illustrated: a) Shows repeating polystyrene and polybutadiene groups in a 

simplified form110 and b) the chemical composition showing repeating groups 
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2.9 Biocompatibility 

Biocompatibility is of interest to most researchers if only to ensure that materials they work 

with do not pose a hazard to their health. Graphene is a newly recognised allotrope of carbon, 

so few studies on its toxicity are known. However, studies of the toxicity of the allotropes of 

carbon are more common.  

Charcoal increased the lifespan of rats 43 %111, 112. In farming the use of biochar (charcoal) 

shows beneficial effects such as adsorbing toxic compounds, increasing crop yields and 

promoting soil microbe populations113. Similarly, graphene oxide makes soil microbe 

populations richer and more diverse114. A review of charcoal across many industries found no 

evidence of harm even after long-term exposure. Many of these uses, such as treatment of 

poisoning, reduction of cholesterol115, 116 and treatment of kidney disease117, 118 require 

biocompatibility119.  

Buckminsterfullerenes (C60
120-122; Figure 2-14) are found in charcoal in small amounts and 

are present in many kinds of sooting flames122 including carbon black furnaces123 and were 

initially discovered in soot124. When fed to rats, buckyballs (C60) almost doubled (+90 %) 

their lifespan125.  

 

Figure 2-14 Fullerene (C60)
126 

Graphene is found in charcoal in small amounts127. Graphene has been found in both food 

and medicine without demonstrating any ill effects128. Inhalation, the most likely route of 

ingestion, studies of graphene using rats showed a minimal toxic effect129. Studies using 

graphene oxide and carboxyl graphene on cancer cells showed cytotoxicity130 but did not 

demonstrate cytotoxicity in healthy cells. Reduced graphene oxide coated hydroxyapatite 
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composites stimulated human mesenchymal stem cells to differentiate into bone suggesting 

they would make good dental or orthopaedic bone fillers131.  

A review of graphene biocompatibility suggested that the confounding effect in many 

graphene biocompatibility studies is probably the impurities63. An example of a contaminant 

of concern is silica which is known to cause silicosis if inhaled. It is rare to see studies using 

pristine graphene (without impurities), but one such study concluded that graphene benefited 

wound healing and might also be an anti-diarrheal132. Graphene acts as an anti-oxidant with 

reduced graphene (low defect graphene) being more effectual than oxidised graphene (high 

defect). It worked both by preventative antioxidant activity (UV absorption) and •OH radical 

scavenging133, 134. 

As most of the carbon allotropes are found in charcoal and share much in common with 

graphene, their toxicity will be similar. The data suggests graphene without contaminants is 

highly biocompatible. Thus pristine graphene could be safely added to polymers for use in 

medical applications. 

2.10 Applications 

2.10.1 Electronics 

Some of the most exciting potential applications for graphene exist in electronics.  

2.10.1.1 Superconductivity 

High doping of graphene (intentionally introducing impurities) may lead to room temperature 

superconductivity (also predicted for graphanes). High-frequency signals lose none of their 

energy when passing through graphene at room temperature and thus outperform 

superconductors135. The low resistance is reflected in graphene's high electron mobility of 

200,000 cm2/V.s28 

2.10.1.2 Semiconductors 

P-doping can be induced in graphene by covalent bonding of electron-withdrawing oxygen 

functional groups. N-doping can be induced in graphene by electron-donating nitrogen 

functional groups28. Thus the ability to modulate graphene's electrical properties makes it 

suitable for semiconductor use. 

Metal adatoms can be adsorbed onto graphene to control electronic properties. Using density 

functional theory (DFT) it was found that the elements from groups I (Li, Na and K), II (Ca) 
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and III (Al, Ga, In) in the periodic table (Figure 2-15) gave results consistent with ionic 

bonding characterised by minimal change in graphene electronic state but large charge 

transfer. Transition (Ti, Fe), noble (Pd, Au) and group IV (Ti, Sn) metals gave results 

consistent with covalent bonding and were characterised by strong hybridisation with 

graphene136.  

 

Figure 2-15 Upper: Periodic table137 Lower: Graphene monoxide138 

Placing five layer graphene on top of soda lime glass (normal window glass) using chemical 

vapour deposition (CVD) resulted in the sodium spontaneously correctly n-doping the 

graphene by surface transfer in a way that is cheap, effective, resilient, durable, tuneable and 

doesn’t require high temperatures, vacuum or chemicals. Chemical doping of graphene 

yielded electron densities of ≤ 9.5 x 1012 e/cm2 while doping with sodium glass yielded 

1.33 x 1013 e/cm2. Electron densities rise to 2.11 x 1013 e/cm2 when using a p-type copper 
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indium gallium diselenide (CIGS) on sodium glass. Sodium glass provides a scalable and 

low-cost doping method139.  

Thermal reduction of multilayered graphene oxide in a vacuum produced nanocrystalline 

(ordered) semiconducting (solid state) graphene monoxide (a double epoxide, Figure 2-15 

lower) with a 1:1 O:C (stoichiometric) ratio and a calculated band gap of ~0.9 eV138. 

2.10.1.3 Capacitors 

The energy density of the next generation of supercapacitors will improve using graphene67. 

By placing graphene oxide on a PET sheet and reducing the graphene using the laser in a 

common computer LightScribe DVD drive (Figure 2-16) a supercapacitor with an energy 

density of 200 W/cm (among the highest for any supercapacitor) was created67.  

Hydration of graphene prevented restacking of chemically converted graphene sheets into 

graphite. Self-stacked solvated graphene exhibited unprecedented electrochemical 

performance in supercapacitors: Capacitance of 157 F/g at ultrafast charging rates of 

1080 A/g, a maximum power density of 414 w/g and a discharge current of 108 A/g (1-3 

orders of magnitude higher than competing techniques). It exhibited excellent cyclability 

retaining 97 % of capacitance over 10,000 cycles at a high charging current of 100 A/g140 

 

Figure 2-16 a) GO film reduced by laser b) Copper tape applied c) Electrolytic coat applied 

d) 100 capacitors e) Flexible substrate67 
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2.10.1.4 Batteries 

Graphene-Fe3O4 composites exhibit improved cycling stability and rate performance when 

used as an anode material in high-performance lithium-ion batteries141. Similarly, graphene 

encapsulated Fe3O4 nanoparticle aggregates made suitable as anode material for high-

performance lithium-ion batteries due to good cycling stability and rapid cycling142. 

Graphene sheets can be used as anode material for lithium-ion batteries where reversible 

specific capacity was as high as 1264 mAh/g at a current density of 100 mA/g and after 40 

cycles remained as high as 848 mA/g. Even at a high current density of 500 mA/g specific 

capacity remained at 718 mAh/g90. 

2.10.1.5 Magnetism  

Fe3O4 was used to make a magnetic graphene nanocomposite (Figure 2-17) for the extraction 

of carbamate pesticides for measurement. The authors suggest that this method would work 

with any substance containing an aromatic ring (involving π-interactions)143. Graphene-Fe3O4 

composites were formed upon the reduction of graphite oxide and exhibited 

superparamagnetic (magnetic field much stronger than a normal magnet) behaviour. Fe3O4 

particles as small as 7 nm were uniformly distributed across the graphene without 

aggregation141.  

 

Figure 2-17 TEM image of a sheet of Graphene with Fe3O4 particles bonded to the surface 141  

Superparamagnetic graphene oxide-Fe3O4 (18.6 % w/w) was loaded with doxorubicin 

hydrochloride (1.08 mg/mg) and dispersed in an aqueous solution. It congregated under 

acidic conditions but redispersed under basic conditions and could be moved by a magnet. 
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The ability to load and move a drug makes graphene a good candidate for targeted drug 

delivery144. 

Ferromagnetism is theoretically possible by doping graphene with Ca, K or Pd due to the 

hybridisation of transition metals and carbon orbitals28. 

2.10.1.6 Flexible Electronics 

Printable conductive graphene inks145 are one of the first graphene applications to be 

commercialised. Flexible electronics are made possible with graphene40. For example, 

graphene can replace indium tin oxide (ITO) in touch screens87.  

2.10.1.7 Conductive Polymers 

Graphene has been shown to form percolated networks in polymers at concentrations as low 

as 1 %·w/w for carbon nanotubes and 0.02 %·w/w for graphenes146. The percolated networks 

increment properties and exhibit electrical conductivity. Polymer-graphene foams lowered 

the percolation threshold (improve conductivity) and enhanced electromagnetic interference 

(EMI) shielding in polyurethane (PU) by absorption rather than reflection103. 

Many applications do not require exclusively single layer graphene. Multi-layer graphene104, 

147 (Figure 2-18) is common in much graphene research although this is rarely explicitly 

acknowledged.   

a b  

Figure 2-18 TEM images a) Multilayer graphene by CO reduction (~18 layers)148 b) ~10 

layer graphene by chemical vapour deposition (CVD)149  
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2.10.1.8 Insulation 

Graphene oxide (the most commonly produced graphene) has insulating properties28 making 

it unsuitable for many electronic applications, at best it is a semiconductor63. 

Hydrogenation of graphene creates graphane (discovered 2008) a two-dimensional 

hydrocarbon and converts it into an insulator, as the electronic structures change from sp2 to 

sp3 28. 

Thus graphene is a highly flexible material to work with because all three characteristics of 

electrical conductivity are present: conductivity, insulation and semi-conductivity. 

2.10.2 Lubricants 

Graphene nanoribbons sliding on gold, exhibit ultra-low friction (superlubricity) due to their 

high lateral stiffness and weak interaction with most materials150. Graphene can be 

functionalised with fluorinated compounds28, and total fluorination of C60 should represent 

the slickest molecular lubricant known to man37. A boundary lubricant (Xcelplus) which 

permanently bonds with metal was hypothesised to involve Fe-Graphene-

polytetrafluoroethylene (PTFE)151. 

2.10.3 Adhesives 

Mussel-inspired chemistry demonstrated the simultaneous reduction and surface 

functionalisation of graphite oxide using norepinephrine formed chemically adherent films on 

virtually all material surfaces including PTFE75. 

2.10.4 Filtration 

Perfect graphene excludes even hydrogen while precisely sized nanopores can make it 

selectively permeable to many more molecules152. Graphene with nanopores (having oxide 

functional groups at their edges153) is selectively permeable to water and transports water two 

orders of magnitude faster than predicted by classical continuum fluid dynamics154.  Capillary 

action between two graphene-oxide sheets completely excludes liquids, vapours and gases 

including helium while allowing the unimpeded permeation of water27.  

Modelling studies of graphene have shown that boron (1.3 eV) and nitrogen (3.2 eV) have 

low activation energies so that, by controlling annealing conditions, the selective passage of 

these and other atoms (with higher activation energies) would be allowed155.  
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Modelling of graphene and hexagonal boron nitride (hBN) indicates that it is highly 

permeable to thermal protons at room temperature with an activation energy of only 0.3 eV 

making it a promising candidate for many hydrogen technologies152. 

Graphyne (Figure 2-19)156 a theoretical allotrope of carbon which is defined by three bonds 

between carbons (R-C≡C-R) may hold even greater promise for desalination because the gaps 

between carbons are large enough to permit water to pass through but small enough to 

exclude larger molecules and ions (including sodium and chloride). The advantage of 

graphyne is that the inter-carbon distances are exactly controlled whereas pore size in 

graphene is hard to control and requires functionalisation of the edges which can be 

inconsistent. 

 

Figure 2-19 Graphyne154 

2.10.5 Analysis 

Graphene, graphene oxide (GO) and their derivatives or composites have adsorption 

capacities much higher than that of current sorbents used in analytical chemistry. GO 

provides opportunities for hydrogen bonding or electrostatic interactions with oxygen or 

nitrogen functional groups. On graphene, compounds are mainly adsorbed by π-π 

interactions. However, covalent bonding to suitable support media like silica may improve 

service life and stability157. Interestingly, the magnitude of π-π interactions increases 

significantly as the number of hydrogens in aromatic molecules increases and the energy of 

adsorption can be obtained by counting the number of carbons and hydrogens73. 
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2.10.6 Construction Materials 

Graphene oxide (Figure 2-20) at 0.05 %·w/w added to concrete increased compressive 

strength by 15-33 % and flexural strength by 41-59 %. Graphene oxide makes concrete 

ductile. Graphene oxide at 0.03 %·w/w improved compressive strength by 46.2 % while 

improving failure stress and strain. The strong interfacial interactions occur via covalent 

bonding. Functionalising graphene nanoplatelets tends to improve interfacial strength and 

mechanical properties158. Graphene oxide outperforms carbon nanotubes in concrete at 

smaller concentrations. Agglomeration of graphenes in concrete indicates a need to develop a 

dispersion method159.  

 

Figure 2-20 Comparison of concrete with different nanofillers159 

2.10.7 Armoured Materials 

The specific penetration energy for multilayer graphene (10-100 nm) is ~10 times that of 

steel. Graphene was able to absorb 0.92 MJ/kg of ballistic energy compared to only 

0.08 MJ/kg for steel147. Thus graphene is ideal for body armour and other protective uses. 

The mass of body armour could be reduced while maintaining the same level of protection. 
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Chapter 3 Experimental 
3.1 Introduction 

This chapter provides details of materials and methods used in this research project. Several 

characterization techniques were employed throughout this research. The characterization 

aimed to obtain information on mechanical properties, thermal stability, crystalline structure, 

microstructure and surface morphology of polymer-graphene composites. Therefore, the 

techniques of thermo-mechanical analysis (TMA), thermogravimetry (TGA), wide-angle 

X-ray scattering (WAXS), surface area (BET), electrical resistance, surface energy, particle 

sizing, vibrational spectroscopy, optical microscopy, scanning electron microscopy (SEM), 

transmission electron microscopy (TEM) and computer modelling have been used. 

3.2 Materials 

3.2.1 Polymer Matrices 

Poly(styrene-b-butadiene-b-styrene) (SBS) from Aldrich, NSW, Australia: CAS number 

[9003-55-8] Catalogue # 18,287-7 [-CH2CH(C6H5)-]x-(-CH2CH=CHCH2-)y-[CH2CH(C6H5)-

]z or (C8H8)n-(C4H6)n-(C8H8)n 30 wt % styrene, density = 0.940 g/cm3 at 25 °C and average 

Mw ~140,000 g/mol (by GPC). Styrene monomer molecular mass 104.15 g/mol and 

elemental analysis C 92.26 % H 7.74 %. Butadiene monomer molecular mass 54.092 g/mol 

and elemental analysis 88.82 % C 11.18 % H (Ch. 5-6). 

Poly(ethylene terephthalate) (PET) (C10H8O4)n from Sigma-Aldrich, Australia: CAS 

number [25038-59-9] reinforced with 30 % glass fibre, Tm ~ 225 °C, Tg ~ 70–80 °C (Ch. 7). 

Poly(ethylene terephthalate) (PET) WK-811 from Zhejiang Wankai New Material Co., Ltd 

via Martogg and Company, Dandenong, Australia: CAS number 25038-59-9 Tm = 225 °C, 

Tg = 70–80 °C. Monomer molecular mass 192.15 g/mol and elemental mass C 62.51 % 

H 4.2 % O 33.3 %. (Ch. 8) 

Poly(bisphenol-A-carbonate) (PC) Lexan 124R supplied as transparent pellets from Sabic, 

Melbourne: CAS number [111211-39-3] (C16H14O3)n and Tg ~140-150 °C. Monomer 

molecular mass 254.27 g/mol and elemental mass C 75.58 % H 5.55 % O 18.87 % (Ch. 9). 

Poly(ether sulfone) (PES) supplied as transparent pellets from Aldrich: Average Mw ~35,000 

g/mol (by light scattering): CAS number [25135-51-7] (C27H22O4S)n Average Mn ~16,000 
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g/mol (by MO). Tg ~220-230 °C Monomer molecular mass 442.42 g/mol and elemental mass 

C 73.3 % H 5.01 % O 14.46 % S 7.23 % (Ch. 10). 

 

Figure 3-1 a) SBS b) PET c) PC d) PES 

3.2.2 Filler Reinforcement 

Graftech 220-50N (GT) expandable graphite from UCAR Carbon Company, Cleveland OH 

USA: 65 % on 50 mesh (nominal), an expansion onset of 220 °C,  typical mean particle size 

of 350 µm, expansion volume of 200 cm3/g at 600 °C, neutral (N) or basic surface chemistry 

and specific volume of 1.25 cm3/g (0.8 g/cm3).  

HDPlas (Cheap Tubes), USA Grade 4 (research quality) >700 m2·g-1 nanoplatelets, 1-2 µm 

diameter, < 3 nm thickness, 1-3 graphene layers and 99 %·w/w (two different materials 

denoted #1 and #2).  
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Expandable graphite was prepared using a modified Staudenmaier method where KClO3 is 

halved. Graphite flakes were oxidised by concentrated nitric acid (HNO3 69 %) and sulfuric 

acid (H2SO4 98 %). Graphite 10 g was used with powdered KClO3 5 g (2:1 g·g-1)160-163.  

3.2.3 Solvents 

p-Xylene (1,4-dimethylbenzene) from Merck, Germany CAS number 106-42-3 Tb=138 °C 

o-Chlorophenol (2-chlorophenol) from ThermoFisher Scientific, Australia. CAS number 95-
57-8 (Ch. 7) 

1-Methyl-2-pyrrolidone (NMP) from Merck, Germany CAS number 872-50-4 
Tb = 202-204 °C (Ch. 4 and 6). 

Benzene from Sigma-Aldrich, Australia CAS number 71-43-2 Tb= 80.1 °C Ch. 6 

Dichloromethane (DCM; CH2Cl2) from Merck, Germany CAS number 75-09-2 Tb = 40 °C 
(Ch. 9 and 10). 

a   b   c   

Figure 3-2 Aromatic solvents plus hydrogen atoms a) p-xylene b) o-chlorophenol c) benzene 

3.2.4 Non-Solvents 

Methanol (CH3OH) AR grade from Merck, Germany CAS 67-56-1 

3.2.5 Alkalis 

Sodium hydroxide (NaOH) from Chem Supply Pty Ltd, Port Adelaide, South Australia 

(Ch. 5) 

3.2.6 Metals 

Iron(II) chloride tetrahydrate (FeCl2.4H2O) and iron(III) chloride hexahydrate (FeCl3.6H2O) 

from BDH Chemicals (VWR) Tingalpa, Queensland (Ch. 5). 

3.3 Filler Synthesis and Dispersion 

3.3.1 Graphene Preparation 

GT (in 1 g amounts) was expanded in air for 30 s in a furnace preheated to 1000 °C to create 

expanded GT (hereafter called GT-Air). The GT was also heated in a ceramic tube furnace at 
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1000 °C for 8 h in an inert atmosphere of 100 % nitrogen (GT-N2). A second GT was heated 

at 1000 °C for 8 h in a reducing atmosphere of hydrogen 5 % and argon 95 % (GT-H2). A 

third GT was heated at 800 °C for 8 h in a reducing atmosphere of CO 100 % (GT-CO) 

(Table 3-1 and Figure 3-3) Flow rate of gases was 150 mL/min (Ch. 4, 6, 8, 9 and 10). 

Table 3-1 Graphene summarised by supplier and production method (temperature, gas and 

ultrasonication) 

 

Step 1 

 

Step 2  
 

Step 3 

 
Ultrasonication 

Material Temp (°C) Time (s) Temp (°C) Time (h) Gas (min) 
 

Graftech 220-50N 1000 30 - - Air 10-20 

Graftech 220-50N 1000 30 1000 8 N2 100 %  10-20 
 

Graftech 220-50N 1000 30 1000 8 H2 5 % Ar 95 % 10-20  
Graftech 220-50N 1000 30 800 8 CO 10 or 100 % 10-20 
Graftech 220-50N - - 250 8 800 µm Hg - 

 
Cheap Tubes >700 m2/g - - - - - 10-20 

10 g Graphite 5 g KClO3 Speed lite ISO 800 - - - -  

 

 

Figure 3-3 Tube furnace with one way vent 

GT was heated in a ceramic tube furnace at 1000 °C for 8 h in a reducing atmosphere of CO 

10 % (GT-CO) (Ch. 6). 

Disks of 2.85 cm diameter (~0.5 mm thick) were formed from expanded GT placed in a 

stainless steel 5 piece mould (top, bottom, two internal disks and a compression shaft) and 

applying a 9 t load for 5 min in a RIIK 30 ton lever-operated hydraulic press. 
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3.3.2 Ultrasonication 

A Sonics Autotune series high-intensity Ultrasonic (20 kHz) Processor Model: GEX 500 

(500 W) with a 13 mm tip was used (Figure 3-4). Ultrasonication, at an amplitude of 25 %, 

was continued until no more large (un-exfoliated) particles of graphene were visible.  

Graphenes (10 mg) were ultrasonicated (as above) in p-xylene (2 mL) for 10 - 20 min 

(~1 min/mg). The energy required was ~128 J/mg for solvents and ~179 J/mg for polymer 

solutions (Ch. 4 and 5). 

GT-CO at 1, 5, 10 and 20 %·w/w loadings in 2 mL benzene was ultrasonicated (as above) 

(Ch. 6). 

Graphenes (H2 reduced 1 % 100 mg) were ultrasonicated (as above) for 100 min (1 min/mg) 

in o-chlorophenol 14 mL for 100 min (Ch. 7). 

Graphenes (CO reduced 1 % 500 mg), pressed into a disk, were ultrasonicated in 10 mL 

p-xylene for 5 h (300 min). It is more convenient to ultrasonicate the graphene in pressed 

form (less volume), but it is more effectual to ultrasonicate in expanded form (less dispersion 

required) (Ch. 8). 

a  b  

Figure 3-4 a) Ultrasonicator b) Rayleigh-Benard cell164 formed by H2 reduced graphene in 

p-xylene (after ultrasonication) 

Graphenes 50 mg (1 %·w/w) H2 and CO reduced were ultrasonicated for 50 min (1 min/mg) 

in 10 mL p-xylene (Ch. 9). 
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Graphenes 13 mg (1 %·w/w) H2 and CO reduced were ultrasonicated for 13 min (1 min/mg) 

in 1 mL p-xylene (Ch. 10). 

3.4 Preparation of Nanocomposites 

3.4.1 Magnetic-Grafted Graphene 

FeCl2.4H2O and FeCl3.6H2O (molar ratio 1:2) were dissolved in 100 mL of deoxygenated 

water (with constant stirring for 30 min). EGO was added to the Fe2+ - Fe3+ solution and 

dispersed with ultrasonication for 30 min under N2. The solution was stirred at room 

temperature for a further 30 min. While stirring, NaOH was added dropwise to precipitate the 

magnetite particles onto the graphene. The black precipitate was magnetically isolated, and 

solution decanted. The magnetite (Fe3O4) coated graphene was repeatedly washed with water 

and dried in a vacuum oven at 35 °C for 24 h (Ch. 5). 

3.4.2 Solvent Dispersion 

SBS (1 g) was dissolved in xylene (10 mL) by standing overnight at 23 °C. Graphenes 

1 %·w/w were ultrasonicated (as above). Ultrasonication was used to further increase the 

surface area of the graphenes by layer separation. SBS and graphene solutions were 

combined and ultrasonicated (to disperse graphene).  Composites were precipitated with 

methanol and dried at 50 °C in a vacuum (25 in Hg) (Ch. 5). 

SBS (1 g) was dissolved in benzene (10 mL) by standing overnight at 23 °C. SBS and 

graphene solutions were combined, precipitated and dried (as above). (Ch. 6) 

PET 10 g was added to 100 mL o-chlorophenol heated to ~100 °C. PET and Graphene 

solutions were added together and ultrasonicated a further 30 min. The composite was 

precipitated (as above) and dried at 130 °C at 760 mm Hg overnight (Ch. 7). 

PES 1.3 g was dissolved in 1 mL p-xylene and 10 mL dichloromethane (DCM) by standing 

overnight at 23 °C (Ch. 10). 

3.4.3 Melt Dispersion 

PET 50 g was vacuum heated to 165 °C for 4 h (to remove moisture). 
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A Haake Polylab 600 internal cavity mixer with twin roller rotors was used (Figure 3-5). The 

cavities were heated to 275 °C. PET granules were added and dispersed for 5 min. Graphenes 

GT-H2 1 % w/w were added and dispersed for 5 min (Ch. 7). 

PET (as above): Graphenes (500 mg) GT-CO 1 % w/w (with and without ultrasonication) 

were added and dispersed for 5 min (Ch. 8). 

PC 50 g was dried (as above): The cavities were heated to 275 °C. Graphenes ultrasonicated 

50 mg 0.1 %·w/w GT-H2 and GT-CO were added (as above) (Ch. 9) 

 

Figure 3-5 Haake Polylab 600 internal cavity mixer showing twin roller rotors 

3.4.4 Film Preparation 

Polytetrafluoroethylene (PTFE) sheets were placed on both sides of a round mould ~4.2 cm 

in diameter measuring 10 cm x 5 cm x 0.5 mm. The sheets were sandwiched between metal 

plates. The mould was ~30 % overfilled with composite to force out bubbles and voids. The 

composite was warmed for ≥5 min (till melted), pressed at 1 t for 5 min and 6 t pressure for 

5 min. The plates were removed and cooled for ≥5 min before extracting the composite.  

SBS composites were consolidated (as above) in an IDM (15 t Figure 3-6) heated press at 

155 °C and 6 t pressure (Ch. 5 and 6). 

PET composites were consolidated (as above) in a thermal press heated to 275 °C. The 

composite was pressed at 8000 N for 2 min (Ch. 7). 

PC composites were consolidated at 260 °C (as above) (Ch. 9). 

PES composites were consolidated at 285 °C (as above) (Ch. 10). 
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Figure 3-6 Heated press (IDM) 

3.4.5 Microtomy Preparation 

Cryo-ultramicrotomy was used to prepare SBS specimens. A Leica Ultracut UCT with a 

cryo-stage (liquid nitrogen) and Diatome diamond knife was used to create 60-120 nm 

sections of SBS at -130 °C (Ch. 6). 

PET composites were cast in epoxy, shaped with a glass knife (forming a ~0.25 x ~0.25 mm 

grid) using the microtome. Composites of ~70 nm thickness were cut with a Diatome 

diamond knife and floated off with water (Ch. 7). 

PET, PC and PES composites were shaped and cut with a glass knife (Ch. 8, 9 and 10). 

 

Figure 3-7 Leica Ultracut UCT (minus cryo-stage) 
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3.5 Characterisation 

3.5.1 Microstructure 

Optical microscopies were used to characterise dispersion. A Dino-Lite digital microscope 

(AM4013T-M40) from AnMon Electronics Co with Dino-Capture 2.0 operating software 

was used at a magnification of 250x (Ch. 8 and 9). 

Electron microscopies were used to characterise surface morphology. A Philips XL30 

Scanning Electron Microscope (SEM) was used with graphene mounted on conductive 

carbon tape in high vacuum mode used (~1.2x10-5 mBar) (Ch. 4 and 5). 

A Quanta 200 scanning electron microscope (SEM) was used in low vacuum mode. PET 

composites fractured in nitrogen were mounted on conductive carbon tape (without a 

conductive coating) (Ch. 7). 

A JEOL 1010 Transmission Electron Microscope (TEM) at 100 kV was used to observe 

thermally expanded graphite (1000 °C for 30 s) 4 mg that was previously suspended in 3 mL 

N-methyl-2-pyrolidone (NMP) and dispersed with 10 min of ultrasonication. A drop of 

suspended graphene was placed on GYCU200 Holey support film (200 mesh copper grid). 

The solvent was left to evaporate for 1 h before imaging (Ch. 4 and 5). 

 

Figure 3-8 TEM JEOL 2100F 
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A JEOL 2100F TEM at 200 kV was used for thermally expanded GT-CO 4 mg that was 

previously suspended in 1 mL N-methylpyrrolidone (NMP) and dispersed for 10 min under 

ultrasonication. 10 µL was taken and placed in 1 mL of NMP to dilute. A drop of the 

suspended graphene was deposited on a GYCU200 Holey support film (200 mesh copper 

grid). The solvent was left to evaporate (Ch. 6). 

PET composites were placed on GYCU200 Holey support film (200 mesh copper grids) and 

dried overnight to remove water (Ch. 7). 

PET, PC and PES composites were placed on Formvar GSCu200F-50 full strength solid 

carbon coated 200 mesh copper grids and dried overnight to remove water (Ch. 8, 9 and 10). 

3.5.2 Vibrational Spectroscopy 

Raman spectroscopy was used to measure inelastic scattering in the graphene. A Perkin 

Elmer Raman Station 400F with a laser wavelength of 785 nm (near infrared), 250 mW 

power and spot size of 100 µm was used. 120 scans of 1 s were carried out, except for CT 

which required 30 scans of 5 s. The scan range was from 200 – 3200 cm-1 at a data interval of 

2.00 cm-1. The graphenes were compressed in a press (9 t for 5 min) to obtain a stronger 

response except for CT which was not compressed. Graphed data was smoothed using a 15 

point moving average. Intensities were compared using unsmoothed data. 

 

Figure 3-9 Perkin Elmer Raman Station 400 showing glass slide and camera (with protective 

hood raised) 
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3.5.3 Electron Spectroscopy 

X-ray photoelectron Spectroscopy (XPS) was employed to measure the elements present. A 

XPS was performed using a Thermo K Alpha with an aluminium x-ray source, standard lens 

mode, constant analyser (pass) energy of 20.0 eV, spot size of 100 µm, energy step size of 

0.100 eV and 100 scans. Four pressed disks of graphene (GT-Air, GT-N2, GT-H2 and 

GT-CO) were used for testing. 

3.5.4 Composition and Thermal Stability 

Thermogravimetry (TGA) was employed to determine thermal stability. TGA was performed 

using either a Perkin Elmer TGA7 or Pyris 1. Before each experiment, the pan was cleaned in 

nitric acid (>1 h at 75 °C). The nitric acid was neutralised with sodium bicarbonate and 

flushed with water. A thermal cleaning cycle was performed: heating in air at 40 K·min-1 

from 50–850 °C and held for 10 min.  

Measurements on SBS composites were carried out with a PerkinElmer TGA7.  Composites 

of ~2 mg mass were analysed in an open platinum pan. Composites were heated from 

30-850 °C at 20 K/min in nitrogen at 20 mL/min. At 700 °C, the gas was switched back to air 

at 20 mL/min. Ch. 5 

Measurements on graphene were carried out with a PerkinElmer Pyris 1 TGA. Graphenes of 

~2 mg mass were analysed in an open platinum pan. Graphenes were left for 12–24 h in 

flowing nitrogen to remove adsorbed oxygen. Graphenes were heated from 30-1000 °C at 

20 K/min in nitrogen at 20 mL/min. At 950 °C, the gas was switched back to air at 

20 mL/min and held for 10 min. After 9 min the gas was switched back to nitrogen. Ch. 4 

and 6.  

Measurements on PET composites were carried out with a PerkinElmer Pyris TGA. 

Composites of ~2 mg mass were analysed in an open platinum pan. Composites were heated 

from 30-850 °C at 10 K/min in nitrogen at 20 mL/min. At 800 °C, the gas was switched back 

to air at 20 mL/min. It was held at 850 °C for 10 min. After 9 min the gas was switched back 

to nitrogen. Ch. 7 
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Figure 3-10 Perkin Elmer TGA7 

3.5.5 Wide Angle X-Ray Scattering 

Wide-angle X-ray scattering (WAXS) was employed to determine any change in the 

crystalline structure of the graphene. Measurements were carried out with a Bruker D8 

Advance diffractometer XRD (CU Kα radiation with λ = 0.154 nm). The films were placed 

on a sample holder and analysed using a 1 µm slit. The diffractograms were scanned in the 2θ 

range from 10-90° at a rate of 2 °/min. Ch. 5 and 7 

 

Figure 3-11 Bruker D8 used for x-ray diffraction (XRD) 
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3.5.6 Thermomechanical Analysis (TMA) 

A Perkin-Elmer Diamond DMA (Dynamic Mechanical Analysis) used modulated force 

thermomechanometry (mf-TM) to measure viscoelastic properties with frequency and 

temperature.  A standard target position of 10 mm, frequencies of 0.5, 1, 2, 5 and 10 Hz (only 

1 Hz is reported) was used. 

The SBS temperature range was -120-120 °C (Ch. 5). 

The PET temperature range was 20-120 °C (Ch. 7) 20-200 °C (Ch. 8). 

A TA Instruments DMA Q800 (in extension mode) used tensile mechanical analysis to 

measure stress (MPa) and strain (%). An isothermal temperature of 30 °C was maintained for 

5 min, a ramped force of 1 N/min was applied until 11 N was obtained. A hysteresis curve 

was formed by returning the force to zero at the same rate. The SBS composite widths were 

10.1 mm +/- 0.1 mm; the thickness was 0.515 +/- 0.025 mm and length ~10 – 20 mm 

(3.95 +/- 0.05 mm between the grips). Ch. 6 

a b  

Figure 3-12 a) Diamond DMA showing mounting of SBS-graphene composite b) Tan(δ) = 

sin(δ)/cos(δ) = loss modulus/storage modulus 



Chapter 3: Experimental 
 

44 

PET composites were measured at room temperature. A ramped force was applied till 18 N 

was obtained (as above). Ch. 7 and 8 

PC composites used mf-TM from 30-170 °C. The storage modulus, loss modulus and tan 

delta were measured at 1 Hz as the temperature was increased at 2 °C/min. Ch. 9 

PES used mf-TM from 30-210 °C at 2 K/min. Data was smoothed at 3 °C. Ch. 10 

3.5.7 Electrical Conductivity 

Conductivity testing (DC measurement) was carried out with a HP 4192A 5 Hz -13 MHz LF 

impedance analyser and clamp with two 1.2 cm diameter circular electrodes. Measurements 

of resistance were carried out on pressed disks and composites (Ch. 4, 5 and 6) 

SBS composites were measured for capacitance at 11 kHz AC (Ch. 5) 

PET composites were measured for capacitance (Ch. 7) 

a b  

Figure 3-13 a) HP4192A impedance analyser b) circular electrode (showing composite being 

measured) 

3.5.8 Surface Area 

Surface area was measured with a Micromeretics ASAP 2000 using Brunaer Emmett Teller 

(BET) surface area plots. GT was heated to 250 °C at 800 µm Hg (equivalent to 489 °C at 

760 mm Hg). Sample sizes were calculated to exceed a surface area of 5 m2·g-1 to achieve an 

accurate measurement. 
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Figure 3-14 ASAP 2000 for BET surface analysis 

3.5.9 Particle Size 

Particle sizing was performed using a vision-based Canty particle sizing system (PSS). The 

system consisted of a microscopic gigabit camera (30 fps), high-intensity light source (80 W) 

and a flow path between two windows. 

 

Figure 3-15 Canty Particle sizing system 

CO reduced expanded graphite (10 mg) was ultrasonicated for 20 min in 2.75 mL NMP. For 

tests 1 and 2 1 mL of the suspension was diluted with 250 mL isopropyl alcohol (IPA). For 

test 3 only 0.75 mL was used.  
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3.5.10 Surface Energy 

Contact angle measurements were carried out using a Dataphysics (Filderstadt Germany) 

OCA20 from Particle and Surface Sciences. An electronically controlled syringe was used to 

drip (6.5 - 8.1 mg) deionised water onto pressed graphene disks (refer preparation) at room 

temperature. Water contact angle was evaluated using static measurements and the sessile 

drop method.  

SCA20 software version 1.60 (build 81) was used with additional Frame grabber driver, 

image processing unit and profile analysis unit. Readings were averaged (5-8) to obtain an 

accurate measurement. The Neumann165 equation of state theory was the method used for the 

free surface energy calculation. 

��� = �	� +	�� − 2��� ∙ �� ∙ ��(��	�	��)
�
  [1] 

σsl Interfacial tension between the liquid (l) and the solid (s) (the unknown to be determined 

from the contact angle) 

σl Surface tension of the liquid 

σs Surface free energy of the solid 

e Euler's constant 2.71828 

β Constant with a value of 0.0001247 

 

Figure 3-16 Dataphysics OCA 20 for contact angle measurement 



Chapter 3: Experimental 
 

47 

3.5.11 Molecular Modelling 

Graphene interactions with different polymers (SBS, PET and PC) and the solvent (p-xylene) 

were determined by employing density functional theory (DFT) calculations using the Vienna 

Ab Initio Simulation Package (VASP)166-168. The projector augmented wave method 

(PAW)169 was employed with the exchange-correlation functional of PBE (Perdew-Burke-

Ernzerhof)170, together with the DFT-D2 method of Grimme171. A Gamma-centered kpoint 

mesh of 7x7x1 and a plane-wave cut-off energy of 400 eV was used.  

The graphene unit cell had dimensions of x = y = 1.968 nm, z = 2.0 nm and angles 

α = β = 90°, γ = 120°. Application of periodic boundary conditions in the x- and y- directions 

creates the extended surface of the graphene plane. The vacuum spacer in the z-direction 

prevents interaction between the graphene layers. 

For the p-xylene solvent, the isolated molecule was optimised in the same size simulation cell 

and then adsorbed on the graphene sheet ~0.35-0.4 nm above the surface. All atoms were 

allowed to relax during the simulation until the total energy was converged to 10−4 eV and the 

Hellmann−Feynman force on each relaxed atom was less than 0.01 eV/Å. The results of these 

calculations are presented in Ch. 4 

The polymers were modeled by terminating the monomeric unit with H atoms. Each 

monomer was then placed ~0.3 nm above the graphene plane. Each structure was initially 

optimised, followed by an ab initio molecular dynamics (MD) simulation (as implemented in 

VASP) at 300 K, using a plane-wave basis set expanded at the Gamma point only in the 

Brillouin zone. The MD was performed for up to ~5.3 ps using a timestep of 0.5 fs. At 

different stages, during the MD simulation, the structure was optimised and the total energy 

values compared to determine whether the structure had reached equilibrium. Some the 

optimised structures obtained towards the end of the MD simulations are presented in 

Chapter 6 for SBS, Chapter 7 for PET and Chapter 9 for PC. 
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Chapter 4 Graphene Preparation from 
Intercalated Graphite via Rapid Heating 

under Reductive Conditions 
4.1 Introduction 

This chapter introduces thermal exfoliation and carbon monoxide thermal reduction that is 

demonstrated to produce graphene with low defects, of quality that will enhance polymer 

composites, be scalable to yield significant mass or be converted to continuous production 

with a suitable furnace. Low defect graphene is a high-performance two-dimensional material 

with all atoms planar and at a surface in single layers and a huge aspect ratio giving 

reinforcement, fractal interconnection and percolation networks at low volume content. Thus 

graphene is of great interest to experimenters hampered only by the high price of most 

commercial graphenes and thus ready availability for experimentation3, 5, 35. 

Graphene top down (from graphite) production methods are ideal for mass production. 

However current chemical exfoliation40 methods typically involve oxidation, intercalation 

and exfoliation conditions that introduce defects. Variations of the Hummers (H2SO4, NaNO3 

and KMnO4)
43, Studenmaier (H2SO4, fuming HNO3 and KClO3)

172 or Hofmann (H2SO4, 

concentrated HNO3 and KClO3)
173, 174 methods are used to oxidise graphite and separate 

layers of graphite with oxygen-containing functional groups. Unfortunately, functionalization 

is a defect and this approach to producing graphene results in up to 40 % defects, even after 

reduction30, which may degrade the mechanical properties159.  

However, thermal exfoliation methods can be used to produce low defect graphene and 

maintain the exceptional properties that make graphene so useful. Minimising defects can be 

achieved when intercalating graphite with residual acids. Intercalation is the insertion of 

atoms or molecules of a different chemical species between sheets of graphite175. Incomplete 

separation involves less covalent bonding176, 177 and thus produces fewer defects. The process 

uses similar methods (e.g. sulfuric (intercalant) and nitric acids (oxidising agent)178) to 

chemical exfoliation, but the graphite sheets remain in close proximity. Oxygen-containing 

groups are placed between graphite layers (creating expandable graphite) then rapidly 

expanded. The high-temperature expansion removes any functional groups (sp3 defects) that 

might have formed160-163. High temperatures separate the graphite sheets by increasing 

pressures of evolved gases and volatiles from the decomposition of oxygen-containing 
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groups3, 179. The van der Waals attraction between the graphite layers that must be overcome 

is ~ 26 MPa. Water generates a maximum pressure in excess of 60 MPa and CO2 greater than 

100 MPa. However, as H2O vaporisation is endothermic, it slows the heating process. Thus 

CO2 evolution, which is exothermic, is the preferred mechanism for exfoliation180. If the 

expansion takes place in air some oxide groups (defects) are formed as the graphene cools 

(edges are particularly reactive). Such oxides are often removed in solution using hazardous 

chemicals (hydrazine) but leave behind contaminants. Nitrogen (an inert gas), hydrogen or 

carbon monoxide (reducing gases) can be used to remove oxides without leaving behind any 

contaminants. 

Sheets created by thermal expansion still contain some functional groups180. They still need 

to be further separated and dispersed. To do this, new functional groups are often introduced 

or existing groups are used for covalent bonding creating further defects. One way of 

avoiding the creation of new defects is by using π-interactions and ultrasonication in an 

aromatic solvent181. Thermal expansion with ultrasonication can produce ~80 % (or more) 

single sheets of graphene179, 180 and ultrasonication reduces the graphene further52. 

The aim was to use rapid thermal expansion and exfoliation of intercalated graphite oxide 

with high interlayer separation to produce graphene having a low defect concentration. An 

inert gas (N2) or reductive conditions (H2 or CO) were used to eliminate the need for a second 

solvent-based chemical reduction and repair of the graphene sp2 structure.  

4.2 Experimental 

Material information, filler synthesis and preparation and characterisation methods are 

detailed in Chapter 3. 

4.3 Results and Discussion 

4.3.1 Microscopy  

Four images were taken at a uniform resolution (Figure 1) allowing comparison. Image (a) 

shows GT-Air after disruption of connectivity by ultrasonication which increased exfoliation 

and decreased the width. Image (b) shows GT-N2 long folds of carbon joined at the edges in 

an accordion-like fashion: expanded GT looks like this before ultrasonication or compression. 

Image (c) shows GT-H2 after treatment with a reducing hydrogen atmosphere, resulting in 

thinner layers: the carbons are compressed, so the folds are not as marked. Image (d) shows 
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that a commercial graphene (Cheap Tubes) of 1 - 3 layers was comparable in thickness but 

had much smaller particle size. Image (e) shows single layer partially coiled graphene(s) 

(50 nm) produced in a reducing CO atmosphere (GT-CO) with ultrasonication to further 

separate, exfoliate and reduce52. 

a  b   

c   d  

e  

Figure 4-1 Microscopy 2 µm, a) GT-Air with ultrasonication TEM, b) GT-N2 (inert gas to 

remove oxides) SEM, c) GT-H2 (reducing gas) SEM, d) CT #1 >700 m2·g-1 SEM e) GT-CO 

(reducing gas) with ultrasonication TEM (50 nm) 
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4.3.2 Vibrational Spectroscopy  

Raman spectroscopy is the most common technique for characterising graphenes; it records 

vibrations of covalent bonds in molecules. It is sensitive to changes in polarisability 

(stretching and deformation) rather than infrared spectroscopy that is sensitive to changes in 

dipole moment. Raman spectroscopy is most sensitive to symmetrical bonds and slight 

changes in bond angle or bond strength. Thus it is particularly sensitive to changes in the sp2 

symmetry of graphenes77.  

The Raman spectra (Figure 4-2) show significant peaks at ~2650, ~1580 and ~1314 cm-1 (2D, 

G and D bands).  

 

Figure 4-2 Raman spectra intensity of graphene (listed at the 2D peak from highest to lowest) 

4.3.2.1 2D Peak 

It is known that the 2D peak (second order of the D peak) is strongly influenced by strain, 

intercalants and charged impurities. Single layer graphene is indicated by a single 2D peak83. 

Graftech (GT) CO (highest) and Cheap Tubes (CT) #1 (slightly lower) showed a symmetrical 

single Gaussian 2D peak at 2654 cm-1 (Figure 4-2) suggesting a single or few layer graphene. 

The other GT graphenes had significantly lower peaks that were not as well defined, 

indicating multi-layer graphene. 
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The 2D/G ratio is a quantitative measure of graphene layers81. A high 2D/G ratio indicates 

fewer layers and a lower 2D/G ratio indicates more layers. A rising 2D peak may also mean 

fewer defects83. GT-CO had a higher 2D/G ratio (0.76) than CT (0.63). Thus the 2D/G ratio, 

the shape of the peak and the comparison with CT (known to be 2-3 layer) suggest GT-CO is 

2-3 layer graphene. 

4.3.2.2 D Peak 

The D peak occurs when there are defects or disorder in the graphene matrix. Edges, grain 

boundaries, vacancies, implanted atoms76, 77 and changes from sp2 to sp3 carbon bonding can 

all cause defects182. A major source of defects comes from armchair edges (Figure 4-3a)77. 

Defects that do not generate a D peak include perfect zig-zag edges (Figure 4-3a), charged 

impurities, intercalants and uni/biaxial strain83. Defects adversely affect performance and 

limit the use of graphene. Defects are of particular relevance to applications which require 

pristine graphene. Any method of decreasing defects in graphene is noteworthy. 

The Cheap Tubes graphene showed the largest D peak (2,394 intensity at 1314 cm-1) 

compared with other graphenes (Figure 4-2). The GT based graphenes showed smaller D 

peaks. However, the D peak alone is not quantitative. 

a  

b  

Figure 4-3 Graphene a) Types of edges b) D/G ratio versus production method 
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4.3.2.3 D/G Ratio 

The D/G ratio is a quantitative measure of defects56, 183 which is more precise than D peak 

size alone: A high D/G ratio indicates more defects, a lower D/G ratio indicates fewer 

defects61. The GT-CO had the lowest D/G ratio (fewest defects) at 0.25 (Figure 4-3b). GT-H2 

was second lowest. GT-N2 had a lower ratio than CT commercial graphene and GT produced 

in air had the highest ratio (most defects) at 0.64. These are all low ratios corresponding to 

considerable distances between defects (~17 nm), i.e. low-defect graphene77, 184. The low 

ratios are typical of small defect peaks produced by zig-zag edges184, 185. 

4.3.2.4 G Peak 

The G band is caused by in-plane vibration of the sp2 bonds found in graphene. The position 

of the G band has been shown to correlate with the number of layers in graphene4, 186. Single 

layers are indicated by a Raman shift to a higher wavenumber. Double or multiple layers are 

shown by a Raman shift to a lower wavenumber. The Cheap Tubes graphene G peak was at 

1580 cm-1. The GT based graphenes peaks were between 1580-1582 cm-1 (Figure 4-4).  

 

Figure 4-4 Raman graphene G band position versus production method 

If the Cheap Tubes graphene is single or few-layer (as suggested by the 2D peak), then the 

position of the G peaks indicates the GT graphene also contains single or a few layers. 

4.3.2.5 Mechanism 

These results show that thermal exfoliation in nitrogen (an inert gas) prevents air from 

creating oxygen-containing functional groups hydroxyl (-OH), acid (–COOH), carbonyl (=O) 

and epoxides (-O-) primarily. Thermal exfoliation in hydrogen (a reducing gas) removed 

functional groups even more efficiently. CO is an even stronger reducing gas and resulted in 

a Raman spectrum indicating fewest defects in the graphene. It is energetically advantaged 
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for reduction i.e. CO has a low energy barrier of 0.06 eV for epoxides, 0.04 eV for hydroxyls 

and 0.09 eV for ketone pairs66. The Boudouard reaction (Equation 1) of CO provides a source 

of carbon. 

Boudouard reaction: 

 2CO ⇌	CO2 + C  [1] 

The low energy barrier, the ready source of carbon and the enhanced Raman spectra all 

suggest that the graphene matrix is being repaired. The proposed chemical transformation for 

the healing of graphene using carbon monoxide is shown in Figure 4-5. 

 

Figure 4-5 Suggested mechanism for GT-CO reduction and repair 

4.3.3 Composition and Thermal Stability 

4.3.3.1 Thermogravimetry 

Thermogravimetry (TGA) has been used to compare graphenes187, 188. Oxide groups 

(hydroxides, epoxides, carboxylic acids and ketones30) on graphene are less thermally stable 

than a fully aromatic structure. Heating in an inert (N2) or reducing (H2 or CO) atmosphere 

removes these oxide groups. Thus, the mass loss can be used to provide a measure of oxide 

groups on the surface of graphene. 
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The results (Figure 4-6) show that the commercial CT graphene lost the greatest mass 

(2.4 %). GT expanded in air lost 0.7 % mass. The GT processed in inert N2, reducing H2 and 

reducing CO environment had the lowest mass loss (0.4 %). 

These results demonstrate that the GT-N2, GT-H2 and GT-CO had the fewest oxide groups. 

 

Figure 4-6 TGA of graphene mass loss (oxygen content) versus production method 

4.3.3.2 Electron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) was carried out to investigate bonding of elements 

(except for hydrogen which is unable to be detected) with carbon in graphene. XPS was run 

on GT-Air, GT-N2, GT-H2 and GT-CO graphenes and the results were found to be 

inconclusive. The uncertainty is due to trying to find quantities of material <1 at.% through 

an adventitious carbon layer of variable thickness when XPS accuracy is in the 1-2 at.% 

range. Adventitious carbon is a thin layer (~1-2 nm) of non-graphitic carbon found on the 

surface of most air exposed samples189. 

4.3.4 Surface Energy 

Contact angle (CA) measurements investigate surface tension, and they are used to calculate 

surface energy (SE). CA varies in graphene depending on the functional groups present. The 

most common groups on graphene are oxides which make graphene hydrophilic. Thus, fewer 

oxides make graphene more hydrophobic. 

Contact angle measurement (Figure 4-7) showed an increase from 81° (GT-Air), 87° 

(GT-H2), 89° (GT-N2) to 107° (GT-CO).  This is equivalent to surface energy (SE) of 34.7 

(GT-Air), 30.9 (GT-H2), 29.8 (GT-N2) and 19.1 (GT-CO) mN·m-1. No measurement of the 

CT graphene was possible because it did not provide a sufficiently large contact area for 
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measurement. These readings demonstrate that the strongest reducing agent (CO) resulted in 

the highest contact angle (greatest hydrophobicity). This indicates a change to the surface 

consistent with the removal of oxygen-containing functional groups. 

An article in which graphene was modelled predicted a contact angle of 95-100°. The article 

suggested that contact angle predictions to 127° were excessive190.  

Comparison of the SE of PTFE (polytetrafluoroethylene) (21.35 mN·m-1)191 a highly 

hydrophobic polymer, with GT-CO (19.1 mN.m-1)  demonstrates that the GT-CO had a lower 

SE than PTFE. A reduction in oxides and healing of the graphene is consistent with the 

observed increased contact angle and low SE of GT-CO. These observations fall at the 

extreme end of those observed for a hydrophobic material. This may explain the scrolling of 

the GT-CO in an effort to minimise surface energy. 

a   

b c  

Figure 4-7 GT graphene a) water drop on compressed GT-CO b) contact angle c) surface 

energy 

4.3.5 Electrical Conductivity 

Graphene is normally conductive, making conductivity a potential method of 

characterisation. DC resistance measurements were carried out on the compressed graphene 

disks to provide some basis for comparison. Only GT graphenes could be compressed: the 

CT graphenes and unexpanded GT were too elastic and slipped from between the disks in the 



Chapter 4: Graphene Preparation 
 

58 

press. Thus, four compressed graphenes were prepared. Such disks have different resistivity 

to uncompressed graphenes.  

Equation 2 measured resistance as related to resistivity 

 � = 	��/�   [2] 

Equation 3 Resistivity is calculated (by re-organising equation 2) 

 � = ��/�   [3] 

Where R is resistance, t is thickness, A is area and ρ is resistivity. 

Graphene resistivity measurement was carried out for GT based graphenes before 

ultrasonication (Figure 4-8). The lowest resistivity was from GT treated in a reducing 

atmosphere of CO (238 Ω·cm). Resistivity was highest (1,203 Ω·cm) with GT-Air. There 

was some variation between different H2 treated graphenes (239 versus 390 Ω·cm). 

Oxidised graphene was less conductive, so any processing to remove oxide groups decreased 

resistance. By this measure, the CO reduction method was the most successful at removing 

oxide groups. 

 

Figure 4-8 Resistivity of graphene versus production method 

4.3.6 Particle Size 

Particle size is an important consideration for many uses of graphene. For example, the 

properties of polymer composites are dependent upon the particle size of fillers and 

reinforcements.  
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Dynamic light scattering was attempted, however, due to the wide range of particle sizes, this 

was unsuccessful. A Canty particle sizing system was used instead.  

The particle size range for GT-CO was 2 – 56 µm with a mode of 7 – 8 µm, an average of 

12 µm and up to 25 µm was within the 99th percentile (Figure 4-9). Compared with the CT 

graphenes (~1 – 3 µm) the ultrasonicated GT-CO is much larger (even after ultrasonication). 

Large particle size (referring to high aspect ratio and large surface area) is ideal for 

reinforcing polymers192. 

 

 

Figure 4-9 Size distribution of GT-CO graphene by count 

4.3.7 Surface Area 

Brunauer-Emmett-Teller (BET) surface area plots (Figure 4-10) showed an excellent fit to the 

data, but very low surface area measurements were obtained for all graphenes including CT 

which has a surface area known to be >700 m2·g-1. It is believed that graphenes (which are 

stable to >4,900 K) were not heated sufficiently (250 °C, 800 µm Hg equivalent to 489 °C at 

1 atm (760 mm Hg)) to drive off all surface adsorbed molecules. In other research, the 

adsorption of nitrogen was found to be significantly limited by the overlap of graphenes, in 

dry systems179. Given that surface area measurements are reported in the literature, it appears 

that measurement varies according to surface functionalization of the graphene.  
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Figure 4-10 BET surface analysis measuring surface area versus graphene production method 

4.3.8 Dispersion 

Thermally expanded graphite is composed of graphene sheets in close proximity to each 

other. Ultrasonication in a solvent separates these sheets (especially after processing with N2, 

H2 or CO). Graphene disperses most effectively in polar solvents of which NMP is the most 

effective68. However, agglomeration often occurs during processing unless the graphene is 

functionalised. To avoid covalent functionalization (defects) and prevent agglomeration non-

polar aromatic solvents can be used utilising π-interactions for dispersion. 

p-Xylene was used to create suspensions of graphenes. The interaction between p-xylene and 

graphene was modelled using DFT (Figure 4-11) and showed the ring of p-xylene preferred 

to be aligned above the graphene sheet so that the centre of the xylene ring lies directly above 

a carbon atom. This is the same stacking orientation as the AB (Bernal) stacking8 geometry.  

The carbon-carbon bond lengths in graphene were calculated to be 0.142 nm, and the p-

xylene was oriented ~8° from the axis of the graphene. The average distance of the p-xylene 

ring above the graphene sheet was ~0.333 nm: as measured between the average z-height of 

the 6C atoms in the ring and the height of the C atom in the graphene sheet located directly 

below the middle of the ring. This is similar to the experimental distance between layers in 

graphite of 0.3354 nm193.  

The electron localisation function (ELF) showed the covalent bonding in the graphene sheet 

and the p-xylene molecule. The ELF is plotted on a scale from 0 to 1 and gives an indication 

of the likelihood of formation of bonding and nonbonding electron pairs. Regions of red 

indicate a high probability and can be seen in the bonding region between the C atoms in the 



Chapter 4: Graphene Preparation 
 

61 

C-ring structure. Previous experiments have demonstrated that the π-interaction stacking 

approach is effective with aromatic polymers181.  

a  b  

c  

Figure 4-11 Optimised structure of p-xylene adsorbed on graphene a) top down view b) side 

view (C-blue, H-orange and graphene C-grey) c) electron localisation function (ELF) of 

p-xylene d) graphene 

d 
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4.4 Conclusion 

Graphene was prepared by exfoliation and thermal reduction of graphene oxide. Thermal 

exfoliation was performed under air, inert atmosphere (nitrogen) and reducing atmospheres of 

hydrogen (5 %) and carbon monoxide. The reducing atmospheres allowed removal of 

oxygen-containing functional groups (e.g. epoxides) from the graphene with the reduced 

introduction of defects into the graphene sheets. The resulting graphene sheets were further 

detached by dispersion in the aromatic liquid xylene using ultrasonication. DFT calculations 

showed that the p-xylene ring prefers to be aligned parallel to the preferred interaction 

between graphene. Graphene dispersions in xylene with ultrasonication further reduced the 

number of sheets in a stack and were suitable for solvent based preparations of graphene-

polymer nanocomposites. 

The graphenes prepared were characterised using Raman spectroscopy, contact angle surface 

energy, microscopy, thermogravimetry, resistivity and particle size distribution. From Raman 

spectroscopy, the GT-CO graphene appears to be single or few layer and has the least number 

of defects of all the samples that have been studied. Thermogravimetry showed a low mass 

loss due to decomposition of residual oxygenated groups. This was confirmed by electrical 

resistance measurements showing lowest resistance where defects or oxygenated groups were 

in the lower concentration. Contact angle surface energy was lowest for graphenes with lower 

oxygenated group concentrations with the graphene produced with carbon monoxide 

reduction exhibiting scrolling and a surface energy lower than polytetrafluoroethylene.   

These results demonstrate that a high-quality graphene can be created using thermal 

expansion. 
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Chapter 5 Preparation of graphene and 
inclusion in composites with poly(styrene-

b-butadiene-b-styrene) 
5.1 Introduction 

The preparation of SBS-graphene composites is described in this chapter. Non-covalent 

bonding (π-interactions) between SBS and graphene were used for dispersion. Graphene 

produced by thermal expansion in air, an inert gas (N2) and a reducing gas (H2) was used. 

SBS is a triblock copolymer thermoplastic elastomer that consists of two amorphous phases, 

a continuous polybutadiene phase and a dispersed polystyrene phase. Since SBS is 

amorphous, there is no crystallisation nucleation by dispersed graphene to add to the 

interpretation of the nanocomposite properties. Since SBS is a thermoplastic elastomer, there 

is no crosslinking reaction that could be inhibited or catalysed by graphene that could 

complicate the interpretation of nanocomposite structure and properties. The two-phase 

separation may be modified by graphene, or the graphene may selectively disperse in one of 

the phases. A hypothesis is that the styrene blocks in SBS selectively adsorb onto graphene 

improving dimensional stability even at low volume fractions. Surface modification of 

graphene may be used to modify the properties of SBS further. 

The aim was to prepare and characterise nanocomposites containing graphene or surface 

modified graphene from intercalated graphite, characterise their structure, evaluate their 

electrical properties, response to modulated force and temperature.  

5.2 Experimental 

Material information, preparation of nanocomposites and characterisation methods are 

detailed in Chapter 3.  



Chapter 5: SBS-Graphene SD 
 

64 

 a b  

Figure 5-1 SBS and graphene illustrating van der Waal interactions AB stacking geometry 

between the respective planes a) in solution b) without solvent  

5.3 Results and Discussion 

5.3.1 Microscopy  

Graphene was produced by rapid thermal expansion (TE) and compared to a high-quality 

commercial graphene (CT). The graphene was dispersed in poly(styrene-b-butadiene-b-

styrene) (SBS) using π–interactions (Figure 5-1) to prevent agglomeration. 

Figure 5-2 (a) was taken at low resolution (80x) to demonstrate the worm or accordion-like 

expansion which is typical of thermally expanded graphene. Three images were taken at 

20,000x magnification allowing easy comparison: Figure 5-2 (b) demonstrates the effect of 

ultrasonication on the graphene: increases exfoliation and decreases the width. Figure 5-2 (c) 

shows long folds of carbon joined at the edges in an accordion-like or worm fashion; 

expanded graphite looks like this before ultrasonication or compression. Figure 5-2 (d) shows 

that a commercial graphene (CT) of 1-3 layers is comparable in thickness but has much 

smaller particle size. 
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a   b  

c   d  

Figure 5-2 Electron microscopy a) GT-N2 500 µm 80x SEM and 20,000x (2 µm) b) GT-Air 

with ultrasonication TEM c) GT-N2 SEM d) CT #1 SEM 

5.3.2 Vibrational Spectroscopy  

Raman spectroscopy (Figure 5-3a) was used to identify graphene defects via the defect (D) 

peak. The Raman spectra showed significant peaks at ~2654 (2D), ~1582 (G) and 

~1316 cm-1 (D) bands. 

The Cheap Tubes >700 m2/g graphene showed a large peak in the D band at 1316 cm-1 

whereas the 220-50N based graphenes showed smaller D peaks (Figure 5-3b). The order of 

these smaller D peaks corresponds to the amount of processing carried out on the 220-50N: 

1) air (highest) 2) N2 inert gas 3) H2 reducing gas (lowest). Low defect graphene is usually the 

most desirable. The low D/G ratio, which is more objective, confirmed that GT-H2 reduced 

graphene (0.28) has a low defect rate. 
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a b  

Figure 5-3 Raman spectra a) Listed from  highest to lowest at the D peak b) Comparing D 

peak intensity of graphene produced using four different methods 

5.3.3 Dynamic Mechanical Analysis 

DMA (Figure 5-4) was used to compare SBS without graphene to SBS with graphene created 

by thermal reduction in various gases. At low temperatures (-120 °C) stored energy (tensile 

storage modulus) increased the most (+68 %) in SBS-graphene 1 %·w/w reduced in hydrogen 

compared to neat SBS which was the lowest. The increase in storage modulus indicated 

improved interfacial interactions with butadiene, suggesting the presence of weak hydrogen 

bonds (CH/π)74. 

At low temperatures (-120 °C) energy absorption (loss modulus) of SBS with GT-H2 1 % 

(+147 %) was highest compared to neat SBS (lowest). The increase in viscous properties 

(loss modulus) attributable to H2 reduced graphene peaked at 2.43 GPa (-97.5 °C) compared 

with 1.69 GPa (-96.8 °C) for SBS. This peak represents Tg (glass transition temperature) for 

the butadiene phase and demonstrates that it was not affected by graphene. Unlike storage 

modulus which is elastic (responds instantly), loss modulus is time dependant and thus slower 

to respond. The viscous effect noted in the loss modulus occurs because adding graphene 

slows molecular response. 

At low temperatures (-120 °C) damping (tan(δ)) of SBS elastomer with GT-H2 1 % (+47 %) 

was highest compared to neat SBS. The increase in tan delta for GT-H2 indicates a move to a 

more liquid state compared to neat SBS, which is in a more solid state. 

At 25 °C, the storage modulus (+37 %) and loss modulus (+52 % energy lost as heat) of 

SBS-H2 remained the highest compared to SBS-neat. However, damping (tan(δ)) increased 

the most with Cheap Tubes #2 graphene (+74 %). The increased damping of SBS with CT 
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graphenes, compared to GT graphenes suggests smaller sheet size (CT) might be a major 

performance feature at higher temperatures. However, if smaller sheet size is desired, longer 

ultrasonication, of GT graphenes, can be used to reduce sheet size40. 

a  

b  

c  

Figure 5-4 DMA of SBS-graphene 1 % composites a) Storage modulus b) Loss modulus 

c) Tan(δ) (Legend ordered at -120 °C highest to lowest) 

In a similar study with styrene butadiene rubber (SBR) using covalent bonding of graphene, 

interfacial interactions with graphene increased while energy losses were decreased by 

reduced nanoscale friction between graphene sheets and rubber chains (due to relative 

slippage)194. Thus the increased energy losses (loss modulus) with SBS GT-H2 may be 

attributable to the differences in bonding (covalent versus non-covalent) and suggest 
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increased nanoscale friction between hydrogen reduced graphene sheets and the continuous 

phase of SBS (butadiene).  

Graphene dispersion gave strong interactions (storage modulus) with the polymer to stabilise 

the dispersion against agglomeration. The modulus measured is due to the polybutadiene 

block which is the continuous phase while polystyrene block is dispersed as separated 

particles that bind the polybutadiene continuous phase. Styrene provides strength and rigidity 

to SBS, but any styrene π-interactions with graphene could not be considered since DMA 

scans cannot go into the polystyrene (PS) Tg region because SBS would become a liquid at 

the higher temperatures required.  

5.3.4 Wide Angle X-ray Scattering 

SBS-graphene composites display a series of well-resolved diffraction peaks superimposed 

on an amorphous background (Figure 5-5a).  The peak of maximum intensity at 2θ ~26.56° is 

attributed to graphene97. This peak corresponds to the 002 reflection (the plane in a crystal) of 

graphene143 and is also the characteristic peak of pure graphite97. Pure SBS has an amorphous 

halo at ~19.60° 2θ195. The diffraction patterns were similar for all SBS-graphene composites 

differing only in intensity. The tallest peak within the area of maximum intensity was the 

Cheap Tubes graphene whereas the pure SBS had no peak, as expected.  

Each reflection is from a particular diffraction plane in the crystal. Therefore the composite 

with the greatest intensity for the 002 plane displays a preference for this crystal orientation 

(Figure 5-5b). The order of this preference is from (highest) 1) Cheap Tubes graphene 

2) GT-Air (least processed) 3) GT-N2 (an inert gas) 4) GT-H2 (a reducing gas) 5) GT-Fe3O4 

(to lowest). As single layer graphene has no layer stacking the reduction in intensity of the 

(002) peak implies a move towards single layer graphene. 

Interlayer distance was measured using the Bragg law 

Equation  d = nλ/2sinθ  [1] 

The interlayer distance of thermally exfoliated (GT) graphenes was higher than the 

comparable commercial (CT) graphene. After reduction with H2 or surface modification with 

Fe3O4 (Magnetite), there was a slight decrease in interlayer distance. The highest interlayer 

distances were when using graphene prepared with air or N2 atmospheres. The difference 

between the thermally produced (GT) and commercial (CT) graphenes may be a reflection of 
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the production method. Intercalation of the thermally exfoliated graphene (GT) is expected to 

increase the distance between graphene sheets. The results show that a reducing atmosphere 

of H2 and surface modification with Fe3O4 decreased the interlayer distance of thermally 

exfoliated graphene compared to air or N2. These small decreases probably reflect reductions 

in remaining intercalatants. 

a  

b c  

Figure 5-5 Diffractogram SBS-graphene composites a) Relative intensity versus scattering 

angle (listed in order of peak intensity) b) Graphene peak intensity c) Graphene interlayer 

distance 
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5.3.5 Thermal Stability 

Thermal degradation of the SBS composites was measured using thermogravimetric analysis 

(TGA) (Figure 5-6). Thermogravimetry shows that degradation for all the SBS-graphene 

composites starts at ~350 °C, is greatest at ~474 °C (point of inflexion of the first derivative) 

and is completed by ~510 °C. SBS temperature of degradation is reduced by GT-Fe3O4 

graphene and air expanded graphene (which has a poor Raman spectrum) while increasing 

when using graphenes with improved Raman spectra (GT-H2, CT and GT-N2). Often when 

multiple components are present (polystyrene, polybutadiene and graphene), the curve shows 

three deflections. Thus adding graphene to SBS does not significantly enhance the heat 

resistance of SBS. However, this is desirable as SBS already has a fairly high temperature of 

degradation i.e. low heat resistance makes moulding, disposal and reprocessing easier.   

 

Figure 5-6 TGA mass versus temperature with the first derivative of SBS and graphene (1 %) 

composites created with GT and CT (listed in order of lowest to highest temperature of 

decomposition) 

5.3.6 Electrical Properties 

Electrical properties of SBS composites were measured to establish resistance and 

capacitance (Figure 5-7). Graphene and SBS were compatible due to π-interactions between 

their aromatic groups74 resulting in uniform dispersion. The resistivity of neat SBS decreased 

with the addition of graphene at 1 %·w/w. The greatest decrease in resistance was achieved 
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with H2 reduced graphene (-11 %). The capacitance of neat SBS was unchanged with GT-N2 

expanded and GT-Fe3O4 surface modified graphenes but increased with GT-H2 reduced 

(+17 %), CT (+22 %) and GT-air expanded (+23 %) graphenes.  

Conductivity (the inverse of resistance) at 1 %·w/w is low because the concentration has not 

reached the percolation threshold. Styrene in SBS is a dispersed phase in a continuous 

butadiene phase so graphene surrounded by styrene would not form a percolation network to 

enhance conductivity unless it was also distributed in the butadiene phase. The decrease in 

resistance shows that graphene dispersion is in the butadiene phase too. 

a  b  

Figure 5-7 SBS-graphene composites a) Resistance b) Capacitance  

5.3.7 Surface Modification 

Graphene was functionalised with Fe3O4 (Figure 5-8) and its properties compared to neat 

SBS. DMA showed that at low temperatures (-120 °C) the stored energy (storage modulus) 

for SBS with GT-Fe3O4 1 % was higher (+15 %) than neat SBS but lower than other types of 

graphenes in SBS. Absorbed energy (loss modulus) of SBS with GT-Fe3O4 was higher 

(+22 %) than SBS with CT#1 (+11 %) compared to neat SBS. Damping (tan delta) of SBS 

with GT-Fe3O4 was slightly higher (+6 %) than CT graphenes (CT#1 -11 % or CT#2 +1 %) 

when compared to neat SBS. At higher temperatures (25 °C) similar small increases were 

observed. WAXS results showed that SBS with GT-Fe3O4 had a peak intensity at 

26.56° (653 relative intensity) which was the lowest of all graphenes, suggesting more single 

layer graphene. Interlayer spacing at 26.56° was not affected (0.3354 nm) and was the same 

as other GT graphenes. Thermogravimetry showed SBS with GT-Fe3O4 had the highest 

temperature of decomposition with a slight increase in temperature resistance.  
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Electrical measurements showed that resistance in SBS GT-Fe3O4 composites was slightly 

decreased (-8 % 27.9 MΩ.cm) compared to neat SBS (30.5 MΩ.cm), but capacitance of SBS 

GT-Fe3O4 barely increased (219 pF/cm) compared to neat SBS (217 pF/cm). TEM 

microscopy showed an even dispersion of Fe3O4 particles bonded to graphene which created 

a graphene responsive to magnetic fields. Except for magnetism measured SBS properties 

were less enhanced by GT-Fe3O4 graphene compared to other graphenes. However, as only 

15 % of the mass fraction of GT-Fe3O4 was graphene (established by TGA), this explains 

why its performance was lower than expected.  

 

Figure 5-8 Microscopy (TEM) showing GT-Fe3O4 (Fe3O4 particles on a graphene sheet) 

5.4 Conclusion 

Graphene was formed by thermal expansion in air, inert N2 and a reducing atmosphere. 

Sonication disrupted exfoliated structures dispersing in an aromatic liquid with dissolved 

SBS. The SBS solution-graphene dispersion was precipitated into a non-solvent to prevent 

flocculation that could occur with solvent evaporation. 

SEM imaged graphene after expansion showing increased exfoliation and decreased width 

after sonication. Raman spectroscopy showed that in a H2 reducing atmosphere the reduced 

graphene had the fewest defects. WAXS showed the diffraction due to thermally exfoliated 

graphene layers at ~26.56° ~0.335 nm demonstrating that not all graphene was single layer. 

DMA showed the polybutadiene continuous phase had an increased storage (elastic) 

modulus, loss modulus and damping with graphene added. It indicated that interfacial 

interactions and energy loss were greatest when using hydrogen reduced graphene. It showed 

damping was highest at low temperatures when graphenes were largest but at higher 
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temperatures smaller graphenes improved damping. SBS mass loss temperatures were 

unchanged with graphene. The percolation threshold was not reached to enhance 

conductivity. The surface of graphene was modified by formation of Fe3O4 by solution 

precipitation adding the property of magnetism. 

These results demonstrate that π–interactions between SBS and graphene facilitate their 

dispersion.  
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Chapter 6 Carbon Monoxide Reduced Low-
Defect Graphene Nanocomposites with 

Poly(styrene-b-butadiene-b-styrene) 
6.1 Introduction 

SBS is a block copolymer, thermoplastic elastomer used in adhesives, sealants and moulded 

or extruded products where flexibility and toughness are desirable. Fillers, such as carbon 

black, are added to SBS to increase toughness, reduce creep and permanent set. Graphene is a 

single layer of hexagonally bonded carbon atoms with high modulus, strength and 

conductivity2, 4, 24. These are desirable properties to incorporate into a polymer. Graphene has 

high surface area per unit mass and extremely high aspect ratio, and these are expected to 

provide enhancement of SBS even when included in low volume fractions. The polystyrene 

block physical crosslinks in SBS are proposed to selectively adsorb onto graphene, increasing 

the dimensional stability of the SBS. 

Most research into graphene polymer composites has concentrated on covalent bonding of 

graphenes with the chosen polymer matrix22. To achieve this, oxides (hydroxides, peroxides, 

carbonyls or carboxyls)196 are added on to graphene to provide sites for bonding. However, 

these functional groups interrupt the perfect sp2 matrix of graphene creating defects. Most 

methods of graphene production result in many voids, also a type of defect. It is common for 

graphenes to contain up to 40 % of such defects30, 145. Even reduced graphene includes such 

defects36. It is generally accepted that it is not possible to reinforce a polymer with graphene 

without these imperfections. However, a graphene production method such as thermal 

expansion removes most functional group defects197. Additionally, π-interactions with a 

solvent can assist the dispersion of graphenes, eliminating the need to use covalent 

bonding198. In previous research, it was demonstrated that such a reinforcing approach was 

possible with SBS181. However, research suggests that the mechanical percolation threshold 

for exfoliated graphite and graphenes in a polymer is 2-3 %·w/w199-201. 

The aim of the research described in this chapter was to use CO reduced graphene to establish 

whether dispersion and reinforcement of SBS could be achieved at up to 20 %·w/w graphene 

with only π-interactions to bind SBS to graphene while maintaining the perfect sp2 structure 

of a low defect graphene. 
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6.2 Experimental 

Material information, preparation of nanocomposites and characterisation methods are 

detailed in Chapter 3. 

 

Figure 6-1 Graphene production by intercalation, thermal exfoliation with reduction and 

ultrasonication (simplified) 

6.3 Results and Discussion 

SBS was dissolved, and graphene dispersed using benzene, a solvent chosen for its potential 

π-electron interactions with polycyclic aromatic graphene structures74 and because benzene-

like carbons (those attached to a hydrogen) can increase the magnitude of π-π stacking 

interactions significantly73.  This solvent was found to assist suspension and dispersion of the 

graphenes, while ultrasonication was found to increase graphene interlayer exfoliation. Rapid 

precipitation of the composite into methanol prevented graphene agglomeration.  

Graphite 

Intercalation 

Thermal exfoliation 

and reduction 

Ultrasonication 
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6.3.1 Vibrational Spectroscopy 

Raman spectroscopy is the characterisation method of choice for graphenes. Raman 

spectroscopy involves the inelastic scattering of light: one frequency is input, but a different 

frequency is output and measured. Raman spectroscopy measures rotational, vibrational and 

similar low-frequency modes of the covalent bonds between molecules. Raman spectroscopy 

is particularly sensitive to any phenomenon that disrupts the symmetry of sp2 carbons. The 

Raman spectra of graphene contain three characteristic peaks: D, G and 2D. The D peak 

occurs when there are defects in the graphene matrix. The G peak is caused by in-plane 

vibration of the sp2 bonds in graphene.  The 2D peak is the second order of the D peak. The 

2D peak is influenced by strain, intercalates and charged impurities. A single symmetrical 2D 

peak indicates a single layer or few layer graphene.  

Three types of graphenes were compared: a commercial graphene (CT), air expanded 

graphene (GT-Air) and CO reduced graphene (GT-CO). The commercial graphene (CT) 

provided a baseline for comparison as it had been characterised by HDPlas (the 

manufacturer) and had the largest defect peak. The defect peaks of both the thermally 

expanded graphenes (GT-Air and GT-CO) were lower. The G peak was similar between the 

CT and GT-CO graphenes suggesting the same sp2 structure. The 2D peak of GT-CO was 

more intense and sharper than CT graphene indicating single or few layer graphene (Figure 

6-2a).  

a b  

Figure 6-2 Raman spectra of graphene a) Listed in order of 2D peak b) D/G ratio 

To quantify these differences more precisely a ratio of the D/G peaks was calculated. The 

GT-CO graphene had the lowest D/G ratio (0.25) while the CT (0.63) and GT-Air (0.64) had 

much higher ratios (Figure 6-2b). A low D/G ratio indicates the GT-CO is a low defect 

graphene.  
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The number of graphene layers was measured using the 2D/G81 ratio where an increasing 

number means fewer graphene layers. The 2D/G ratio of GT-CO (0.76) was higher than CT 

(0.63) signifying fewer layers which are highly desirable. 

6.3.2 Thermal Stability 

Thermogravimetry (TGA) (Figure 6-3) was used to measure thermal stability. Oxygen-

containing groups (-OH, -O-, -COOH and =O) on graphene have low thermal stability. 

Heating in an inert nitrogen (N2) environment removes these oxide groups. Thus the mass 

loss in a TGA can be used to measure the oxygen-containing groups on the surface of 

graphene. 

 

Figure 6-3 TGA of graphene mass loss (oxygen content) versus production method 

TGA measured oxide levels by mass loss were 2.4 % for CT, 0.7 % for GT-Air and 0.4 % for 

GT-CO. The GT-CO had 84 % fewer oxide groups than the commercial graphene (CT). Low 

oxide content indicates a low defect graphene. 

6.3.3 Microscopy 

Electron microscopy (Figure 6-4) was used to characterise graphenes and poly(styrene-b-

butadiene-b-styrene)-graphene composites. It was used to confirm the quality of the graphene 

and reveal detail about the structure of SBS-graphene composites.  

Transmission electron microscopy (TEM) was required to resolve individual graphene layers. 

Individual graphene layers are often difficult to distinguish in a polymer. Graphenes usually 

cannot be identified if oriented edgewise in a specimen. Graphene without any supporting 

polymer is challenging to resolve as it tends to agglomerate. Agglomeration is minimised 

with sufficient dilution in an appropriate liquid with subsequent rapid evaporation. 
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Graphene images were collected at high resolution in SBS and after dispersing graphene in a 

solvent with ultrasonication. Both images showed that GT-CO graphene had a tendency to 

form scrolls although this was not a dominant feature. Both images show single layers of 

graphene with no visible defects. 

a b  

Figure 6-4 TEM JEOL 2100 graphene a) GT-CO b) SBS 1 % GT-CO 

The TEM images show that single layer graphene existed before dispersion in SBS and that 

the single layers existed after dispersion in the SBS. This dispersion was aided by 

π-interactions. 

6.3.4 Mechanical Properties 

Stress-strain tensile mechanical analysis (TMA) was used for characterising and comparing 

the mechanical performance of SBS and the graphene nanocomposites. Enhancements in 

performance were detected, measured and graphically represented. TMA was used to 

measure stress-strain as a stress was increased and then decreased forming a hysteresis curve 

(Figure 6-5a). A hysteresis curve provides extra information about the reversible performance 

of the materials.  

Tangent modulus (a measurement at a single point) was used because the line was curved (no 

linear region). It was measured from the initial area of the stress-strain curve (0.25 % strain) 

to avoid changes in cross-sectional area and length202. The results show that at a strain of 

0.25 % tangent modulus increased by up to 100 % (0.72 MPa) when graphene loading was 

20 %·w/w (Figure 6-5b). Thus, the stiffness of SBS-graphene composites continued to 

increase as the GT-CO loading increased. 
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a  

b  

c  

Figure 6-5 TMA of SBS GT-CO (0-20 %·w/w) at room temperature (25 °C) a) engineering 

stress versus strain b) tangent modulus at 0.25 % strain c) change in recovery strain  

Strain (%) measures the deformation of the polymer at a fixed force. As force was ramped to 

11 N Engineering Stress (Force (N)/area (m2)) was calculated using the cross-sectional area 

(width x thickness) of the composite. The strain on recovery (Max strain – Final strain) was 

compared. It was found that recovery decreased from 106 % in neat SBS to only 5 % 

(-101 %) in SBS GT-CO 20 % (Figure 6-5c). Thus, deformation decreased as graphene 
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content increased. However, as ultrasonication times were static, it is likely that further 

improvements could be achieved if ultrasonication times were increased in a linear fashion. 

6.3.5 Dispersion 

DFT calculations were used to determine how SBS monomer interacts with the graphene 

sheet (Figure 6-6). The ab initio molecular dynamics simulations showed that the binding 

energy (BE) between the graphene and SBS was almost identical after 2.5 ps (-0.81 eV) and 

5 ps (-0.78 eV) simulation time. The almost identical binding energy indicates the structure 

has reached equilibrium. The two adsorption geometries are not identical which shows that 

the polymer can take multiple forms on the graphene.  

Overall the shortest distances between SBS and graphene as measured between the closest 

carbon atom on graphene (Cg) and a hydrogen atom on SBS (Hp) (0.249 nm) and a carbon 

atom on graphene and carbon atom on SBS (Cp) (0.329 nm), changed by only 0.002 nm 

during this time. These small changes indicate that the polymer remains at a similar distance 

above the graphene while allowing minor changes to its geometry. The magnitude of the 

adsorption distances and binding energy values indicate the SBS is weakly adsorbed on the 

graphene. The SBS ring structure is either aligned above the graphene in an AB or AA 

stacking geometry. However, it is worth noting that the plane of the ring does not lie parallel 

to the graphene as the butadiene group also interacts with the graphene. 

The closest distance between an SBS hydrogen and graphene is 32 % closer than the closest 

SBS carbon. The side view shows that some SBS hydrogen atoms are oriented above the 

graphene sheet, suggesting there is an affinity between these atoms and graphene (Figure 

6-7). The suggestion of a particular hydrogen affinity is consistent with previous calculations 

showing that hydrogen increases the binding strength of aromatic interactions (SBS has five 

hydrogen atoms on its aromatic rings)73.  

At 2.5 ps the aromatic ring in the SBS monomer is slightly rotated compared to the graphene 

ring below. At 5 ps the aromatic ring in the SBS is offset to the graphene in a similar fashion 

to the AB stacking of graphite8. Such skewed or offset stacking of the aromatic rings is 

common in aromatic π-interactions where π-σ attraction dominates74. 
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Figure 6-6 Optimised structures of SBS monomer adsorbed on graphene after a simulation 

time of a) 2.5 ps b) 5 ps 
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a  b  c  

Figure 6-7  Aromatic interaction geometries a) Edge to face (aka T-shaped or edge on) 

b) offset face-to-face (aka slipped or skewed) c) face-to-face (aka eclipsed)74, 203, 204  

6.4 Interpretation 

Low defect graphene (GT-CO) is of particular interest to explore and extend the unique 

properties of graphene because reduced graphene typically continues to contain functional 

groups (defects)36. Reduced graphenes and low defect graphenes behave differently because 

of these differences. Hence the production of composites with low defect graphene will result 

in enhanced properties potentially broadening their uses in nanocomposites, electronics (e.g. 

capacitors67, dielectrics205) and filtration206. 

π-Interactions capable of dispersing graphenes up to a loading of 20 %·w/w provide an 

advantageous route to the dispersion of graphenes in aromatic liquids, polymers and related 

products. Given that hydration of graphene prevents it restacking into graphite140 it is likely 

that aromatic polymers would likewise prevent the restacking of graphene, and much higher 

concentrations are possible. 

6.5 Conclusions 

Low defect graphene prepared by carbon monoxide reduction of a thermally expanded 

graphene was combined with SBS to create composites. The loading of the GT-CO was 

varied from 0 – 20 %·w/w with π-interactions to preserve the sp2 matrix of the graphene. The 

use of low defect graphene, as verified by few oxides (TGA) and low D/G ratio (Raman), 

means that only π-interactions are necessary for graphene-polymer bonding. The 

effectiveness of the dispersion was demonstrated by the performance of the SBS that was 

positively affected by the GT-CO: deformation (recovery strain) decreased with 20 %·w/w 

GT-CO as stiffness increased. The existence of single layer graphene in SBS, with some 
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scrolling, was verified using TEM. The interaction between SBS and graphene was shown 

using DFT calculations which also suggested the existence of hydrogen bonding between the 

SBS and graphene and was consistent with hydrogen atoms increasing the strength of 

aromatic interactions. 

Creation and dispersion of graphene with low defects is noteworthy. Thermal expansion in a 

reducing carbon monoxide atmosphere is an efficient and effective means to produce high-

quality graphene, that is solution or melt dispersible in thermoplastics such as SBS. Longer 

ultrasonication at higher graphene loading would further improve performance. 
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Chapter 7 Hydrogen Reduced Low-Defect 
Graphene with Poly(ethylene 

terephthalate) Composites 
7.1 Introduction 

In this chapter, the preparation of poly(ethylene terephthalate) PET-graphene composites 

using solvent and melt dispersion is described (Figure 7-1). PET is a high-performance 

commodity; it is a semi-crystalline thermoplastic employed in bottles, films, fibres and 

moulded products. It is produced by the polymerisation of ethylene glycol and terephthalic 

acid. Its repeating group contains one aromatic ring and two ester (R-CO-O-R’) groups. 

Polymer-graphene composites have the ability to enhance the properties of the polymer.  

The dispersion of graphene in polymers is considered a major challenge. The most common 

method to enhance graphene dispersion is functionalisation (which requires the production of 

defects). However, the creation of defects can be avoided by using π-interactions29 to disperse 

graphene207. There are many π-interactions compared to covalent bonds: π-interactions are 

considered to include ionic and hydrogen bonds74. However weak forces are additve and can 

be quite strong jointly208. Thus using π-interactions, the final composite can retain low defect 

graphene and optimise properties. SBS-graphene composites have demonstrated that when 

the polymer and solvent both have aromatic rings graphenes (which have many aromatic 

rings) disperse well181. Platelet composites with PET were proposed to constrain gas 

permeation and to enhance modulus and creep resistance of thin container walls and films. 

Thus the aim was to prepare composites of low defect graphene with PET using dispersion by 

sonication of solution (solvent dispersion (SD), using o-chlorophenol as solvent) and high 

torque melt shear (melt dispersion (MD)), characterising structure and morphology, 

measuring properties and comparing the composites according to dispersion technique. 

7.2 Experimental 

Material information, blend preparation procedures, and characterisation methods are detailed 

in Chapter 3. 
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a b  

Figure 7-1 Poly(ethylene terephthalate) and graphene showing DFT preferred van der Waal 

AB-π stacking geometry a) in solution b) without solvent 

7.3 Results and Discussion 

7.3.1  Vibrational Spectroscopy 

Raman spectroscopy was used to characterise the number of layers and the defects in 

graphene. Thermally expanded and H2 reduced graphene was compared with Cheap Tubes 

graphene of the highest research grade available.  

a b  

Figure 7-2 Raman spectra comparing a) CT research grade graphene, GT-H2 reduced 

graphene and GT-Air expanded graphene (listed in order of the 2D peak) b) D/G ratio of 

graphenes (calculated from unsmoothed data) 
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The GT-H2 graphene (Figure 7-2) shows a robust G peak, low D (defect) peak and a 2D peak: 

The 2D peak is the second order of the D peak. The 2D peak is strongly influenced by 

intercalants, charged impurities and strain. Single layer graphene is indicated by a single 

symmetrical 2D peak83. CT graphene showed a clear single layer 2D peak at 2654 cm-1 

signifying a single layer graphene. The 2D peak shape of the GT-H2 reduced graphene 

suggests that shoulders may be present indicating few layer graphene (smoothed with 15 

point moving average).  

Defects in graphene are most objectively compared using the D/G ratio183. Comparing the 

materials shows that GT-H2 graphene has a lower defect ratio (0.53) than that of the CT 

(highest quality research grade) graphene (0.67). GT-Air graphene had only a marginally 

higher D/G (0.71).  Graphene with defects often has 40 % of its surface affected by the 

defects30. Defects will significantly influence the performance of graphene. Thus low defect 

graphene would be expected to outperform high defect graphene. 

7.3.2  WAXS 

Wide-angle X-ray scattering (WAXS) is commonly used to establish the crystallinity, crystal 

size and interlayer distances of polymers and other crystalline structures. Graphite and few 

layer graphene both have identical crystalline structures (with a differing number of layers). 

Graphite has a characteristic reflection at 002 which is found at 2θ ~ 26° but the interlayer 

spacing, and thus 2θ, varies widely if intercalants are present (0.33318 ~ 0.91 nm41, 183). 

Graphene has also been described in this range97, 209, 210 and the crystalline peak of maximum 

intensity in the PET-graphene composites is found in this range (Figure 7-3a). Few-layer 

graphene will have a weak reflection and thus will be difficult to identify using WAXS. 

Single layer graphene is not crystalline and thus cannot be measured by WAXS. The four 

tallest peaks (16.4°, 17.9°, 23.0° and 26.3°) are characteristic of PET211. 

Maximum peak intensity was lowest in PET-Neat MD (26.3°). PET with graphene (26.7°) 

increased the peak intensity significantly indicating increased crystallinity and that some un-

exfoliated graphene exists. The peak intensity for graphenes differed by only 2 % (11,910 

MD versus 11,657 SD) making it difficult to differentiate between them.  

Interlayer spacing of PET-graphene composites was measured at the 002 peak using the 

Bragg equation  

d = nλ/2sinθ   [1] 
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Where d is is the interlayer distance, n is the order of reflection an integer (assume 1), λ (nm) 

is the wavelength of the x-ray source, and θ is the Bragg angle163, 212. 

Interlayer spacing was 0.339 nm for PET 0 % MD, 0.334 nm for PET 1 % MD and 0.333 nm 

for PET 1 % SD. The narrow gaps (0.334 versus 0.333 nm) mean there were no intercalating 

oxides present confirming effectual reduction. 

Crystallinity (Xc) of the PET composites was calculated by measuring the intensity (I) of 

crystalline (c) and amorphous (a) regions 

 Xc = Ic/(Ic + Ia)   [2] 

Crystallinity was highest for PET neat MD (33.0 %) with PET 1 % MD (28.7 %) and PET 

1 % SD (29.6 %) both being lower. While this is only a small reduction in crystallinity, it 

shows that low defect graphene does not encourage PET nucleation.  

The crystalline thickness of PET perpendicular to the reflection of the plane L(hkl) was 

calculated using the Scherrer equation.  

L(hkl) = Kλ/(βocosθ)   [3] 

Where K is the shape factor of crystalline thickness (normally 0.9), λ is the wavelength of the 

x-ray source (nm), βo (radian) is full width at half maxima (FWHM), and θ is the Bragg 

angle163, 212. 

Compared to PET-Neat MD (14.8 nm) PET 1 %, MD (14.5 nm) crystalline structures had 

slightly smaller dimensions, and PET 1 % SD (15.8 nm) had slightly larger dimensions. The 

negligible increase in crystal size (+1 nm) of the SD composite demonstrated increased 

surface area, due to ultrasonication, did not affect nucleation. 

Other research has found that graphene oxide provides a starting point for nucleation that can 

lead to an increase in crystal size and crystallinity similar to that found with multiwall carbon 

nanotubes (MWCNT)213. Such research has found the nucleation effect was stronger for 

graphene oxide, the crystals were smaller, the π-π interactions were stronger, and the crystals 

were more perfect than for MWCNT214. The nucleation effect was expected to increase as 

graphene loading increased215.  

These results demonstrate that low defect graphene behaves differently to high defect (high 

oxide) graphene in PET and may be particularly useful where a lack of nucleation is desired. 
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a  

b  

c  

Figure 7-3 PET a) WAXS (ordered by peak intensity) b) Interlayer distances c) Crystallinity 

versus crystal size 

 

7.3.3 Microscopy 

PET composites fractured in N2 (Figure 7-4) showed PET-Neat MD had a smooth surface 

with some raised fracture contours, PET 1 % MD  had a smoother surface with fewer fracture 

contours (suggesting fewer graphene interactions) and PET 1 % SD had many raised fracture 
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contours signifying more graphene interactions (good interfacial bonding). Note the presence 

of reinforcing glass fibre in the first image. 

The primary differentiating feature of the solvent dispersed (SD) composites is that the 

ultrasonication of the graphene gave better separated expanded graphene flakes. The 

ultrasonication increased the surface area available for interaction with PET and will result in 

more interfaces within the PET. 

 

Figure 7-4 SEM images with 20 µm scale a) PET-Neat MD b) PET 1 % MD c) PET 1 % SD 

(left to right) 

 

Figure 7-5 TEM images with 20 nm scale a) PET-Neat MD b) PET 1 % MD c) PET 1 % SD 

(left to right) 

PET composites were compared to highlight graphene dispersal. Figure 7-5a shows a 

homogenous layer of PET lying on a second layer and with the copper grid visible 

underneath. In Figure 7-5b PET 1 % MD contained some visible multi-layer graphene. In 

Figure 7-5c PET 1 % SD no multi-layer graphene was visible and single layer graphene was 

hard to identify.  

The MD graphene was included without ultrasonication to establish how effectively the melt 

mixing process separated the graphenes. It is clear that the ultrasonicated graphene 

significantly enhanced separation of graphene layers and facilitated dispersion in the PET.  
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Graphenes are only ~ 0.12 nm thick if oriented edge and the distance between individual 

molecular layers is ~ 0.36 nm. When a composite is melted and pressed, the nanocomposites 

tend to orient in-plane. The PET sheets were cut perpendicular to the surface. Thus any 

graphenes should be mostly edge on minimising the visible surfaces. 

7.3.4 Mechanical Properties 

7.3.4.1 Tensile Mechanical Analysis 

Stress-strain tensile mechanical analysis (SS-MA) was used to compare the mechanical 

properties of the three composites using a ramped force of up to 18 N (Figure 7-6).  Strain 

(Lf/Lo % final versus original length) of the three composites was compared. PET-Neat MD 

(0.23 % strain) and the PET 1 % SD (0.24 % strain) performed similarly at the conclusion of 

the hysteresis loop. By comparison, the PET 1 % MD (0.03 % strain) created a much smaller 

hysteresis loop (indicating less stretching as the force was applied) and much less 

deformation (-86 % strain at the end) when force was removed from the composite. Thus 

extension was more reversible, and PET chains did not slide past each other as much. 

The size of the hysteresis loop of the three composites was compared. PET-Neat MD had the 

largest hysteresis loop. PET 1 % MD had the smallest hysteresis loop due to a significant 

easing of strain reversibility. PET 1 % SD had the second largest hysteresis loop due to 

graphene limiting strain recovery.  

The tangent modulus (slope of the curve) of neat PET at 0.05 % strain (41 MPa) was 

compared to the other composites. PET 1 % MD had the highest modulus (48 MPa +19 %), 

and PET 1 % SD (27 MPa -34 %) had the lowest modulus. The lowered modulus (a measure 

of stiffness) in the SD composite suggests that either some solvent remains or free volume 

had increased. As o-chlorophenol has a high boiling temperature (174.9 °C), it is likely that 

some solvent remained. These results demonstrate that the graphenes increase tangent 

modulus in PET when melt dispersed and decrease tangent modulus when solvent dispersed. 

The increase in tangent modulus is consistent with other research on graphene MD in PET 

which also showed an increase in Young's modulus but only as graphene loading rose to 

≥5 %216.  
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a b  

Figure 7-6 PET with a ramped force of 18 N applied a) Stress (MPa) versus strain (%) curve 

b) Tangent modulus 

7.3.4.2 Dynamic Mechanical Analysis 

DMA was used to compare PET without graphene to PET with graphene using both melt and 

solvent dispersion (Figure 7-7).  The storage modulus (E’) describes elasticity and was used 

to compare the three composites at 20 °C.  PET 1 % MD showed an increase (+43 %) and 

PET 1 % SD showed a decrease (-52 %) compared with PET-Neat MD. Storage modulus also 

describes the interfacial interaction between PET and graphene which decreased with the SD 

graphene and increased with the MD graphene. The reduction in storage modulus for SD 

dispersed graphene may be due to some remaining solvent. 

Loss modulus (E”) is a measure of energy absorption over time and was used to compare the 

three composites at 20 °C: The loss modulus increased (+26 %) in the PET 1 % SD and 

PET 1 % MD (+96 %), compared to PET-Neat MD. Thus the viscoelasticity increased most 

with MD graphene. 

Tan(δ) represents damping which is the ability of material to dissipate energy over time 

(viscoelasticity) relative to releasing it immediately (elasticity). The three composites were 

compared at 20 °C. PET-Neat MD damping (0.039) increased in PET 1 % MD 

(0.053 +137 %) but increased most in PET 1 % SD (0.10 +259 %). Increased damping also 

indicates more liquid properties and that free volume is increasing.  However, as the absolute 

numbers are small, any change is less significant. 
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a 

b 

c  

Figure 7-7 DMA of PET composites a) Storage modulus b) Loss modulus c) Tan(δ) 

7.3.5 Thermogravimetry 

Thermogravimetry (TGA) measured the effect of temperature on the PET composites in an 

inert nitrogen environment (Figure 7-8). The shape of the TGA curves was compared. All 

three curves exhibit a single mass loss event suggesting the graphenes are homogenously 

distributed throughout the PET, and the materials degrade at similar rates.  

The temperature of degradation of the three composites was compared. PET 1 % MD with 

graphene showed no significant change in degradation temperature (434 °C) compared with 

PET-Neat MD and PET 1 % SD (429 °C). Resistance to pyrolysis (+5 °C) of PET 1 % MD is 
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suggested to be due to a failure to separate the graphene sheets entirely. These sheets when in 

close proximity act as insulators (similar to expandable graphite). 

a b   

Figure 7-8 TGA pyrolysis under nitrogen a) PET degradation curve b) PET degradation 

temperature 

7.3.6  Permeation 

Permeation studies were undertaken to establish if reduced graphene dispersed in PET would 

decrease oxygen permeation (Figure 7-9). However oxygen permeation of neat PET 

(1.6 cc/(m2·day)) increased with PET 1 % MD (2.3 cc/(m2·day) +69 %) and with PET 1% SD 

(5.2 cc/(m2·day) +325 %). This conflicts with predictions that graphenes should decrease gas 

transmission because they present a tortuous path. However, this agrees with results reported 

by Yu that reduced graphene resulted in increased permeation and oxidised graphene resulted 

in reduced permeation. Yu suggested that the electronegative nature of the oxygen on the 

surface of oxidised graphene hindered the permeation of oxygen through the polymer106 

whereas increased oxygen permeation would be consistent with an increase in free volume217 

at the interface between the graphene and PET.  

 

Figure 7-9 PET-graphene composites oxygen permeability 
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The increase in permeation in the ultrasonicated PET 1 % SD is consistent with an increase in 

surface area (better exfoliation and dispersion) creating more free volume.  

7.3.7 Dispersion 

Density functional theory (DFT) calculations of the molecular interactions of our system of 

interest were carried out to help validate the dispersion of graphene in PET (Figure 7-10): 

The PET ring was shown to orient itself above the graphene sheet so that the centre of the 

ring lies directly above a carbon atom. The same stacking orientation is present between 

layers in graphite which show an AB (Bernal) stacking geometry8. The average distance of 

the PET ring above the graphene sheet is ~0.328 nm: as measured between the average 

z-height of the 6C atoms in the ring and the height of the C atom in the graphene sheet 

located directly below the middle of the ring. This PET-graphene distance agrees well with 

the distance measured for benzene adsorbed on graphene of 0.36 nm218 and the experimental 

distance between layers in graphite of 0.336 nm193. 

The electron localisation function (ELF) (Figure 7-10c) gives an indication of the likelihood 

of formation of nonbonding (0 = blue) and bonding (1 = red) electron pairs. Regions of red 

indicate a high probability and can be seen in the bonding region between the C atoms in the 

C-ring structure. This bonding is similar to that which occurs between multiple graphene 

sheets. Adsorption of methyl-terminated PET on the graphene sheet induces a minor 

redistribution of electrons such that there is a small donation of charge from the graphene 

layer to the molecule, of ~-0.03 eV. 

This interaction between the PET and graphene thus confirms that π-interactions help 

disperse graphene in PET. 
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a  

b  

c  

Figure 7-10 Methyl terminated PET monomer adsorbed on graphene a) Side view b) Top 

down view (C-Blue H-White O-Red Graphene C-Grey) c) Electron localisation function 

(ELF) of PET adsorbed on graphene, aligned so the slice cuts through the C atoms in the ring 

of the methyl terminated PET molecule 

7.3.8 Conductivity 

All three PET materials were non-conductive indicating the percolation threshold had not yet 

been reached. 
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7.4 Conclusion 

PET GT-H2 reduced low defect graphene (produced by a thermal expansion method) 

composites were characterised and compared using both melt dispersion (without 

ultrasonication) and solvent dispersion (with ultrasonication). Hydrogen reduced graphene 

had few defects and few layers as measured by Raman spectroscopy. PET crystallinity was 

not affected by graphene demonstrating that low defect graphene does not cause nucleation as 

measured by WAXS. SEM images suggested ultrasonication of graphene (PET 1 % SD) 

better separated and expanded graphene flakes. TEM showed that solvent dispersed 

ultrasonicated graphene (PET 1 % SD) had fewer layers than melt dispersed graphene (PET 

1 % MD). SS-MA showed a reduction in deformation in PET 1 % MD. Tangent modulus 

(stiffness) increased slightly in PET 1 % MD. Interfacial interactions (storage modulus) 

increased for PET 1 % MD but decreased for PET 1 % SD which may be due to some 

remaining solvent. The viscoelastic time-dependent energy loss (loss modulus) increased in 

PET 1 % SD but was largest in PET 1 % MD. A move toward a liquid state and increased 

free volume (damping) increased in PET 1% MD, was highest in PET 1 % SD but the 

absolute changes were insignificant. TGA’s smooth degradation curve demonstrated that the 

composites were uniformly dispersed. DFT calculations showed that PET prefers to be 

oriented with the ring lying parallel to the graphene plane in an AB stacking geometry. An 

increase in oxygen permeation with reduced graphene was attributed to an increase in free 

volume. Ultrasonication further increased permeation (free volume) by improving exfoliation 

plus dispersion of graphene (increasing accessible surface area). Despite good dispersion 

1 %·w/w graphene did not result in measurable conductivity.  

These results suggest that an ultrasonication treated thermally expanded and H2 reduced 

graphene introduced into melt dispersed PET is likely to result in improved properties and 

should be investigated further since melt dispersion of PET by itself is insufficient to obtain 

the best results. 
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Chapter 8 Carbon Monoxide Reduced Low-
Defect Graphene with Poly(ethylene 

terephthalate) Composites 
8.1 Introduction 

Poly(ethylene terephthalate) (PET) is a high-performance semi-crystalline thermoplastic 

polymer used in bottles219, films, fibres and moulded products. In this chapter, melt 

dispersion is combined with ultrasonication of graphenes to exfoliate graphene to overcome 

insufficient shear during PET processing. 

Melt dispersion is a high shear mixing method used by industry in the large scale production 

of polymers and has the added advantage of thermally reducing graphene in situ46, 205, 220-223. 

Ultrasonication produces cavitation which helps wet, disperse, further exfoliate30 and 

reduce52 graphene. Combining these techniques has the potential to improve the dispersion of 

graphene further and thus the properties of the polymer46.  

Ultrasonication in p-xylene provides potential π-electron interactions with the polycyclic 

aromatic graphene structures39, 181. This non-polar aromatic solvent assists in suspension and 

dispersion of graphene. When added to PET at the high temperatures (275 °C) used in the 

MD process p-xylene (Tb ~ 138 °C)224 evaporates. PET makes a suitable choice of polymer 

because it has an aromatic structure which can continue to keep the graphene dispersed via 

π-π interactions214. PET (C10H8O4)n also has eight hydrogen atoms per repeat unit (elemental 

analysis C 62.51 % H 4.2 %) and as the number of hydrogen atoms in an aromatic molecule 

increase (four hydrogen atoms per aromatic ring) the magnitude of the π-π interactions 

increases73. 

Low defect graphene30 has not previously been available in sufficient quantities for polymer 

reinforcement225. Likewise, non-covalent bonding using π-π interactions (to avoid creating 

defects in graphene)30 is an uncommon reinforcing technique. Thus it is of interest to 

establish whether low defect graphene can be used to reinforce a polymer using only 

π-interactions. 

The aim of this experiment was to disperse graphene in an aromatic (semi-crystalline) 

polymer and determine if poly(ethylene terephthalate) (PET) mechanical performance could 
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be enhanced with ultrasonication (US) of low defect CO reduced graphene, at 1 %·w/w, using 

melt dispersion (MD). PET-graphene MD composites were compared with and without US.  

8.2 Experimental 

Material information, preparation of nanocomposites and characterisation methods are 

detailed in Chapter 3. 

8.3 Results and Discussion 

8.3.1 Visual Characterisation 

Visual characterisation is often a simple yet accurate method of identifying differences. The 

unaided human eye can see a single layer of graphene226. However, it would be difficult to 

ascertain the number of graphene layers with certainty. It is even harder to view graphene in a 

polymer. The three PET test specimens could be clearly distinguished based on colour 

(Figure 8-1): Neat PET was an opaque cream colour. PET with melt dispersed graphene was 

a solid even blue-grey colour. PET with ultrasonicated and melt dispersed graphene was a 

solid even black colour. The black colour is typical of reduced graphene67, 222, 227. The black 

colour also suggests improved dispersion and exfoliation. Thus combining ultrasonication 

and melt dispersion is desirable when creating polymer-graphene composites. 

a b c  

Figure 8-1 Photographs of melt dispersed PET and graphene (GT-CO 1 %) composites 

a) neat b) graphene c) ultrasonicated graphene 
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8.3.2 Microscopy 

8.3.2.1 Optical 

Optical microscopy was used to characterise the macroscopic dispersion of graphene in PET 

composites. Individual graphene sheets cannot be definitively resolved using optical 

microscopy, but agglomerations, poor dispersion and poor exfoliation can be identified 

relatively easily. 

PET images were collected using a light microscope (Figure 8-2). Three images of the edge 

of a pressed sheet of melt dispersed PET are shown a) Neat b) GT-CO c) GT-CO 

ultrasonicated (US). The images are at a uniform magnification (250x) with a 200 µm scale 

bar. The neat PET shows a clear edge without inclusions where an ultra-microtome glass 

knife had been cutting. The MD PET 1 % composite, shows poor dispersion resulting in 

visible inclusions of around 200 µm in size with a darker overall colour. The ultrasonicated 

PET composite with MD shows much-improved dispersion, small particle sizes of around 

1 µm and a darker more even colour.  

a b c  

Figure 8-2 PET (without glass) melt dispersed composites with 200 µm scale bar a) neat 

b) GT-CO 1 % c) GT-CO 1 % ultrasonicated 

The large particle sizes with agglomeration suggest that a high shear mixer (Haake) alone is 

not sufficient to disperse, exfoliate and wet the surface of thermally exfoliated graphenes in 

PET. The smaller particle sizes, reduced agglomeration and even colour of ultrasonicated 

graphenes with MD demonstrate that ultrasonication is necessary to optimise graphene 

dispersion in MD PET. High shear mixers alone are insufficient to create optimised 

composites. While it is likely that longer melt dispersion times would improve dispersions 

further, longer application of shear (via the Haake mixer) would never approach the 

dispersion achieved with ultrasonication. 
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8.3.2.2 Electron 

Electron microscopy was used to characterise graphenes and PET-graphene composites. It 

was used to confirm the quality of the graphene and reveal detail about the structure of PET-

graphene composites.  

Transmission electron microscopy (TEM) was required to resolve individual graphene layers. 

Individual graphene layers are often difficult to distinguish in a polymer as they tend to be 

oriented edgewise. 

PET GT-CO 1 % composites (without ultrasonication) show the good dispersion of graphene 

with no visible clumping or other indications of uneven dispersion at the microscopic level 

(Figure 8-3). It was possible to resolve individual layers of graphene at the nanoscopic level 

(20 nm) and demonstrate that melt dispersion (without ultrasonication) results in single layer 

graphene reinforcement.  

Although no obvious multi-layer graphene is visible, it was possible to see multi-layer 

graphenes in other images. 

 

Figure 8-3 TEM images of PET with melt dispersed GT-CO 1 % (without ultrasonication) a) 

500 nm b) 100 nm c) 50 nm d) 20 nm 
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PET GT-CO 1 % (with ultrasonication) shows the good dispersion of graphene with no 

visible clumping or other indications of uneven dispersion at the microscopic level (Figure 

8-4). Three graphene sheets can be seen overlapping at the margins of the PET at the 

nanoscopic level (20 nm). Thus dark areas indicate a greater concentration of graphene and 

demonstrate that single layer graphene is present. The layering effect suggests more single 

layer graphene is present when ultrasonication is used. 

No obvious multi-layer graphene was visible in these images. However, multi-layer graphene 

was visible in other images. 

 

Figure 8-4 TEM images of melt dispersed PET with melt dispersed ultrasonicated 

GT-CO 1 % a) 500 nm b) 100 nm c) 50 nm d) 20 nm 

8.3.3 Mechanical Properties 

8.3.3.1 Tensile Mechanical Analysis 

Stress-strain tensile mechanical analysis (SS-MA) was used for characterising and comparing 

the mechanical performance of PET and the graphene composites. Enhancements in 

performance were detected, measured and graphically represented. SS-MA was used to 

measure stress-strain as stress was increased and then decreased forming a hysteresis curve 

(Figure 8-5). A hysteresis curve provides further information about the reversible 

performance of the materials.  
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Comparing the three hysteresis curves for melt dispersed PET shows that the end strain, a 

measure of deformation, increased (+62 %) when ultrasonication was not used and increased 

further (+204 %) when GT-CO graphene was ultrasonicated. It is known that graphene 

increases elastoplasticity, viscoplasticity228, ductility159 and fracture toughness of polymers11, 

so increased deformation of stiff materials such as PET (reduced failure215) is consistent with 

previous research. These reports are consistent with observations made during handling that 

adding graphene to PET made it more resistant to cracking, especially after ultrasonication.  

Tangent modulus (stiffness) at 0.05 % strain increased (+6 %) with ultrasonication and melt 

dispersion (+14 %). Stiffness may have been increased slightly by adding ultrasonicated 

graphene and by withholding ultrasonication. However as this parameter scales 

logarithmically the difference is insignificant.  

It appears that MD US graphene gives less reinforcement (weak interaction with PET) but 

retards recovery indicating a stronger interaction with PET. Thus ultrasonication should be 

carried out on graphene to increase ductility (end strain) of PET, but graphene did not affect 

stiffness significantly. 

a  

b c  

Figure 8-5 SS-MA of PET GT-CO 1 % melt dispersed with and without ultrasonication 

a) Stress-strain curve b) End strain (%) c) Tangent modulus (0.05 % Strain) 
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8.3.3.2 Dynamic Mechanical Analysis 

Dynamic mechanical analysis (DMA) is used to measure elasticity, viscoelasticity, damping 

of materials and their temperature and frequency dependence.  

a  

b  

c   

Figure 8-6 DMA of melt dispersed PET GT-CO 1 % graphene with and without 

ultrasonication a) Storage Modulus b) Loss Modulus c) Tan Delta (with bar graphs 

comparing properties at 25 °C) 

PET MD properties were compared at 25 °C and showed that stored energy (storage modulus 

a measure of interfacial interactions) increased (+6 %) for composites with and without 

ultrasonication, but this was not significant. 
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However, the energy dissipated as heat (loss modulus a measure of viscoelasticity) increased 

most (+34 %) with ultrasonication of GT-CO graphene 1% and dispersion in PET using melt 

dispersion. 

Damping (tan delta), a move to a more liquid state and an increase in free volume, increased 

most (+26 %) for ultrasonicated graphenes. The tan delta curves are very broad spanning 

almost 100 ºC indicating distribution of relaxation and more constrained molecules. Broad 

low peaks are typical of semi-crystalline polymers. The peak measures only the amorphous 

component. Both peak position and width at half height were barely changed.  

Even graphene dispersed without ultrasonication increased the loss of energy as heat (loss 

modulus) via a damping (tan delta) effect. However, without ultrasonication, the increases in 

loss modulus (+16 %) and tan delta (+10 %) were less than half as large. Thus ultrasonicated 

GT-CO graphene in PET increased energy loss as heat as damping increased. 

8.4 Conclusion 

PET-graphene GT-CO 1 % composites, were created using melt dispersion (MD) with 

ultrasonication to assist graphene dispersion, wetting and exfoliation. The composites could 

be visually distinguished: neat PET was a cream colour, without ultrasonication grey and 

with ultrasonication black (suggesting improved reduction and dispersion). Using a light 

optical microscope, it was possible to see that graphene without ultrasonication was poorly 

dispersed and that ultrasonication resulted in significantly reduced agglomeration. TEM 

microscopy demonstrated that single layer graphene existed even without ultrasonication, but 

the layering of graphene sheets suggested that more single layer graphene existed when 

ultrasonication was used. Stress-strain measurements showed that deformation (end strain) 

increased with ultrasonication of graphene consistent with improved PET ductility and 

fracture toughness. Interfacial interactions between graphene (storage modulus) were 

insignificant but with ultrasonication energy lost through increased viscoelasticity (loss 

modulus) and damping (tan delta) both increased. Thus PET performance was modified by 

the addition of ultrasonicated graphene, and the performance changes were most dramatic in 

the areas of deformation (strain), the energy dissipated by heat (loss modulus) and damping 

(tan delta).  
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Chapter 9 Polycarbonate-Graphene 
Composites 

9.1 Introduction 

High-performance, low filler content composites of low defect graphene are described in this 

chapter. Polycarbonate (PC) is a thermoplastic polymer with high impact resistance229 which 

has poor environmental stress crack resistance, especially on exposure to esters, aromatics 

and surfactants or detergents, which limits its applications. Polycarbonate is used for roofing, 

motorcycle helmets and electrical equipment. PC is an electrical insulator230 which resists 

high temperatures231 and thermal degradation229. PC’s repeating group (Figure 9-1) contains 

two aromatic rings and a carbonate (−O−(C=O)−O−). 

 

Figure 9-1 Molecular representation of the polycarbonate monomer and graphene sheet 

Polycarbonate was chosen as the test polymer because it has a high glass temperature 

(Tg ~140-150 °C)232, 233, is amorphous229 and its aromatic structure complements that of 

graphene. A high Tg allows a polymer to be tested across a wider temperature range229. 

Amorphous polymers avoid the complexity that arises with polymers that form crystal 

structures229 such as polyethylene, poly(ethylene terephthalate) and polytetrafluoroethylene. 

Crystal structure growth can vary greatly as conditions are varied making interpretation more 

difficult. Interpretation is especially problematic when investigating the effect of reinforcing 

nanomaterials such as graphene. Semi-crystalline polymers make it difficult to determine 

which effects are due to crystalline structures and which effects are caused by the addition of 

the nanomaterial (graphene). Additional complications include the need to consider whether 
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the nanomaterial acts as a nucleation point for polymer crystallisation213 and how the crystals 

grow as conditions are varied. Amorphous polymers require none of these complicating 

considerations. Thus performance enhancements in amorphous polymers can be more 

definitively attributed to the reinforcing nanomaterial. 

High-performance applications of PC could be enhanced by graphene as they are by glass 

fibre. It would be expected that stacking between the PC and the graphene via π-π type 

interactions would improve dispersion and prevent agglomeration of the graphene234. 

Polycarbonate (C16 H14 O3)n has 14 hydrogen atoms (8 aromatic and 6 methyl)  per monomer 

(elemental analysis C 75.58 % H 5.55 %) which can interact with graphene. As graphene is 

non-polar, the non-polar methyl group (-CH3) on PC ought to also assist its solubility in 

graphene. There is also potential for improved dispersion due to π-interactions between the π 

electrons (C=O) of the carbonate group (-O-CO-O-) in PC and graphene. Two different 

graphenes were chosen because previous experiments have demonstrated that the reducing 

gas used in production changes the properties of the graphene and this is reflected in 

graphene-polymer interactions181.  

The aim of this experiment was to use ultrasonication on graphene to separate layers and 

suspend it in a liquid. To use melt dispersion with an amorphous, aromatic and high Tg 

polymer where interactions between graphene and aromatic rings, contribute to a strong 

interface. To compare H2 and CO graphene treatments in PC which, despite these properties, 

is not brittle making it a suitable matrix for evaluating low defect graphene at low loading 

(0.1 %·w/w). 

9.2 Experimental 

Material information, preparation of nanocomposites and characterisation methods are 

detailed in Chapter 3. 

9.3 Results and Discussion 

Hydrogen reduced and CO reduced graphene were introduced to polycarbonate (Figure 9-1) 

at 0.1 %·w/w. Ultrasonication was used to optimise dispersion, exfoliation and reduction52 of 

the graphene in melt dispersed polycarbonate.  
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9.3.1 Visual Characterisation 

The three polymer composites were clearly defined between neat PC (transparent) and PC-

graphene (dark yet transparent). The distribution of graphene throughout the PC is even (no 

agglomeration) in both composites, but PC with GT-CO reduced graphene is slightly darker 

compared to the GT-H2 graphene composite. The darker colour is typical of greater 

reduction67, 227, improved dispersion and exfoliation. 

It was noted that uneven movement of the polymer through the mould during pressing would 

create an uneven distribution of graphene. Allowing a greater length of time for PC to melt 

before pressing resulted in the evener dispersion of graphene throughout the PC. 

 

Figure 9-2 Photograph of polycarbonate melt dispersed with 0.1% ultrasonicated graphene 

a) neat b) GT-H2 c) GT-CO (from left to right) 

9.3.2 Microscopy 

9.3.2.1 Optical Microscopy 

Optical microscopy (Figure 9-3) was used to characterise the macroscopic dispersion of 

graphene in PC composites. Three images of the edge of a pressed sheet of melt dispersed PC 

are shown at a uniform magnification (250x) a) Neat b) GT-H2 0.1 % and c) GT-CO 0.1 %. 

The neat PC is clear with no inclusions. Both GT-H2 and GT-CO graphenes were 

ultrasonicated before melt dispersion which helps increase reduction52. Both GT-H2 and 

GT-CO composites are very dark and uniform despite the low loading of 0.1 % suggesting 

reduction, good dispersion and high compatibility with PC. A shiny skin is visible on the top 

surface of all three PC composites. Similar research has shown that this is a thin skin layer of 

PC of about 10 µm which interferes with conductivity229. Differences between GT-H2 and 

GT-CO dispersion methods were not evident at the macroscopic level.   
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Thus ultrasonication with high shear dispersion helps optimise dispersion of low defect 

graphenes and is particularly effective in PC. 

a b c  

Figure 9-3 PC melt dispersed with 0.1 % ultrasonicated graphene with 200 µm scale bar 

a) Neat b) GT-H2 c) GT-CO 

9.3.2.2 Electron Microscopy 

Electron microscopy was used to characterise graphenes and polycarbonate-graphene 

composites. It was used to confirm the quality of the graphene and reveal detail about the 

structure of PC-graphene composites.  

 

Figure 9-4 TEM images of PC GT-H2 0.1 % US MD a) 2 µm b) 500 nm c) 100 nm d) 20 nm 

Transmission electron microscopy (TEM) was required to resolve individual graphene layers. 

Individual graphene layers are often difficult to distinguish in a polymer as they tend to be 
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oriented edgewise: moulding aligns graphenes in the plane and microtoming is done at 90° to 

the plane. This flow-induced orientation may improve stiffness and barrier properties while 

reducing electrical conductivity229. 

PC GT-H2 (0.1 %) polymer composites (Figure 9-4) shows no visible clumping of graphene, 

no discernible multi-layer graphene and no small graphene particles even at high resolution. 

The black lines are folds in the polymer. The composite shows no signs of tearing and fringes 

are smooth. The PC composite is lying on an amorphous carbon layer which reduced 

charging and ensured that small particles were captured on the TEM grid.  

 

Figure 9-5 TEM images of PC GT-CO 0.1 % US MD a) 2 µm b) 500 nm c) 200 nm d) 100 

nm  

PC GT-CO (0.1 %) polymer composites (Figure 9-5) showed an even dispersion with no 

visible clumping, no discernible multi-layer graphene and one imperfection or inclusion. The 

dark areas appear to show broad graphene scrolling. There are no tears or fringes in the 

polymer. The striations in the first image are from the underlying carbon grid.  

The TEM images showed that both GT-H2 and GT-CO graphenes dispersed well in 

polycarbonate which is consistent with similar research229. Scrolling of the graphene was 

only visible when GT-CO reduced graphene was used. Scrolling was associated with low 
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defect graphene, which has low surface energy (the minimisation of surface energy), few 

layers and had been ultrasonicated (which provides activation energy)52. 

9.3.3 Mechanical Properties 

Dynamic Mechanical Analysis (DMA) is used to characterise materials and compare their 

response at different temperatures. As the temperature is increased storage modulus 

(elasticity), loss modulus (viscoelasticity) and tan delta (damping) are measured at a given 

frequency (1 Hz).  

a  

b  

c  

Figure 9-6 Polycarbonate with ultrasonication and melt dispersion of Neat, GT-H2 and 

GT-CO 0.1 % composites a) Storage Modulus b) Loss Modulus c) TanDelta 
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PC composites properties were compared with PC without any graphene at 35 °C. Storage 

modulus increased when adding GT-CO reduced graphene (1.66 GPa +10 %) and GT-H2 

reduced graphene (1.75 GPa +16 %). Storage modulus measures stored energy (elastic 

portion) and an increase indicates improved interfacial interaction of PC with graphene. The 

slight increase in interfacial bonding may be due to increased hydrogen bonding. 

Loss modulus increased for GT-H2 reduced graphene (46 MPa +123 %) and GT-CO reduced 

graphene (54 MPa +163 %). Loss modulus measures time-dependent energy loss (viscous 

portion) thus an increase means that the viscoelastic properties increase when graphene is 

added to PC. 

Tan delta (damping) in PC increased with GT-H2 reduced graphene (0.026 +92 %) and with 

GT-CO reduced graphene (0.032 +129 %). Damping is the ratio of loss/storage modulus 

which describes the balance between energy loss and storage. The increased damping signals 

that the free volume is increasing. Values of tan delta above unity (tan(>45°) > 1) indicate 

more liquid properties (loss modulus > storage modulus) while values less than unity indicate 

more solid properties (regardless of viscosity).  Thus as damping is increasing PC graphene 

composites are exhibiting fewer solid properties and the more efficient it is at safe energy 

absorption and dispersal (energy is converted to safer levels or frequencies). However, the 

low force of the loss modulus makes any increase in tan delta negligible. The tall sharp peak 

is typical of an amorphous polymer and less constrained molecules. 

PC composites with a graphene showed some improvement of properties even at very low 

loadings of 0.1 %·w/w. The largest increases in magnitude were in the storage modulus with 

GT-CO and GT-H2 reduced graphene. The increases suggest that CO and H2 reduced 

graphene may be advantageous for improving storage modulus.  

9.3.4 Dispersion 

The structures obtained from the ab initio molecular dynamics (MD) simulations of the 

polycarbonate monomer adsorbed on graphene are presented in Figure 9-8.   

The simulations show that the binding energy (BE) between the graphene and PC is almost 

identical after a 3.5 ps (-0.58 eV) and 5.3 ps (-0.62 eV) simulation time. The distances 

between PC and graphene (as measured between the closest carbon atoms on each structure) 

was the same (0.326 nm) for both structures while the distance between the nearest PC 

hydrogen atom and graphene C atom was 0.258 or 0.249 nm. The shortest distance between 
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the PC oxygen atom and a graphene C atom was 0.328 or 0.342 nm. These small differences 

in the adsorption distances and binding energies indicate that the PC has reached equilibrium. 

However, there is flexibility in the geometry of the PC on the graphene.  

The simulations also give us an idea of the geometry of the interaction between PC and 

graphene. It has already been shown that there are two types of interactions that can occur 

between graphene and aromatic type compounds and involve graphene-like carbons or 

benzene-like carbons73. The former are C atoms having three covalent bonds with adjacent 

carbons (as in polycyclic aromatic compounds) while the other are C atoms covalently linked 

to two carbons and one hydrogen atom (as in benzene). Hence, when the compounds align 

with face-to-face stacking, as in the AB stacking of graphite planes, both types of carbons can 

interact with the graphene. Further, it has been shown that the benzene-like carbons form a 

stronger interaction than the graphene-like carbon and therefore the magnitude of the π-π 

stacking interactions can increase significantly as the number of benzene-like carbons 

increases in the molecule. 

 

Figure 9-7 Three R’-CH/graphene complexes demonstrating weak hydrogen bonds  (R’ = H, 

phenyl, xylene or variable R = carbon part of molecular network) where a) is the most stable 

(modified from reference)235 

Hence for PC, both types of interactions could be expected to occur with the graphene. Other 

types of interactions that could occur between the PC and the graphene could be with the 

methyl groups on the PC. It has been previously shown that CH/π type interactions can occur 

between a soft acid (CH) and a soft base (π group) and have been called CH/π hydrogen 

bonds74, 236, 237. Examples of these types of interactions have been demonstrated to occur 

between methane, for instance, and an aromatic ring (Figure 9-7). The preferred orientation 

for this interaction is structure a, where one of the C-H bonds of the methane is directed to 

a b c 
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the centre of the aromatic ring.  It might be expected that such interactions are possible with 

PC and graphene due to the presence of methyl groups on the PC monomer. 

 

Figure 9-8 Optimised structures of PC monomer adsorbed on graphene after a simulation 

time of a) 3.5 ps and b) 5.3 ps 

From Figure 9-8 the closest hydrogen atom in the PC monomer is 26 % closer to graphene 

than the nearest PC carbon atom. From the side view, it can be seen that some of the 

hydrogen atoms attached to the ring in the PC fragment are oriented directly above the 

graphene sheet suggesting there is an affinity between these atoms and the graphene (Figure 
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9-7). These results are consistent with the previous DFT calculations which showed that 

hydrogen atoms attached to aromatic rings play a significant role in aromatic interactions73 

and that weak hydrogen bonds (CH/π) exist between a soft acid (CH) and a soft base (π 

group)74, 236, 237.  

From Figure 9-8 the top down view shows that at 3.5 ps, one of the aromatic rings in PC is 

aligned almost parallel to the graphene plane while the second aromatic ring is edge on 

(almost perpendicular) to the graphene. Edge on and skewed stacking are common in 

aromatic π-interactions74. At 5 ps the aromatic ring in the SBS is offset to the graphene in a 

similar fashion to the AB stacking of graphite8 while the other ring is edge on to the 

graphene. Thus the two aromatic rings are ~90° offset to each other for the interaction with 

graphene to be maximised. Also, the methyl groups on the PC are oriented towards the 

graphene forming a possible CH/π−type interaction. The complexity of the PC monomer and 

the fact that it has two aromatic rings and two methyl groups means that the interactions with 

graphene are not purely one or the other but seem to be a combination of π−π and CH/π type 

interactions.  

9.4 Conclusion 

Low defect graphene at a low loading (0.1 %·w/w), prepared by hydrogen and carbon 

monoxide reduction, was dispersed in polycarbonate using ultrasonication and melt 

dispersion. GT-CO and GT-H2 graphene treatments were compared. Visual inspection 

showed GT-CO reduced graphene in PC was slightly darker suggesting greater reduction, 

dispersion and exfoliation. Optical and TEM microscopy showed the even distribution in PC 

with no evidence of any multi-layer graphene.  The largest effect on polycarbonate 

performance was by carbon monoxide reduced graphene which increased viscoelasticity (loss 

modulus) of polycarbonate. However, the loss modulus in PC is very low, and this makes the 

increase less noteworthy. Storage modulus which is an indication of stronger interfacial 

interactions is a significant feature of PC and increases favoured hydrogen reduced graphene 

suggesting increased hydrogen bonding. DFT calculations showed that there is an interaction 

between the PC polymer and the graphene. While this interaction is relatively weak, the 

aromatic rings and the methyl groups in the monomer both play a significant role in the 

attraction with graphene via π-interactions. GT-CO reduced graphene showed evidence of 

scrolling while GT-H2 reduced graphene may involve increased hydrogen bonding which 

may explain the performance difference between the two alternative graphenes.  
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Chapter 10 Polyether Sulfone-Graphene 
Composites 

10.1 Introduction 

In this chapter, a solvent dispersion method was employed with an ultrasonic dispersion of 

graphene for the preparation of high-performance polymer composites. Polyethersulfone 

(PES) is a tough polymer (high modulus, tensile yield and impact strength), with high-

temperature stability (Tg ~220-230 °C)233, 238-240. It is commonly used in water filtration105, 241, 

242, medical applications12, 239, 243 and as a flame retardant but its resistance to weathering and 

some organic solvents is poor240. The repeat unit (Figure 10-1) contains a series of four 

aromatic rings, ether (R-O-R’) and a sulfone (R-SO2-R’).  

 

Figure 10-1 Molecular representation of the PES monomer and graphene sheet 

PES is an amorphous polymer (has no crystallinity)244. Amorphous polymers make it easier 

to establish which reinforcing effects are due to the addition of nanomaterials such as 

graphene229. A further consideration was that PES has a high glass temperature (Tg) which 

allows the polymer to be tested across a wider temperature range. 

Previous research has demonstrated the ability of graphene to improve the properties of 

aromatic polymers through its affinity for π-interactions181. The ring structure of PES 

complements that of graphene. Thus the π-interactions between the PES and graphene rings 

can be used to improve dispersion and prevent agglomeration of the graphene. π-interactions 

can occur between the π-electrons (double bonds) of the sulfone group (O=S=O) and 

graphene. The magnitude of those π-π interactions (adsorption energy ECC = 49.2 meV) also 
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increases significantly in aromatic molecules as the number of hydrogen atoms 

(ECH = 80.1 meV)  increases73. The PES monomer has four hydrogen atoms attached to each 

of the aromatic rings (16 hydrogens in total) that can increase π-π interactions. Weak 

hydrogen bonding also exists between a soft acid (CH) and a soft base (π-group)74, 236, 237. 

PES (C27H22O4S)n has 22 hydrogen atoms in total (elemental analysis C 73.3 % H 5.01 %) 

which can interact with graphene. 

Solvent dispersion is a simple laboratory technique, compatible with PES, which permits 

small composite mass making it ideal for rapid iterative investigations. These considerations 

all make PES a good candidate for a test polymer. 

The aim of this experiment was to prepare PES-graphene composites using H2 and CO 

reduced graphenes, ultrasonication and solvent dispersion. The effectiveness of interactions 

in the composites due to combining the polar sulfone group with aromatic groups will be 

established by observing dispersion and measuring performance. 

10.2 Experimental 

Material information, preparation of nanocomposites and characterisation methods are 

detailed in Chapter 3. 

10.3 Results and Discussion 

10.3.1 Microscopy 

Electron microscopy was used to characterise graphenes and PES-graphene composites. It 

was used to confirm the quality of the graphene and reveal detail about the structure of PES-

graphene composites. 

Transmission electron microscopy (TEM) was required to resolve individual graphene layers. 

Individual graphene layers are often stacked on top of each other making it hard to determine 

if they are multi-layer or single layer. The number of layers can be determined by observing 

if graphene sheets overlap in a disordered manner (single layer) or if they exhibit regularly 

spaced fringes (multi-layer). Another problem is that as the concentration of graphene in the 

polymer increases it can be harder to identify single layer graphene. Thus areas of high 

contrast are ideal to establish the dispersion of graphene and the number of layers. A series of 

images at increasing resolutions were taken in the same location to allow useful comparison.  
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PES GT-H2 1 % polymer composites (Figure 10-2) show no visible clumping of graphene, no 

discernible multi-layer graphene and no small graphene particles even at high resolution. A 

sheet of graphene is visible at resolutions of 200, 100, 50 and 20 nm. As no fringes are visible 

at the edges (Figure 10-2d), it is identified as a single layer of graphene. The polymer edges 

are slightly uneven ( Figure 10-2a), but the polymer-graphene interface is even (no gaps) 

demonstrating good interfacial compatibility and adhesion. 

 

Figure 10-2 TEM images of PES GT-H2 1 % US and SD a) 200 nm b) 100 nm c) 50 nm d) 20 

nm 

PES GT-CO 1 % polymer composites (Figure 10-3) showed no visible clumping of graphene 

and no discernible multi-layer graphene. The dark areas show apparent graphene scrolling. 

The effect is unlike that visible in the GT-H2 reduced composite (Figure 10-2). At higher 

resolution (Figure 10-3d) graphenes appeared to be single layer (no striated edges). The 

polymer shows a smooth PES-graphene interface demonstrating good compatibility and 

adhesion. Comparable PES-graphene oxide (0.5 %) covalently bonded composites had a 

much less even dispersion of graphene245.  

TEM images of both PES composites showed an even distribution of graphene with good 

compatibility (evidence of adhesion). However, GT-CO reduced graphene appeared more 

prone to rolling or scrolling which created darker lines throughout the PES. Scrolling is 
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expected of pristine graphene246 and is triggered by ultrasonication especially in low defect 

graphene52. Scrolling increases the aspect (width to height) ratio of graphene which makes it 

easier for them to touch (similar to nanotubes)22, 247 providing improved electrical and 

thermal conductivity.  

 

Figure 10-3 TEM images of PES GT-CO 1 % US and SD a) 500 nm b) 200 nm c) 100 nm 

d) 20 nm 

10.3.2 Mechanical Properties 

10.3.2.1 Tensile Mechanical Analysis 

Stress-strain tensile mechanical analysis (SS-MA) was used to characterise and compare the 

mechanical performance of PES-graphene composites. A hysteresis curve was created to 

provide information about the reversible performance of PES by applying and then removing 

a ramped force of 18 N. 

The tangent modulus (stress/strain Figure 10-4) was compared to neat PES at a strain of 

0.05 %. PES GT-H2 1 % increased in stiffness (+18 %) while the PES GT-CO 1 % decreased 

in stiffness (-7 %). In a similar study, utilising covalent bonding, the elastic modulus 

(stress/strain) of sulfonated PES increased (+35 %) upon the addition of 10 % graphene 

oxide241. Thus PES GT-H2 1 % achieved half (51 %) of the elastic modulus using much less 

graphene (-90 %). A second study with covalently bonded PES-graphene oxide 1 % 
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composites achieved a 17 % (187 MPa versus 218 MPa) increase in tensile modulus 

(stress/strain)245 which is similar to that achieved using PES GT-H2. These results suggest 

that depending on which graphene was used the stiffness of PES could be increased or 

decreased using only π-interactions. However sampling uniformity and experimental error 

may make these changes insignificant. 

The hysteresis curves for the two PES composites were compared to neat PES. Max strain for 

the PES GT-H2 1 % composite showed reduced stretching (-19 %) whereas the PES 

GT-CO 1 % composite showed an insignificant increase (+1 %). When end strain was 

compared, PES GT-H2 showed a reduction in deformation (-42 %) on recovery. Reduced 

stretching and deformity suggest stronger cross-linking between GT-H2 graphene and PES 

possibly due to increased hydrogen bonding. Permanent deformation is an undesirable 

outcome for most polymers, and thus a reduction is usually welcome.  

a b  

c d  

Figure 10-4 Stress-strain mechanical analysis a) Hysteresis curves b) Tangent modulus 

c) Max strain d) End strain 

SS-MA results demonstrated that GT-H2 (1 %) reduced graphene with ultrasonication and 

solvent dispersion increased stiffness (+18 %), decreased stretching of PES under load 

(-19 %) and decreased deformation on recovery (-42 %) while GT-CO reduced graphene had 
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a negligible effect on all three metrics. However, given the relatively small changes in 

absolute terms, these results may not be significant. 

10.3.2.2 Dynamic Mechanical Analysis 

Dynamic Mechanical Analysis (DMA Figure 10-5) is used to characterise materials and 

compare them at different temperatures. As the temperature was increased storage modulus 

(elasticity), loss modulus (viscoelasticity) and tan delta (damping) were measured at a given 

frequency (1 Hz). 

The storage modulus of PES composites at 40 °C was compared to neat PES (1.1 GPa). 

Compared to neat PES the storage modulus of PES GT-H2 1 % (1.8 GPa +63 %) and PES 

GT-CO 1 % (2.2 GPa +98 %). The storage modulus of PES GT-CO composites was +35 % 

higher than that of PES GT-H2. Storage modulus measures the immediate response of stored 

energy (elastic portion), and an increase indicates improved interfacial interaction of PES 

with graphene. A similar study using sulphonated PEEK (poly(ether ether ketone)) and 

covalent bonding with graphene oxide (GO) obtained an ~86 % (+0.65 GPa) increase in 

storage modulus248.  Thus stronger interfacial interactions are demonstrated between PES and 

GT-CO reduced graphene using only π-interactions and can be similar to those achieved with 

covalent bonding.  

The loss modulus of PES composites at 40 °C was compared to neat PES (48 MPa). PES GT-

H2 1 % (57 MPa +19 %) and PES GT-CO 1 % (63 MPa +33 %) both showed increases 

compared to neat PES. However, the loss modulus of PES GT-CO was higher (+14 %) than 

that of PES GT-H2. This means the time-dependent delayed response (viscous portion) 

increased when graphene was added to PES. 

Tan delta of PES composites at 40 °C was compared to neat PES (0.043). PES GT-H2 1% 

(0.031 -27 %) and PES GT-CO 1 % (0.029 -33 %) both showed reductions compared to neat 

PES. This decrease in damping (movement to a more solid state) can be attributed to a 

decrease in free volume (enhanced interfacial interactions) and the graphene hindering the 

motion of the matrix (PES) chains. The enhanced interfacial interaction of GT-CO reduced 

graphene over GT-H2 reduced graphene may indicate less steric hindrance due to decreased 

oxide levels or greater surface area due to better exfoliation.  However given that the tan delta 

range is 0-2 the differences are negligible. 
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The DMA probe demonstrates that both GT-H2 1 % and GT-CO 1 % reduced graphene when 

combined with ultrasonication and solvent dispersion improved the elasticity (storage) and 

viscoelasticity (loss) while lessening the damping of PES. However, GT-CO reduced 

graphene had the greatest effect on storage (+98 %), loss (+33 %) and tan delta (-33 %) 

demonstrating improved interactions between GT-CO reduced graphene and PES even at a 

relatively low loading. 

a  

b  

c  

Figure 10-5 PES CO 1 % SD a) Storage modulus b) Loss Modulus c) Tan Delta  
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10.4 Conclusion 

Polyethersulfone graphene (1 %) composites prepared using ultrasonication and cast using 

solvent dispersion compared the effectiveness of interactions of GT-H2 and GT-CO reduced 

graphene with the polymer.  TEM microscopy showed that both GT-H2 and GT-CO reduced 

graphenes were compatible with PES with good interfacial adhesion. However, GT-CO 

reduced graphene showed darker lines which appeared to be rolling or scrolling of graphene. 

Stress-strain measurements demonstrated that GT-H2 (1 %) reduced graphene decreased 

deformation of PES as stiffness increased while GT-CO (1 %) reduced graphene had a 

negligible effect on deformation, stiffness and strain on recovery. However, absolute 

differences were small, so the results may not be significant. Increased interfacial 

interactions, increased viscoelasticity with decreased free volume demonstrated that 

interactions between PES GT-CO increased indicating a move to a more solid state and an 

increase in the elastic nature of PES. These results established that PES binds well with 

graphene (non-covalent bonding) and matched the performance of covalently bonded 

graphene.  

However, scrolling of GT-CO reduced graphenes may be of greatest interest because the 

increased cross-sectional area of such graphenes may lead to improved thermal and electrical 

conductivity.  
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Chapter 11 Conclusion 
11.1 Conclusion 

This research aimed to prepare graphene, and to reactively modify its surface to enhance 

exfoliation and facilitate bonding to chosen matrix polymers; to characterise the prepared 

materials and determine their physical and mechanical properties. Five research objectives 

were formulated to accomplish the research aim. These objectives are composed of two key 

parts: 1) Preparation of graphene and 2) Combination of graphene with polymers. To achieve 

these objectives, a thermal expansion method was used to produce low-defect graphene using 

inert or reducing gases and to improve its dispersion using ultrasonication. Four types of 

thermoplastic polymers were used as examples to bond with the graphene: poly(styrene-b-

butadiene-b-styrene), poly(ethylene terephthalate), polycarbonate and polyether sulfone. Two 

major dispersion methods were used: solvent and melt dispersion. 

Graphene was successfully produced using a thermal (air) expansion method. Defects in the 

graphene sheets (and specifically oxides) were successfully removed using inert (N2) or 

reducing gases (H2 and CO). Other graphene defects (voids and inclusions) were repaired 

using CO. The results were compared to a commercial graphene (CT). To overcome the 

problem of graphene agglomeration, exfoliation of the graphene sheets was achieved by 

using aromatic solvents (p-xylene) and ultrasonication. The p-xylene was shown to bond to 

the graphene using π-interactions that assisted with exfoliation of the layers. Raman 

spectroscopy showed that CO reduction produced the lowest D/G ratio (a measure of defects) 

and the highest 2D/G ratio (indicating the fewest number of graphene layers). Contact angle 

measurements showed CO reduction produced the most hydrophobic graphene (the highest 

contact angle and lowest surface energy). Electron microscopy showed that single layer 

graphene (with some scrolling) was being produced using CO reduction. Density functional 

theory calculations were used to show that p-xylene adsorbed parallel to the graphene plane 

leading to the enhanced dispersion of graphene. These tests showed CO-reduced graphene 

was superior to the other graphenes. Low defect graphene is uncommon and has previously 

not been available in larger quantities which were shown can be produced using this method. 

Graphene was dispersed in an aromatic polymer using π-interactions. SBS graphene 1 %·w/w 

composites were prepared using thermally expanded (Air, N2, H2), functionalised (Fe3O4) and 

commercial (CT) graphenes with ultrasonication and solvent dispersion. SBS composites 
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using thermally expanded H2 reduced graphene had stronger interfacial interactions (storage 

modulus) and lost more energy (loss modulus) than any other graphene. Graphene dispersion 

using ultrasonic shear depended on π–interactions between the aromatic rings of the solvent, 

graphene and polystyrene to disperse the graphene in the polymer and stabilise the dispersion 

against agglomeration. The formation of π-interactions avoided the creation of new defects in 

graphene and maintained the perfect sp2 structure of a low defect graphene. The dispersion of 

low defect graphene in polymers is uncommon as they have previously not been available in 

sufficient quantity. 

The amount of graphene that was dispersed in an aromatic polymer was varied. SBS 

composites were prepared with up to 20 %·w/w low defect GT-CO reduced graphene using 

ultrasonication and solvent dispersion. The effectiveness of the dispersion was demonstrated 

by the performance of the SBS that was enhanced by the GT-CO reduced graphene to 

20 %·w/w: showing that its deformation decreased as the stiffness increased. The existence of 

single layer graphene (with some scrolling) in SBS was verified using TEM, and the 

interactions between the SBS and graphene were validated using DFT calculations. They 

confirmed that π-interactions between the components were effective for dispersing graphene 

even at higher loadings. Further improvements in performance were shown to be possible 

with longer ultrasonication times at higher graphene loadings.  

Graphene was dispersed using melt dispersion and solvent dispersion. PET GT-H2 1 %·w/w 

reduced low defect graphene composites were prepared using melt dispersion (without 

ultrasonication) and solvent dispersion (with ultrasonication). The addition of reduced 

graphene did not affect crystallinity in PET composites. Reduced graphene increased 

permeation of O2, and the effect was largest with ultrasonication. This effect is opposite to 

that of oxidised graphene (which reduces O2 permeation). Ultrasonication produced 

composites with raised fracture lines (observed using SEM) and fewer multi-layer graphenes 

(revealed using TEM) suggesting better separation of graphene sheets. Melt dispersion 

produced composites which had higher stiffness, reduced deformation, better interfacial 

interactions, greater energy loss through increased viscoelasticity while moving toward a 

liquid state with increasing free volume. DFT calculations of the PET-graphene interactions 

validated the dispersion of graphene in PET. The results suggested that ultrasonication and 

melt dispersion ought to be combined. 
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Graphenes were dispersed with and without ultrasonication. PET GT-CO 1 % reduced 

graphene composites were prepared using melt dispersion with and without out 

ultrasonication. Ultrasonication produced composites that were black, typical of reduced 

graphene, compared to those without ultrasonication which were grey. Ultrasonication 

significantly reduced graphene agglomeration. Single layer graphene existed in both 

ultrasonicated and non-ultrasonicated composites, but more single layer graphene existed 

when ultrasonication was used. Ultrasonication of graphene before dispersion in PET 

increased stiffness, energy lost through increased viscoelasticity and damping. 

Polycarbonate composites with low loadings (0.1 %·w/w) of ultrasonicated GT-H2 and 

GT-CO low defect graphenes were prepared using melt dispersion. PC GT-CO composites 

showed increased energy lost due to viscoelasticity and a move to a more liquid state (greater 

free volume). However, the absolute values were small, so any improvements were 

insignificant. PC interfacial interactions (storage modulus) increased slightly for both GT-CO 

and GT-H2 reduced graphene but favoured hydrogen reduced graphene. TEM microscopy 

showed single layer graphene in both composites with no evidence of any multi-layer 

graphene. GT-CO reduced graphene showed signs of scrolling (greater cross-sectional area) 

while GT-H2 reduced graphenes implied increased hydrogen bonding and this may explain 

the performance difference between the two alternative graphenes. DFT calculations were 

used to show that the PC and graphene interacted via π-interactions.  

Polyethersulfone graphene (1 %) composites were prepared using ultrasonication and solvent 

dispersion compared the performance enhancing effects of GT-H2 and GT-CO reduced 

graphene.  TEM microscopy showed that both GT-H2 and GT-CO reduced graphenes were 

present as single layers in PES. However, GT-CO reduced graphene showed darker lines 

which appeared to be rolling or scrolling of graphene. Stress-strain measurements revealed 

that GT-H2 reduced graphene decreased the maximum deformation of PES and increased 

stiffness but had no effect on the strain on recovery. GT-CO reduced graphene had a 

negligible effect on deformation, stiffness and strain on recovery. Increases in interfacial 

interactions, energy lost through viscoelasticity and slight move to a more solid state (with 

less free volume) showed the greatest changes occurred with GT-CO reduced graphene. 

Thermal expansion and repair, in a reducing carbon monoxide atmosphere, was an efficient 

and effective means to produce low defect graphenes. Dispersed in aromatic solvents these 

graphenes were solution or melt dispersible in aromatic thermoplastic polymers such as SBS, 
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PET, PC or PES provided reinforcement with graphenes due to π-interactions and weak 

hydrogen bonding. Melt dispersion combined with ultrasonication was the most efficient 

method of dispersing graphene in polymers. DMA measurements of energy storage (storage 

modulus), energy loss (loss modulus) and their ratio (tan delta) were the most sensitive to 

changes in aromatic polymers when graphene was added. The enhanced properties of 

aromatic polymers continued to increase up to a graphene loading of 20 %. The performance 

of aromatic polymers using low defect graphene was similar to that reported when 

incorporating high defect graphene via covalent bonding. Scrolling of GT-CO reduced 

graphenes may be of great interest because the increased cross-sectional area of such 

graphenes may lead to improved thermal and electrical conductivity. 

11.2 Applications of This Work 

The immediate uses of this research could include the greater use of low defect graphene and 

the improved dispersion of graphene in aromatic polymers. Industries that could immediately 

benefit include those of aerospace and electronics. Possible products where the low-defect 

graphene could be used include 3D printing, safety equipment (such as helmets) and 

electronically or thermally conductive polymers. 

11.3 Future Ideas 

11.3.1 Improved Dispersions 

Improve dispersion of graphene using ultrasonication could be achieved using a Rosette 

cooling cell and a glass cooling cell which both improve the circulation and cooling. It is 

estimated that better circulation would halve the ultrasonication time. Better cooling is likely 

to also reduce ultrasonication time by around 50 %249. 

11.3.2 Bonding With Other Polymers 

The use of non-aromatic polymers to disperse low-defect graphene using melt dispersion 

(with ultrasonication) could be tried. It could be expected that mechanical dispersion forces 

and hydrogen bonding will prevent the agglomeration of graphenes. Thus by achieving good 

graphene dispersion before adding to a polymer,  !"#	of the desirable properties may be 

retained. 
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11.3.3 Other Improved Properties 

Low defect graphenes offer an advantage over high defect graphenes as they are more likely 

to be conductive. The tendency of low defect graphenes to scroll, especially after 

ultrasonication, makes them somewhat similar in profile to nanotubes which achieve 

conductivity at much lower concentrations than graphene. A question may be asked at what 

%·w/w level do polymer composites become conductive? Aromatic polymers are assumed to 

be advantageous for such experiments, but non-aromatic polymers may encourage graphenes 

to curl as they are not likely to contain rigid aromatic rings. 

Further investigation of which aromatic polymers properties (e.g. cracking, heat transfer, 

durability, capacitance, EMF shielding) are most enhanced by the addition of low defect 

graphene could be attempted. Graphene is non-polar and thus non-polar polymers should be 

preferred. 

Investigation of the effect of graphene loading on the storage modulus, loss modulus and tan 

delta of the polymer composites would be useful. These properties showed the greatest 

improvements, but it was unclear if they would continue to improve as the loading of 

graphene increased past 3 % (the loading limit in other studies). Other research in this area 

has primarily concentrated on covalently bonded graphene, but it would be useful to know 

how low-defect graphene behaves and what is the maximum loading achievable before these 

properties stop improving. 

Other research questions that might be addressed are: Can low defect graphene be used to 

reinforce polymers such as PDMS to increase the speed of gas filtration250? Do low oxide 

levels provide an advantage? 

How much does low defect graphene improve fracture toughness in brittle polymers such as 

epoxy? Improved fracture toughness is of keen interest in the aerospace industry and where 

high performance is required (such as for motorcycle helmets). It is likely that dispersions of 

0.1 % or less may have meaningful benefits11. Such low loadings would be cost effective and 

should be easy to achieve. 
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11.3.4 Improved Production Methods 

Investigation of other methods for improving the production of low-defect graphene could be 

pursued. Methods of improving production could include low-cost sources of CO, reducing 

energy losses and high-temperature laser expansion.  

11.3.5 Scalability 

To produce sufficient quantities of graphene for commercialisation, the lab techniques 

discovered in this work need to be scalable. By using upscaled ultrasonication: larger 

1,000 W, 1,500 W, etc… ultrasonicators can treat larger quantities of graphene (using bigger 

tips) and decrease the ultrasonication time by 50 % (or more). To be commercially useful for 

larger projects the time to treat larger amounts of graphene (1 kg or more) needs to be ~1 

hour or less. 

Also investigation of alternative cavitation techniques which are more scalable than 

ultrasonication could be useful. Companies such as Hydrodynamics have cavitation 

techniques that replace ultrasonication but can handle huge volumes with rapid throughput. 
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