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SUMMARY 

Acute myocardial infarction secondary to coronary artery occlusion is a leading cause 

of death worldwide. Timely myocardial reperfusion, using either thrombolytic therapy or 

percutaneous coronary intervention, is the primary treatment for patients with acute ST-

segment elevation myocardial infarction. Although this reperfusion strategy is essential for 

myocardial salvage, it can in itself induce myocardial damage and cardiomyocyte death, a 

phenomenon termed “myocardial reperfusion injury”. There are no pharmacological strategies 

to address reperfusion injury that have achieved successful clinical outcome. An emerging 

strategy to alleviate this ischaemia/reperfusion (I/R) injury is to manipulate the interplay 

between pro-injurious and pro-survival kinase pathways at the time of reperfusion.  

The first part of my PhD study is to determine the temporal change in the expression 

of pro-injurious kinases implicated during I/R, which include the mitogen-activated protein 

kinases (MAPKs) c-jun N-terminal kinases (JNKs) and p38 MAPK together with 

calcium/calmodulin-dependent protein kinase (CaMK) II and phospholamban (PLN), as well 

as kinases that are pro-survival including the MAPK extracellular signal-regulated kinase 

(Erk) 1/2, protein kinase B (Akt) and signal transducer and activator of transcription (STAT) 

3. Langendorff-perfused rat hearts were subjected to 20 min no-flow global ischaemia without 

reperfusion or followed by either 5, 15 or 30 min reperfusion. The temporal change in the 

expression of pro-injurious and pro-survival kinases during myocardial I/R was studied using 

Western blot. It was found that p38 MAPK and CaMKII were phosphorylated during 

ischaemia and the phosphorylation of p38 MAPK, but not CaMKII, remained elevated 

throughout 30 min reperfusion. No significant changes in the phosphorylation of pro-injurious 

kinases JNK 1/2 or protective kinases Erk 1/2, Akt and STAT3 were observed during 

ischaemia while their phosphorylation was subsequently elevated to be highest at 30 min of 
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reperfusion. The phosphorylation of PLN was greatest at 5 min of reperfusion and reduced to 

basal levels 15 min after reperfusion. In conclusion, the expression of most kinases 

investigated in this study was highest at 30 min of reperfusion, except for PLN where 

phosphorylation was highest at 5 min of reperfusion. p38 MAPK and CaMKII were 

phosphorylated during ischaemia and the phosphorylation of p38 MAPK, but not CaMKII 

remained elevated throughout 30 min reperfusion.  

In the second part of my study, the ability of the synthetic flavonol, 3’,4’-

dihydroxyflavonol (DiOHF) to alter the expression of pro-survival and pro-injurious kinases 

during myocardial I/R was studied. DiOHF has been demonstrated to confer cardioprotection 

against myocardial I/R injury in various models including sheep and goat in vivo and rats in 

vitro. These data suggest that it has the potential as an adjunctive therapeutic agent for 

reperfusion injury however the mechanism of DiOHF-induced cardioprotection remains 

elusive. Isolated rat hearts were subjected to 20 min global, no-flow ischaemia followed by 5 

or 30 min reperfusion in the presence of 10 μM DiOHF. The post-ischaemic cardiac 

relaxation was significantly improved, accompanied by reduced lactate dehydrogenase 

release, an indicator of cell death, and the number of apoptotic bodies measured using an in 

situ apoptosis detection assay was also decreased with DiOHF treatment compared to its 

vehicle control. At 5 min reperfusion, DiOHF treatment had no significant effect on the 

phosphorylation of p38 MAPK, JNK 1/2, CaMKII, Akt, Erk 1/2 and STAT3 compared to its 

vehicle control, however it significantly reduced the I/R-induced increased phosphorylation of 

PLN. At 30 min of reperfusion, the phosphorylation of p38 MAPK, Erk 1/2 and STAT3 was 

also not affected with DiOHF treatment compared to its vehicle control. I/R-induced 

increased phosphorylation of the pro-injurious kinase JNK 2 at 30 min of reperfusion was 

significantly reduced with DiOHF treatment. I/R-induced increased phosphorylation of 

CaMKII also tended to decrease with DiOHF treatment, although not significant, while the 
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phosphorylation of PLN remained low with DiOHF treatment at 30 min of reperfusion. 

Interestingly, the I/R-induced increased phosphorylation of the protective kinase Akt was also 

reduced with DiOHF treatment at 30 min of reperfusion. These data suggest that DiOHF 

exerted protection against reperfusion injury in rat isolated hearts by inhibiting I/R-induced 

increased activation of PLN at 5 min of reperfusion while the protective action of DiOHF at 

30 min reperfusion was mediated by inhibiting the I/R-induced increased activation of JNK 2 

and maintaining the activation of PLN at low levels without affecting the activation of 

protective kinases Erk 1/2 and STAT3. 

After an episode of acute myocardial infarction, patients are highly susceptible to 

develop acute heart failure. Patients with acute heart failure and a low systolic pressure at 

admission have a high mortality rate, therefore they are often treated with a positive inotrope. 

The redox sibling of nitric oxide, nitroxyl (HNO) has been shown to improve cardiac 

contractility and vasodilatation in normal and failing hearts in a canine model. The 

mechanism of the cardiac and vascular action of HNO has been investigated in isolated 

cardiomyocytes and in rat isolated hearts using a constant flow preparation. The third part of 

my study was to investigate the mechanism of action of the HNO donor Angeli’s salt using 

isolated hearts perfused at constant pressure. Angeli’s salt (10 pmol- 10 μmol) elicited 

concomitant, potent dose-dependent increases in coronary flow and cardiac contractility in 

normal rats hearts. The mechanism of the dilator and cardiac actions of Angeli’s salt was 

investigated in the presence of various pharmacological agents including the HNO scavenger 

L-cysteine (4 mM), the nitric oxide scavenger hydroxocobalamin (HXC, 0.1 mM), the 

calcitonin gene-related peptide (CGRP) receptor  antagonist CGRP8-37, (0.1 μM), the soluble 

guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 

μM), the voltage-gated potassium channel inhibitor, 4-aminopyridine (4-AP, 1 mM) and the 

thiol-reducing agent, dithiothreitol (DTT, 100 µM). These scavengers or inhibitors were 
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added for at least 15 min in the physiological buffer before the dose–response curve to 

Angeli’s salt was carried out. L-cysteine and ODQ caused a rightward shift in (but did not 

abolish) the dose-response curve of the cardiac and dilator effects induced by Angeli’s salt, 

implicating contributions from HNO and sGC in both the vasodilator and inotropic actions of 

Angeli’s salt. In contrast, neither the HXC, CGRP8-37 nor 4-AP affected Angeli’s salt actions. 

In addition, the presence of the DTT attenuated the inotropic, but not the dilator action of 

Angeli’s salt. These data suggest that Angeli’s salt induced vasodilatation and cardiac 

contractility via sGC-dependent and thiol-sensitive mechanisms.  

In the fourth part of my study, the acute improvement in cardiac and vascular function 

by Angeli’s salt after myocardial I/R was investigated. The cardiac effect of Angeli’s salt was 

compared to the clinically used inotrope for acute heart failure dobutamine, while its dilator 

effect was compared with the nitric oxide donor, diethylamine NONOate (DEA/NO). Rat 

isolated hearts were subjected to 75 min physiological buffer perfusion (sham) or treated with 

30 ischaemia followed by 25 min reperfusion. Following pre-constriction of the coronary 

vasculature with the thromboxane mimetic U46619 (9,11-dideoxy-9α,11α-methanoepoxy 

prostaglandin F2α, 3 µM), dose-response curves to the HNO donor, Angeli’s salt (1 nmol- 10 

μmol), the nitric oxide donor, DEA/NO (1 nmol- 1 μmol) and the clinically used inotrope for 

acute heart failure, dobutamine (100 pmol- 100 nmol) were performed. Both Angeli’s salt and 

DEA/NO elicited dose-dependent increases in coronary flow in sham hearts. The vasodilator 

response to Angeli’s salt, but not DEA/NO was preserved in hearts subjected to I/R. Angeli’s 

salt and dobutamine also increased cardiac contractility in sham hearts, however positive 

inotropic actions caused by both Angeli’s salt and dobutamine were impaired in I/R-treated 

hearts. In addition, tachycardia caused by dobutamine, but not Angeli’s salt, was exacerbated 

in I/R-treated hearts and this may increase the risk of arrhythmias which can cause sudden 

cardiac death. These data suggest that Angeli’s salt may have advantages over the clinically 
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used inotrope, dobutamine to improve impaired cardiac function after acute myocardial 

infarction and it also had superior coronary vasodilator capacity after I/R.  

 In conclusion, these studies provide evidence to support the possible use of DiOHF 

and HNO in the treatment of acute myocardial infarction to reduce reperfusion injury or to 

improve cardiac contractility and induce vasodilatation respectively.  
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Chapter 1 

1. Literature Review 

1.1 Introduction 

Cardiovascular disease (CVD) remains the leading cause of death worldwide. The 

World Health Organisation (WHO) estimated that in 2012, 17.5 million people died from 

CVDs, which contributed to 31% of all global deaths. Of these deaths, an estimated of 7.4 

million cases were due to coronary heart disease. Coronary heart disease, a disease of blood 

vessels supplying the heart muscle, is predominantly caused by the formation of 

atherosclerosis, which is characterized by the accumulation of fatty acids, cholesterols and 

white blood cells in blood vessels, leading to blockage of blood vessels and cessation of blood 

flow to the heart. Major complications of coronary heart disease include myocardial infarction 

and heart failure. Timely reperfusion of the blocked vessel is critical to restore the blood flow 

to the ischaemic myocardium to salvage myocardial tissues and improve clinical outcomes. 

Paradoxically, this reperfusion strategy can induce a form of myocardial injury called 

reperfusion injury.   

Myocardial reperfusion injury was first suggested by Jennings and colleagues in 1960 

when they observed pathological changes in the canine heart after ischaemia/reperfusion (I/R) 

(Jennings et al., 1960). The morphological changes in the canine heart included cell swelling, 

contracture of myofibrils and calcification in the mitochondria. In later years, 4 types of 

reperfusion-induced cardiac dysfunction have been reported which include: i) reperfusion 

arrhythmias, ii) microvascular dysfunction, iii) myocardial stunning and iv) lethal reperfusion 

injury (Yellon & Hausenloy, 2007). The first 3 types of cardiac dysfunction are reversible; 
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however, lethal reperfusion injury contributes to further myocardial tissue death beyond that 

generated by ischaemia alone. It has been reported that as much as 50% of the final 

myocardial infarct size is due to the reperfusion injury (Yellon & Hausenloy, 2007), 

indicating that pharmacological intervention at the time of reperfusion to resuscitate 

ischaemic myocardium is a realistic proposition to reduce infarct size. At present, there is no 

effective pharmacological treatment for reperfusion injury. 

 

1.2 Pathological features of I/R injury 

1.2.1 Reperfusion arrhythmias 

The detrimental consequences of reperfusion have been realized for well over a 

century. In one of the earliest known reports from the 19
th

 century, Cohnheim and Von 

Schulthess-Rechberg (1881) reported ventricular fibrillation (which is defined as 

asynchronous excitations and contractions in the ventricular region) occurred within seconds 

of the onset of myocardial reperfusion in an experimental model (Wit & Janse, 2001). The 

incidence of arrhythmias depends on the species and the duration of the preceding ischaemic 

period with maximum frequency of arrhythmias after 10 to 30 min of ischaemia (Manning & 

Hearse, 1984). Elevated levels of reactive oxygen species (ROS) have been the focus of 

considerable attention as possible initiators of arrhythmias (Kloner et al., 1989). ROS, 

generated on reperfusion, triggers protein oxidation and lipid peroxidation, which in turn 

disrupts cell membrane integrity and modifies the activity of a number of ionic translocating 

proteins in the sarcolemma (Opie, 1989). As a result, electrophysiological alterations 

including shortening of the action potential, reduced amplitude and maximum rate of 

depolarization, decreased conduction velocity and abnormal automaticity occur (Opie, 1989). 

The disturbance in the ionic homeostasis, particularly potassium (K
+
) and calcium (Ca

2+
) ions 
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and the stimulation of adrenergic receptors may also contribute to reperfusion arrhythmias 

(Hearse & Bolli, 1992).  

 

1.2.2 Microvascular dysfunction and the “no-reflow” phenomenon 

The “no-reflow” phenomenon is defined as inadequate myocardial perfusion through a 

segment of the coronary circulation without angiographic evidence of mechanical vessel 

obstruction after the opening of an occluded artery (Kloner et al., 1974). This phenomenon 

was first described in 1966 by Krug and colleagues where significant portions of the cat inner 

myocardium were not perfused after temporary occlusions of 60 to 120 min (Krug et al., 

1966). In 1974, Kloner and colleagues again demonstrated that after 90 min coronary artery 

occlusion in the canine heart, myocardial tracers such as carbon black or thioflavin S (a 

fluorescent stain for endothelium) injected to measure the distribution of coronary arterial 

flow showed a significant area of the inner half of the damaged myocardium was not 

penetrated by tracers (Kloner et al., 1974). This suggested that poor or absent perfusion of the 

previously ischaemic myocardium in the inner ventricular wall had occurred (Kloner et al., 

1974). In addition, electron microscopic study showed severe capillary damage and 

myocardial cell swelling in the poorly perfused area (Kloner et al., 1974). Intraluminal 

capillary plugging by neutrophils, endothelial protrusions (also called “blebs”) and/or 

microthrombi was also reported (Kloner et al., 1974).  

Possible causes of this phenomenon include myocardial cell swelling associated with 

interstitial edema compressing the microvessel, and capillary occlusion by aggregated 

platelets and/or neutrophils that limit adequate perfusion on reperfusion (Reffelmann & 

Kloner, 2002). In addition, vasoconstrictors released by damaged endothelial cells, 

neutrophils and platelets as well as the overproduction of superoxide anions (O2
-
) due to 

increased production of xanthine oxidase by neutrophils may cause impaired endothelium-
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dependent, nitric oxide (NO)-mediated relaxation and result in sustained vasoconstriction of 

coronary microcirculation (Niccoli et al., 2009). Microemboli formation from the 

atherosclerotic plaque debris may also obstruct blood flow and contribute to the development 

of “no-reflow” phenomenon (Reffelmann & Kloner, 2002). 

In the clinical setting, no-reflow has also been reported in patients after thrombolysis 

or mechanical reperfusion therapy such as percutaneous coronary interventions (Schofer et 

al., 1985; Bates et al., 1986; Wilson et al., 1989). The no-reflow phenomenon that occurs 

after a reperfusion strategy has been associated with a higher prevalence of early post-

infarction complications such as left ventricular remodeling and rupture, congestive heart 

failure and death (Eeckhout & Kern, 2001).  

 

1.2.3 Myocardial stunning 

Myocardial stunning is the transient mechanical left ventricular dysfunction that 

persists after reperfusion, despite the absence of irreversible damage (Bolli, 1990). Stunning is 

a reversible injury which must be distinguished from the irreversible injury of infarction. 

Evidence for myocardial stunning has emerged from a considerable number of both 

experimental and clinical studies. In anesthetized dogs, for example, 15 min of myocardial 

ischaemia followed by reperfusion results in a prolonged decrease in contractility lasting 

several hours despite all cells remaining viable (Farber et al., 1988). Left ventricular 

dysfunction consistent with stunning has been demonstrated in many clinical settings, such as 

that evident in patients subjected to planned periods of global I/R during coronary artery 

bypass grafting, surgery for coronary artery disease (Ferrari et al., 1990).  

The precise mechanism responsible for myocardial stunning requires further 

investigation, but the following three appear most plausible: i) elevated levels of ROS, ii) 

Ca
2+

 overload and iii) excitation-contraction uncoupling (Bolli, 1990). It has been suggested 
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that increased oxidative stress disrupts several proteins involved with Ca
2+ 

flux across both 

the sarcolemma and sarcoplasmic reticulum, which results in reduced Ca
2+

 sequestration from 

the cell and increased free cytosolic Ca
2+ 

concentration. This impairs the contractility in the 

ischaemic myocardium (Jeroudi et al., 1994). Altered Ca
2+ 

homeostasis may also disrupt 

excitation-contraction uncoupling causing mechanical left ventricular dysfunction (Jeroudi et 

al., 1994). In addition, the production of ROS may also react with contractile proteins via 

oxidative modifications (e.g. oxidation of critical thiol groups) and a decrease in the 

responsiveness of myofilaments to Ca
2+ 

may lead to impaired left ventricular contractility 

(Bolli, 1990). Although myocardial stunning is usually considered transient and reversible, 

lasting hours rather than days or weeks, the phenomenon of “chronically stunned 

myocardium” is now emerging, particularly in large, pre-clinical animal models and in 

patients (Canty & Suzuki, 2012).  

 

1.2.4 Lethal reperfusion injury 

Lethal reperfusion injury can be defined as the injury caused by the restoration of 

blood flow after an ischaemic episode leading to death of cells that were viable at the time of 

reperfusion. Cardiomyocyte death as a result of I/R injury involves two major types of cell 

death: apoptosis and necrosis. Necrosis is an irreversible form of cell death that is a direct 

result of prolonged ischaemia, characterized by irreversible cell membrane rupture with the 

release of cytosolic components (Bartling et al., 1998). As distinct to necrosis, apoptotic cell 

death features cell shrinkage, chromatin condensation, formation of cytoplasmic blebs and 

apoptotic bodies, without loss of membrane integrity or inflammation (Bartling et al., 1998). 

Both necrosis and apoptosis are evident following post-ischaemic reperfusion; in contrast, 

necrotic (but not apoptotic) cell death is evident after permanent coronary artery occlusion 

without reperfusion (Zhao et al., 2000). 
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Death of cardiomyocytes during I/R appears to be an active process, which can be 

inhibited with appropriate interventions. Interestingly, mitochondria are emerging as a crucial 

regulator in all forms of cell death in I/R injury, in particular with respect to the mitochondrial 

permeability transition pore (mPTP) (Lemasters et al., 1998). Mitochondrial PTPs are 

voltage-dependent and high conductance channels. Opening of mPTPs can result in the 

activation of a series of signalling events leading to apoptosis and necrosis (Lemasters et al., 

1998). The mPTP can be activated as a result of increased ROS and/or Ca
2+

 overload, as 

discussed later. 

 

1.3 Mechanisms of I/R injury 

There is growing understanding of the pathophysiological mechanisms of myocardial 

I/R injury that is helping to guide the investigation of new pharmacological approaches to 

cardioprotection. In particular, ROS overproduction, Ca
2+ 

overload and infiltration of 

inflammatory cells into the site of injury have received considerable attention in their role as 

important mediators of the direct myocardial I/R injury. 

 

1.3.1 ROS hypothesis of myocardial I/R injury 

Molecular oxygen (O2) is used as a terminal electron acceptor to metabolize organic 

carbon to provide energy. In the myocardium, 95% of O2 is reduced by tetravalent reduction 

to water through the mitochondrial electron transport chain, however a small percentage 

(<5%) of O2 consumed can leak from this respiratory chain and result in the formation of 

various ROS including O2
-
, hydroxyl radicals, hydrogen peroxide, peroxynitrite and 

hypochlorous acid (Bandyopadhyay et al., 2004). Under physiological conditions, oxygen-

derived free radicals are important mediators in signal transduction to induce transcription 

factor activation, gene expression, cell growth and others; however, they can also promote 
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oxidation of lipids, proteins and DNA resulting in lethal cell damage (Bandyopadhyay et al., 

2004). There are also a group of proteins called antioxidants present in the cell which function 

is to inhibit oxidation and prevent the oxidation-induced cellular damage (Bandyopadhyay et 

al., 2004). When the antioxidant defense mechanism fails to counteract the accumulation of 

ROS, oxidative stress occurs and this could cause cell death. 

ROS generation has been documented during ischaemia; however maximal levels of 

ROS occur during reperfusion. Zweier and colleagues demonstrated that oxygen-centered 

radical production was detected during ischaemia while a burst of oxygen free radical 

generation occurred during the first 10 sec of reperfusion in perfused rabbit hearts subjected 

to global I/R injury (Zweier et al., 1987). Later, Bolli and colleagues also reported that ROS 

generation was detected during coronary artery occlusion performed in open-chest dogs and 

this ROS generation increased dramatically after reperfusion (Bolli et al., 1989). This 

increased ROS production contributed to post-ischaemic contractile dysfunctions in the 

canine heart (Bolli et al., 1989). 

During ischaemia, adenosine triphosphate (ATP) generation is limited due to a lack of 

O2 supply and hydrolysis of ATP occurs and results in the production of adenosine 

diphosphate and adenosine monophosphate (AMP) (Zweier & Talukder, 2006) (Figure 1.1). 

AMP then undergoes catabolism to produce hypoxanthine. Upon reperfusion, hypoxanthine 

reacts with O2 to form uric acid and O2
-
, a reaction catalyzed by xanthine oxidase (Zweier & 

Talukder, 2006). The activation of this series of events is a major source of ROS generation 

during I/R (Figure 1.1). There are also a number of potential sources from which ROS may be 

produced during I/R, such as from the pro-oxidant enzyme xanthine oxidase in endothelial 

cells, respiratory burst caused by nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase in inflammatory cells (especially neutrophils and monocytes), malfunction of the 

mitochondrial electron transport chain (particularly from complex I and III), as well as the the 
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uncoupling of the nitric oxide synthases (Bolli, 1988; Duilio et al., 2001; Zhao, 2004; 

Sugamura & Keaney, 2011). Overproduction of ROS is a key feature of reperfusion 

arrhythmias, myocardial stunning and endothelial dysfunction; it can also trigger the opening 

of the mPTP resulting in cell death (Kloner et al., 1989). Moreover, the severity of cell 

damage post-I/R is proportional to the magnitude of ROS-mediated responses within 

cardiomyocytes (Ferrari et al., 1993). 
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Figure 1.1: The oxygen hypothesis in myocardial ischaemia/reperfusion injury. During 

ischaemia, hydrolysis of adenosine triphosphate (ATP) takes place resulting in the production 

of adenosine diphosphate (ADP) and subsequent formation of adenosine monophosphate 

(AMP). There is an accumulation of AMP during ischaemia. AMP undergoes further 

breakdown forming hypoxanthine. Upon reperfusion, hypoxanthine reacts with oxygen 

molecules (O2) and this generates superoxide anions (O2
-
) and uric acid. The production of 

O2
-
 can cause oxidation of lipids, proteins and DNA resulting in cell death (Zweier & 

Talukder, 2006). 
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1.3.2 Ca
2+

 hypothesis of myocardial I/R injury 

Cardiomyocyte Ca
2+

 overload during myocardial I/R is the result of altered 

metabolism during the ischaemic insult. Under normal conditions, cardiac muscle is a highly 

aerobic tissue; that is, it obtains virtually all its energy from oxidative metabolism. During 

ischaemia, cardiomyocyte O2 supply becomes limited, the heart undergoes anaerobic 

metabolism producing lactic acid and other products of anaerobic glycolysis resulting in 

intracellular acidosis and a drop in pH level (Sanada et al., 2011). This rapid intracellular 

acidosis activates pH-regulating ion transporters, including the sodium proton (Na
+
/H

+
) 

exchanger and the sodium-bicarbonate (Na
+
/HCO3

-
)
 
co-transporter, which together results in 

cardiomyocyte Na
+ 

accumulation (Figure 1.2) (Tani & Neely, 1989; Pierce & Meng, 1992). 

On the other hand, ATP depletion during ischaemia leads to inactivation of the sodium-

potassium pump (Na
+
/K

+
-ATPase), further enhancing cardiomyocyte Na

+
 accumulation 

(Solaini & Harris, 2005). This Na
+
 overload reverses the normal direction of the sarcolemmal 

Na
+
/Ca

2+
 exchanger, resulting in an intracellular Ca

2+
 overload (Tani & Neely, 1989). In 

addition, extracellular Ca
2+

 may gain access to the cell through leaky cell membranes as a 

result of lipid peroxidation caused by ROS (Solaini & Harris, 2005). As soon as cytosolic 

Ca
2+

 rises, sarcoplasmic reticulum (the major intracellular Ca
2+ 

store) releases further Ca
2+

, 

due to the effect of cytosolic Ca
2+

 on the open probability of the cardiomyocyte ryanodine 

receptor (RyR) 2. Meanwhile, cytosolic Ca
2+

 removal mechanisms, such as Ca
2+

-ATPases, are 

largely impaired during ischaemia as a result of cardiomyocyte ATP depletion and abnormal 

ion concentrations in the cell (Solaini & Harris, 2005). As a consequence, the cytosolic Ca
2+

 

concentration increases dramatically in the ischaemic myocardium and triggers several 

injurious mechanisms.  

During the first few minutes of reperfusion, increased cytosolic Ca
2+

 may bind to 

myofibrils in the presence of a resupply of oxygen, causing hypercontracture of myocytes  
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(Braunwald & Kloner, 1985). This can cause mechanical stiffness leading to cell disruption 

and eventually cell death. Ca
2+

 can also diffuse into mitochondria and mitochondrial Ca
2+ 

overload can trigger the opening of the mPTP resulting in apotosis and cell death (Sanada et 

al., 2011). Finally, increased Ca
2+ 

concentrations can also cause smooth muscle contraction, 

which may lead to vasoconstriction and impaired reperfusion (Zucchi et al., 2001). 
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Figure 1.2: The calcium hypothesis in myocardial ischaemia/reperfusion injury. During 

reperfusion, calcium ions (Ca
2+

) enter the cell directly through the damaged sarcolemmal 

membrane and through the reverse mode of the sodium-calcium (Na
+
/Ca

2+
) exchanger to 

normalize the high Na
+ 

concentration in the cell. At the same time, cytosolic Ca
2+

 removal 

mechanisms, such as Ca
2+

-adenosine triphosphatases (ATPases), are impaired due to ATP 

depletion during ischaemia. This increases Ca
2+

 concentration in cardiomyocytes.  

Intracelullar Ca
2+

 overload can result in the activation of a series of injurious events. Ca
2+

 may 

bind to myofibrils in the presence of a resupply of oxygen, causing hypercontracture of 

myocytes. This can cause cell structure disruption and result in cell death. Ca
2+

 can also 

diffuse into mitochondria and mitochondrial Ca
2+ 

overload can trigger the opening of the 

mitochondrial permeability transition pore (mPTP) resulting in apoptosis (Sanada et al., 

2011). Na
+
/CO3

-
= sodium-bicarbonate

 
co-transporter; Na

+
/K

+
 ATPase= sodium-potassium 

pump; Na
+
/H

+
= sodium proton exchanger 
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1.3.3 Mitochondria in myocardial I/R injury 

 As mentioned earlier, mitochondria are emerging as the major mediator of cell death 

during I/R. During I/R, intracellular Ca
2+

 overload and increased oxidative stress, 

accompanied by other factors such as high phosphate concentrations and the depletion of 

adenine nucleotides cause the formation of mPTPs in the mitochondrial inner membrane 

(Halestrap, 2010) (Figure 1.3). Upon stimulation by high Ca
2+

 contents, the key regulator of 

mPTP, cyclophilin D (Cyp-D) binds to adenine nucleotide translocase (ANT) and causes a 

conformational change of ANT and converts it into a non-specific pore (Halestrap, 2010).  

Cyp-D is a peptidyl-prolylcis-trans isomerase which catalyses the inter-conversion between 

cis and trans conformations of prolineimidic peptide bonds (Takahashi et al., 1989; Halestrap 

et al., 2002). This causes the conformational change of ANT and results in pore formation in 

the mitochondrial membrane (Halestrap et al., 2002). Mitochondrial PTP opening allows 

solutes with a molecular mass of up to 1.5 kDa to diffuse across the mitochondrial inner 

membrane freely. This results in the dissipation of mitochondrial membrane potential (ΔΨm), 

uncoupling of oxidative phosphorylation which in turn promotes ATP hydrolysis (Crompton, 

1999), together with mitochondrial swelling due to water influx as a result of increased 

osmotic pressure in the matrix leading to outer membrane rupture and cell death (Halestrap et 

al., 2002). 

Petronilli and colleagues also reported that ROS oxidized the thiol group in the pore 

protein and triggered the pore opening (Petronilli et al., 2009). Mitochondrial PTP opening 

may also release pro-apoptotic factors cytochrome C, second mitochondria-derived activator 

of caspase, also known as DIABLO, which is a caspase co-activator and apoptosis-inducing 

factor into the cytosol (Zamzami & Kroemer, 2001; Weiss et al., 2003). Cytochrome C binds 

to apoptotic protease activating factor-1 with deoxy-ATP and caspase-9 to form a complex 

called the apoptosome (Zou et al., 1999). This triggers the activation of caspase-3 and causes 
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apoptosis. Therefore, the ability to inhibit the opening of mPTP may prevent apoptosis and 

necrosis in cells after I/R. 
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Figure 1.3: A hypothetical diagram of the formation of mitochondrial permeability transition 

pore (mPTP) during ischaemia/reperfusion (I/R). Intracellular calcium ions (Ca
2+

)
 
overload, 

increased oxidative stress, high phosphate levels (Pi) and the depletion of adenine nucleotides 

during I/R cause the formation of mPTP in the mitochondrial inner membrane. Upon 

stimulation by a high Ca
2+

 content, cyclophilin D (Cyp-D) binds to adenine nucleotide 

translocase (ANT) and causes a conformational change of ANT and converts it into a non-

specific pore. Mitochondrial PTP opening allows solutes with molecular mass of up to 1.5 

kDa to diffuse across the mitochondrial inner membrane freely. This results in the activation 

of a series of events which can lead to cell death (Halestrap, 2010). ADP= adenosine 

diphosphate; ATP= adenosine triphosphate 
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1.3.4 Inflammatory cell-mediated myocardial I/R injury 

Although acute inflammation triggered during myocardial I/R is a pathophysiological 

healing response to I/R injury, accumulating evidence indicates that the inflammatory 

response which is triggered during ischaemia, and greatly augmented during reperfusion, may 

itself promote tissue death leading to cardiac dysfunction (Hansen, 1995). Neutrophils, which 

are the major component of the innate immune system, are now recognised as major 

mediators of myocardial I/R injury. During I/R, the inflammatory response characterized by 

neutrophil accumulation and leukocycte infiltration into the ischaemic myocardium is 

activated. Activated neutrophils may release several mediators, such as oxygen free radicals 

and proteolytic enzymes, which can directly cause cell injury (Weiss, 1989). They may also 

plug capillaries causing mechanical obstruction to blood flow and release pro-inflammatory 

factors (such as platelet activating factor, thromboxane and leukotrienes) which can amplify 

the inflammatory reaction causing further injury to post-ischaemic tissues (Jordan et al., 

1999). Interaction of neutrophils with the endothelium, an action mediated by soluble 

adhesion molecules such as E-selectin, P-selectin, intracellular adhesion molecules-1, 

vascular cell adhesion molecule-1 and others, may also result in endothelium dysfunction 

(Entman & Smith, 1994). In the clinical setting, it has also been reported that higher numbers 

of white blood cells at admission are associated with high mortality in patients with acute 

myocardial infarction, indicating a close association between systemic inflammation and a 

poor prognosis post-myocardial infarction (Grzybowski et al., 2004).  
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1.4 Signalling pathways that have been implicated during I/R 

Increased oxidative stress and Ca
2+ 

overload during myocardial I/R could activate a 

wide range of signal transduction pathways and result in cell death or survival. An emerging 

strategy to treat myocardial I/R injury is to manipulate the activation of pro-injurious and pro-

survival signalling pathways in the myocardium to reduce cardiomyocyte death, at the time of 

reperfusion. 

 

1.4.1 MAPK signalling pathway 

The mitogen-activated protein kinase (MAPK) superfamily consists of a group of 

highly conserved signal transduction kinases that have diverse roles in cardiac physiological 

and pathological processes (Cowan & Storey, 2003). The MAPK subfamilies are involved in 

many cellular processes including cell growth, development, differentiation, cell cycle, death 

and survival (Feuerstein & Young, 2000). The activation of MAPKs involves a three-tier 

system (Figure 1.4). Upon stimulation by factors such as inflammatory cytokines or growth 

factors, the MAPK kinase kinase (MAPKKK, MAP3K, MEKK or MKKK) is activated 

(Cowan & Storey, 2003). Active MAPKKK then activates its downstream signalling 

molecule MAPK kinase (MAPKK, MAP2K, MEK or MKK), which is a ‘dual-specific’ 

kinase that targets a threonine-X-tyrosine (Thr-X-Tyr) motif on MAPK and phosphorylates 

MAPK at both serine (Ser)/Thr and Tyr sites  (Cowan & Storey, 2003). The activation of 

MAPK results in a conformational change and a >1000-fold increase in their specific activity 

(Cowan & Storey, 2003). Active MAPKs in turn phosphorylate their target proteins, many of 

which are transcription factors. Three best-characterized MAPK subfamilies are extracellular 

signal-regulated kinase (Erk) 1/2, c-jun N-terminal kinases (JNKs) and p38 MAPK (Cowan & 

Storey, 2003). 
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Figure 1.4: Flow chart showing the three major mitogen-activated protein kinase (MAPK) 

signalling cascades (extracellular signal-regulated kinases, Erks, c-jun N-terminal kinases, 

JNKs and p38 MAPK), including stimuli, three-tier regulatory substrates (mitogen-activated 

protein kinase kinase kinase, MAPKKK/MEKK/MKKK, mitogen-activated protein kinase 

kinase, MAPKK/MEK/MKK and MAPK) and the various cellular responses caused by each 

module (Cowan & Storey, 2003). ASK= apoptosis signal-regulating kinase; I/R= 

ischaemia/reperfusion; IL= interleukin; MLKs= mixed-lineage kinases; Raf= proto-oncogene 

serine/threonine protein kinase 
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1.4.1.1 Erk signalling cascade 

The Erk signalling cascade is one of the most widely studied signalling pathways in 

cellular biology. The two best-studied Erk isomers, Erk 1 and Erk 2, which are 83% identical, 

share many commonalities in signalling activities, therefore they are usually referred to as Erk 

1/2 (Rose et al., 2010). Erk 1/2 respond primarily to growth factors such as transforming 

growth factor-β1, peptide hormones and neurotransmitters to cause cell survival. Upon 

stimulation, the small G-protein Ras is activated and active Ras recruits and activates c-Raf 

which is the MAPKKK in this signalling cascade (Rose et al., 2010) (Figure 1.4). Active Raf 

then activates MEK 1/2 which in turn phosphorylates Thr and Tyr residues on the Thr-X-Tyr 

motif (where X is glutamate) on Erk 1/2 (Rose et al., 2010). Once activated, Erk 1/2 will 

phosphorylate various downstream substrates including 90 kDa ribosomal S6 kinases, 

MAPK-activated protein kinase-1, (Frodin & Gammeltoft, 1999), cytoplasmic phospholipase 

A2 (Lin et al., 1993), as well as the transcription factor Elk-1 (Davis, 1993). These substrates 

will activate other regulatory molecules such as the transcription factor c-Fos, glycogen 

synthase kinase (GSK)-3 and others to cause cell proliferation, differentiation and survival 

(Frodin & Gammeltoft, 1999). 

The activation of the Erk 1/2 signalling cascade in myocardial I/R has also been 

widely reported, and it is well-established to be cardioprotective. A wide range of 

pharmacological agents infused during I/R exert their cardioprotective effects through the 

activation of the Erk 1/2 signalling pathway. For example, D-Ala
2
-D-Leu

5
-enkephalin 

(DADLE), a delta-opioid receptor agonist, reduced myocardial infarct size in rat hearts in vivo 

by increasing the phosphorylation of Erk 1/2 (Ikeda et al., 2006). The cardioprotective effect 

of DADLE was abolished in the presence of PD98059, a MEK 1/2 inhibitor, suggesting that 

the Erk 1/2 signalling pathway is involved in the cardioprotection by DADLE (Ikeda et al., 

2006). In rat isolated hearts subjected to I/R, anaesthetic post-conditioning with sevoflurane 
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reduced myocardial infarct size and improved post-ischaemic cardiac contractility, and these 

effects were mediated by activation of the Erk 1/2 signalling pathway (Yao et al., 2010). It 

has also been reported that the activation of Erk 1/2 causes phosphorylation and inhibition of 

pro-apoptotic proteins such as B-cell lymphoma-2-associated X protein (Bax), B-cell 

lymphoma-2-associated death promoter (BAD), caspases-3 and -9 resulting in cell survival 

(Hausenloy & Yellon, 2007). 

 

1.4.1.2 JNK signalling cascade 

JNK consists of 3 isoforms i.e. JNK 1, JNK 2 and JNK 3. JNK 1 and JNK 2 are 

expressed in many tissues, while JNK 3 is predominantly found in the brain (Rose et al., 

2010). As a stress-activated protein kinase, JNK is activated in response to various stress 

stimuli including osmotic shock, UV radiation, oxidative stress, and pro-inflammatory 

cytokines such as tumour necrosis factor (TNF)-α and interleukin (IL)-1 (Cowan & Storey, 

2003). Upon stimulation, JNK is phosphorylated at the Thr-X-Tyr (where X is a proline) 

motif by the dual-specificity kinases i.e. JNNK 1 and JNNK 2, also known as MKK 4 and 

MKK 7 (Cowan & Storey, 2003) (Figure 1.4). Upstream signalling proteins of JNNK 1/2 are 

MAPKKKs including MEKK 1-4 and apoptosis signal-regulating kinase (ASK) 1 (Cowan & 

Storey, 2003). Once activated, JNK can phosphorylate and activate various downstream 

signalling substrates including activating transcription factor-2 (van Dam et al., 1995) and 

ETS domain-containing protein Elk-1, tumor suppressor p53 (Bogoyevitch & Kobe, 2006) 

and others. JNK strongly phosphorylates c-jun, leading to increased activity of the 

transcription factor activator protein-1 and causes cell death (Shaulian & Karin, 2002). 

Reports have suggested that JNK causes apoptosis by inducing the release of 

apoptogenic factors such as cytochrome C from mitochondria (Aoki et al., 2002). JNK can 

also phosphorylate and inhibit the activity of the anti-apoptotic protein B-cell lymphoma 

http://en.wikipedia.org/wiki/Bcl-2-associated_X_protein
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(Bcl)-2 (Yamamoto et al., 1999) while promoting apoptosis by phosphorylating pro-apoptotic 

proteins such as Bim and Bmf (Lei & Davis, 2003; Putcha et al., 2003). In myocardial I/R, 

inhibition of JNK phosphorylation has been reported to be cardioprotective. The presence of a 

JNK inhibitor reduces myocardial infarct size after I/R in rats in vivo (Ferrandi et al., 2004; 

Milano et al., 2007). The protective effect of JNK inhibition in myocardial I/R is associated 

with attenuation of apoptosis-inducing factor translocation to the nucleus thereby preventing 

apoptosis (Song et al., 2008; Zhang et al., 2009) and inhibition of JNK mitochondrial 

translocation to reduce ROS generation and mitochondrial dysfunction (Chambers et al., 

2013). 

 

1.4.1.3 p38 MAPK signalling cascade 

p38 MAPK is a 38 kDa kinase which was first described as a tyrosine phosphorylated 

protein in response to bacterial lipopolysaccharide stimulation in macrophages (Rose et al., 

2010). There are 5 isoforms of p38 MAPK reported to date i.e. p38α, p38β, p38δ, p38γ and 

p38-2 with isoforms α and β being predominantly found in the heart (Cowan & Storey, 2003). 

Like other MAPK subfamilies, p38 MAPK signalling is involved in a variety of biological 

processes including apoptosis and inflammation, as well as cell growth, differentiation and 

cell cycle regulation (Rose et al., 2010). It has been reported that p38 MAPK signalling has a 

major role in the immune response. The activation of p38 MAPK  increases the expression of 

pro-inflammatory cytokines IL-1, TNF-α, cell adhesion molecules such as vascular cell 

adhesion molecule-1 and other inflammation-related molecules (Rose et al., 2010). p38 

MAPK, together with JNK, form the stress-activated protein kinase (SAPK) pathway. It is 

also activated by environmental stresses such as heat, hyperosmotic shock, UV radiation, I/R, 

as well as TNF receptor signalling (Cowan & Storey, 2003). In response to these stimuli, 

guanosine triphosphatases such as Rac, the Rho and the cell division control protein 42 
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homologs, are responsible for the transmission of these stress stimuli to MAPKKKs of this 

pathway (Cowan & Storey, 2003). MAPKKKs, such as mixed-lineage kinases (MLKs) and 

ASK 1, are activated and active MAPKKKs phosphorylate and activate their downstream 

effectors MKK 3 and MKK 6 (Rose et al., 2010) (Figure 1.4). These dual-specificity kinases 

MKK 3 and MKK 6, then phosphorylate p38 MAPK at the conserved Thr-X-Tyr motif 

(where X is glycine) (Rose et al., 2010) and active p38 MAPK phosphorylates its downstream 

signalling substrates such as cyclic adenosine monophosphate (cAMP) response element-

binding protein (Tan et al., 1996), activating transcription factor-1 (Tan et al., 1996), MAPK-

activated protein kinase 2 (McLaughlin et al., 1996), heat shock protein 27 (Stokoe et al., 

1992) and others. 

The role of p38 MAPK in myocardial I/R injury is controversial. Numerous studies 

have shown that the activation of p38 MAPK is cardioprotective in myocardial I/R. For 

example, pre-treatment with the p38 MAPK inhibitor, SB203580 abolished the 

cardioprotective effect of erythropoietin in rabbit isolated hearts subjected to global ischaemia 

and reperfusion (Rafiee et al., 2005). The presence of another p38 MAPK inhibitor, 

SB202190 also attenuated the cardioprotective effect of resveratrol, a naturally-occurring 

antioxidant found in grape skins and red wines, in rat hearts ex vivo (Das et al., 2006). In 

transgenic mice over-expressing MKK 6, the recovery of cardiac function after I/R was 

significantly better compared to the wild type control indicating a protective role of p38 

MAPK in I/R (Martindale et al., 2005). The beneficial effect of p38 MAPK in myocardial I/R 

has been associated with the activation of heat shock protein 27 which causes inactivation of 

pro-apoptotic proteins such as caspase-3 and Fas (Efthymiou et al., 2005) and the activation 

of another small heat shock protein α-crystallin B, where it reacts with the voltage-dependent 

anion channel-1 in the mitochondrial outer membrane to inhibit cytochrome C release (Mitra 

et al., 2014). In contrast, others have shown that the activation of p38 MAPK is detrimental in 



28 

 

I/R. In several reports, inhibition of the p38 MAPK signalling pathway confers 

cardioprotection against I/R injury in vitro and in vivo (Gao et al., 2002; Khan et al., 2006; 

Schwertz et al., 2007; Becatti et al., 2012). The damaging effect of p38 MAPK is associated 

with the translocation of the pro-apoptotic protein Bax into mitochondria during ischaemia 

and induces apoptosis (Capano & Crompton, 2006). Inhibition of p38 MAPK could also 

reduce the level of pro-inflammatory cytokine TNF-α (Cain et al., 1999), decrease expression 

of endoplasmic reticulum (ER) stress-related genes (Bian et al., 2011) and inhibit the 

upregulation of adhesion molecules such as P-selectin and intracellular adhesion molecules-1 

during I/R resulting in cell survival (Gao et al., 2002). It has also been reported that there is a 

differential role of different isoforms of p38 MAPK. p38 MAPKα is reported to exert a 

deleterious effect in myocardial I/R while p38 MAPKβ is cardioprotective (Bassi et al., 

2008). Kim and colleagues reported that the inhibition of p38 MAPKα prevented 

hypoxia/reoxygenation-induced cell death in isolated cardiacmyocytes while in 

cardiaomyocytes exhibiting dominant negative p38 MAPKβ, the estrogen-induced 

cardioprotection against hypoxia/reoxygenation was prevented (Kim et al., 2006). 

 

1.4.2 PI3K/Akt pathway 

 The phosphatidylinositol 3′-kinase (PI3K)/protein kinase B (Akt) signalling pathway 

is another signalling cascade involved in cell proliferation, growth and survival. Similar to 

Erk 1/2, PI3K/Akt pathway is strongly activated by growth factors such as insulin-like growth 

factor-1 and insulin. In heart tissues, insulin-like growth factor-1 acts on a G-protein coupled 

receptor and the stimulation of this receptor activates PI3K (Figure 1.5). PI3K then activates 

its downstream signalling molecule Akt. Experimental evidence has shown that the activation 

of the PI3K/Akt pathway is protective against myocardial I/R injury. Rat hearts transfected 

with active Akt using adenoviral vectors were also protected against cardiomyocyte apoptosis 
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in response to I/R injury (Miao et al., 2000; Matsui et al., 2001). The presence of the PI3K 

inhibitor, LY294002 or wortmannin blocks the protection elicited by various pharmacological 

agents such as bradykinin, metformin, adrenomedullin and the adenosine A1/A2 agonist 5′-(N-

ethylcarboxamido) adenosine during myocardial I/R in vitro and in vivo (Bell & Yellon, 2003; 

Okumura et al., 2004; Yang et al., 2004; Bhamra et al., 2008). Akt reacts with various 

downstream targets which include the phosphorylation and inactivation of GSK-3β and this 

prevents the opening of mPTP leading to cell survival (Feng et al., 2005; Rahman et al., 

2011). Akt also phosphorylates p70S6 kinase to cause cell survival (Jonassen et al., 2001). 

 

1.4.3 The Reperfusion Injury Salvage Kinase (RISK) pathway 

PI3K/Akt, together with the Erk 1/2 signalling cascade, are said to form the RISK 

pathway, the term given to a group of pro-survival protein kinases that confer powerful 

cardioprotection in myocardial I/R (Hausenloy & Yellon, 2004) (Figure 1.5). Haunseloy and 

Yellon reported that activation of the RISK pathway could result in the phosphorylation of a 

wide range of substrates including GSK-3β, pro-apoptotic proteins such as Bax, BAD, Bim, 

caspases-3 and -9 (Takatani et al., 2004; Bhuiyan et al., 2007; Song et al., 2009) and 

endothelial nitric oxide synthase (eNOS) (Bell & Yellon, 2003). The phosphorylation and 

inhibition of GSK-3β and pro-apoptotic proteins, as well as the production of NO from eNOS, 

could result in the inhibition of the release of mitochondrial cytochrome C and mPTP opening 

which is a major mediator of cell death in I/R injury, and subsequently enhance cell survival 

during I/R (Hausenloy & Yellon, 2004). Thus, the ability to manipulate and upregulate the 

RISK pathway during I/R may provide a potential approach to limit myocardial I/R injury. 



30 

 

 

Figure 1.5: Schematic diagram of the Reperfusion Injury Salvage Kinase (RISK) pathway. 

Upon stimulation of the G-protein coupled receptor by stimuli such as growth factors during 

ischaemia/reperfusion, two cardioprotective signalling pathways which are extracellular 

signal-regulated kinases (Erk) 1/2 and phosphatidylinositol 3′-kinase (PI3K)/protein kinase B 

(Akt) pathways are activated. These two pathways converge at the mitochondria and they 

phosphorylate and inactivate pro-apoptotic proteins including Bcl-2-associated X protein 

(Bax) and Bcl-2-associated death promoter (BAD) and result in cell survival (Hausenloy & 

Yellon, 2004). MEK= mitogen-activated protein kinase kinase; TGF= transforming growth 

factor 

  

http://en.wikipedia.org/wiki/Bcl-2-associated_X_protein
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1.4.4 JAK 2/STAT3: the Survivor Activating Factor Enhancement (SAFE) pathway 

 Another cardioprotective signalling pathway which is elicited during I/R is the SAFE 

pathway. This pathway involves the activation of the Janus kinase (JAK)/signal transducer 

and activator of transcription (STAT) signalling pathway (Lecour, 2009) (Figure 1.6). STATs 

are a group of cytoplasmic transcription factors that mediate intracellular signalling activated 

by cytokine receptors such as TNF-α and then transmitted to the nucleus (Stephanou, 2004). 

TNF-α is a cytokine that is generally considered to contribute to cardiac dysfunction in both 

I/R and heart failure (Mann, 2003). Paradoxically, TNF-α may initiate the activation of 

protective pathways against reperfusion injury such as the SAFE pathway. The impact of 

TNF-α on cardioprotection may be concentration-dependent where lower levels of exogenous 

cardiac TNF-α administration prior to a myocardial I/R insult (0.5 ng/mL) exert 

cardioprotection and higher concentrations of TNF-α fail to elicit cardioprotection (Lecour et 

al., 2002). In the heart, TNF-α binds to its receptor on the plasma membrane and this causes 

homo- or heterodimerization of the receptor (Boengler et al., 2008) (Figure 1.6). The receptor 

dimerization then causes the phosphorylation and activation of JAKs which are located at the 

intracellular domain of the receptor (Boengler et al., 2008). Active JAK recruits and 

phosphorylates STAT proteins on tyrosine residues (Boengler et al., 2008). Once 

phosphorylated, the STAT protein is released and dimerized followed by translocation to the 

nucleus to regulate gene transcription (Boengler et al., 2008). There are 7 different subtypes 

of STAT proteins i.e. STAT1, STAT2, STAT3, STAT4, STAT5α, STAT5β and STAT6 

(Boengler et al., 2008). Of these subtypes, STAT1 and STAT3 play an important role in 

myocardial I/R. It has been reported that STAT1 plays a pro-apoptotic role in myocardial I/R 

while STAT3 plays an anti-apoptotic role (Stephanou, 2004). Studies have demonstrated that 

knockout mice of STAT3 are more susceptible to I/R injury with increased cardiac apoptosis, 

infarct sizes and reduced cardiac function compared to wild type mice (Hilfiker-Kleiner et al., 
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2004; Frias et al., 2013). The presence of an inhibitor of JAK2, AG-490 or STAT3, static 

limits the cardioprotection elicited by various pharmacological agents against myocardial I/R 

injury in vitro and in vivo (Huang et al., 2011; Das et al., 2012; Ottani et al., 2013). The 

cardioprotective action of JAK/STAT3 is also mediated by inhibiting the opening of mPTP in 

cardiomyocytes during I/R (Smith et al., 2010; Frias et al., 2013). By contrast, studies have 

shown that STAT1 activation is injurious during myocardial I/R (Stephanou et al., 2000; 

Stephanou et al., 2001). It has been proposed that STAT1 promotes apoptosis by inducing the 

expression of pro-apoptotic genes such as caspase-1, Fas and Fas ligand and by inhibiting the 

expression of genes that encode for anti-apoptotic proteins such as Bcl-2 and Bcl-extra large 

(Bcl-X) leading to cell death (Stephanou et al., 2000; Stephanou et al., 2001). It is also 

reported that the cardioprotective action of naturally occurring antioxidants including 

myricetin, delphinidin and epigallocatechin-3-gallate is mediated by inhibition of STAT1 in 

rat hearts ex vivo (Townsend et al., 2004; Scarabelli et al., 2009). 
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Figure 1.6: Schematic diagram of the Survivor Activating Factor Enhancement (SAFE) 

pathway. The activation of the tumour necrosis factor (TNF) receptor in the cardiomyocyte 

causes dimerization and activation of Janus kinase (JAK). This then causes phosphorylation 

of signal transducer and activator of transcription (STAT) proteins. STAT proteins then move 

to nucleus to trigger gene transcription such as the anti-apoptotic gene B-cell lymphoma-2 

(Bcl-2). This then causes cell survival (Lecour, 2009). 
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1.4.5 Ca
2+

/calmodulin-dependent protein kinase (CaMK) II 

 CaMKII is a multi-functional Ser/Thr protein kinase and is the isoform of CaMK 

predominantly found in the heart (Maier & Bers, 2007). They are four CaMKII gene products, 

α, β, γ and δ with the δ isoform predominantly expressed in the heart (Maier & Bers, 2007). 

CaMKII exists as a holoenzyme complex consisting of 6 to 12 kinase subunits forming a 

wheel-like structure. Each subunit contains an amino-terminus catalytic domain, a central 

regulatory domain and a carboxy-terminus association domain which is involved in the 

oligomerization of CaMKII (Maier & Bers, 2007). Under resting conditions, the catalytic 

domain is constrained by the pseudosubstrate region within the regulatory domain and causes 

CaMKII autoinhibition (Anderson et al., 2011). When intracellular Ca
2+ 

concentration rises, 

Ca
2+

 complexes with calmodulin and the Ca
2+

/calmodulin complex binds to the calmodulin-

binding region, adjacent to the pseudosubstrate region in the regulatory domain causing a 

conformational change (Anderson et al., 2011). This relieves the autoinhibition and activates 

CaMKII. Once activated, CaMKII undergoes autophosphorylation at Thr 287 and this causes 

a 1000-fold increase in the affinity of calmodulin binding to CaMKII, a property known as 

“calmodulin trapping” (Anderson et al., 2011). CaMKII can remain activated even after the 

Ca
2+

 concentration has declined. Increased oxidative stress can also maintain the 

autophosphorylated state of CaMKII by inactivating many phosphatases preventing the 

dephosphorylation of Thr 287 (Anderson et al., 2011). Activated CaMKII can activate various 

downstream Ca
2+

-related receptors which include L-type Ca
2+

 channels, RyRs, 

sarco/endoplasmic reticulum Ca
2+

-ATPase (SERCA), phospholamban (PLN), and the 

mitochondrial Ca
2+ 

uniporter (Couchonnal & Anderson, 2008).  

 Under normal physiological conditions, CaMKII regulates myocardial excitation-

contraction coupling, however excessive CaMKII activation has been implicated in many 

pathological conditions such as heart failure, cardiac hyperthrophy and arrhythmias 
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(Couchonnal & Anderson, 2008). Emerging evidence has also shown that excessive CaMKII 

activation due to Ca
2+ 

overload and increased oxidative stress in the cell during myocardial 

I/R is deleterious. In 2007, Villa-Petroff and colleagues first reported that CaMKII activation 

promoted cell death in myocardial I/R (Vila-Petroff et al., 2007). The presence of the CaMKII 

inhibitor, KN-93 significantly reduced infarct size in rat isolated hearts and improved cell 

viability in isolated cardiomyocytes after simulated I/R in vitro (Vila-Petroff et al., 2007). 

Others also reported that KN-93 reduces infarct size and improves post-ischaemic cardiac 

contractility accompanied by reduced expression of pro-apoptotic proteins caspase-3, caspase-

9 and cytochrome C, and a reduced Bax/Bcl-2 ratio, an indicator of cell death in rat hearts ex 

vivo (Salas et al., 2010; Adameova et al., 2012; Szobi et al., 2014). In CaMKIIδ knockout 

mice, hearts had better recovery after I/R in vivo compared to wild type mice (Ling et al., 

2013). In addition, CaMKII inhibition also reduces I/R-induced arrhythmias (Adameova et 

al., 2012; Bell et al., 2012). These finding suggest a deleterious role of CaMKII activation in 

myocardial I/R.  

 As mentioned earlier, PLN is a downstream target of CaMKII. The role of PLN in 

myocardial I/R has also been examined. Earlier reports have shown that the phosphorylation 

of PLN at Thr 17 during myocardial I/R is beneficial as it enhances the Ca
2+ 

uptake into the 

sarcoplasmic reticulum through SERCA2a and improves cardiac relaxation (Vittone et al., 

2002; Said et al., 2003). In transgenic PLN-mutant mice, the recovery of Ca
2+ 

transient 

amplitude and myocardial contractile function after myocardial I/R was also prolonged 

compared to wild type mice suggesting that the activation of PLN delays the recovery of 

cardiac contractile function during I/R (Valverde et al., 2006). In contrast, recent findings 

have suggested that the activation of PLN during myocardial I/R may cause damaging effects. 

Increased phosphorylation of PLN results in increased uptake of Ca
2+ 

into the sarcoplasmic 

reticulum leading to sarcoplasmic reticulum Ca
2+ 

overload. This causes Ca
2+ 

leak from the 
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sarcoplasmic reticulum through the RyR and the released Ca
2+ 

is taken up by mitochondria via 

the mitochondrial Ca
2+ 

uniporter (Chen et al., 2005; Shintani-Ishida et al., 2012). Excessive 

mitochondrial Ca
2+ 

uptake triggers the opening of the mPTP resulting in apoptosis (Chen et 

al., 2005; Shintani-Ishida et al., 2012). In addition, Ca
2+ 

leak due to increased phosporylation 

of PLN also contributes to reperfusion-induced arrhythmias (Said et al., 2008). Taken 

together, inhibition of CaMKII activation and PLN phosphorylation may protect the heart 

against I/R injury and reduce the incidence of reperfusion-induced arrhythmias. 

 

1.5 Pharmacological intervention to limit myocardial I/R injury 

A diverse range of pharmacological agents are being investigated for potential 

therapeutic use in the treatment of myocardial reperfusion injury, however there are no 

pharmacological strategies that have achieved successful clinical outcomes. As increased 

oxidative stress plays a key role in the development of myocardial I/R injury, there has been 

considerable interest in the potential use of antioxidants, such as flavonoids to attenuate 

injury. 

 

1.5.1 Flavonoids 

Flavonoids are plant-derived polyphenolic compounds that are commonly found in the 

food such as fruits and vegetables and in beverages such as tea and wine (Pietta, 2000). They 

comprise a backbone of 15 carbons with two aromatic rings connected to a three carbon 

bridge, C6-C3-C6 the basic skeleton and labelled as A, B and C (Pietta, 2000) (Figure 1.7). 

More than 4000 flavonoids have been identified to date and the major subgroups of 

flavonoids include flavones, flavonols, flavanones, catechins and anthocyanidins. The various 

subgroups of flavonoids differ from one another by the level of oxidation and pattern of 

substitution of the C ring, while individual compounds within a subgroup differ in the pattern 



37 

 

of substitution of the A and B rings (Pietta, 2000). For example, flavonols and flavones differ 

from one another by an extra hydroxyl group at the C3 position in flavonols (Pietta, 2000). 

The chemical structure, examples and sources for different subgroups of flavonoids are listed 

in Table 1.1. 

 

Figure 1.7: Basic flavonoid structure. A flavonoid consists of 2 aromatic rings (A and B) that 

are bound together by 3 carbon atoms that form an oxygenated heterocycle (ring C) (Pietta, 

2000). 
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Table 1.1: Basic structures, significant sources and examples of main subgroups of 

flavonoids including flavonols, flavones, flavanols, flavanones and anthocyanidins (Pietta, 

2000). 

Flavonoids Chemical structures Sources Examples 

Flavonols 

 

Onions 

Broccoli 

Quercetin 

Myricetin 

Kaempferol 

Flavones 

 

Peppers 

Celery 

Luteolin 

Apigenin 

Flavanols 

 

Cocoa 

Tea 

Red wines 

Apples 

Epicatechin 

Catechin 

Flavanones 

 

Citrus fruits 

Naringenin 

Hesperetin 

Anthocyanidins 

 

Grapes 

Blueberries 

Cyanidin 

Delphinidin 

Malvidin 
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1.5.2 Epidemiological studies on flavonoids 

In 1992, Renaud and de Lorgeril reported that the French population had a lower 

incidence of coronary heart disease compared to other Western populations, despite the 

equally high intake of high-fat diet and this phenomenon is described as the “French paradox” 

(Renaud & de Lorgeril, 1992). It was proposed that the regular consumption of red wine by 

the French population contained high flavonoid content and played a significant role in 

cardioprotection (Renaud & de Lorgeril, 1992). A number of epidemiological studies have 

suggested the beneficial effect of flavonoids in preventing cardiovascular diseases. In the 

Zutphen Elderly study which involved 805 men aged 65-84 years, there was an inverse 

correlation between the intake of dietary sources of flavonoids which included tea (61%), 

onions (13%) and apples (10%), and the mortality from coronary heart disease during a 5-year 

(Hertog et al., 1993) and 10-year (Hertog et al., 1997) follow up. There was also an inverse 

association of dietary flavonoid intake with the incidence of myocardial infarction (Hertog et 

al., 1993). In that study, subjects in the highest tertile of flavonoid intake (42 mg/day) had 

about a 50% lower relative risk of mortality from coronary heart disease and the incidence of 

a first myocardial infarction than those in the lowest tertile (12 mg/day) (Hertog et al., 1993). 

In another cohort study, involving 5133 Finnish men and women aged 30-69 years, increased 

flavonoid consumption (where major sources of flavonoids were apples and onions) was also 

associated with a decreased risk of coronary mortality (Knekt et al., 1996). In the Rotterdam 

Study where 7983 men and women aged ≥55 years were involved, an inverse correlation 

between tea drinking (source of flavanols) and fatal myocardial infarction was also found 

after  5.6 years follow-up. Tea drinkers with a daily intake of >375 ml had a lower relative 

risk of incidence of myocardial infarction than non-tea drinkers (Geleijnse et al., 2002). Mink 

and colleagues also reported that high flavonoid intake was also associated with a reduced 

risk of death from coronary heart disease in post-menopausal women (Mink et al., 2007). 
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1.5.3 Biological properties of flavonoids 

 Flavonoids possess a number of biological actions which may be beneficial in the 

prevention of cardiovascular diseases.  

 

1.5.3.1 Antioxidant property 

Flavonoids are potent antioxidants. The mechanisms of action include direct 

scavenging of free radicals, enhancing the expression and/or activity of endogenous 

antioxidant enzymes and inhibition of pro-oxidant enzymes (Pietta, 2000). Flavonoids are 

able to reduce highly oxidizing free radicals such as O2
-
, alkoxyl, peroxyl and hydroxyl 

radicals by donating a hydrogen atom to the radical resulting in the formation of a 

semiquinone radical (Pietta, 2000). This semiquinone radical can further donate a hydrogen 

atom to form the stable quinone structure (Pietta, 2000) (Figure 1.8). The free-radical 

scavenging ability of flavonoids has been extensively studied in both the cell-free medium 

and biological tissues (Rice-Evans et al., 1995; Salah et al., 1995; Magnani et al., 2000; 

Woodman et al., 2005; Wang et al., 2006). For example, O2
- 
generated by auto-oxidation of 

pyrogallol in the cell-free system were scavenged by flavonols and flavones (Magnani et al., 

2000) while lipid peroxyl radicals produced in isolated low-density lipoproteins were 

effectively scavenged by the flavanol catechin (Salah et al., 1995).  

Apart from the free-radical scavenging ability, flavonoids can also increase the 

activity and/or expression of endogenous antioxidant enzymes to improve the antioxidant 

status in the cell. Chronic consumption of a soy protein-rich diet containing isoflavones, such 

as genistein and daidzein increased the mRNA level of the antioxidant enzyme superoxide 

dismutase  in adult rats (Mahn et al., 2005). Long-term exposure of adult rats to red wine 

containing quercetin and myricetin, also improved the glutathione/glutathione disulphide 

(GSH/GSSH) ratio in rat kidney tissues, suggesting improved antioxidant state in the cell 
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(Rodrigo et al., 2002). In addition, flavonoids could also inhibit pro-oxidant enzymes such as 

NADPH oxidase and xanthine oxidase and reduce the generation of ROS. Flavonoids, 

including baicalein, galangin, kaempferol, luteolin, and naringenin, have been shown to 

inhibit the activity of xanthine oxidase in a cell-free system (Cos et al., 1998; Nagao et al., 

1999; Russo et al., 2000). In rat isolated aorta, quercetin and isorhamnetin are also capable of 

reducing the angiotension II-induced increased expression of p47
phox

, which is a regulatory 

subunit of the membrane NADPH oxidase, thereby decreasing ROS generation and 

preventing endothelial dysfunction (Sanchez et al., 2007; Romero et al., 2009). Due to their 

favourable antioxidant property, many studies has been perform to investigate the use of 

flavonoids to ameliorate various pathological conditions such as atherosclerosis, diabetes, 

dementia, cancer and others where elevated oxidative stress plays a major role in the 

pathogenesis of these conditions (Nijveldt et al., 2001).  

 

  

 

Figure 1.8: Scavenging of reactive oxygen species (R°) by flavonoids (Fl-OH). Fl-OH 

donates a hydrogen atom to the radical forming a stable quinone structure (Pietta, 2000). 
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1.5.3.2 Vasodilator property 

Flavonoids are also effective vasodilators. Studies have shown that flavonoid-induced 

vasorelaxation is mainly mediated via endothelium-independent mechanisms. Flavonoids can 

inhibit contractile responses to extracellular Ca
2+ 

influx and in response to the release of Ca
2+

 

from intracellular stores to induce endothelium-independent vasorelaxation (Herrera et al., 

1996; Chan et al., 2000; Ajay et al., 2003). The flavanone naringenin inhibited the activity of 

phosphodiesterases (a family of enzymes responsible for the breakdown of cAMP and cyclic 

guanosine monopshophate (cGMP)) and caused vasorelaxation in rat endothelium-denuded 

aorta (Orallo et al., 2005); flavonols induced endothelium-independent vasorelaxation via the 

opening of K
+
 channels in the vascular smooth muscle cell causing hyperpolarisation (Qin et 

al., 2008) while the synthetic flavonol, 3',4'-dihydroxyflavonol  decreased vascular 

contraction via the inhibition of RhoA/Rho-kinase pathway (where activated RhoA could 

increase myosin light chain phosphorylation and cause smooth musclecontraction) in rat 

endothelium-denuded aorta (Song et al., 2010b). 

Flavonoid-induced vasodilatation may also be partly mediated via an endothelium-

dependent pathway. For example, flavonoids may stimulate the Ca
2+

-dependent NO release 

from endothelial cells (Martin et al., 2002; Zenebe et al., 2003; Duarte et al., 2004). NO then 

activates the soluble guanylyl cyclase (sGC)/cGMP pathway in the vascular smooth cell to 

cause vasorelaxation. In addition, flavonoids may phosphorylate eNOS at Ser
1177

 leading to 

enhanced NO synthesis and subsequent vasodilatation (Anter et al., 2004). Flavonols, such as 

quercetin, have also been reported to scavenge superoxide anions and increase the NO 

bioavailability to cause endothelium-dependent vasorelaxation (Huk et al., 1998). 
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1.5.3.3 Anti-inflammatory and anti-aggregatory properties 

 Apart from being potent antioxidants and vasodilators, studies have shown that 

flavonoids exhibit anti-inflammatory and anti-aggregatory properties. Flavonoids especially 

flavones, inhibit key enzymes involved in eicosanoid pathways including phospholipase A2, 

cyclooxygenase and lipoxygenase, thereby reducing the production of inflammatory 

mediators such as prostaglandins and leukotrienes (Baumann et al., 1980; Lindahl & 

Tagesson, 1993; Kimata et al., 2000; Harris et al., 2006). Flavonoids may also inhibit the 

production of pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6, and soluble 

adhesion molecules intracellular adhesion molecules-1, vascular cell adhesion molecule-1, E-

selectin and P-selectin (Gerritsen et al., 1995; Cho et al., 2003b). For example, in mice in vivo 

and in macrophages in vitro, quercetin inhibited lipopolysaccharides-induced TNF-α 

production (Wadsworth et al., 2001). In the clinical setting activin, a grape seed-derived 

proanthocyanidin extract, has been shown to reduce plasma levels of vascular cell adhesion 

molecule-1, intracellular adhesion molecules-1 and E-selectin in patients with systemic 

sclerosis (Kalin et al., 2002). 

 

1.5.4 Structure activity relationships of flavonoids 

 As described above, flavonoids possess many biological activities including 

antioxidant, vasorealxation, anti-inflammation and anti-aggregation. Structure activity 

relationship studies have reported that the number and orientation of hydroxyl groups on the 

carbon ring skeleton has an important influence on their biological properties. For example, 

Herrera and colleagues reported that flavonols with hydroxyl groups at positions 3’ and 4’ in 

the B ring are potent vasodilators (Herrera et al., 1996). Further, previous study from our 

laboratory demonstrated that the vasorelaxation activity of flavonol was abolished when the 

hydroxyl groups at positions 3’ and 4’ in the B ring were substituted with methoxy groups 
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(Woodman et al., 2005). It has also been reported that hydroxyl groups at C5 and C7 and the 

double bond between C2 and C3 are required for inhibition of xanthine oxidase which is a 

pro-oxidant enzyme while hydroxyl groups at 3’ and 4’ positions on the B ring and at C3 can 

cause powerful ROS scavenging effect (Cos et al., 1998; Woodman et al., 2005). In addition, 

it is also reported that substitution of a methoxy group at the 3’ position on the B ring 

abolished the scavenging ability of flavonol (Qin et al., 2008). The structure activity 

relationship studies of the anti-inflammatory action of flavonoids are however inconsistent. 

Comalada and colleagues reported that hydroxylation at C5, C7, 3’ and 4’ positions on the B 

ring, together with a double bond at C2 and C3, and the B ring at position 2 are required for 

the strongest anti-inflammatory effect (Comalada et al., 2006). The anti-inflammatory action 

was mediated by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κβ) pathway leading to reduced TNF-α production and inducible nitric oxide synthase 

expression in lipopolysaccharide–induced macrophages (Comalada et al., 2006). In contrast, 

Lotito and Frei reported that hydroxylation at C5, C7 on the A ring, the C2 and C3 double 

bond and a keto group at C4 on the C ring are the structural requirement for a flavonoid to 

inhibit TNFα-induced adhesion molecule expression in human aortic endothelial cells (Lotito 

& Frei, 2006). Taken together, structure activity relationship studies have shown that the 

presence of hydroxyl groups at the C3 and 3’ and 4’ positions on the B ring are required to 

cause vasorelaxation, antioxidant and anti-inflammatory action.  

 

1.5.5 3’4’-dihydroxyflavonol (DiOHF) 

3’4’-dihydroxyflavonol (DiOHF) is a synthetic flavonol with hydroxyl groups at the 

C3 and 3’ and 4’ positions on the B ring (Figure 1.9). Studies have shown that it has anti-

inflammatory activity and is a more potent antioxidant and vasodilator than naturally 

occurring flavonols (Chan et al., 2000; Woodman & Chan, 2004). Therefore, having these 



45 

 

properties, DiOHF has the potential as an adjuvant therapeutic agent to reduce I/R injury, 

possibly by reducing oxidative stress and inflammatory response as well as inhibiting platelet 

aggregation that are triggered during I/R. DiOHF could also induce vasodilatation to improve 

perfusion of the heart after an ischaemic episode. 

 

 

Figure 1.9:  Chemical structure of the synthetic flavonol, 3’,4’-dihydroxyflavonol (DiOHF). 

It has hydroxyl groups at the C3 and 3’ and 4’ positions on the B ring (Woodman & Chan, 

2004). 
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1.5.6 Evidence supporting flavonoids as a potential therapeutic agent for I/R injury 

 Many studies have shown that flavonoids are cardioprotective in the setting of 

myocardial I/R injury. Brookes and colleagues demonstrated that oral treatment of rats with 

the flavonol quercetin (0.033 mg/kg per day, a concentration equivalent to the quercetin 

content in 1-2 glasses of common red wine consumed by an adult male of 70 kg) for 4 days, 

improved the post-ischaemic cardiac contractility in rat isolated hearts (Brookes et al., 2002). 

Treatment with quercetin also protected the heart against myocardial I/R in vivo (Annapurna 

et al., 2009; Jin et al., 2012; Wang et al., 2013), improved post-ischaemic cardiac contractility 

in the isolated heart (Bartekova et al., 2010) and reduced cell death in isolated 

cardiomyocytes after anoxia and reoxygenation (Tang et al., 2013). The cardioprotection 

induced by quercetin has been associated with its ability to reduce oxidative stress as 

indicated by reduced lipid peroxidation and increased levels of antioxidant enzymes such as 

superoxide dismutase and catalase in rat hearts after I/R (Annapurna et al., 2009) and reduced 

mRNA expressions of NADPH oxidase 2 and inducible nitric oxide synthase in rabbit hearts 

after I/R (Wan et al., 2009). Quercetin may also exert its cardioprotective action by inhibiting 

the expression of inflammatory protein TNF-α (Jin et al., 2012) and by improving post-

ischaemic mitochondrial function which is critical in the generation of ATP and recovery of 

cell function after I/R (Brookes et al., 2002). The protective action of other flavonols such as 

kaempferol, myricetin and isorhamnetin against I/R injury has also been reported (Scarabelli 

et al., 2009; Malakul et al., 2011; Zhang et al., 2011).  

In addition, Wang and colleagues demonstrated that the synthetic flavonol DiOHF 

reduced myocardial infarct size after I/R in anesthetized sheep, with the level of protection 

similar to that of ischaemic preconditioning, which is a powerful adaptive mechanism that 

protects the heart against I/R injury (Wang et al., 2004). The cardioprotetive effect of DiOHF 

against I/R injury is also evident in other species such as goats in vivo and rat isolated hearts 
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(Wang et al., 2009; Qin et al., 2011). Recently, the water soluble pro-drug of DiOHF, NP202 

also showed similar beneficial effects against myocardial I/R injury (Thomas et al., 2011; 

Williams et al., 2011; Lim et al., 2013). The infarct-sparing action of NP202 was 

accompanied by a reduced number of polymorphonuclear leukocytes and apoptosis in both 

infarcted and non-infarcted areas of the myocardium in anaesthetized sheep (Thomas et al., 

2011).  

Studies have also shown that the flavone luteolin protected the heart against I/R injury 

in rats in vitro and in vivo (Liao et al., 2011; Sun et al., 2012; Yu et al., 2015). Luteolin-

induced cardioprotection may be mediated by reducing oxidative stress as indicated by a 

decreased level of malondialdehyde, a marker of lipid peroxidation, decreased expression of 

p47
phox

 of NADPH oxidase and enhanced superoxide dismutase activity (Yu et al., 2015). 

Luteolin-induced cardioprotection may also be mediated via its anti-inflammatory property by 

reducing the level of inflammatory cytokines, TNF-α and IL-6 after I/R in diabetic rats (Sun 

et al., 2012). 

Other flavonoids such as flavanol epigallocatechin-3-gallate which is highly abundant 

in green tea (Aneja et al., 2004; Akhlaghi & Bandy, 2010; Yanagi et al., 2011) and 

epicatechin extracted from cocoa (Yamazaki et al., 2008; Yamazaki et al., 2014), flavanone 

naringenin (Testai et al., 2013) and anthocyanidin (Toufektsian et al., 2008) also exert 

cardioprotection during myocardial I/R. Like flavonols and flavones, their ability to reduce 

oxidative stress and inflammatory response as well as the ability to improve coronary flow to 

the heart are reported to contribute to their cardioprotection against I/R injury. Yamazaki and 

colleagues reported that the ability of epicatechin to preserve mitochondrial bioenergetics, 

which include increased mitochondrial respiration rate, oxygen consumption and ATP 

synthesis, and to inhibit mitochondrial Ca
2+ 

accumulation after I/R may contribute to its 

cardioprotective action during I/R (Yamazaki et al., 2014).  
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1.5.7 Potential signalling pathways of flavonoid-induced cardioprotection 

 Although it is well-established that flavonoids are protective in myocardial I/R, 

possibly by reducing oxidative stress, inhibiting inflammatory response and improving blood 

flow to the heart after ischaemia, increasing evidence have suggested that flavonoids may act 

as a signalling molecule to modulate signalling pathways in cardiomyocytes to induce 

cardioprotection.  

 Studies have shown that quercetin may confer cardioprotection by activating the 

protective kinase Akt resulting in subsequent improvement of the Bcl/Bax ratio (an indicator 

of cell survival) (Wang et al., 2013). Kaempferol inhibited the activation of the endoplasmic 

reticulum stress protein such as 78 kDa glucose-regulated protein, activating transcription 

factor-6α, X-box binding protein-2, inositol requiring enzyme-1-α and C/EBP homologous 

protein to improve cell viability in isolated cardiomyocytes after simulated I/R (Kim et al., 

2008) while myricetin attenuated the phosphorylation of STAT1 which regulates gene 

transcription that is involved in apoptosis, to confer cardioprotection against I/R injury 

(Scarabelli et al., 2009). It is also reported that DiOHF-induced cardioprotection may be 

mediated by directly inhibiting CaMKII activation causing subsequent inhibition of its 

downstream signalling pathways, p38 MAPK and JNK, while the expression of  protective 

kinases, Akt and Erk 1/2 was not affected (Thomas et al., 2011; Lim et al., 2013).  

The flavone luteolin is reported to exert its cardioprotective action against I/R injury 

by increasing the expression of Erk 1/2 and suppressing the activation of p38 MAPK and 

JNK, as well as inhibiting pro-apoptotic proteins, caspases-3, -8 and -9 (Yu et al., 2015). The 

cardioprotective effect of luteolin may also be dependent on the PI3K/Akt pathway as the 

presence of the PI3K/Akt inhibitor LY294002 prevented the protective effect of luteolin in 

isolated hearts and cardiomyocytes (Fang et al., 2011; Sun et al., 2012). In addition, luteolin 
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may also increase the phosphorylation of PLN and SERCA2a to improve cell survival after 

I/R (Wu et al., 2013). On the other hand, epigallocatechin-3-gallate and epicatechin-induced 

cardioprotection involves the activation of mitochondrial ATP-sensitive potassium channels 

(KATP), which is one of the major mechanisms of ischaemic preconditioning (Song et al., 

2010a) and attenuation of the activation of injurious kinases STAT1 and p38 MAPK 

(Townsend et al., 2004; Darra et al., 2007; Yanagi et al., 2011), as well as inhibition of JNK 

phosphorylation (Panneerselvam et al., 2010). Finally, Testai and colleagues reported that 

flavanone naringenin-induced cardioprotection against I/R was mediated via the activation of 

the Ca
2+

-activated K
+ 

channel in mitochondria which could reduce the electrical driving force 

for Ca
2+ 

entry into mitochondria (Testai et al., 2013). 

 

1.6 Complication of acute myocardial I/R injury: acute heart failure 

Heart failure can be defined as abnormalities in the structure or function of the heart 

causing failure of the heart to deliver oxygen at a rate commensurate with the requirements of 

the metabolizing tissues (Hunt et al., 2009). It is a major public health concern due to its high 

risk of morbidity and mortality (Bui et al., 2011). Bui and colleagues reported that heart 

failure affects 23 million people worldwide in 2011, and the prevalence may continue to rise 

each year (Bui et al., 2011). It is also one of the major causes for hospitalizations among the 

aging population in developed countries and it causes a heavy economic burden (Bui et al., 

2011). The aetiology of heart failure includes hypertension, diabetes, dyslipidemia, smoking 

and others and ischaemic heart disease is the most important risk factor for heart failure (Bui 

et al., 2011). Heart failure can be classified into 3 major categories which are new-onset heart 

failure, transient heart failure and chronic heart failure (Hunt et al., 2009). New-onset heart 

failure or de novo heart failure refers to first presentation and patients have with no prior 

history of heart failure. Transient heart failure refers to symptomatic heart failure over a 
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limited period of time, although long-term treatment may be indicated. For example, patients 

with mild myocarditis from which recovery is near complete. Chronic heart failure is defined 

as worsening of heart failure in patients with a previous diagnosis or hospitalization for heart 

failure. In all cases, symptoms include shortness of breath, fatigue, fluid retention with 

clinical signs of fluid retention (pulmonary or peripheral) in the presence of abnormal cardiac 

function (Hunt et al., 2009). 

After an episode of acute myocardial I/R, patients are highly susceptible to acute heart 

failure. Indeed, according to the EuroHeart Failure Survey II, acute coronary syndrome 

mainly due to acute myocardial infarction is the major contributing factor for patients’ 

hospitalization with acute heart failure (or de novo heart failure) (Nieminen et al., 2006). 

Population-based studies in Italy and the United Kingdom also reported that a high proportion 

of patients admitted with acute heart failure have a history of ischaemic heart disease or acute 

myocardial infarction (Cowie et al., 1999; Fox et al., 2001; Tavazzi et al., 2006). In addition, 

patients with acute heart failure have a very poor prognosis. The acute heart failure global 

survey of standard treatment (ALARM-HF) reported that patients with de novo heart failure 

had a higher mortality rate than those with a pre-existing episode of heart failure (Follath et 

al., 2011). 

 First-line treatments for acute heart failure are diuretic agents to treat pulmonary 

oedema and vasodilators such as glyceryl trinitrate or nitroprusside to reduce pre-load and 

after-load on the heart. In cases where there is low cardiac output and the peripheral 

vasculature is under-perfused, a positive inotrope will be introduced. In addition, studies have 

shown that patients with acute heart failure and a lower systolic blood pressure at admission 

have a higher in-hospital and post-discharge mortality rate (Gheorghiade et al., 2006; 

Shiraishi et al., 2011). Systolic blood pressure is emerging as an important predictor of in-

hospital and post-discharge mortality in acute heart failure (Gheorghiade & Pang, 2009). 
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Therefore, the ability to increase cardiac output and peripheral perfusion is critical to improve 

survival in acute heart failure. 

 

1.6.1 Dobutamine 

The standard inotropic therapy for acute heart failure is dobutamine (McMurray et al., 

2012). Dobutamine is a β1-adrenergic receptor agonist with weak β2-adrenergic stimulation. It 

acts on stimulatory G protein on the myocardium and activates adenylyl cyclase (Steinberg, 

1999). Adenylyl cyclase then catalyses the formation of cAMP which then activates protein 

kinase A (PKA) and this leads to the phosphorylation of regulatory proteins involved in 

cardiac excitation-contraction coupling and energy metabolism, including L-type 

Ca
2+

 channels, the sarcoplasmic reticulum membrane protein receptors RyR2, SERCA2a and 

PLN and myofilament proteins (Steinberg, 1999). The phosphorylation of L-type Ca
2+ 

channels allows entry of Ca
2+ 

into the cell and this triggers a Ca
2+

-induced Ca
2+

-release 

mechanism from the sarcoplasmic reticulum resulting in enhanced cardiac contraction and 

relaxation. Dobutamine is infused at a rate of 2-20 μg/kg/min in patients with severely low 

cardiac output that vital organ perfusion is compromised (McMurray et al., 2012). There is 

however growing evidence that deleterious effects including cardiac arrhythmias (eg. 

tachycardia) (Monrad et al., 1986; Burger et al., 2001), increased myocardial oxygen 

consumption that could lead to myocardial ischaemia (Fujigaki et al., 1989; Vanoverschelde 

et al., 1993) and a higher mortality rate occurs with dobutamine infusion in patients with 

acute heart failure compared to the placebo group (Mebazaa et al., 2011).  

As the use of dobutamine to improve cardiac output in acute heart failure may develop 

adverse effects, a few other novel inotropes have also been investiagted in the past 20 years. 

For example, levosimendan, which is a Ca
2+ 

sensitiser, exerts its positive inotropic effects by 

binding to cardiac troponin C in a Ca
2+

-dependent manner to enhance the myofilament 
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responsiveness to Ca
2+

 without increasing intracellular Ca
2+

 concentrations, and milirinone, a 

phosphodiesterase inhibitor, which prevents the degradation of cAMP resulting in increased 

contractility of the heart (McMurray et al., 2012). However, studies have shown that they 

exhibited adverse effects such as arrhythmias which limited their long-term usage (Mebazaa 

et al., 2007; Parissis et al., 2007). Therefore, the discovery of a novel positive inotrope with 

limited adverse effects, will improve the prognosis of patients with acute heart failure. 

 

1.7 Nitroxyl (HNO): the reduced congener of NO 

 HNO is a one-electron reduced and protonated redox sibling of NO. It is a weak acid 

with a pKa of 11.4 and the predominant species under physiological conditions is HNO rather 

than nitroxyl anion (NO
-
) (Shafirovich & Lymar, 2002). Many reports have shown a distinct 

chemical, biological and pharmacological profile between HNO and NO. For example, HNO, 

but not NO, is highly thiolphilic, reacting readily with thiols/thiolates by either reversible or 

irreversible reactions depending on the conditions, (i.e. the amount of thiols/thiolates present) 

(Wong et al., 1998). HNO is also resistant to scavenging by superoxide (Miranda et al., 

2002). This is in contrast to NO, which is easily scavenged by superoxide forming the highly 

reactive species peroxynitrite. This resistance to superoxide scavenging is a favourable 

property of HNO in mammalian systems, as peroxynitrite is cytotoxic and damaging to DNA 

and protein in cells. Similar to NO, HNO also has an affinity for metal centres of proteins 

such as iron-containing haem in oxymyoglobin and sGC (Farmer & Sulc, 2005). It 

coordinates with the ferrous centre in haem forming a stable ferrous-nitrosyl complex 

(Equation 1), however, different to NO, HNO preferentially targets ferric ion (Fe
3+

) which 

predominates in diseases rather than ferrous ion (Fe
2+

), while NO does not react with Fe
3+ 

(Miranda et al., 2003a).  
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   (Equation 1) 

 

1.7.1 Endogenous production of HNO 

 There is no concrete evidence that HNO is produced endogenously in mammals, 

however, many predictions have been made of the possibility of endogenous HNO formation. 

Several studies exploiting the endothelium-dependent vasodilator acetylcholine to 

evoke vasodilatation in rodent isolated arteries have shown that the HNO scavenger L-

cysteine attenuates the dilator effect of acetylcholine (Ellis et al., 2000; Andrews et al., 2009). 

This suggests that HNO could be an endothelium-derived relaxing factor. It has been reported 

that HNO could be generated directly by nitric oxide synthase (NOS) in the absence of its 

cofactor tetrahydrobiopterin, in non-biological systems (Adak et al., 2000). Oxidative 

degradation of N-hydroxy-L-arginine, the biosynthetic intermediate of NOS-catalysed 

oxidation of L-arginine can also produce HNO (Fukuto et al., 1992a; Yoo & Fukuto, 1995). 

As N-hydroxy-L-arginine is found at a significant level in plasma and some cells in vitro, this 

makes a feasible biosynthetic pathway for HNO (Cho et al., 2003a). From non-NOS sources, 

HNO may also be generated by the enzymatic reduction of NO in intracellular compartments 

such as in mitochondria by superoxide dismutase, xanthine oxidase and ubiquinol (Niketic et 

al., 1999; Poderoso et al., 1999; Saleem & Ohshima, 2004). The reaction of S-nitrosothiols 

with other thiols such as GSH may also generate HNO (Equation 2) (Wong et al., 1998).  

 

RS – NO  +  R’− SH  →  RSSR’  +  HNO    (Equation 2) 
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1.7.2 HNO donors 

The naturally-occurring HNO species is transient in nature, as it readily undergoes 

dimerization to form a hyponitrous acid and decomposes into nitrous acid and water 

(Equation 3) (Shafirovich & Lymar, 2002). Therefore a HNO donor has to be utilised in 

biological studies. There are a few commonly used HNO donors (Table 1.2) and the most 

well-known and studied donor is sodium trioxodinitrate (Na2N2O3), more commonly known 

as Angeli’s salt. 

 

HNO   +   HNO →  [HONNOH] →  N2O + H2O   (Equation 3) 
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Table 1.2: Nitroxyl (HNO) donors. 

HNO donor Mechanism of action Properties References 

Angeli’s salt 

(Na2N2O3, sodium 

trioxodinitrate) 

 

- Protonation reaction 

N2O3
-
 + H

+ 

HNO + NO2
- 

- Reaction occurs at physiological 

temperature and over a range of pH 4-8 

Limitations: 

- Co-release of nitrite (NO2
-
) 

- Short half-life (~2-3min) 

(Miranda et al., 

2005b; DuMond 

& King, 2011) 

Piloty’s acid 

(PhSO2NHOH, N 

hydroxybenzenesulfonamide) 

- Deprotonation reaction 

PhSO2NHOH 

PhSO2
-
 + HNO

 

Limitations: 

- Releases HNO at pH 13 (non-

physiology) 

- Releases NO
•
 rather than HNO at 

physiological pH 

(DuMond & 

King, 2011) 

Isopropylamine NONOate 

(IPA/NO, a primary amine 

diazeniumdiolate) 

- Decomposition reaction 

[RNH-N(O)=NO]
-
 

                  [RN=N(O)- NHO]
–
 

HNO + RNNO
-
 

- Reaction occurs at physiological pH 

and temperature 

Limitations: 

- Short half-life (~2-3mins) 

- IPA/NO may release NO at neutral pH 

(DuMond & 

King, 2011) 
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Acyloxy nitroso compound 

(eg. 1-NCA, 1-

Nitrosocyclohexyl acetate) 

- Cleavage of ester bond 

                    NO   O    R’’   

                                O 

                  R   R’ 

                         O              O 

                HNO +  R    R’+  R”   OH 

 

- Reaction occurs at physiological 

temperature and over a range of pH 4-8 

- Rate of HNO release varies with the 

structure of the organic/acyl groups 

- Half-life of > 2h 

- Newly described class of HNO donor 

Limitations: 

- Acyloxy nitroso may compete with 

HNO to react with thiols 

- Mechanism of action is not clear yet, 

and may involve NO release 

(Sha et al., 2006; 

DuMond & King, 

2011) 

hydrolysis 



57 

 

1.7.3 Cardiovascular therapeutic potential of HNO 

As discussed above, the primary targets for HNO are thiols and metal centres (eg. the 

haem group on sGC). The interaction of HNO with these biological moieties has made it a 

potential therapeutic agent in many biological conditions, especially in cardiovascular 

pathologies.  

 

1.7.3.1 HNO is a vasodilator 

(i) The role of sGC/cGMP signalling 

Many reports have shown that HNO elicits vasodilatation. The earliest report by 

Fukuto and colleagues demonstrated that Angeli’s salt induced relaxation in rabbit aorta and 

bovine intrapulmonary artery, and these responses were inhibited in the presence of the sGC 

inhibitor, methylene blue (Fukuto et al., 1992b). It was therefore speculated that the 

vasorelaxation of HNO was mediated by activation of the sGC, and subsequent production of 

cGMP (Fukuto et al., 1992b) (Figure 1.10). Other studies have shown that Angeli’s salt 

causes relaxation in vitro and vasodilatation in vivo and ex vivo. In rodent isolated thoracic 

aorta, Angeli’s salt induces vasorelaxation through sGC signalling (Ellis et al., 2000; 

Wanstall et al., 2001). Angeli’s salt also exhibits vasodilator activity in the feline pulmonary 

vascular beds (De Witt et al., 2001), in rat isolated heart ex vivo (Favaloro & Kemp-Harper, 

2007) and in canine heart in vivo (Paolocci et al., 2003). 

 

(ii) The role of potassium channels 

More recently, HNO has been reported to cause vasorelaxation through potassium 

channels. In rat mesenteric arteries, the vasodilator action of HNO is attenuated in the 

presence of a voltage-dependent potassium channel (Kv) inhibitor, 4-aminopyridine (4-AP) 

(Irvine et al., 2003). Other studies have shown that the dilator effect of HNO is impaired in 
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the presence of 4-AP, and is completely abolished in the presence of the sGC inhibitor 1H-[1,

2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), suggesting the modulation of Kv channels 

by HNO is downstream of sGC/cGMP signalling (Andrews et al., 2009; Favaloro & Kemp-

Harper, 2009) (Figure 1.10). Whether HNO modulates Kv channels by direct interaction, or in 

a sGC-dependent manner, remains to be elucidated. Yuill and colleagues have recently 

demonstrated that in rat resistance arteries, HNO-induced vasodilatation could also be 

mediated through Ca
2+

-activated K
+
 channels (BKCa) (Yuill et al., 2011) (Figure 1.10). With 

these findings, it has been suggested that HNO may be the endothelium-derived 

hyperpolarising factor in resistance arteries. In rat coronary vasculature, Angeli’s salt elicits 

vasorelaxation partly through the KATP channel, and this action is sGC-dependent (Favaloro & 

Kemp-Harper, 2007). 

 

(iii) The role of calcitonin gene-related peptide (CGRP) 

The vasorelaxation action induced by Angeli’s salt has also been shown to be partially 

mediated through calcitonin gene-related peptide (CGRP) receptors. CGRP is a small 

neuropeptide that is released from the sensory nerves, to innervate the heart and blood vessels, 

inducing vasodilatation and cardiac contraction (Katori et al., 2005). Administration of 

Angeli’s salt in vivo elevates the plasma levels of CGRP (Paolocci et al., 2003). Favaloro and 

Kemp-Harper demonstrated that the presence of a CGRP receptor antagonist, CGRP8-37, 

partly attenuated the dilator effect of HNO in the isolated heart ex vivo, suggesting CGRP 

might be partly involved in the vasorelaxation signalling of HNO (Favaloro & Kemp-Harper, 

2007) (Figure 1.10). In contrast, in an earlier report by Paolocci and colleagues, the 

vasodilator action of HNO was not affected by CGRP8-37 infusionin vivo (Paolocci et al., 

2001). Further investigation is needed to determine the role of CGRP in HNO actions.  
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(iv) HNO does not cause vascular tolerance 

As a vasodilator, HNO has pharmacological benefits over NO, in addition to lack of 

reactivity with superoxide. For example, Angeli’s salt, either in vitro or in vivo, does not 

induce tolerance to its own actions in blood vessels (Irvine et al., 2007; Irvine et al., 2011). 

This is favourable over traditional, clinically used NO donors, such as glyceryl trinitrate, 

which rapidly develop tolerance to their vascular actions (Irvine et al., 2007) and thus are 

unsuited to long term administration.  
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Figure 1.10: Schematic diagram of nitroxyl (HNO) signalling to induce vasorelaxation. HNO 

induces vasorelaxation primarily via the soluble guanylyl cyclase (sGC)/cyclic guanosine 

monophosphate (cGMP) pathway. HNO-induced vasorelaxation is also partially mediated 

through potassium channels (K
+
) i.e. voltage-gated potassium channels (Kv) and calcium-

activated potassium channel (KCa) in resistance arteries and adenosine triphosphophate (ATP)-

sensitive potasssium channel (KATP) in coronary vessels. HNO may also cause vasorelaxation 

by activating the calcitonin gene-related peptide (CGRP) receptor (Irvine et al., 2003; 

Favaloro & Kemp-Harper, 2007; Yuill et al., 2011).  
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(v) Potential use of HNO as a vasodilator in disease settings 

Bullen and colleagues reported that in isolated common carotid arteries from wild-type 

and apolipoprotein E–deficient (ApoE
-/-

) mice fed a high-fat diet for 7 weeks (where total 

plasma cholesterol level or superoxide anion production was elevated), the dilator response to 

the HNO donor, IPA/NO or the NO donor, glyceryl trinitrate (GTN) was preserved. In the 

same study, it was also reported that IPA/NO, but not GTN, inhibited collagen-induced 

platelet aggregation in ApoE
-/-

 mice (Bullen et al., 2011). The dilator response to Angeli’s salt 

in isolated aorta from angiotensin II-induced hypertensive mice was also preserved (Wynne et 

al., 2012). Angeli’s salt and IPA/NO also exhibit arterial pressure-lowering property and this 

property is preserved in spontaneously hypertensive rats compared to normotensive rats 

(Irvine et al., 2013a). In addition, vasorelaxation to Angeli’s salt in isolated aorta from 

spontaneously hypertensive rats was similar to that seen in normotensive rats (Irvine et al., 

2013a). In streptozotocin-induced type 1 diabetic rats, endogenous HNO-mediated 

vasodilatation was preserved, while endogenous NO-mediated relaxation was impaired (Leo 

et al., 2012). These data suggest that HNO can maintain its dilator property in diseases where 

there is evelated oxidative stress and can be used as a potential therapeutic agent to improve 

vasodilatation in pathological conditions such as hypertension and diabetes.  

 

1.7.3.2 HNO as antioxidant 

The role of HNO in redox biology has also been examined to provide evidence that 

HNO can act as an antioxidant by inducing the expression and activity of a cytoprotective 

enzyme, haem oxygenase-1 (HO-1) (Naughton et al., 2002). HO-1 is activated in response to 

oxidative stress and protects cells from oxidative damage (Naughton et al., 2002). Ritchie and 

colleagues have also shown that HNO suppresses levels of superoxide in cardiomyocytes, 
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through inhibition of the superoxide-generating enzyme, NADPH oxidase (Lin et al., 2012; 

Irvine et al., 2013b).  

 

1.7.3.3 HNO and cardiac function 

 The reaction between HNO and thiols/thiolates is an important component in the 

cardio-stimulatory action of HNO.  

 

(i) HNO in I/R injury 

 One of the earliest discoveries that HNO is beneficial in cardiac conditions was by 

affording myocardial protection during an I/R event akin to ischaemic preconditioning 

(Pagliaro et al., 2003). Pagliaro and colleagues have shown that an intracoronary infusion of 

Angeli’s salt on rat isolated hearts before global I/R could confer protection and reduce injury 

to the heart (Pagliaro et al., 2003). This was indicated by a decrease in left ventricular infarct 

size and improved post-ischaemic cardiac contractility with Angeli’s salt, and the protective 

effect was thiol-sensitive (Pagliaro et al., 2003). In contrast, Ma and colleagues have shown 

that when Angeli’s salt was administered just before reperfusion (but after ischaemia), it 

could exacerbate the injury and cause more severe damage to cardiomyocytes, suggesting that 

the timing is important for administration of Angeli’s salt for cardioprotection (Ma et al., 

1999a). NO exhibited a completely different profile where it provided a protection when it 

was administered after ischaemia and before reperfusion (Ma et al., 1999a).  
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(ii) HNO enhances cardiac contractility and relaxation 

Following these discoveries, growing evidence indicates that Angeli’s salt can exert a 

positive cardiac inotropic effect. Paolocci and colleagues demonstrated that Angeli’s salt 

exerted a positive cardiac inotropy in normal canine hearts in vivo (Paolocci et al., 2001). In 

canine tachycardia-induced failing hearts, Angeli’s salt enhances cardiac contraction to the 

same extent as in a normal canine heart, despite the many defective signalling mechanisms 

that are present (Paolocci et al., 2003). Myocardial relaxation was also improved (Paolocci et 

al., 2003). In rodent isolated cardiomyocytes, studies have also demonstrated that Angeli’s 

salt increases contractile force and hastens relaxation (Tocchetti et al., 2007; Lancel et al., 

2009; Kohr et al., 2010). This positive inotropy induced by Angeli’s salt was not seen with 

the NO donor, diethylamine NONOate (DEA/NO), showing a difference in the behaviour of 

HNO and NO (Paolocci et al., 2001). 

 

(iii) Mechanism of action of HNO in cardiomyocytes 

Numerous studies have been conducted to investigate the mechanism of action of 

HNO in isolated cardiomyocytes. HNO can regulate Ca
2+

 homeostasis in cardiomyocytes, by 

targeting specific Ca
2+

-handling proteins on the sarcoplasmic reticulum through a HNO-thiol 

interaction (Tocchetti et al., 2007; Kohr et al., 2010). HNO is thought to react with specific 

thiol groups, called hyperreactive or “critical thiols”, on these proteins that are selectively 

oxidised and reduced, to open and close for Ca
2+ 

transport respectively (Zaidi et al., 1989; 

Cheong et al., 2005; Lancel et al., 2009). HNO reacts with thiol groups on RyR2 on 

sarcoplasmic reticulum, to trigger the opening of the channel and induce a prompt release of 

Ca
2+ 

(Cheong et al., 2005; Tocchetti et al., 2007; Kohr et al., 2010). This increases the 

availability of cytoplasmic Ca
2+

 for contraction. To improve cardiomyocyte relaxation, HNO 

interacts with another thiol-containing protein, SERCA, to increase its opening probability 
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and accelerate the re-sequestration of Ca
2+ 

into the sarcoplasmic reticulum (Tocchetti et al., 

2007; Kohr et al., 2010). Further evidence has shown that this reaction occurs via oxidative 

modification of a single amino acid cysteine 674 on SERCA2a (Lancel et al., 2009). In 

addition, HNO also covalently modifies the thiol group on PLN, a regulatory protein of 

SERCA2a to facilitate cardiac relaxation (Karim et al., 1998; Froehlich et al., 2008). 

 Apart from regulating the Ca
2+ 

handling in cardiomyocytes, HNO can also act directly 

on muscle fibres to enhance cardiac contraction (Dai et al., 2007). The presence of the thiol-

reducing agent, dithiothreitol (DTT), blunts this effect, suggesting a thiol interaction is 

involved (Dai et al., 2007).  It has also been hypothesised that HNO reacts with cysteine “hot-

spots” in the muscle fibres and causes increased sensitivity of the fibres to Ca
2+ 

binding (Dai 

et al., 2007). It is likely that these cysteine “hot-spots” are present on regulatory contractile 

proteins such as tropomyosin, troponin C, troponin I and myosin light chain I and II (Dai et 

al., 2007), as supported by a recent study where depressed myocardial contraction was 

reversed by HNO, via increasing myofilament sensitisation to Ca
2+ 

(Ding et al., 2011). 
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Figure 1.11: Mechanism of action of nitroxyl (HNO) to enhance cardiac contraction and 

relaxation.  HNO reacts with ryanodine receptor (RyR) and myofilament proteins via a thiol 

interaction (S
-
) to enhance cardiac contraction while it acts on sarco/endoplasmic reticulum 

Ca
2+

-ATPase (SERCA) and phospholamban (PLN), also through a thiol interaction, to 

improve relaxation (Dai et al., 2007; Tocchetti et al., 2007). SR= sarcoplasmic reticulum; 

Ca
2+

= calcium ions, ATP= adenosine triphosphate 
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1.7.3.4 Antihypertrophic action of HNO 

Studies have shown that HNO exhibited antihypertrophic properties in neonatal rat 

isolated cardiomyocytes via the sGC/cGMP pathway (Lin et al., 2012; Irvine et al., 2013b). In 

these studies, on addition of HNO donors, Angeli’s salt and IPA/NO, there was a significant 

reduction in cardiomyocyte size and inhibition of ROS generation that can contribute to 

cardiac hypertrophy (Lin et al., 2012; Irvine et al., 2013b). In cardiac hypertrophy, there is a 

switch in fetal genes for contractile proteins to the less efficient β-myosin heavy chain 

isoform (Lin et al., 2012). Angeli’s salt prevented this switch in gene expression (Lin et al., 

2012). It also significantly attenuated the activity of a pro-hypertrophic signalling kinase, p38 

MAPK (Lin et al., 2012).  

 

1.8 Aims of the project 

It is evident that the synthetic flavonol, DiOHF is protective against myocardial I/R 

injury; however its mechanism of action requires further investigation. The broad aim of the 

project is to investigate the temporal change in the expression of pro-injurious and pro-

survival kinases after myocardial I/R, and the effect of DiOHF on the expression of these 

kinases after myocardial I/R. It is hypothesized that cardioprotection afforded by DiOHF 

during I/R is mediated by inhibiting kinases in the injurious pathway without affecting 

protective kinases. In addition, the mechanism of cardiac and vascular actions of the HNO 

donor, Angeli’s salt in normal hearts as well as its cardiac and vascular effects after acute 

myocardial infarction will be determined. The hypothesis is that the acute improvement in 

cardiac and vascular function by the HNO donor, Angeli’s salt is preserved after acute 

myocardial infarction. 

The specific aims of this study are 



67 

 

(i) To investigate the temporal change in the expression of pro-injurious and pro-

survival kinases after myocardial I/R. The expression of MAPKs, JNKs, p38 

MAPK, Erk 1/2, Akt, the multi-functional enzyme CaMKII and PLN after 

myocardial ischaemia and at various reperfusion time points after ischaemia 

was investigated.   

 

(ii)  To investigate the effect of DiOHF on the expression of injurious and 

protective kinases after myocardial I/R. DiOHF was added during reperfusion 

and its effect on myocardial I/R injury was studied. The effect of DiOHF on 

the expression of JNKs, p38 MAPK, Erk 1/2, Akt, CaMKII and PLN at various 

reperfusion time points after ischaemia was investigated.   

 

(iii) To investigate the mechanism(s) of cardiac and dilator actions of the HNO 

donor, Angeli’s salt in the more physiological setting of the isolated heart at 

constant pressure. The cardiac and dilator actions of Angeli’s salt on normal 

hearts were compared to the NO donor, DEA/NO. 

 

(iv) To investigate the acute improvement in cardiac and vascular function by 

Angeli’s salt after myocardial I/R. The cardiac effect of Angeli’s salt was 

compared to dobutamine, a clinically used inotrope for acute heart failure, 

while its dilator effect was compared with DEA/NO.  
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Chapter 2 

2. General Methods   

2.1 Animal Model 

Male Sprague-Dawley rats were purchased from either the Monash University Animal 

Facility (Clayton, VIC, Australia), or the Alfred Medical Research Educational Precinct 

(AMREP) Animal Facility. All animals were kept in the Research Animal Facility at RMIT 

University or AMREP under controlled conditions of illumination (12 h light/12 h darkness) 

and temperature (20–25ºC). All animals were given free access to food (standard pellet diet) 

and water ad libitum. The use of animals was approved by RMIT University and AMREP 

Animal Ethics Committees and conformed to the National Health and Medical Research 

Council of Australia code of practice for the care and use of animals for scientific purposes. 

 

2.2 Isolation of Sprague-Dawley rat hearts 

Rats (weighing 250-450 g) were anaesthetised with 325 mg/kg sodium pentobarbitone 

or a mixture of ketamine (100 mg/kg) and xylazine (12 mg/kg) intraperitoneally. Before a 

surgery was performed, confirmation of anaesthesia of the animal was assessed by checking 

the pedal pain withdrawal reflex (Skrzypiec-Spring et al., 2007). Once the withdrawal reflex 

was absent, a thoracotomy was performed by cutting the diaphragm transabdominally. The 

thoracic cage was cut open on both sides along the axilliary lines and was reflected backwards 

to expose the heart. The heart was excised and immediately immersed in an ice-cold (4⁰C) 

Krebs’ buffer (pH 7.4 composition in mM: NaCl 118, KCl 4.7, MgSO4•7H2O 1.18, KH2PO4 

1.2, EDTA 0.5, CaCl2 1.75, NaHCO3 25.0 and D-glucose 11) to rinse off any blood on the 
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heart surface, stop its beating temporarily and to preserve it from ischaemic injury prior to 

reperfusion. The heart was then transferred onto a dissecting dish containing ice-cold Krebs 

buffer and any surplus tissues (such as thymus, lungs or fat) surrounding the heart were 

removed.  

 

2.3 Langendorff-perfused rat hearts  

Krebs’ buffer was allowed to drip gently from the aortic cannula of the Langendorff 

system (ADInstrument, Sydney, NSW, Australia) before cannulation of the heart took place to 

avoid formation of air emboli during the cannulation process. The ascending aorta was gently 

cannulated at the aortic cannula by holding the aorta with two blunt-ended fine forceps. The 

aorta was then clamped using an alligator clip and a ligature was quickly tied around the 

aorta, securing it to the cannula. The cannula was connected to a pressure transducer 

(ADInstruments) to constantly measure the perfusion (aortic) pressure. The heart was 

retrogradely perfused with Krebs’ buffer bubbled with 95% O2 and 5% CO2 at pH 7.4 and 

37⁰C. Hearts were perfused at a constant flow of ~12 ml/min to generate a perfusion pressure 

of ~60 mmHg or at a constant pressure of 45 ± 5 mmHg using a negative feedback pressure 

control loop peristaltic pump system (ADInstruments). The left atrial appendage was removed 

and a fluid-filled balloon made of thin silicone rubber was inserted into the left ventricle 

through the left atrium. The balloon was connected to a pressure transducer (ADInstruments) 

via a catheter to measure left ventricular pressure. The perfusion pressure, coronary flow, 

heart rate, left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure 

(LVEDP), left ventricular developed pressure (LVDP) and its derivative LV±dP/dt were 

continuously recorded on an ADInstruments PowerLab data acquisition system. Hearts that 

showed inadequate contractility, i.e. LV+dP/dt <1500 mmHg/sec, heart rate <100 beats/min, 

or sustained arrhythmias, during the stabilization period were excluded from the study.  
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Figure 2.1: Schematic diagram of a rat isolated perfused heart. The heart was retrogradely 

perfused with Krebs’ buffer bubbled with 95% O2 and 5% CO2 at pH 7.4 and 37⁰C. The 

cannula was connected to a pressure transducer to constantly measure the perfusion (aortic) 

pressure while a fluid-filled balloon inserted into the left ventricle was connected to a second 

pressure transducer via a catheter to measure left ventricular pressure (Skrzypiec-Spring et al., 

2007). O2= oxygen molecules; CO2= carbon dioxide 
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2.4 Functional experiments 

 After 20 to 30 min equilibration, hearts were subjected to various treatments. For 

example, in Chapters 3, 4 and 6, hearts were subjected to global ischaemia followed by 

reperfusion. Global ischaemia was induced by stopping the Krebs’ buffer perfusion to the 

heart completely. Hearts were immersed in warm (37°C) Krebs’ buffer in the organ bath 

throughout the ischaemic period. Reperfusion was carried out by allowing the flow of Krebs’ 

buffer to the heart again.  

 At the end of the functional experiment, left ventricular tissues were either snap frozen 

in liquid nitrogen and stored at -80°C freezer for Western blot analysis or fixed in 4% 

paraformaldehyde (PFA) overnight for terminal deoxynucleotidyl transferase dUTP nick end 

labelling (TUNEL) assay.  

 

2.5 Lactate dehydrogenase (LDH) assay 

 LDH is a soluble cytosolic enzyme that is released following the loss of membrane 

integrity in the heart tissue into the coronary effluent. The measurement of LDH release, 

therefore, can be used as an indicator of cellular rupture and severe irreversible cell death. 

 

2.5.1 Collection of LDH samples 

Coronary effluent (~1 ml) from rat isolated perfused hearts was collected at various 

perfusion time points in sham hearts and during equilibration and at various reperfusion time 

points in I/R-treated hearts (Figure 2.1). Aliquots of samples were stored at -80°C until use. 
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2.5.2 Measurement of LDH release  

On the day of LDH analysis, samples collected from -80°C freezer were warmed to 

room temperature. Reaction buffer consists of 145 mM sodium dihydrogen phosphate 

monohydrate (NaH2PO4•H2O) and 1.45 mM sodium pyruvate, pH 7.5 was prepared. 1 mM 

nicotinamide adenine dinucleotide (NADH) was also prepared on ice and covered with 

aluminium foil. In a minimal light environment, 700 μL reaction buffer, 100 μL NADH and 

200 μL samples were added to a microcuvette and LDH activity was measured every 3 sec for 

2 min at 340 nm using a UV/Vis spectrophotometer (Lambda 25; PerkinElmer, Waltham, 

MA, USA). LDH activity was measured by the rate of reduction in the absorbance value 

during the conversion of NADH with sodium pyruvate to its oxidized form (NAD
+
, equation 

1). 

 

 (Equation 1) 

 

An LDH standard curve (0.01-1 U/ml) was also constructed using L-LDH extracted from the 

hog muscle to calculate the LDH concentration in the effluent sample. 

 

2.6 Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay   

2.6.1 Left ventricular tissues processing 

After fixing in 4% PFA overnight, left ventricular tissues were placed in tissue 

cassettes which were then placed in a cassette holder (or basket) for tissue processing. Tissue 

processing was performed in an automated tissue processor (Leica Biosystems, North Ryde, 

NSW, Australia) where tissues were submerged in 10% neutral buffered formalin, graded 

concentrations of ethanol, 75%, 90% and 100% for 3 times, xylene for 3 times and melted 
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paraffin wax for 3 times. Tissues were immersed in each reagent for 30 min at 38°C except 

for melted paraffin wax at 62°C.  

 

2.6.2 Paraffin wax embedding 

Embedding was performed using a modular embedding centre (Shandon 

Histocentre
TM

 3, Thermo Electron Corporation, Waltham, MA, USA) which consists of a 

paraffin wax dispenser, a cold surface and a heated area for storage of moulds and tissue 

cassettes. Paraffin wax was dispensed into a suitably size mould and the processed tissue was 

placed in the mould in the correct orientation to provide a good morphology during 

microscopic examination. The cassette was then attached onto the mould and together they 

were placed on the cold surface for paraffin wax solidification. Once the paraffin wax had 

solidified, the mould was removed from the tissue block (left ventricular tissue embedded in 

paraffin wax).  

 

2.6.3 Sectioning of the tissue block 

Tissue blocks were sectioned using a rotary microtome (Leica RM2235 Microtome, 

Leica Biosystems, North Ryde, NSW, Australia). Trimming of tissue blocks was carried out 

before sectioning by cutting the block at 15-30 µm. Tissue blocks were then cut at 4 µm and a 

tissue ribbon was generated which was floated on a thermostatically controlled water bath 

(50°C) to flatten sections (~30 sec). Individual sections were separated from the ribbon using 

forceps and were mounted onto glass slides coated with poly-L-lysine. Glass slides containing 

sections were heated in an oven at 60°C for 1 h to remove any water trapped in the section.  
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2.6.4 In situ detection of apoptosis 

Detection of apoptosis was performed using the CardioTACS
TM 

in situ apoptosis 

detection kit (Trevigen, Gaithersburg, MD, USA). Deparaffinization of sections was 

performed by warming sections on the hot plate at 57°C for 5 min. Sections were dewaxed in 

xylene for 2 x 5 min followed by immersion in 100%, 95% and 70% ethanol, 5 min each. 

After 2 x 5 min washes in phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 8 

mM Na2HPO4 and 2 mM KH2PO4, pH = 7.4), sections were incubated with proteinase K 

solution (20 µg/ml) at room temperature for 20 min to permeabilize tissues. Endogenous 

peroxidase activity was blocked by incubating sections with 3% hydrogen peroxidase in 

methanol for 5 min. After washing in distilled water for 1 min, sections were immersed in 

terminal deoxynucleotidyl transferase (TdT) labelling buffer (0.001% thimerosal, 60 µM 2-

mercaptoethanesulfonic acid, 0.05% bovine serum albumin and N-

[tris(hydroxymethyl)methyl]-2-aminoethanesulfonic acid sodium salt solution, pH = 7.5) at 

room temperature for 5 min. The glass slide around the section was dried carefully. Sections 

were incubated with labelling reaction mix (5µM bionylated deoxynucleotide mix, 0.4 mM 

manganese cation, TdT enzyme and TdT labelling buffer) in a humidity chamber at 37°C for 

1 h. Then, sections were immersed in TdT stop buffer (10 mM EDTA, pH = 8.0) at room 

temperature for 5 min followed by streptavidin-horseradish peroxidise (HRP) solution 

incubation for 10 min. TACS Blue Label
TM 

(3,3’,5,5’-tetramethylbenzidine in 0.9% dimethyl 

sulfoxide (DMSO) v/v solution) was then added to sections and it reacted with streptavidin-

HRP to generate a dark blue precipitate. After 2 x 5min wash with distilled water, sections 

were counterstained with Nuclear Fast Red for 2.5 min. Sections were washed in distilled 

water for 1 min followed by dehydration by sequentially immersing in 95% and 100% ethanol 

for 1 min each and xylene 2 x 2 min. Sections were then mounted with a synthetic mounting 

medium DPX and covered with a coverslip. The number of positively stained nuclei in 10 
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random fields per section was counted under a microscope (at 20x magnification). The 

number of apoptotic cells was measured as a percentage of total cells. 

 

2.7 Western blot  

2.7.1 Protein extraction 

Frozen left ventricular tissues were collected from -80⁰C freezer. Approximately 80 

mg left ventricular tissue from each sample was collected and homogenized in 400 μL ice-

cold lysis buffer (100 mM NaCl, 10 mM Tris, 2 mM EDTA, 0.5% w/v sodium deoxycholate, 

1% vol/vol triton X-100, pH7.4, protease and phosphatase inhibitor cocktails (Roche, Sydney, 

NSW, Australia)) using the digital homogenizer. Samples were kept on ice throughout the 

homogenizing process. After all samples were homogenized, tissue homogenates were 

centrifuged at 3,750 g for 20 min at 4°C. The supernatant was then collected and stored at -

80°C until required. This protein extraction yielded a whole (left) ventricle homogenate.  

 

2.7.2 Protein assay 

The protein concentration of tissue homogenates was assessed using the Bradford 

protein assay. Tissue homogenates were diluted 1:200 with PBS to a final volume of 100 μL 

in a test tube. 100 μL of 0.2 M sodium hydroxide (NaOH) was added to the test tube and 

incubated for 15 min. 600 μL of MilliQ water followed by 200 μL of red protein assay reagent 

dye (Bio-Rad, Gladesville, NSW, Australia) were added to the test tube. The solution mixture 

was vortexed and the mixture turned blue in the presence of protein. 200 μL of the solution 

was then transferred to a 96-well plate. Each sample was performed in duplicates. The 

absorbance of samples was measured at 590 nm with a plate reader. A bovine serum albumin 

(BSA) standard curve (0-20 μg/ml) was also generated and was used to calculate the protein 

concentration in the unknown sample. 
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2.7.3 Preparation of samples for sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) 

An identical amount of protein (50 μg) from each sample was obtained and topped up 

with MilliQ water so that each sample contained the same total volume (10 μl). The identical 

volume (10 μl) of 2x Laemmli sample buffer (20% w/v glycerol, 2% SDS, 62.5 mM Tris, 

0.05% bromophenol blue and 5% β-mercaptoethanol, pH 6.8) was added to each sample and 

stored at -80°C until required. 

 

2.7.4 Preparation of gel for SDS-PAGE 

Plates were assembled according to the manufacturers’ instructions (Bio-Rad, 

Gladesville, NSW, Australia). The 10% (for Akt, Erk 1/2, STAT3, p38 MAPK, JNK and 

CaMKII) or 15% (for PLN) resolving gel buffer (30% acrylamide, MilliQ water, 1.5 M Tris, 

pH 8.8, 10% SDS, 10% ammonium persulfate and N,N,N',N'-tetramethylethylenediamine 

(TEMED)) was prepared and added into the glass plates using a pipette. Isopropyl alcohol 

(~20 μL) was also added to remove bubbles and to prevent the top of the gel from drying. The 

solution was left to polymerize at room temperature for 30-60 min to form an acrylamide-

resolving gel. Once the resolving gel had set, the alcohol was removed by dabbing using 

KimWipes. 4% stacking gel buffer (30% acrylamide, MilliQ water, 0.5 M Tris, pH 6.8, 10% 

SDS, 10% ammonium persulfate and TEMED) was then added on to the top of the resolving 

gel and a 15-well comb was inserted. The gel was left to polymerize at room temperature for 

20-45 min. 
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2.7.5 SDS-PAGE 

SDS-PAGE was carried out using a mini-PROTEAN apparatus (Bio-Rad, Gladesville, 

NSW, Australia). Samples collected from -80°C freezer were heated at 95°C for 5 min to 

denature the protein and centrifuged so that all proteins were concentrated at the bottom of the 

eppendorff tube. Samples (containing 50 μg protein) and a pre-stained kaleidoscope protein 

ladder (8 μl, Bio-Rad, Gladesville, NSW, Australia) were loaded into wells followed by 

electrophoresis of proteins in the running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, 

pH 8.3) at 100 V for 1.5-2 h (until the protein separation was completed, Figure 2.2A). 

Following electrophoresis, gels were placed in an ice-cold transfer buffer (25 mM Tris, 192 

mM glycine, 20% methanol, 0.037% SDS, pH 8.3) to remove excess salt and detergents from 

the running buffer which may increase the conductivity of the transfer buffer. At the same 

time, Hybond nitrocellulose membranes, filter papers and sponges were also equilibrated in 

ice-cold transfer buffer. Sponges, filter papers, nitrocellulose membranes and gels were then 

assembled as shown in Figure 2.2B, for wet transfer to be carried out at 350 mA for 1.5-2 h. 

Transfer of protein onto the membrane was confirmed by Ponceau S staining. 

 

2.7.6 Immunoblotting 

For immunoblotting of phospho-proteins, non-specific binding on the nitrocellulose 

membrane were blocked in 5% w/v BSA in Tris buffered saline plus 0.1% Tween-20 (TBST) 

at room temperature for 1 h. Primary antibody (e.g. phospho-Akt raised in rabbit, 1:1000 

dilution in 5% BSA/TBST) incubation was carried out at 4°C overnight. The next day, the 

membrane was washed 3 x 5 min with TBST followed by goat anti-rabbit HRP-conjugated 

secondary antibody incubation (1:2000 in 5% skim milk/TBST) at room temperature for 1 h 

(Figure 2.3). The secondary antibody was detected with either enhanced chemiluminescence 

reagents (Amersham, GE Healthcare, Sydney, NSW, Australia) or Supersignal West Femto 
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(Thermo Scientific, Waltham, MA, USA) for 1 min, and the chemiluminescence signals on 

the membrane were detected by the digital image scanner (Bio-Rad Chemidoc). Protein bands 

were then quantified by densitometry. 

After the detection of the phospho-protein, membranes were stripped with stripping 

buffer (Thermo Scientific, Waltham, MA, USA) according to manufacturer’s instructions. To 

confirm that the membrane was stripped successfully, the membrane was blocked with 5% 

skim milk/TBST at room temperature for 1 h, followed by goat anti-rabbit HRP-conjugated 

secondary antibody (1:2000 in 5% skim milk/TBST) incubation at room temperature for 1 h. 

The membrane was visualized with enhanced chemiluminescence reagents (Amersham, GE 

Healthcare, Sydney, NSW, Australia) and the loss of protein bands indicated that the stripping 

was successful. After stripping, the membrane was then probed with the respective total 

protein (eg. Akt for phospho-Akt) at 4°C overnight. After 3 x 5 min washes with TBST, 

secondary antibody incubation was carried out followed by chemiluminescence detection and 

visualization. Protein bands detected were quantified by densitometry.  
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Figure 2.2: (A) Schematic diagram of the mini-PROTEAN apparatus (Bio-rad, Gladesville, 

NSW, Australia) for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE). Negatively charged proteins (denatured in sample buffer containing SDS detergent) 

will migrate in an electric field through the gel and towards the positive electrode. Having 

similar charge-to-mass ratio, proteins are separated by size where proteins with lower 

molecular weight will migrate across the gel faster than higher molecular weight proteins. (B) 

The orientation of the sponge/filter paper/gel/membrane sandwich for wet transfer. This 

orientation is important for the negatively charged proteins to migrate from the gel onto the 

membrane when an electric current is applied. 

 

(A) 

(B) 
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Figure 2.3: Detection of a target protein by the primary antibody followed by the incubation 

of a horseradish peroxidase (HRP)-conjugated secondary antibody to detect the presence of 

the primary antibody. The HRP label reacts with chemiluminescent substrates to produce light 

which is detected using the digital image scanner. 
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2.8 Assessment of reperfusion-induced arrhythmias 

Experimental records of left ventricular pressure (LVP) were used to analyse the 

incidence of arrhythmias. One of the subtypes of arrhythmia is ventricular fibrillation. 

According to the Lambeth Conventions (Walker et al., 1988), ventricular fibrillation occurred 

when beats are no longer distinguishable from one another and the developed pressure is <5 

mmHg. The total duration (in sec) of LVP showing a LVDP <5 mmHg in the first 10 min of 

reperfusion was measured.  

 

2.9 Statistical analysis 

All results were expressed as group mean ± standard error of mean (SEM), with the 

number of independent experiments denoted as ‘n’. Data analysis was performed using 

Graphpad Prism
®
 (version 5.0 or 6.0, La Jolla, CA, USA). Statistical analysis including 

Student’s unpaired t-test (Chapters 4, 5 and 6), 1-way ANOVA with Tukey’s multiple 

comparison test (Chapters 3 and 4), 1-way ANOVA with Dunnett’s post hoc test for multiple 

comparisons (Chapter 5), 2-way ANOVA with Sidak’s multiple comparison test (Chapters 4 

and 6) and 2-way ANOVA with Bonferroni post hoc test for multiple comparisons (Chapter 

5) were performed. 

 

2.10 Drugs and reagents 

Sodium chloride (NaCl), potassium chloride (KCl), potassium phosphate monobasic 

(KH2PO4), magnesium sulphate hepta hydrate (MgSO4•7H2O), calcium chloride (CaCl2) 

sodium bicarbonate (NaHCO3), D-glucose and ethylenediaminetetraacetic acid (EDTA) were 

all obtained from Sigma-Aldrich (St. Louis, MO, USA). Ketamine was obtained from Parnell 

Laboratories Aust Pty. Ltd. (Alexandria, NSW, Australia) and xylazine was from Troy 

Laboratories (Smithfield, NSW, Australia). Sodium pentobarbitone was from Lethabarb, 
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Virbac Animal Heath (Sydney, NSW, Australia).  For LDH assay, L-LDH from hog muscle 

was from Boehringer Ingelheim (North Ryde, NSW, Australia). Sodium pyruvate, 

NaH2PO4•H2O, and NADH were purchased from Sigma-Aldrich (St. Louis, MO, USA). For 

TUNEL assay, ethanol, xylene, hydrogen peroxide and DPX mountant were from Sigma-

Aldrich (St. Louis, MO, USA). PFA was from Merck Millipore (Bayswater, VIC, Australia). 

For Western blot experiments, sodium deoxycholate, NaOH, triton-X, tris(hydroxymethyl) 

aminomethane (Tris), SDS, β-mercaptoethanol, TEMED, ammonium persulfate, glycine, 

Tween-20 and methanol were obtained from Sigma-Aldrich (St. Louis, MO, USA). Primary 

antibodies were all purchased from Cell Signalling Technology (Beverly, MA, USA) except 

for actin which was purchased from Sigma. Glycerol, bromophenol blue and goat or sheep 

anti-rabbit and anti-mouse HRP-conjugated secondary antibodies were from Merck Millipore 

(Bayswater, VIC, Australia). BSA was from Life Technologies (Scoresby, VIC, Australia) 

and 30% acrylamide was from Bio-Rad Laboratories Pty. Ltd. (Gladesville, NSW, Australia). 

Ponceau S solution was obtained from Thermo Scientific (Waltham, MA, USA).  
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Chapter 3 

3. Temporal change in the expression of pro-

injurious and pro-survival kinases during 

myocardial I/R 
 

3.1 Introduction 

Myocardial infarction remains one of the major health problems in many countries and 

imposes a heavy economic burden for health expenditure. It is caused by a blockage in the 

blood vessel supplying the heart and partial or complete occlusion of the blood vessel results 

in ischaemia of the heart and subsequent cardiomyocyte death (White & Chew, 2008). Early 

reperfusion to remove the blockage in the blood vessel either by surgery such as percutaneous 

coronary interventions, or using thrombolytic agents, such as tissue plasminogen activator, is 

critical to restore the blood flow to the ischaemic myocardium to resuscitate myocardial tissue 

and improve clinical outcome (White & Chew, 2008). Paradoxically, this revascularization 

strategy may lead to accelerated and additional myocardial injury beyond that generated by 

ischaemia alone called myocardial reperfusion injury (Yellon & Hausenloy, 2007). At 

present, there is no effective pharmacological treatment for reperfusion injury. 

A major hypothesis for the mechanism by which myocardial reperfusion causes injury 

is increased oxidative stress (Yellon & Hausenloy, 2007). Reoxygenation to the ischaemic 

myocardium produces ROS which are highly reactive molecules that can exert destructive 

effects on body systems such as damaging cellular DNA, lipids and protein, thereby inhibiting 

their normal functions and eventually causing cell death (Figure 1.1). A second major 

contributing factor for myocardial reperfusion injury is the calcium paradox (Yellon & 
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Hausenloy, 2007). Upon reperfusion, there is an abrupt increase in Ca
2+

 in the cell due to 

direct entry of Ca
2+ 

through the damaged sarcolemmal membrane and the Na
+
/Ca

2+ 
exchanger 

to normalise pH (Figure 1.2). This can cause Ca
2+

 overload in the cell and induce 

cardiomyocyte death by causing hypercontracture of the heart cells. Ca
2+

 overload in the 

mitochondria which results in mitochondrial permeability transition pore (mPTP) opening and 

cell death has recently received much research attention as a major cause of myocardial 

reperfusion injury. 

 Increased oxidative stress and Ca
2+ 

overload that occur during myocardial I/R could 

also activate a wide range of signal transduction pathways and contribute to cell survival or 

death. Signalling pathways that have been implicated during myocardial I/R include the 

mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3′-kinase (PI3K)/protein 

kinase B (Akt) pathways (Hausenloy & Yellon, 2004; Rose et al., 2010). The best-

characterized MAPK subfamilies are extracellular signal-regulated kinase (Erk) 1/2, c-jun N-

terminal kinases (JNKs) and p38 MAPK. Extensive evidence in vitro and in vivo has 

supported a pro-injurious role of JNKs and p38 MAPK activation in myocardial I/R (Ma et 

al., 1999b; Yue et al., 2000; Ferrandi et al., 2004; Kaiser et al., 2004). The activation of JNKs 

and p38 MAPK increases the expression of pro-apopoptotic proteins such as Bcl-2-associated 

X protein (Bax) and Bcl-2-associated death promoter  (BAD) as well as decreases the 

expression of anti-apoptotic proteins such as Bcl-2 and Bcl-X leading to apoptosis and cell 

death (Javadov et al., 2014). While the activation of JNKs and p38 MAPK are pro-injurious, 

Hausenloy and Yellon have proposed that the activation of Akt and Erk 1/2 which form the 

Reperfusion Injury Salvage Kinase (RISK) pathway is involved in protection against 

myocardial I/R injury (Hausenloy & Yellon, 2004; Hausenloy et al., 2005). Akt and Erk 1/2 

phosphorylate several common targets which include pro-apoptotic proteins such as BAD and 

glycogen synthase kinase (GSK)-3β thereby inactivating them. The inactivation of GSK-3β 

http://en.wikipedia.org/wiki/Bcl-2-associated_X_protein
http://en.wikipedia.org/wiki/Bcl-2-associated_X_protein
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inhibits the opening of mPTP and prevents cell death (Hausenloy et al., 2005). Another pro-

survival pathway which has been implicated during I/R is the Survivor Activating Factor 

Enhancement (SAFE) pathway (Lecour, 2009). It involves the activation of the TNF-α, Janus 

kinase (JAK) and signal transducer and activator of transcription (STAT) 3 to promote cell 

survival., The relative activation of these kinase signalling pathways could influence the fate 

of cardiomyocytes to either undergo cell survival or death. 

 ROS and intracellular Ca
2+ 

overload could also activate a multi-functional protein 

called Ca
2+

/calmodulin-dependent protein kinase (CaMK) II (Couchonnal & Anderson, 2008). 

Elevated  intracellular Ca
2+

 concentration promotes Ca
2+ 

binding onto calmodulin and this 

calcified calmodulin then binds to CaMKII causing a conformational change and 

autophosphorylation (Couchonnal & Anderson, 2008). Activated CaMKII will in turn activate 

various downstream Ca
2+

-related receptors including ryanodine receptors (RyRs), 

sarco/endoplasmic reticulum Ca
2+

-ATPase  (SERCA) and phospholamban (PLN) which is the 

regulatory protein for SERCA2a on the sarcoplasmic reticulum (Couchonnal & Anderson, 

2008). Phosphorylation of PLN promotes SERCA resulting in the uptake of Ca
2+ 

into the 

sarcoplasmic reticulum (Mattiazzi & Kranias, 2014). It is well known that CaMKII regulates 

myocardial excitation-contraction coupling under normal physiological conditions 

(Couchonnal & Anderson, 2008); however excessive CaMKII activation has been associated 

with various cardiac diseases including heart failure, cardiac hypertrophy and arrhythmias 

(Zhang & Brown, 2004; Couchonnal & Anderson, 2008). Emerging evidence has shown that 

CaMKII could also be a mediator of myocardial I/R injury (Vila-Petroff et al., 2007; Joiner et 

al., 2012).  

 In this study, we aimed to explore the temporal change in the activation of pro-

injurious kinases p38 MAPK and JNKs as well as the activation of CaMKII and its 
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downstream target PLN, and the activation of protective kinases Akt and Erk 1/2 in the RISK 

pathway and STAT3 in the SAFE pathway during myocardial I/R. 

 

3.2 Methods   

This investigation conforms with the National Health and Medical Research Council 

of Australia code of practice for the care and use of animals for scientific purposes. All the 

procedures involved in this project were approved by the RMIT University Animal Ethics 

Committee.  

 

3.2.1 Langendorff heart preparation 

Hearts isolated from adult male Sprague-Dawley rats (250-300g) anaesthetized with 

325 mg/kg sodium pentobarbitone were Langendorff-perfused as described in Chapter 2.3. 

Rat isolated hearts were perfused at a constant flow of ~12 ml/min to generate a perfusion 

pressure of 62 ± 5 mmHg. Hearts were equilibrated for 30 min before any intervention was 

carried out. 

 

3.2.2 Temporal change in the expression of kinases during myocardial I/R   

Rat isolated hearts were randomly assigned to one of the following five groups. The 

first group was (i) sham (S1) where hearts were perfused with Krebs’ buffer for a total time of 

50 min without any further intervention. This is the time-matched control for hearts subjected 

to ischaemia without reperfusion. The following 2-5 groups were subjected to I/R treatment. 

After 30 min equilibration, hearts were subjected to  20 min global ischaemia. Ischaemia was 

carried out as described in Chapter 2.4. Hearts were then reperfused for either (ii) 0, (iii) 5, 

(iv) 15 or (v) 30 min with Krebs’ buffer in the presence of 0.5% dimethyl sulfoxide (DMSO), 
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which is the vehicle for DiOHF. At the end of the experiment, left ventricular tissues from all 

groups were snap frozen in liquid nitrogen and stored at -80°C until use. 

 

3.2.3 Western blot 

Western blots were performed as described in Chapter 2.7. In brief, protein sample (50 

µg) was separated using SDS-PAGE and transferred onto a nitrocellulose membrane. After 

blocking in 5% BSA/TBST or skim milk/TBST for 1 h at room temperature, membranes were 

incubated with primary antibody (phospho
Ser473

-Akt, Akt, phospho
Thr202/Tyr204

-Erk 1/2, Erk 

1/2, phospho
Tyr705

-STAT3, STAT3, phospho
Thr183/Tyr185

-JNK, JNK, phospho
Thr180/Tyr182

-p38 

MAPK, p38 MAPK, phospho
Thr286/287

-CaMKII, CaMKII phospho
Ser16/Thr17

-PLN, PLN or actin 

1:1000) at 4ºC overnight. The next day, HRP-conjugated secondary antibody (1:2000) 

incubation was carried out for 1 h at room temperature and detection of the secondary 

antibody was carried out using the digital image scanner. Protein bands were then quantified 

by densitometry. The increase or decrease in the activity of a protein was measured by 

normalising the degree of phosphorylation of the protein to its total protein. Actin which is the 

loading control is used to normalise the level of total protein. 

 

3.2.4 Statistical analysis 

All results were expressed as group mean ± SEM, with the number of independent 

experiments denoted as ‘n’. Data analysis was performed using Graphpad Prism
®
 (version 

6.0, La Jolla, CA, USA). All Western blot data were analysed using 1-way ANOVA with 

Tukey’s multiple comparison test. In all cases, p<0.05 was considered statistically significant. 
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3.2.5 Drugs and reagents 

All chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and 

dissolved in distilled water unless otherwise stated. All primary antibodies were purchased 

from Cell Signalling Technology (Beverly, MA, USA) except for actin which was purchased 

from Sigma. Secondary antibodies were from Merck Millipore (Bayswater, VIC, Australia). 

Primary and secondary antibodies were all diluted in 5% BSA/TBST. 

 

3.3 Results 

3.3.1 Temporal change in the expression of pro-injurious kinases during myocardial I/R  

 Rat isolated hearts were perfused with Krebs’ buffer for 50 min without any further 

intervention (S1, n=5) or subjected to 20 min global ischaemia followed by reperfusion for 4 

different time periods i.e. 0 (n=5), 5 (n=7), 15 (n=6) and 30 min (n=8) to determine the 

temporal change in kinase activation. The pro-injurious kinase p38 MAPK was 

phosphorylated during ischaemia and its phosphorylation remained elevated throughout 

reperfusion (Figure 3.1). In contrast, the phosphorylation of JNK 1/2 occurred during 

reperfusion but not ischaemia (Figure 3.2). The phosphorylation of JNK 2 at 54 kDa was 

highest at 30 min of reperfusion while the phosphorylation at 46 kDa (JNK 1) started to peak 

at 15 min of reperfusion.  
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Figure 3.1: Isolated hearts were subjected to 50 min Krebs’ buffer perfusion (S1) or subjected 

to 20 min global ischaemia followed by 0 (IR0), 5 (IR5), 15 (IR15) or 30 min (IR30) 

reperfusion in the presence of 0.5% DMSO (n= 5-8 per group). The phosphorylation of p38 

MAPK at various reperfusion time points was assessed using Western blot. The 

phosphorylation of these proteins was normalised against total protein. *p<0.05, ***p<0.001, 

****p<0.0001 vs corresponding time point, 1-way ANOVA with Tukey’s multiple 

comparisons test. Data are expressed as mean ± SEM. 



90 

 

 

 

Figure 3.2: Isolated hearts were subjected to 50 min Krebs’ buffer perfusion (S1) or subjected 

to 20 min global ischaemia followed by 0 (IR0), 5 (IR5), 15 (IR15) or 30 min (IR30) 

reperfusion in the presence of 0.5% DMSO (n= 5-8 per group). The phosphorylation of JNK 

1/2 at various reperfusion time points was assessed using Western blot. The phosphorylation 

of these proteins was normalised against total protein. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001 vs corresponding time point, 1-way ANOVA with Tukey’s multiple 

comparisons test. Data are expressed as mean ± SEM. 
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3.3.2 Temporal change in in the expression of multi-functional enzyme CaMKII and its 

downstream target PLN during myocardial I/R  

The multi-functional enzyme CaMKII was phosphorylated during ischaemia; however 

its phosphorylation from 5 to 30 min reperfusion was not different to sham (Figure 3.3A). The 

level of total CaMKII tended to increase during ischaemia compared to sham and during 

reperfusion (Figure 3.3B). The phosphorylation of the downstream target of CaMKII, PLN 

was greatest at 5 min of reperfusion and reduced to basal level by 15 min after reperfusion 

(Figure 3.4).  
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Figure 3.3: Isolated hearts were subjected to 50 min Krebs’ buffer perfusion (S1) or subjected 

to 20 min global ischaemia followed by 0 (IR0), 5 (IR5), 15 (IR15) or 30 min (IR30) 

reperfusion in the presence of 0.5% DMSO (n= 5-8 per group). The phosphorylation of 

CaMKII at various reperfusion time points was assessed using Western blot. (A) The 

phosphorylation of these proteins was normalised against total protein while (B) the level of 

total protein was normalised against the loading control actin. *p<0.05 vs corresponding time 

point, 1-way ANOVA with Tukey’s multiple comparisons test. Data are expressed as mean ± 

SEM.  



93 

 

  

Figure 3.4: Isolated hearts were subjected to 50 min Krebs’ buffer perfusion (S1) or subjected 

to 20 min global ischaemia followed by 0 (IR0), 5 (IR5), 15 (IR15) or 30 min (IR30) 

reperfusion in the presence of 0.5% DMSO (n= 5-8 per group). The phosphorylation of PLN 

at various reperfusion time points was assessed using Western blot. The phosphorylation of 

these proteins was normalised against total protein. *p<0.05vs corresponding time point, 1-

way ANOVA with Tukey’s multiple comparisons test. Data are expressed as mean ± SEM.  
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3.3.3 Temporal change in the expression protective kinases during myocardial I/R  

Protective kinases Akt and Erk 1/2 in the RISK pathway were not phosphorylated 

during ischaemia, but their phosphorylation increased progressively during reperfusion. The 

phosphorylation of Akt and Erk 1/2 was highest at 30 min of reperfusion (Figures 3.5 and 

3.6). 

Similarly, the protective kinase STAT3 in the SAFE pathway was not phosphorylated 

during ischaemia, but did show a significant increase in phosphorylation during reperfusion. 

The phosphorylation of STAT3 was also highest at 30 min of reperfusion (Figure 3.7A). 

Figure 3.7B showed that the level of total STAT3 was not significantly different across 

different treatment groups. 
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Figure 3.5: Isolated hearts were subjected to 50 min Krebs’ buffer perfusion (S1) or subjected 

to 20 min global ischaemia followed by 0 (IR0), 5 (IR5), 15 (IR15) or 30 min (IR30) 

reperfusion in the presence of 0.5% DMSO (n= 5-8 per group). The phosphorylation of Akt in 

the RISK pathway at various reperfusion time points was assessed using Western blot. The 

phosphorylation of these proteins was normalised against total protein. **p<0.01, 

***p<0.001, ****p<0.0001 vs corresponding time point, 1-way ANOVA with Tukey’s 

multiple comparisons test. Data are expressed as mean ± SEM. 
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Figure 3.6: Isolated hearts were subjected to 50 min Krebs’ buffer perfusion (S1) or subjected 

to 20 min global ischaemia followed by 0 (IR0), 5 (IR5), 15 (IR15) or 30 min (IR30) 

reperfusion in the presence of 0.5% DMSO (n= 5-8 per group). The phosphorylation of Erk 

1/2 in the RISK pathway at various reperfusion time points was assessed using Western blot. 

The phosphorylation of these proteins was normalised against total protein. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 vs corresponding time point, 1-way ANOVA with 

Tukey’s multiple comparisons test. Data are expressed as mean ± SEM. 
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Figure 3.7: Isolated hearts were subjected to 50 min Krebs’ buffer perfusion (S1) or subjected 

to 20 min global ischaemia followed by 0 (IR0), 5 (IR5), 15 (IR15) or 30 min (IR30) 

reperfusion in the presence of 0.5% DMSO (n= 5-8 per group). The phosphorylation of 

STAT3 in the SAFE pathway at various reperfusion time points was assessed using Western 

blot. (A) The phosphorylation of these proteins was normalised against total protein, while 

(B) the level of total protein was normalised against the loading control actin. *p<0.05, 

**p<0.01 vs corresponding time point, 1-way ANOVA with Tukey’s multiple comparisons 

test. Data are expressed as mean ± SEM. 
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3.4 Discussion 

 This study demonstrated that pro-injurious kinases JNK 1/2 were activated during 

reperfusion but not ischaemia, and the activation of JNK 1 and 2 was highest at 15 and 30 min 

after reperfusion respectively. By contrast, p38 MAPK and CaMKII were activated during 

ischaemia. The activation of p38 MAPK, but not CaMKII remained elevated throughout 

reperfusion. The activation of the downstream target of CaMKII, PLN was greatest at 5 min 

reperfusion. The activation of protective kinases Akt, Erk 1/2 and STAT3 was highest 30 min 

after reperfusion. 

 In response to ischaemia and reperfusion, cardiomyocytes in the ischaemic region may 

die, however the surviving cardiomyocytes may undergo hypertrophy to compensate for the 

lost contractile capacity. It is suggested that the activation of kinases in this salvageable 

surviving cardiomyocyte is the major determinant of the final myocardial injury after I/R 

(Toledo-Pereyra et al., 2008). Therefore, a better understanding of the activation of kinases 

implicated during I/R may provide further insights into the molecular mechanism that causes 

cell survival or death following I/R. 

A previous study has demonstrated that the translocation of JNK 1 from the cytosol to 

nucleus occurred during ischaemia while JNK 1 activation occurred during reperfusion 

(Mizukami et al., 1997). This finding was supported by the observation that an increased 

phosphorylation of its downstream transcription factor c-jun occurred during reperfusion in 

the nucleus (Mizukami et al., 1997). Other reports also showed that no activation of JNK 1 or 

JNK 2 isoforms occurred during ischaemia but a progressive increase in the activation of JNK 

1/2 during reperfusion was observed (Bogoyevitch et al., 1996; Yin et al., 1997; Tao et al., 

2011; Lim et al., 2013). These findings on the temporal change in the activation of JNK 

during myocardial I/R are similar to our observation in this study. Consistent with these 

studies (Bogoyevitch et al., 1996; Seko et al., 1997; Ma et al., 1999b), we have also shown 
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that p38 MAPK was activated during ischaemia. The activation of p38 MAPK was 

maintained during the ensuing reperfusion period for at least 20 min (Bogoyevitch et al., 

1996).  

In previous studies, increased CaMKII phosphorylation and activity was observed at 1 

min and 3 min of reperfusion respectively (Said et al., 2011; Ling et al., 2013). It has been 

reported that the activation of CaMKII occurred during ischaemia and a greater increase in 

CaMKII activation in the first few minutes of reperfusion contributes to reperfusion 

arrhythmias (Bell et al., 2014). In this study, we demonstrated that CaMKII was activated 

during ischaemia, however its activation tended to decrease 5 min after reperfusion. The level 

of total CaMKII also tended to decrease with increased reperfusion time. Previous studies 

have reported that CaMKII was found abundantly in intracellular compartments such as 

mitochondria and nucleus to induce mitochondrial fission leading to apotosis and excitation-

transcription coupling, respectively (Mattiazzi et al., 2015, Ong and Hausenloy et al., 2010). 

In this study, translocation of CaMKII into mitochondria to trigger apoptosis at a later time 

point of reperfusion could have taken place. As mentioned earlier, the phosphorylation of 

CaMKII could activate its downstream substrate PLN. Reports have demonstrated that the 

phosphorylation of PLN at Thr 17 peaked at 3 min of reperfusion and dephosphorylated with 

longer reperfusion time (Vila-Petroff et al., 2007; Di Carlo et al., 2014). In this study, we 

demonstrated the activation of PLN was highest at 5 min of reperfusion and had returned to 

basal levels by 15 min.  

Consistent with other reports, the activation of the protective kinase Akt in the RISK 

pathway occurred during reperfusion but not during ischaemia (Means et al., 2007; Lim et al., 

2013). There was a progressive increase in the phosphorylation of Akt during reperfusion and 

its activation was highest at 15 to 30 min after reperfusion (Means et al., 2007; Lim et al., 

2013). One hour after reperfusion, the phosphorylation of Akt has trended towards basal 
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levels (Means et al., 2007; Lim et al., 2013). It has been reported that the upstream substrate 

of Erk 1/2 (another protective kinase in the RISK pathway), Raf-1 was activated 5 min after 

hypoxia in isolated crdiomyocytes and decreased to basal levels by 30 min (Seko et al., 1996). 

Raf-1 was again activated 5 min after reperfusion (Seko et al., 1996). The activation of Erk 

1/2 occurred during reperfusion but not ischaemia (Takeishi et al., 1999; Means et al., 2007; 

Lim et al., 2013), a finding similar to our observation in this study. The phosphorylation of 

Erk 1/2 was highest at 15 to 30 min reperfusion and decreased to basal levels by 1 h (Means et 

al., 2007; Lim et al., 2013). 

It has been reported that the phosphorylation of STAT3, the protective kinase in the 

SAFE pathway, from 2.5 to 30 min reperfusion in rat isolated heart after 35 min regional 

ischaemia was not different from sham (Smith et al., 2010). In this study, we have shown that 

the activation of STAT3 during 0 to 15 min reperfusion was not different to sham, however at 

30 min reperfusion, its activation was significantly increased compared to ischaemia alone 

and 5 and 15 min after reperfusion.  

In conclusion, the activation of most kinases investigated in this study including Akt, 

Erk 1/2, STAT3 and JNK 2 was highest 30 min after reperfusion. JNK 1 activation was 

highest 15 min after reperfusion. p38 MAPK and CaMKII were activated during ischaemia 

while the phosphorylation of PLN was greatest at 5 min of reperfusion. 

 

Limitation of the study: 

 In this study, the whole ventricle homogenate was used to measure the expression of 

proteins and the expression of proteins in subcellular fractions including nucleus, 

mitochondria and sarcoplasmic reticulum was not measured. Translocation of proteins within 

subcellular fractions with activation or inactivation during I/R could have occurred.   
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Chapter 4 

4. The mechanism(s) of flavonol-induced 

cardioprotection 
 

4.1 Introduction 

 Flavonoids are a group of plant-derived polyphenols that are known to exhibit 

biological effects including causing vasodilatation, scavenging free radicals, lowering plasma 

levels of low-density lipoproteins as well as inhibiting platelet aggregation (Gerritsen et al., 

1995; Chan et al., 2000; Woodman et al., 2005; Harris et al., 2006). Epidemiological studies 

have reported that there was an inverse correlation between the intake of dietary flavonoids 

and the mortality from coronary heart disease during a 5-year follow-up (Hertog et al., 1993) 

or the incidence of myocardial infarction (Geleijnse et al., 2002). In addition, experimental 

data also showed that flavonoid inhibited atherosclerotic plaque development in 

apolipoprotein E–deficient (ApoE
-/-

) mice fed a high-fat diet for 8 weeks, compared to its 

vehicle control (Luo et al., 2015). Daily consumption of the flavonol quercetin for 7 days also 

reduced blood pressure in hypertensive rats (Jalili et al., 2006). This suggests that flavonoids 

may exert beneficial effects in cardiovascular diseases. 

Previous studies from our laboratory have examined the actions of 3’,4’-

dihydroxyflavonol (DiOHF), a synthetic flavonol with more potent antioxidant and 

vasodilator than a number of naturally occurring flavones and flavonols (Chan et al., 2000; 

Woodman & Chan, 2004). The beneficial effect of DiOHF on cardiovascular diseases has also 

been demonstrated in experimental models. DiOHF prevented diabetes-induced endothelial 

dysfunction in large conduit and resistance arteries (Woodman & Malakul, 2009; Leo et al., 
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2011). It also prevented diastolic dysfunction and cardiac remodelling in type 1 diabetic rats 

(Khong et al., 2011). In addition, DiOHF delayed thrombus formation in type 1 diabetic mice 

(Mosawy et al., 2013).  

 There is growing evidence that DiOHF is cardioprotective against myocardial I/R 

injury, a phenomenon where myocardial reperfusion after a prolonged period of ischaemia 

causes additional myocardial injury beyond that generated by ischaemia alone (Wang et al., 

2004; Wang et al., 2009; Qin et al., 2011; Williams et al., 2011). In anaesthetised sheep 

subjected to myocardial I/R, the administration of intravenous DiOHF improved post-

ischaemic cardiac contractile function and reduced myocardial infarct size with the level of 

protection being similar to that of ischaemic preconditioning, which is regarded as the most 

effective protection against reperfusion injury to date (Wang et al., 2004). Daily treatment of 

goats with DiOHF over 4 weeks reperfusion after ischaemia also significantly reduced infarct 

size, prevented post-myocardial infarction left ventricular remodelling and reduced apoptosis 

in the non-infarcted area (Wang et al., 2009). The expression of apoptosis-related proteins, 

including caspase-3, cytochrome C and Bax, was reduced with DiOHF after 4 weeks of 

reperfusion (Wang et al., 2009). Recently, studies also showed that the administration of 

NP202, a pro-drug converted to DiOHF, reduced infarct size in anesthetized sheep after I/R 

(Thomas et al., 2011; Lim et al., 2013). This protective effect was accompanied by inhibition 

of polymorphonuclear leucocyte accumulation and myocyte apoptosis identified using 

TUNEL assay. Importantly, the protective action of NP202 was maintained in sheep even 

after a longer period of ischaemia of 3 h (which mimics the clinical situation of ischaemic 

periods of 3-5 h) before the restoration of coronary perfusion (Thomas et al., 2011).  

Although the protective action of DiOHF has been known for almost a decade, the 

precise mechanism of its cardioprotective action remains elusive. An earlier report has 

suggested that DiOHF may improve post-ischaemic myocardial function in sheep in vivo via 
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its free-radical scavenging ability which may increase the nitric oxide bioavailability causing 

subsequent improvement in blood flow during reperfusion (Wang et al., 2004). Emerging 

evidence has shown that DiOHF may protect the heart against I/R injury independent of its 

antioxidant property. DiOHF may modulate cellular signalling pathways that are crucial in 

mediating cell death or survival in various diseases (Mansuri et al., 2014). Indeed, in 

anesthetized sheep, Lim and colleagues demonstrated that NP202, the pro-drug of DiOHF 

inhibited the activation of pro-injurious kinases, p38 MAPK and JNK at 30 min reperfusion 

after 1 h ischaemia and this inhibitory action contributed to the protective action of NP202 

against I/R injury in vivo (Lim et al., 2013). DiOHF may also inhibit the activation of 

CaMKII and result in the subsequent inhibition of p38 MAPK and JNK pathways (Lim et al., 

2013). The activation of protective kinases in the RISK pathway, Akt and Erk 1/2 at 30 min 

of reperfusion was however not affected with NP202 treatment (Lim et al., 2013). It has been 

reported that a large number of cardiomyocyte death due to reperfusion injury occurs in the 

first minutes of reperfusion (Rodriguez-Sinovas et al., 2007), therefore the activation of 

kinases at earlier reperfusion time points e.g. 5 min of reperfusion has attracted research 

interest. In this study, the aim was to investigate the effect of DiOHF on kinase activation 

including protective kinases, Akt, Erk 1/2 and the pro-survival kinase in the SAFE pathway 

STAT3, pro-injurious kinases p38 MAPK and JNKs as well as CaMKII and its downstream 

target PLN at 5 and 30 min reperfusion. 

 

4.2 Methods   

This investigation conforms with the National Health and Medical Research Council 

of Australia code of practice for the care and use of animals for scientific purposes. All the 

procedures involved in this project were approved by the RMIT University Animal Ethics 

Committee.  
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4.2.1 Langendorff heart preparation 

Hearts isolated from adult male Sprague-Dawley rats (250-300g) anaesthetized with 

325 mg/kg sodium pentobarbitone were Langendorff-perfused as described in Chapter 2.3. 

Rat isolated hearts were perfused at a constant flow of ~12 ml/min to generate a perfusion 

pressure of 62 ± 5 mmHg.  

 

4.2.2 DiOHF treatment protocol 

Rat isolated hearts were randomly assigned to one of the following three groups. The 

first group was (i) sham (S2) where hearts were perfused with Krebs’ buffer for 80 min 

without any further intervention. The following two groups were subjected to I/R treatment. 

In I/R-treated groups, hearts were equilibrated for 30 min followed by 20 min global 

ischaemia. Ischaemia was carried out as described in Chapter 2.4. Hearts were then reperfused 

for either (ii) 5 or (iii) 30 min with Krebs’ buffer in the presence of 10 µM DiOHF. This 

concentration of DiOHF was chosen as previous study from our laboratory has shown that it 

is effective in ameliorating I/R injury in rat isolated hearts (Qin et al, 2011). Time control for 

5 min reperfusion (S1) and vehicle control for DiOHF at 5 min and 30 min reperfusion using 

0.5% DMSO experiments had been carried out in Chapter 3. At the end of the experiment, left 

ventricular tissues were dissected into four pieces where two pieces were snap frozen in liquid 

nitrogen and stored at -80°C until use while the other two pieces of left ventricular tissue were 

fixed in 4% PFA for TUNEL assay. 

 

4.2.3 Lactate dehydrogenase (LDH) assay 

LDH assay was carried out as described in Chapter 2.5. Coronary effluent from sham 

hearts (S2) and hearts reperfused for 30 min in the presence of 0.5% DMSO (Chapter 3) or 10 

µM DiOHF was collected at 9 time points (i.e. 29
th

, 50
th

, 51
st
, 52

nd
, 55

th
, 60

th
, 75

th
, 80

th
 and 
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90
th

 min perfusion in S2 hearts and 29
th

 min during equilibration, 10s, 1, 2, 5, 10, 15, 20 and 

30 min after reperfusion in I/R-treated hearts). The concentration of LDH in the effluent 

sample was calculated using the LDH standard curve (0.01-1 U/ml) constructed using L-LDH 

extracted from the hog muscle. 

 

4.2.4 Assessment of reperfusion-induced arrhythmias 

Assessment of reperfusion-induced arrhythmias was performed as described in 

Chapter 2.8. Experimental records from left ventricular pressure (LVP) were used to analyse 

the incidence of arrhythmias. The total duration (in sec) of LVP showing a LVDP <5 mmHg 

(indicative of ventricular fibrillation) in the first 10 min of reperfusion was measured. 

 

4.2.5 Western blot 

Western blots were performed as described in Chapter 2.7. Analysis of protein 

expression using antibodies including phospho
Ser473

-Akt, Akt, phospho
Thr202/Tyr204

-Erk 1/2, Erk 

1/2, phospho
Tyr705

-STAT3, STAT3, phospho
Thr183/Tyr185

-JNK, JNK, phospho
Thr180/Tyr182

-p38 

MAPK, p38 MAPK, phospho
Thr286/287

-CaMKII, CaMKII phospho
Ser16/Thr17

-PLN, PLN and 

actin were performed.  The increase or decrease in the activity of a protein was measured by 

normalising the degree of phosphorylation of the protein to its total protein. Actin which is the 

loading control is used to normalise the level of total protein. 

 

4.2.6 TUNEL assay 

The detection of apoptosis in left ventricular tissues from sham hearts (S2) and hearts 

treated with 0.5% DMSO (Chapter 3) and 10 µM DiOHF for 30 min during reperfusion was 

performed using the CardioTACS
TM 

in situ apoptosis detection kit as described in Chapter 

2.6.  
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4.2.7 Statistical analysis 

Myocardial function was expressed as the percentage change from the pre-ischaemic 

value. Rate-pressure product (RPP) was calculated as the product of heart rate and LVDP. All 

results were expressed as group mean ± SEM, with the number of independent experiments 

denoted as ‘n’. Data analysis was performed using Graphpad Prism
®
 (version 6.0, La Jolla, 

CA, USA). Myocardial function and time point LDH data were analysed using 2-way 

ANOVA with Sidak’s multiple comparison test. Area-under-the-curve (AUC) and reperfusion 

arrhythmias data were analysed using Student’s unpaired t-test. All Western blot data, total 

LDH assay and quantitative data for CardioTACS
TM

 assay were analysed using 1-way 

ANOVA with Tukey’smultiple comparison test. In all cases, p<0.05 was considered 

statistically significant. 

 

4.2.8 Drugs and reagents 

All chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and 

dissolved in distilled water unless otherwise stated. DiOHF was from Indofine Chemicals Co. 

(Hillsborough, NJ, USA) and was dissolved in equal amounts of 100% DMSO and Krebs’ 

buffer to give a final concentration of 0.5% DMSO. L-LDH from hog muscle was from 

Boehringer Ingelheim (North Ryde, NSW, Australia) and CardioTACS
TM

 was purchased 

from Trevigen (Gaithersburg, MD, USA). 

 

4.3 Results 

4.3.1 Effect of DiOHF during reperfusion on post-ischaemic myocardial function 

 DiOHF treatment during reperfusion significantly improved myocardial function in rat 

isolated hearts subjected to global ischaemia and reperfusion. During ischaemia, there was a 
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100% decrease in LV+dP/dt, LV-dP/dt, RPP and perfusion pressure in both vehicle-and 

DiOHF-treated hearts compared to their pre-ischaemic values. The recovery (15 min after 

reperfusion) for LV+dP/dt tended to increase in DiOHF-treated hearts (although not 

significant) compared to its vehicle control (Figure 4.1A). The recovery for LV-dP/dt was 

significantly improved in DiOHF-treated hearts compared to its vehicle control (p<0.05, 

Figure 4.1B). The recovery of RPP was comparable in both treatment groups (Figure 4.1C). 

Perfusion pressure was elevated during reperfusion in vehicle-treated hearts and DiOHF 

treatment significantly reduced the I/R-induced increase in perfusion pressure by ~25% 

during early reperfusion (p<0.05, Figure 4.1D). Thirty min after reperfusion, the recovery in 

LV+dP/dt and LV-dP/dt in vehicle- and DiOHF-treated hearts was ~70% and ~82% 

respectively (Figures 4.1A and B). The area-under-the curve (AUC) for LV+dP/dt tended to 

increase in DiOHF-treated hearts compared to its vehicle control while there was a significant 

improvement in AUC for LV-dP/dt in DiOHF-treated hearts compared to its vehicle control 

(p<0.05, Figure 4.2). 
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(A)      (B) 

    

(C)       (D) 

   

Figure 4.1: The change in the (A) positive rate of change in left ventricular pressure 

(LV+dP/dt), (B) negative rate of change in left ventricular pressure (LV-dP/dt), (C) rate-

pressure product (RPP) and (D) perfusion pressure as a percentage of pre-ischaemic values in 

rat hearts subjected to 20 min ischaemia and 30 min reperfusion in the presence of 0.5% 

DMSO (n=8) or 10 µM DiOHF (n=7). *p<0.05 vs 0.5% DMSO, 2-way ANOVA with Sidak’s 

multiple comparison test. Data are expressed as mean ± SEM. Isch= ischaemia 
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(A)            

 

(B) 

 

Figure 4.2: Area-under-the-curve (AUC) for (A) LV+dP/dt and (B) LV-dP/dt in rat hearts 

subjected to 20 min ischaemia and 30 min reperfusion in the presence of 0.5% DMSO (IR30, 

n=8) or 10 µM DiOHF (IR30 + DiOHF, n=7). *p<0.05 vs IR30, Student’s unpaired t-test. 

Data are expressed as mean ± SEM. 
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4.3.2 Effect of DiOHF on cell death, apoptosis and reperfusion-induced arrhythmias 

after I/R  

Myocardial injury was assessed by the release of LDH into the coronary effluent. 

DiOHF treatment during reperfusion caused a significant reduction in LDH release as early as 

1 min of reperfusion compared to its vehicle control (Figure 4.3A). The total LDH release in 

the vehicle-treated heart over 30 min of reperfusion was significantly elevated compared to 

sham hearts (p<0.001, Figure 4.3B) and this increase in LDH release was also significantly 

reduced by DiOHF (p<0.01).  

The number of apoptotic cells was also significantly elevated in vehicle-treated hearts 

(p<0.001). DiOHF treatment also significantly reduced the I/R-induced increase in the 

number of apoptotic cells in the rat isolated heart 30 min after reperfusion (p<0.05, Figure 

4.4).  

Reperfusion-induced arrhythmias (specifically of ventricular fibrillation) during the 

first 10 min of repefusion were examined. The duration of ventricular fibrillation during the 

first 10 min of reperfusion in vehicle-treated hearts was 156 ± 44  sec while in DiOHF-treated 

hearts, the duration of ventricular fibrillation during the first 10 min of reperfusion was 54 ± 

34 sec (Figure 4.5). There was a reduction in the duration of reperfusion-induced ventricular 

fibrillation with DiOHF treatment although this was not significant.  
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(A) 

  
(B) 

     

Figure 4.3: (A) Time course release of lactate dehydrogenase (LDH) in I/R-treated hearts 

with 0.5% DMSO (n=8) or 10 µM DiOHF (n=7) during reperfusion. (B) Total LDH release 

after 80 min perfusion in sham hearts (S2, n=7) and hearts subjected to 20 min ischaemia and 

30 min reperfusion in the presence of 0.5% DMSO (IR30) or 10 µM DiOHF (IR30 + 

DiOHF). *p<0.05, ***p<0.001, ****p<0.0001 vs 0.5% DMSO, 2-way ANOVA with Sidak’s 

multiple comparisons test. Ψp<0.001 vs S2, #p<0.01 vs IR30, 1-way ANOVA with Tukey’s 

multiple comparisons test. Data are expressed as mean ± SEM. Isch= ischaemia   
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(A)        (B) 

     

 

(C)           (D) 

     

 

Figure 4.4: Representative images of TUNEL labelling of sections from (A) sham hearts 

(S2), hearts subjected to 20 min ischaemia followed by 30 min reperfusion in the presence 

of (B) 0.5% DMSO (IR30) or (C) 10 µM DiOHF (IR30 + DiOHF). Positive apoptotic 

nuclei were stained blue (indicated with arrows). (D) Quantitative data for TUNEL 

positive cells in sections from sham (S2), vehicle-treated and DiOHF-treated hearts (n= 4-5 

per group). TUNEL positive cells were expressed as a percentage of total cells in the 

section. ***p<0.001 vs S2, #p<0.05 vs IR30, 1-way ANOVA with Tukey’s multiple 

comparisons test. Data are expressed as mean ± SEM. Original magnification x200.  

  

Sham (S2) IR30 

IR30 + DiOHF 



113 

 

(A) Sinus rhythm 

 

 

(B) Ventricular fibrillation 

 

 

(C) 

      

 

Figure 4.5: Duration of ventricular fibrillation during the first 10 min of reperfusion in hearts 

subjected to 20 min ischaemia followed by 30 min reperfusion in the presence of 0.5% 

DMSO or 10 µM DiOHF. Representative traces from the left ventricular pressure (LVP) 

showing (A) sinus rhythm and (B) ventricular fibrillation in reperfused hearts. (C) Panel C 

data are mean ± SEM (n= 7-8 per group), analysed by Student's t-test, p=ns. 
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4.3.3 Effects of DiOHF on the expression of pro-injurious kinases during myocardial I/R 

The phosphorylation of the pro-injurious kinase p38 MAPK at 5 and 30 min of 

reperfusion in vehicle-treated hearts was significantly increased compared to sham, S1 and S2 

respectievly, while DiOHF treatment had no effect on the I/R-induced increase in 

phosphorylation of p38 MAPK at both time points (Figure 4.6).  

The phosphorylation of injurious kinases JNK 1/2 at 5 min of reperfusion in vehicle-

treated hearts was also significantly increased compared to sham (S1) and similarly, DiOHF 

treatment had no effect on the I/R-induced increased phosphorylation of JNK 1/2 at 5 min 

reperfusion (Figure 4.7A). At 30 min of reperfusion, DiOHF treatment significantly reduced 

the I/R-induced increased phosphorylation of JNK 2 (p<0.05), while the phosphorylation of 

JNK 1 was comparable in all groups at 30 min reperfusion (Figure 4.7B).  
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(A) 

 
(B) 

 

Figure 4.6: Expressions of pro-injurious kinase p38 MAPK in sham hearts, S1 or S2 and 

hearts subjected to 20 min ischaemia followed by (A) 5 min or (B) 30 min reperfusion in the 

presence of 0.5% DMSO (IR5 or IR30) or 10 µM DiOHF (IR5 + DiOHF or IR30 + DiOHF), 

n= 6-8 per group. Representative immunoblots and densitometric analysis are shown. The 

phosphorylation of the protein was normalised against total protein. ***p<0.001, 

****p<0.0001 vs S1, ΨΨp<0.01, ΨΨΨp<0.001 vs S2, 1-way ANOVA with Tukey’s multiple 

comparisons test. Data are expressed as mean ± SEM.  
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(A) 

 

(B) 

           

Figure 4.7: Expressions of pro-injurious kinases JNK 1/2, in sham hearts, S1 or S2 and hearts 

subjected to 20 min ischaemia followed by (A) 5 min or (B) 30 min reperfusion in the 

presence of 0.5% DMSO (IR5 or IR30) or 10 µM DiOHF (IR5 + DiOHF or IR30 + DiOHF), 

n= 6-8 per group. Representative immunoblots and densitometric analysis are shown. The 

phosphorylation of the protein was normalised against total protein. *p<0.05, **p<0.01, 

***p<0.001vs S1, ΨΨp<0.01 vs S2, ϕp<0.05 vs IR30, 1-way ANOVA with Tukey’s multiple 

comparisons test. Data are expressed as mean ± SEM. 
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4.3.4 Effects of DiOHF on the expression of CaMKII and its downstream target PLN 

during myocardial I/R 

At 5 min of reperfusion, the phosphorylation of the multi-functional enzyme CaMKII 

was comparable in all groups (Figure 4.8A). At 30 min of reperfusion, the phosphorylation of 

CaMKII in vehicle-treated hearts was significantly increased compared to sham (p<0.01, 

Figure 4.8B) and this increase in phosphorylation of CaMKII tended to be reduced with 

DiOHF treatment, although that effect was not significant. Figure 4.8C showed that total 

CaMKII tended to decrease in hearts subjected to ischaemia and reperfusion compared to 

sham. 

DiOHF during reperfusion significantly reduced the I/R-induced increased 

phosphorylation of PLN at 5 min of reperfusion (p<0.05, Figure 4.9A). The phosphorylation 

of PLN in vehicle-treated hearts at 30 min of reperfusion was comparable to basal level while 

DiOHF treatment significantly reduced this activation (p<0.05, Figure 4.9B). Interestingly, 

the reduction in PLN phosphorylation by DiOHF was lower than sham. 
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Figure 4.8: Expressions of the multi-functional enzyme CaMKII in sham hearts, S1 or S2 and 

hearts subjected to 20 min ischaemia followed by (A) 5 min or (B) 30 min reperfusion in the 

presence of 0.5% DMSO (IR5 or IR30) or 10 µM DiOHF (IR5 + DiOHF or IR30 + DiOHF), 

n= 6-8 per group. Representative immunoblots and densitometric analysis are shown. The 

phosphorylation of the protein was normalised against total protein. (C) Total CaMKII in 

sham hearts (S2) and hearts subjected to 20 min ischaemia followed by 30 min in the presence 

of 0.5% DMSO  or 10 µM DiOHF was normliased against  actin. ΨΨp<0.01 vs S2, 1-way 

ANOVA with Tukey’s multiple comparisons test. Data are expressed as mean ± SEM.  

43 kDa actin 
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(A) 

 
(B) 

 
 

Figure 4.9: Expressions of PLN in sham hearts, S1 or S2 and hearts subjected to 20 min 

ischaemia followed by (A) 5 min or (B) 30 min reperfusion in the presence of 0.5% DMSO 

(IR5 or IR30) or 10 µM DiOHF (IR5 + DiOHF or IR30 + DiOHF), n= 6-8 per group. 

Representative immunoblots and densitometric analysis are shown. The phosphorylation of 

the protein was normalised against total protein. *p<0.05 vs S1, #p<0.05 vs IR5, ϕp<0.05 vs 

IR30, 1-way ANOVA with Tukey’s multiple comparisons test. Data are expressed as mean ± 

SEM.  
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4.3.5 Effects of DiOHF on the expression of protective kinases during myocardial I/R 

 Five minutes after reperfusion, the phosphorylation of the protective kinase in the 

RISK pathway, Akt in vehicle-treated hearts was not significantly different from sham (S1) 

(Figure 4.10A). DiOHF during reperfusion significantly increased the phosphorylation of Akt 

compared to sham at 5 min (p<0.05). At 30 min of reperfusion, the phosphorylation of Akt 

was significantly increased in the vehicle-treated group compared to sham (S2) (p<0.001, 

Figure 4.10B), however DiOHF treatment significantly reduced the I/R-induced increased 

phosphorylation of Akt (p<0.05). 

The phosphorylation of another kinase in the RISK pathway, Erk 1/2 in vehicle-

treated hearts was also not significantly different from sham (S1) at 5 min of reperfusion. 

Similarly, DiOHF treatment significantly increased the phosphorylation of Erk 1/2 compared 

to sham at 5 min (p<0.05, Figure 4.11A). At 30 min of reperfusion, the phosphorylation of 

Erk 1 was comparable in all groups while the phosphorylation of Erk 2 in vehicle-treated 

hearts was significantly increased compared to sham (S2). DiOHF had no effect on the I/R-

induced increased phosphorylation of Erk 2 at this time point (Figure 4.11B). 

At 5 min of reperfusion, the phosphorylation of the protective kinase STAT3 in the 

SAFE pathway in the vehicle-treated hearts tended to reduce compared to sham (S1) while 

DiOHF treatment increased the phosphorylation of STAT3, although neither change was 

statistically significant (Figure 4.12A). At 30 min of reperfusion, STAT3 phosphorylation 

also tended to increase in vehicle-treated hearts compared to sham (S2) and DiOHF treatment 

significantly increased the phosphorylation of STAT3 compared to sham (p<0.05, Figure 

4.12B).  
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(A) 

 
(B) 

 
 

Figure 4.10: Expressions of the protective kinase Akt in sham hearts S1 or S2 and hearts 

subjected to 20 min ischaemia followed by (A) 5 min or (B) 30 min reperfusion in the 

presence of 0.5% DMSO (IR5 or IR30) or 10 µM DiOHF (IR5 + DiOHF or IR30 + DiOHF), 

n= 6-8 per group. Representative immunoblots and densitometric analysis are shown. The 

phosphorylation of the protein was normalised against total protein. **p<0.001 vsS1, 

ΨΨΨp<0.0001 vs S2, ϕp<0.05 vs IR30, 1-way ANOVA with Tukey’s multiple comparisons 

test. Data are expressed as mean ± SEM. 
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(A) 

  

(B) 

         

Figure 4.11: Expressions of protective kinases Erk 1/2 in sham hearts S1 or S2 and hearts 

subjected to 20 min ischaemia followed by (A) 5 min or (B) 30 min reperfusion in the 

presence of 0.5% DMSO (IR5 or IR30) or 10 µM DiOHF (IR5 + DiOHF or IR30 + DiOHF), 

n= 6-8 per group. Representative immunoblots and densitometric analysis are shown. The 

phosphorylation of the protein was normalised against total protein. *p<0.05, **p<0.001 

vsS1, Ψp<0.05 vs S2, 1-way ANOVA with Tukey’s multiple comparisons test. Data are 

expressed as mean ± SEM. 
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(A) 

  
(B) 

 
 

Figure 4.12: Expressions of the protective kinase STAT3 in sham hearts, S1 or S2, and hearts 

subjected to 20 min ischaemia followed by (A) 5 min or (B) 30 min reperfusion in the 

presence of 0.5% DMSO (IR5 or IR30) or 10 µM DiOHF (IR5 + DiOHF or IR30 + DiOHF), 

n= 6-8 per group. Representative immunoblots and densitometric analysis are shown. The 

phosphorylation of the protein was normalised against total protein. Ψp<0.05 vs S2, 1-way 

ANOVA with Tukey’s multiple comparisons test. Data are expressed as mean ± SEM.  
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4.4 Discussion 

 This study demonstrated that DiOHF treatment during reperfusion significantly 

improved post-ischaemic myocardial function as indicated by an improvement in LV-dP/dt 

and reduced coronary perfusion pressure compared to its vehicle control. DiOHF treatment 

also reduced cell death as early as 1 min after the initiation of reperfusion and decreased the 

amount of apoptosis 30 min after reperfusion. DiOHF significantly increased the 

phosphorylation of the protective kinases Akt and Erk 1/2 during 5 min reperfusion compared 

to sham but it had no effect on the increased phosphorylation of pro-injurious kinases JNK 

1/2 and p38 MAPK at the same time. Increased phosphorylation of PLN 5 min after 

reperfusion was significantly reduced by DiOHF. At 30 min of reperfusion, DiOHF reduced 

the I/R-induced increased phosphorylation of Akt. DiOHF had no effect on the increased 

phosphorylation of Erk 2 at 30 min of reperfusion although it significantly increased the 

phosphorylation of STAT3 compared to sham. The I/R-induced increased phosphorylation of 

p38 MAPK was also not affected by DiOHF. In contrast, DiOHF significantly reduced the 

I/R-induced increased phosphorylation of JNK 2 and tended to reduce the increased 

phosphorylation of CaMKII at 30 min of reperfusion. The phosphorylation of the downstream 

target of CaMKII, PLN was also significantly reduced with DiOHF treatment compared to its 

vehicle control. Taken together, DiOHF treatment during reperfusion is protective against 

myocardial I/R injury in vitro, and this protective effect may be mediated by inhibiting the 

activation of PLN at 5 min reperfusion and reducing the activation of both PLN and JNK 2 at 

30 min reperfusion. 

 In this study, DiOHF treatment during reperfusion, which is a clinical-relevant time 

point, protected the heart against myocardial I/R injury by reducing cardiomyocyte necrosis 

and apoptosis while improving post-ischaemic cardiac relaxation and reducing coronary 

perfusion pressure. Although DiOHF significantly improved post-ischaemic cardiac 
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relaxation, its effect on cardiac contraction was not significantly different compared to its 

vehicle control. This is consistent with a previous study from our laboratory (Qin et al., 

2011). It that study, it was reported that DiOHF treatment during reperfusion in rat isolated 

heart subjected to global ischaemia and reperfusion, had no significant effect on the post-

ischaemic myocardial contractility (Qin et al., 2011), which was considered to be due to the 

negative inotropic action of DiOHF which is mediated by its calcium utilisation inhibitory 

property that limits cardiac contraction (Qin et al., 2011). Biochemical analysis using LDH 

assay however showed that DiOHF treatment significantly reduced cell death, a finding 

similar to our observation in this study, and preserved eNOS expression which may increase 

the production of nitric oxide (NO) and prevent the opening of mitochondrial permeability 

transition pore (mPTP) (Hausenloy et al., 2005). This suggests that DiOHF is protective 

against myocardial I/R injury (Qin et al., 2011). 

 As mentioned earlier, the protective action of NP202, the pro-drug converted to 

DiOHF against I/R in anaesthetized sheep was mediated by inhibiting the activation of 

CaMKII and this resulted in subsequent inhibition of JNK/c-jun and p38 MAPK/MAPK-

activated protein kinase 2 pathways without affecting the activation of protective kinases Akt 

and Erk 1/2 (Lim et al., 2013). In that study, the effect of NP202 on kinase activation was 

examined 30 min after reperfusion where a maximum level of kinase activation was observed 

(Lim et al., 2013). As myocardial injury followed by cardiomyocyte death is detected as early 

as minutes after the onset of reperfusion (Ruiz-Meana & Garcia-Dorado, 2009), the effect of 

DiOHF on kinase activation at earlier reperfusion time points i.e. 5 and 30 min reperfusion 

was investigated in this study.  

In this study, DiOHF treatment during reperfusion tended to increase the activation of 

Akt and Erk 1/2 at 5 min; however the activation of Akt, but not Erk 1/2, was decreased at 30 

min of reperfusion by DiOHF. This finding is in contrast to the effect of NP202 in 
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anesthetised sheep where the increased phosphorylation of both Akt and Erk 1/2 after 1 h 

ischaemia followed by 30 min reperfusion or 3 h ischaemia followed by 3 h reperfusion was 

not altered with NP202 treatment (Thomas et al., 2011; Lim et al., 2013). In another study, in 

murine isolated cardiomyocytes, pre-treatment with NP202 before simulated I/R using 

hydrogen peroxide significantly increased the phosphorylation of Akt and Erk 1/2 (Thomas et 

al., 2015). Interestingly, in the same study, it was shown that in the presence of specific 

inhibitors for PI3K/Akt and mitogen/extracellular signal-regulated kinase (MEK 1/2)/Erk 1/2 

pathways, LY294002 and PD98059 respectively, the cardioprotection induced by NP202 in 

anesthetised sheep subjected to 1 h ischaemia and 3 h reperfusion was impaired in the 

presence of PD98059 but not LY294002 (Thomas et al., 2015). This suggested that the MEK 

1/2/Erk 1/2, but not the PI3K/Akt pathway is crucial in mediating the protective action of 

DiOHF against I/R injury. This may explain the reduced activation of Akt by DiOHF at 30 

min reperfusion in this study as DiOHF-induced cardioprotection at this time point (but not at 

5 min reperfusion) could be mediated by other protective mechanisms, and there was no role 

for Akt.  In another cellular model, DiOHF has also been shown to inhibit RhoA/Rho-kinase 

pathway and resulted in decreased vascular contraction in rat isolated aorta (Song et al., 

2010b). Inhibition of RhoA/Rho-kinase pathway has been shown to mitigate the progression 

of heart failure and protect the heart against I/R injury (Sanada et al., 2004; Chau et al., 

2011). Active RhoA could activate its downstream molecule, focal adhesion kinase resulting 

in the activation of PI3K and subsequent Akt activation (Del Re et al., 2008). DiOHF may 

reduce Akt activation via a RhoA-dependent mechanism. The effect of DiOHF on Akt 

requires further investigation. 

 The phosphorylation of the protective kinase, STAT3 tended to increase with DiOHF 

treatment at 5 min of reperfusion while it significantly increased the activation of STAT3 at 

30 min of reperfusion compared to sham. This is consistent with the reported effects of other 
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flavonols, such as myricetin and delphinidin, which conferred protection against myocardial 

I/R injury by attenuating the phosphorylation of STAT1, which is pro-apoptotic without 

affecting the activation of STAT3, which is anti-apoptotic (Scarabelli et al., 2009).  

 As mentioned earlier, CaMKII could be a direct target of DiOHF and the inhibition of 

CaMKII activation by DiOHF results in cardioprotection (Lim et al., 2013). In this study, 

DiOHF tended to reduce the I/R-induced increased activation of CaMKII at 30 min 

reperfusion although this effect was not significant. In addition, an increased activation of 

CaMKII was observed during ischaemia and the activation of CaMKII tended to decrease at 5 

min of reperfusion (Chapter 3). DiOHF treatment had no effect on the activation of CaMKII 

at 5 min. It is possible that the action of DiOHF on the activity of CaMKII occurred at a very 

early time point of reperfusion (i.e. <5 min, which was not investigated in this study) as 

reports showed that increased CaMKII activation was observed at 1 to 3 min of reperfusion 

(Said et al., 2011; Ling et al., 2013). Another possible reason is that once CaMKII is activated 

during ischaemia, it is translocated into subcellular fraction such as mitochondria to trigger 

apoptosis. In addition, the I/R-induced increased phosphorylation of the downstream target of 

CaMKII, PLN was reduced by DiOHF at 5 min of reperfusion. There are conflicting data 

regarding the role of CaMKII and PLN in myocardial I/R. Earlier reports demonstrated that 

the presence of the inhibitor of CaMKII, KN-93 reduced the phosphorylation of PLN at Thr 

17 during early reperfusion which was associated with a better mechanical recovery after 

ischaemia (Vittone et al., 2002; Said et al., 2003). PLN phosphorylation during I/R enhanced 

Ca
2+ 

uptake through SERCA2a and could improve Ca
2+ 

handling in the cell (Said et al., 

2003). In transgenic PLN-mutant mice, the recovery of Ca
2+ 

transient amplitude and 

myocardial contractile function was also delayed compared to wild type (Said et al., 2003; 

Valverde et al., 2006). More recent data has shown that CaMKII inhibition were protective in 

myocardial I/R. Vila-Petroff and colleagues demonstrated that KN-93 treatment before 
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ischaemia and during early reperfusion reduced myocardial infarct size and prevented Ca
2+ 

oscillations, a consequence of sarcoplasmic reticulum Ca
2+

 overload (Vila-Petroff et al., 

2007). It is suggested that sarcoplasmic reticulum Ca
2+ 

overload due to the increased 

phosphorylation of PLN at Thr 17, could result in sarcoplasmic reticulum Ca
2+ 

leak (Vila-

Petroff et al., 2007). These Ca
2+ 

were taken up by mitochondria and excessive mitochondrial 

Ca
2+ 

uptake could trigger the opening of the mPTP resulting in apoptosis (Chen et al., 2005; 

Vila-Petroff et al., 2007; Shintani-Ishida et al., 2012). Other reports also showed that CaMKII 

inhibition improved post-ischaemic cardiac contractile recovery, reduced sarcoplasmic 

reticulum Ca
2+ 

overload, cytochrome C release and Ca
2+

-induced mitochondrial swelling and 

subsequent cell death (Salas et al., 2010; Szobi et al., 2014). In addition, treatment with KN-

93 reduced the incidence of reperfusion arrhythmias, a severe and life-threatening condition 

which occurs within seconds of the onset of myocardial reperfusion (Adameova et al., 2012; 

Bell et al., 2012). It is also suggested that phosphorylation of PLN during early reperfusion 

caused sarcoplasmic reticulum Ca
2+ 

leak and contributed to reperfusion arrhythmias (Said et 

al., 2008).  

 In this study, the increased phosphorylation of JNK 2, another possible downstream 

target of CaMKII, at 30 min of reperfusion was significantly reduced with DiOHF treatment. 

This is consistent with the finding in anesthetized sheep (Lim et al., 2013). DiOHF reduced 

the oxidative stress-induced increased activation of MKK 4 and 7, two protein kinases 

upstream of JNK and the phosphorylation of the transcription factor c-jun (Lim et al., 2013). 

Cardioprotection caused by JNK inhibition is associated with a reduction in caspase-3 activity 

and cytochrome C release thereby preventing apoptosis (Milano et al., 2007). This is in 

accordance with the finding in this study where reduced number of apoptotic cells was 

observed in DiOHF-treated hearts at 30 min of reperfusion. In contrast to previous reports that 

DiOHF-induced cardioprotection was also mediated via the inhibition of p38 MAPK 
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activation (Thomas et al., 2011; Lim et al., 2013), this report showed no effect of DiOHF 

treatment on the activation of p38 MAPK in myocardial I/R. Although it is generally thought 

that p38 MAPK, which can initiate a series of inflammatory response is pro-injurious during 

I/R, studies have also reported that the activation of p38 MAPK is protective against 

myocardial I/R injury (Das et al., 2006; Khan et al., 2006). It has also been reported that the 

different isoforms of p38 MAPK has different role in myocardial I/R where p38 MAPKα has 

a deleterious effect on myocardial I/R while p38 MAPKβ is cardioprotective (Otsu et al., 

2003; Bassi et al., 2008). 

 In conclusion, it is proposed that DiOHF may confer protection against myocardial I/R 

injury by inhibiting PLN-induced sarcoplasmic reticulum Ca
2+

 leaks and subsequent 

reperfusion-induced arrhythmias. The DiOHF-induced cardioprotection may also be mediated 

by inhibiting JNK 2 activation to reduce apoptosis while maintaining the activation of 

protective kinases Erk 2 and STAT3 at 30 min reperfusion. 
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Chapter 5 

5. The mechanism(s) of cardiac and dilator 

actions of Angeli’s salt 
 

5.1 Introduction 

One of the major consequences of acute myocardial infarction is acute heart failure. 

When there is a low cardiac output and the peripheral vasculature is under-perfused, a positive 

inotrope will be introduced. Currently available positive inotropes to improve cardiac output 

in acute heart failure include dobutamine, levosimendan, milirone and etc., however the use of 

these inotropes to may develop adverse effects such as cardiac arrhythmias resulting in 

increased mortality rate. Therefore, the discovery of a novel positive inotrope with limited 

adverse effects is highly desirable. 

Nitroxyl (HNO) is the one-electron reduced and protonated redox sibling of NO. Its 

therapeutic potential was first suggested when the effects of the anti-alcoholism drug, 

cyanamide, were found to be attributed to the release of HNO (Nagasawa et al., 1990). HNO 

is a transient species, readily undergoing dimerisation to form hyponitrous acid with 

subsequent decomposition into nitrous acid and water (DuMond & King, 2011). Therefore, 

HNO donors are utilised in pharmacological studies, often with the prototypical HNO donor, 

sodium trioxodinitrate (Na2N2O3) or Angeli’s salt (Miranda et al., 2005a). In recent years, 

HNO has emerged as a novel regulator of cardiovascular function, with vasoprotective 

(vasodilator, anti-aggregatory) and cardioprotective (i.e. positive inotrope, anti-hypertrophic) 

properties (Irvine et al., 2008; Bullen et al., 2011; Tocchetti et al., 2011; Lin et al., 2012). 

Interestingly, HNO serves as a positive cardiac inotrope and is protective in an experimental 
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model of heart failure (Paolocci et al., 2001; Paolocci et al., 2003), an action not shared by 

NO. HNO also exhibits antihypertrophic actions in the myocardium, an effect mediated via 

inhibition of NADPH oxidase-derived superoxide generation (Lin et al., 2012) and 

attenuation of the activity of a pro-hypertrophic signalling pathway, p38 MAPK (Wanstall et 

al., 2001; Favaloro & Kemp-Harper, 2009; Lin et al., 2012). As such, recent interest in the 

therapeutic potential of HNO has focused on cardiovascular disorders, such as vascular 

dysfunction, cardiac dysfunction, cardiac remodelling and heart failure (Irvine et al., 2007; 

Irvine et al., 2008; Ritchie et al., 2009; El-Armouche et al., 2010; Bullen et al., 2011; Ding et 

al., 2011; Yuill et al., 2011; Lin et al., 2012).  

In contrast to NO, HNO possesses several unique pharmacological properties. Firstly, 

HNO is resistant to scavenging by the ROS, superoxide (levels of which are commonly 

elevated in cardiovascular pathologies), whereas NO is highly reactive with superoxide, 

forming a second ROS, peroxynitrite (Miranda et al., 2002). In addition, tolerance does not 

develop to HNO’s vasodilator actions, a favourable benefit over traditional clinically-used 

nitrovasodilators (Irvine et al., 2007; Irvine et al., 2011). HNO reacts readily with metal 

centres of proteins such as iron-containing haem in oxymyoglobin and sGC, and in contrast to 

NO, preferentially targets ferric (Fe
3+

) rather than ferrous (Fe
2+

) haem groups and thus may 

activate these proteins when their iron is in the oxidised state (Miranda et al., 2003b). 

Furthermore, HNO (but not NO) is highly thiolphilic, directly targeting thiol-containing 

proteins. Such an action of HNO underlies many of its unique properties in the cardiovascular 

system (Fukuto & Carrington, 2011). Indeed, the interaction of HNO with cysteine residues 

on Ca
2+

-cycling proteins (i.e. RyR, SERCA) on the sarcoplasmic reticulum of cardiomyocytes 

leads to enhanced cardiac contractility (Fukuto & Carrington, 2011; Tocchetti et al., 2011). 

The therapeutic advantages of HNO over NO are likely evident in settings where nitrogen 

oxides are exposed to significant levels of ROS, limiting the bioavailability of NO but not of 
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HNO (Irvine et al., 2008; Ritchie et al., 2009; Bullen et al., 2011), and/or where specific 

HNO interactions with key cysteine residues confers protection (e.g. on SERCA, a property 

not shared by NO (Fukuto & Carrington, 2011; Tocchetti et al., 2011). It is anticipated that 

HNO donors would thus be comparable to NO donors in other settings such as via inhalation 

for pulmonary hypertension (De Witt et al., 2001). The distinct pharmacological profile of 

HNO suggests however it offers favourable therapeutic advantages over its free radical sibling, 

NO, in vascular dysfunction, cardiac dysfunction, cardiac remodelling and heart failure. 

NO predominantly utilises sGC/cGMP to mediate vasodilatation and suppression of 

cardiomyocyte hypertrophy. In contrast, HNO has been shown to signal via both sGC-

dependent and -independent pathways in the vasculature and myocardium. The mechanism of 

vasodilator actions of the HNO donor, Angeli’s salt are largely sGC-dependent (Fukuto et al., 

1992b; Ellis et al., 2000; Irvine et al., 2003; Favaloro & Kemp-Harper, 2007; Irvine et al., 

2007; Andrews et al., 2009), with a smaller contribution from K
+ 

channels (Kv and KATP) and 

calcitonin gene-related peptide (CGRP) evident in the resistance (Irvine et al., 2003; Favaloro 

& Kemp-Harper, 2009) and coronary vasculature (Favaloro & Kemp-Harper, 2007), 

respectively. These vasodilator properties are evident in both large (e.g. aorta) as well as 

smaller vessels such as in rodent isolated thoracic aorta, rodent isolated mesenteric arteries or 

isolated hearts in vitro (Ellis et al., 2000; Wanstall et al., 2001; Irvine et al., 2003; Favaloro & 

Kemp-Harper, 2007). The antihypertrophic actions of HNO donors in isolated 

cardiomyocytes are similarly cGMP-dependent (Lin et al., 2012), whereas the superoxide-

suppressing actions have been variably reported as cGMP dependent (Lin et al., 2012) or 

cGMP-independent (Bullen et al., 2011), in cardiomyocytes and arteries respectively. In 

contrast, the acute enhancement of cardiac contractility elicited by HNO donors in the intact 

heart have been regarded as cGMP-independent, as no detectable changes in plasma cGMP 

content were observed in vivo (Paolocci et al., 2003). These studies in the intact heart have 
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not however investigated HNO actions on cardiac contractility in the presence of cGMP 

inhibition. Most importantly, cardiac contractility is acutely enhanced by HNO donors in 

failing and normal hearts to an equivalent extent (Paolocci et al., 2001; Paolocci et al., 2003).  

The vasodilator and cardiac inotropic effects of HNO donors have been commonly 

attributed to cGMP-dependent and -independent mechanisms, respectively. The concomitant 

effects of an HNO donor on vascular and cardiac function, and the net mechanism(s) of these 

actions, however remain unresolved. The objective of the present study was to thus test the 

hypothesis that the concomitant vasodilator and inotropic actions induced by the HNO donor, 

Angeli’s salt, are sGC-dependent and sGC-independent, respectively in the rat isolated heart.  

 

5.2 Methods 

This investigation conforms with the National Health and Medical Research Council 

of Australia code of practice for the care and use of animals for scientific purposes. All the 

procedures involved in this project were approved by The Alfred Medical Research 

Educational Precinct Animal Ethics Committee.  

 

5.2.1 Langendorff heart preparations 

Hearts isolated from male Sprague-Dawley rats (350-450 g) under, ketamine-xylazine 

anaesthesia (100 and 12 mg/kg i.p., respectively) were Langendorff-perfused as described in 

Chapter 2.3. Rat isolated hearts were perfused under constant pressure, using the 

ADInstruments Langendorff System. The STH Pump Controller (ADInstruments) 

continuously detected coronary flow, in addition to maintaining a constant perfusion pressure 

(set to achieve coronary flow at baseline of 10 ml/min).  
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5.2.2 Vasodilatation and contractile function experiments 

After 30 min equilibration, the thromboxane A2 mimetic U46619 (9,11-dideoxy-

9α,11α-methanoepoxy prostaglandin F2α, 3 µM) was continuously infused into the aorta via a 

syringe infusion pump (0.1-2.5 ml/min), via a port just above the aortic cannula, to pre-

contract the coronary vasculature with a ~50% reduction in baseline coronary flow-rate (i.e. 

from ~10 ml/min to ~5ml/min). A single bolus dose of NaOH (10 mM, vehicle for Angeli’s 

salt) was then administered to the heart via an injection port just above the aortic cannula, 

followed by a serial dose-response curve to Angeli’s salt (10 pmol - 10 μmol), constructed by 

administering bolus doses of the HNO donor to the heart via a second injection port just 

above the aortic cannula, in increasing doses 1 min apart. All parameters of contractile 

function had returned to baseline levels achieved with U46619 pre-constriction. For coronary 

flow, this had either returned to baseline levels or had stabilised to a plateau, prior to the 

addition of the next bolus dose of Angeli’s salt. In a parallel series of experiments, hearts 

were administered serial bolus doses of the equivalent volume of 10 mM NaOH, as a vehicle 

control. 

 

Subsequent experiments were performed to examine the mechanism of the 

haemodynamic effects of Angel’s salt in the intact heart, in which dose-response curves to 

Angeli’s salt were performed in the presence of various selective pharmacological inhibitors, 

added to the reservoir of Krebs’ perfusion buffer. The relative contribution of HNO and NO 

to the actions of Angeli’s salt was investigated in the presence of the HNO scavenger L-

cysteine (4 mM), the NO scavenger hydroxocobalamin (HXC, 0.1 mM) or the thiol 

dithiothreitol (DTT, 100 µM). Parallel experiments utilised the sGC inhibitor, 1H-

[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM), the CGRP antagonist CGRP8-37 (0.1 

μM), or the Kv channel inhibitor 4-aminopyridine (4-AP, 1 mM) to further examine the 
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mechanisms of Angeli’s salt actions. For comparison, dose–response curves to the pure NO 

donor diethylamine NONOate (DEA/NO) were also performed.  

 

5.2.3 Data analysis 

Changes in all haemodynamic variables induced by each vasodilator dose were 

measured as the change () in each response relative to that elicited by the vehicle control (10 

mM NaOH for Angeli’s salt). All results were expressed as group mean ± SEM, with the 

number of independent experiments denoted as ‘n’. Data analysis was performed using 

Graphpad Prism
®
 (version 5.0, USA). Vasorelaxant responses were fitted to a sigmoidal 

logistic equation, to derive the pEC50 (vasodilator dose eliciting 50% maximal response, 

expressed as –log mol) and Rmax (maximal vasodilator response). The coefficient of variation, 

R
2
, for vasodilator responses was consistently >0.8 in all hearts studied. Dose-response curves 

to Angeli’s salt in the absence and presence of each pharmacological inhibitor were compared 

on 2-way ANOVA, with the Bonferroni post hoc test. Baseline haemodynamic variables and 

the pEC50 and Rmax for Angeli’s salt in the absence and presence of various inhibitors, were 

analysed using 1-way ANOVA with Dunnett’s post hoc test for multiple comparisons. The 

pEC50 and Rmax for DEA/NO in the absence and presence of the inhibitor were analysed using 

Student’s unpaired t-test. In all cases, p<0.05 was considered statistically significant.  

 

5.2.4 Drugs and reagents 

All chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and 

dissolved in distilled water unless otherwise stated. Sodium trioxodinitrate (Angeli’s salt), 

U46619, ODQ and DEA/NO were obtained from Cayman Chemical Company (Ann Arbor, 

MI, USA). All stock and working solutions of Angeli’s salt or DEA/NO were prepared fresh 

daily in 10 mM NaOH, and kept on ice until required. Aliquots of U46619 (1 mM in 100% 
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ethanol) were stored at -20⁰C, and were further diluted on the day of use in Krebs’ buffer. 

Stock solutions of ODQ were prepared fresh daily (1 mM in 100% ethanol) with further 

dilution in Krebs’ buffer. Aliquots of CGRP8-37 (0.1 mM in distilled water) were stored at -

20⁰C, with subsequent dilution in Krebs’ buffer on the day of use. L-cysteine, HXC, 4-AP 

and DTT solutions were all prepared in Krebs’ buffer. 

 

5.3 Results 

5.3.1 Angeli’s salt elicits HNO/sGC-dependent vasodilator actions in the whole heart 

The baseline characteristics of all buffer-perfused rat hearts used in this study, at the 

end of equilibration, prior to commencement of any interventions, are shown in Table 5.1. 

Haemodynamic variables after the commencement of infusion with pharmacological 

inhibitors are also whon in Table 5.1 while haemodynamic characteristics after U46619 pre-

constriction are shown in Table 5.2. Baseline coronary flow prior to commencement of any 

interventions, as well as that immediately following U46619 pre-constriction, was generally 

comparable across all experimental groups. A representative recording of all haemodynamic 

parameters on construction of a dose-response curve to Angeli’s salt is shown in Figure 5.1. 

In the presence of U46619 pre-constriction, the HNO donor, Angeli’s salt (10 pmol - 10 

μmol) elicited a dose-dependent vasodilatation, with pEC50 (-log mol) of 8.55 ± 0.24 and Rmax 

(ml/min) of 5.14 ± 0.69 (Table 5.3, Figure 5.2). Significant increases in coronary flow were 

evident with doses of Angeli’s salt > 10 nmol. The selective HNO scavenger L-cysteine (4 

mM, n=6) caused a rightward shift in the dose-response curve of the vasodilator actions of 

Angeli’s salt, with significant reductions in both the pEC50 and Rmax. In contrast, the selective 

NO scavenger HXC (100 µM, n=5) not only failed to blunt the vasodilator effect of Angeli’s 

salt, but actually tended to enhance the vasorelaxant Angeli’s salt effect (Figure 5.2). The 

thiol DTT (100 µM, n=5) did not affect the Angeli’s salt dose-response curve.  
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As shown in Figure 5.3, the selective sGC inhibitor, ODQ (10 μM, n=6) also caused a 

rightward shift in the dose-response curve of the vasodilator actions of Angeli’s salt, with 

significant reduction in the pEC50 (Figure 5.3). The Rmax to Angeli’s salt was not significantly 

affected by ODQ (Table 5.3). Both the selective CGRP receptor antagonist CGRP8-37 (0.1 

µM, n=5) and the Kv channel inhibitor 4-AP (1 mM, n=5) failed to affect the vasodilator 

actions of Angeli’s salt (Figure 5.3). Furthermore, serial bolus doses of 10 mM NaOH vehicle 

failed to elicit significant haemodynamic response (Figure 5.3). As shown in Table 5.1, 

neither L-cysteine, HXC alone nor other pharmacological inhibitors had any significant effect 

on basal vascular function, although DTT tended to enhance coronary flow and heart rate. For 

comparison, the NO donor DEA/NO (10 pmol - 10 μmol) elicited a dose-dependent 

vasodilatation which was also shifted rightwards by HXC (both n=5, Figure 5.4 and Table 

5.3).  
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Table 5.1: Characteristics of all hearts in each experimental group, at each of baseline (at the end of the equilibration period) and after pre-treatment with 

each pharmacological inhibitor alone (prior to the commencement of U46619 infusion and the addition of Angeli’s salt or DEA/NO, shown as mean ±SEM). 

*p<0.05, **p<0.01 vs the analogous timepoint in hearts allocated to treatment with Angeli’s salt alone 1-way ANOVA (Dunnett’s post-hoc test). 

Experimental 

group 
Timepoint 

Haemodynamic Variable Prior to Vasodilator Dose-Response Curve 

n 
Coronary 

flow 

(ml/min) 

Perfusion 

pressure 

(mmHg) 

Heart rate 

(beats/min) 

LVSP 

(mmHg) 

LVDP 

(mmHg) 

LVEDP 

(mmHg) 

LV+dP/dt 

(mmHg/s) 

LV-dP/dt 

(mmHg/s) 

Angeli’s salt (AS) Baseline 10.6 ± 0.4 44.8 ± 1.3 242 ± 21 75.6 ± 6.2 76.7 ± 7.0 -1.1 ± 1.8 1963 ±   94 -1855 ± 101 8 

AS + L-cysteine 
Baseline 

L-cysteine 

10.2 ± 1.0 

11.7 ± 1.1 

43.0 ±1.6 

42.3 ± 3.5 

268 ± 19 

201 ± 23 

57.8 ± 6.0 

57.5 ± 7.3 

52.6 ± 6.0* 

52.1 ± 6.6 

5.2 ± 1.3* 

5.4 ± 1.2 

1687 ± 105 

1635 ± 149 

-1435 ±   83 

-1366 ± 120 
6 

AS + HXC 
Baseline 

HXC 

10.5 ± 0.4 

9.1 ± 0.5 

45.2 ± 1.5 

46.4 ± 2.0 

296 ± 21 

280 ± 14 

53.3 ± 5.0* 

56.9 ± 7.9 

55.2 ± 3.9* 

61.0 ± 6.2 

-2.0 ± 1.4 

-4.1 ± 2.0 

1949 ± 153 

2138 ± 211 

-1232 ± 131** 

-1267 ±  58 
5 

AS + DTT 
Baseline 

DTT 

11.2 ± 0.4 

16.5 ± 1.2** 

50.5 ± 0.6* 

50.0 ±2.1 

291 ± 25 

299 ±  9 

55.1 ± 1.3* 

52.5 ± 4.1 

50.7 ± 1.4* 

52.3 ± 4.8 

4.1 ± 1.3 

0.2 ±2.0 

1687 ± 218 

1818 ± 193 

-1150 ±  81** 

-1211 ±   92 
5 

AS + ODQ 
Baseline 

ODQ 

10.2 ± 0.7 

10.4 ± 0.6 

41.6 ± 0.9 

42.6 ± 0.9 

294 ± 18 

244 ± 20 

54.1 ± 4.5* 

69.5 ± 6.3 

51.0 ± 3.0* 

67.3 ± 5.4* 

3.2 ± 1.2 

2.2 ± 1.7 

1832 ± 177 

2047 ± 186 

-1578 ± 180 

-1812 ± 211 
6 

AS + CGRP8-37 
Baseline 

CGRP8-37 

10.1 ± 0.3 

10.1 ± 0.2 

41.4 ± 0.3 

43.2 ± 1.6 

239 ± 16 

255 ± 16 

64.8 ± 3.8 

69.6 ± 3.4 

64.7 ± 2.9 

71.6 ± 3.0 

0.1 ± 1.4 

-2.0 ± 1.5 

1674 ±   66 

1758 ± 116 

-1320 ±   21 

-1505 ±   99 
5 

AS + 4-AP 
Baseline 

4-AP 

10.1 ± 0.8 

8.4 ± 1.5 

46.1 ± 1.6 

52.0 ± 2.1 

295 ± 19 

241 ±   9* 

53.5 ± 3.6* 

72.7 ± 13.9 

53.7 ±   3.4* 

76.1 ± 15.2 

-0.2 ± 1.5 

-3.4 ± 2.1 

1718 ±   43 

2324 ± 348 

-1500 ±   89 

-2079 ± 314 
5 

DEA/NO Baseline 10.4 ± 0.4 51.9 ± 3.1 254 ± 12 63.9 ± 6.7 58.6 ± 8.1 5.3 ± 2.6 1956 ± 248 -1109 ±  57 5 

DEA/NO + HXC 
Baseline 

HXC 

10.6 ± 0.3 

10.8 ± 1.4 

47.8 ± 2.2 

46.8 ± 2.3 

271 ± 12 

257 ± 10 

54.3 ± 2.4 

48.0 ± 7.6 

55.5 ± 1.6 

50.5 ± 7.1 

-1.2 ± 3.4 

-2.5 ± 3.2 

1834 ±   66 

1705 ± 193 

-1203 ±   92 

-1079 ±   63 
5 
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Table 5.2: Characteristics of all hearts in each experimental group, after the commencement of U46619 infusion (prior to the addition of Angeli’s salt or 

DEA/NO, shown as mean ±SEM). *p<0.05, **p<0.01 vs the analogous timepoint in hearts allocated to treatment with Angeli’s salt alone 1-way ANOVA 

(Dunnett’s post-hoc test). 

Experimental 

group 

Haemodynamic Variable Prior to Vasodilator Dose-Response Curve 

n 
Coronary 

flow 

(ml/min) 

Perfusion 

pressure 

(mmHg) 

Heart rate 

(beats/min) 

LVSP 

(mmHg) 

LVDP 

(mmHg) 

LVEDP 

(mmHg) 

LV+dP/dt 

(mmHg/s) 

LV-dP/dt 

(mmHg/s) 

Angeli’s salt (AS) 5.7 ± 0.5 51.1 ± 2.2 217 ± 18 55.9 ± 6.9 56.4 ± 8.4 0.6 ± 2.0 1721 ± 165 -1617 ± 185 8 

AS + L-cysteine 7.2 ± 0.8 49.2 ± 3.5 187 ± 18 51.8 ± 5.9 47.1 ± 6.1 4.7 ± 0.8 1533 ±   98 -1280 ±   82 6 

AS + HXC 5.7 ± 0.5 48.7 ± 1.5 269 ± 11 41.7 ± 8.5 44.7 ± 7.9 -3.0 ± 1.8 1588 ± 242 - 968 ±   96 5 

AS + DTT 8.8 ± 0.5* 54.9 ± 1.7 318 ± 19** 42.4 ± 3.4 41.5 ± 3.6 0.9 ± 1.6 1530 ± 156 1123 ± 118 5 

AS + ODQ 5.5  ± 0.5 47.4 ± 1.8 208 ± 22 55.8 ± 9.5 52.6 ± 9.0 3.1 ± 1.1 1636 ± 192 -1372 ± 222 6 

AS + CGRP8-37 5.3 ± 0.2 49.9 ± 1.9 233 ± 14 53.7 ± 1.3 54.6 ± 1.5 -0.8 ± 1.1 1481 ±   82 -1201 ±   71 5 

AS + 4-AP 4.5 ±0.9 56.3 ± 2.2 226 ± 20 47.9 ± 11.5 47.9 ± 12.4 -0.0 ± 1.8 1549 ± 319 -1362 ± 245 5 

DEA/NO 5.6 ± 0.3 57.9 ± 3.2 267 ± 10 51.5 ± 4.5 47.2 ± 6.2 4.3 ± 2.6 1637 ± 177 -  978 ±   67 5 

DEA/NO + HXC 7.0 ± 1.2 50.5 ± 1.8 250 ± 11 44.7 ± 5.6 46.8 ± 3.9 -2.1 ± 2.7 1589 ± 117 -1080 ±   49 5 
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Figure 5.1: Representative dose-response curve to Angeli’s salt, showing impact on each of 

left ventricular pressure (LVP), perfusion pressure (PP), heart rate (HR), coronary flow and 

LV dP/dt. 
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Figure 5.2: Dose-response curves to Angeli’s salt (n=8) on coronary flow in the absence and 

presence of the HNO scavenger L-cysteine (4 mM, n=6), the NO scavenger 

hydroxocobalamin (HXC, 100 µM, n=5) or the reducing agent dithiothreitol (DTT, 100 µM, 

n=5). *p<0.05, **p<0.01, ***p<0.001 vs Angeli’s salt alone on 2-way ANOVA with 

Bonferroni post-hoc test for multiple comparisons. Data are expressed as mean ± SEM.  
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Figure 5.3: Dose-response curves to Angeli’s salt (n=8) on coronary flow in the absence and 

presence the sGC inhibitor ODQ (10 µM, n=6), the CGRP receptor antagonist CGRP8-37 (0.1 

µM, n=5) and the Kv channel inhibitor 4-AP (1 mM, n=5). Serial bolus doses of 10 mM 

sodium hydroxide (NaOH) vehicle are shown for comparison (n=3). *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001 vs Angeli’s salt alone on 2-way ANOVA with Bonferroni post-

hoc test for multiple comparisons. Data are expressed as mean ± SEM. 
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Figure 5.4:  Dose-response curves to DEA/NO (n=5) on coronary flow in the absence and 

presence of hydroxocobalamin (HXC, 100 µM, n=5). *p<0.05, **p<0.01, ***p<0.001 vs 

DEA/NO alone on 2-way ANOVA with Bonferroni post-hoc test for multiple comparisons. 

Data are expressed as mean ± SEM. 
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Table 5.3: Sensitivity (pEC50) and maximal relaxation response (Rmax) for dose–response 

curves to Angeli’s salt and DEA/NO on coronary flow, in the absence and presence of 

selective inhibitors. *p<0.05, **p<0.01 vs Angeli’s salt alone, 1-way ANOVA with Dunnett’s 

post hoc test for multiple comparisons and 
##

p<0.01 vs DEA/NO alone, Student’s unpaired t-

test. Data are expressed as mean ± SEM. 

Experimental group pEC50 (-log mol) Rmax (ml/min) n 

Angeli’s salt (AS) 8.55 ± 0.24 5.14 ± 0.69 8 

AS + L-cysteine 7.53 ± 0.18** 2.62 ± 0.44* 6 

AS + HXC 9.12 ± 0.12 6.85 ± 0.47 5 

AS + DTT 7.85 ± 0.40 5.65 ± 0.93 5 

AS + ODQ 7.36 ± 0.29** 3.88 ± 0.52 6 

AS + CGRP8-37 8.49 ± 0.26 4.76 ± 0.52 5 

AS + 4-AP 8.40 ± 0.30 5.36 ± 0.85 5 

DEA/NO 9.60 ± 0.18 8.82 ± 0.61 6 

DEA/NO + HXC 8.56 ± 0.19
##

 4.77 ± 1.01
##

 5 
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5.3.2 Relative contribution of HNO/sGC (but not NO) to the inotropic effects of Angeli’s 

salt 

The vasorelaxant effect of Angeli’s salt was accompanied by concomitant dose-

dependent enhancement of myocardial inotropic function. Significant increases in LVSP, 

LVDP and LV+dP/dt (Figures 5.5A, B and C), parameters of cardiac contractile function, 

were evident from > 10 nmol Angeli’s salt. Both L-cysteine and DTT (but not HXC) 

markedly blunted the impact of Angeli’s salt on each of LVSP, LVDP and LV+dP/dt (Figures 

5.5A, B and C). Maximal increases in parameters of cardiac contractility induced by Angeli’s 

salt were suppressed by ~60 % in the presence of L-cysteine. Interestingly, HXC exaggerated 

the LV+dP/dt response to Angeli’s salt (Figure 5.5C). Angeli’s salt also tended to increase 

heart rate at the highest dose studied (by 59 ± 7 beats/min), this was unaffected by either L-

cysteine or HXC. Further, no evidence of arrhythmic events was observed at any time. 

Inhibition of sGC with ODQ also markedly blunted (but did not abolish) the positive inotropic 

effect of Angeli’s salt, on each of LVSP, LVDP and LV+dP/dt (Figures 5.6A, B and C), by 

~50 %. In contrast, inhibition of CGRP receptors or Kv channels failed to suppress the 

positive inotropic actions of Angeli’s salt. Interestingly, the LV+dP/dt response tended to be 

exaggerated by 4-AP. For comparison, the NO donor DEA/NO elicited comparatively modest 

increases in LVSP, LVDP and LV+dP/dt (Figures 5.7A, B and C), evident at higher doses of 

DEA/NO, which were insensitive to HXC (both n=5). None of these inhibitors alone (L-

cysteine, DTT, HXC, ODQ, CGRP8-37 and 4-AP) affected these parameters of contractile 

function prior to the construction of the dose-response curve to Angeli’s salt, as shown in 

Table 5.1.  
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(A)      (B)    

   

(C) 

 

Figure 5.5: Dose-response curves to Angeli’s salt (n=8) on (A) LVSP, (B) LVDP and (C) 

LV+dP/dt in the absence and presence of L-cysteine (n=6), hydroxocobalamin (HXC, n=5) or 

dithiothreitol (DTT, n=5). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 vs Angeli’s salt 

alone on 2-way ANOVA with Bonferroni post-hoc test for multiple comparisons. Data are 

expressed as mean ± SEM. 
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(A)      (B)      

 

(C) 

 

Figure 5.6: Dose-response curves to Angeli’s salt (n=8) on (A) LVSP, (B) LVDP and (C) 

LV+dP/dt in the absence and presence of sGC inhibitor ODQ (10 µM, n=6), the CGRP 

receptor antagonist CGRP8-37 (0.1 µM, n=5) and the Kv channel inhibitor 4-AP (1 mM, n=5). 

Serial bolus doses of 10 mM NaOH vehicle are shown for comparison (n=3). *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 vs Angeli’s salt alone on 2-way ANOVA with 

Bonferroni post-hoc test for multiple comparisons. Data are expressed as mean ± SEM. 
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(A)      (B)      

 

(C) 

 

Figure 5.7: Dose-response curves to DEA/NO (n=5) on (A) LVSP, (B) LVDP and (C) 

LV+dP/dt in the absence and presence of hydroxocobalamin (HXC, 100 µM, n=5). Data are 

expressed as mean ± SEM. 
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5.3.3 Contribution of HNO/sGC to the impact of Angeli’s salt on cardiac relaxation 

Angeli’s salt elicited dose-dependent enhancement of myocardial lusitropic function, 

with progressive reduction in LVEDP (Figure 5.8A) and potentiation of LV-dP/dt (Figure 

5.8B). These actions were blunted by L-cysteine, DTT and ODQ (Angeli’s salt enhancement 

of LV-dP/dt was particularly sensitive to these inhibitors), but not by 4-AP (which tended to 

enhance the Angeli’s salt effect) (Figures 5.8 and 5.9). HXC or CGRP8-37 was without impact 

on the cardiac relaxation response to Angeli’s salt (Figures 5.8 and 5.9). For comparison, the 

NO donor DEA/NO also elicited modest improvement in cardiac relaxation as indicated by a 

slight potentiation in LV-dP/dt (Figure 5.10B), evident at higher doses of DEA/NO, which 

was also insensitive to HXC (both n=5). None of these inhibitors alone (L-cysteine, DTT, 

HXC, ODQ, CGRP8-37 and 4-AP) affected these parameters of cardiac relaxation alone, prior 

to the construction of the dose-response curve to Angeli’s salt (Table 5.1). 
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(A) 

  

(B) 

 

Figure 5.8: Dose-response curves to Angeli’s salt (n=8) on (A) LVEDP and (B) LV-dP/dt in 

the absence and presence of L-cysteine (n=6), HXC (n=5) or DTT (n=5). *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001 vs Angeli’s salt alone on 2-way ANOVA with Bonferroni post-

hoc test for multiple comparisons. Data are expressed as mean ± SEM. 
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(A)  

      

(B) 

 

Figure 5.9: Dose-response curves to Angeli’s salt (n=8) on (A) LVEDP and (B) LV-dP/dt in 

the absence and presence of ODQ (n=6), CGRP8-37 (n=5) and 4-AP (n=5). Serial bolus doses 

of 10 mM NaOH vehicle are shown for comparison (n=3). *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001 vs Angeli’s salt alone on 2-way ANOVA with Bonferroni post-hoc test for 

multiple comparisons. Data are expressed as mean ± SEM. 
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(A) 

 

(B) 

 

Figure 5.10: Dose-response curves to DEA/NO (n=5) on (A) LVEDP and (B) LV-dP/dt in 

the absence and presence of HXC (100 µM, n=5). *p<0.05 vs DEA/NO alone on 2-way 

ANOVA with Bonferroni post-hoc test for multiple comparisons. Data are expressed as mean 

± SEM. 
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5.4 Discussion 

The key findings of the present study are that the HNO donor, Angeli’s salt, elicits 

concomitant coronary vasodilator, inotropic and lusitropic actions in the intact rat heart, all of 

which are mediated by L-cysteine-sensitive, HNO-dependent mechanisms, with a significant 

contribution mediated via sGC. There appeared to be no role for extracellular oxidation of 

HNO to NO, or for CGRP receptors or Kv channels in the haemodynamic responses to 

Angeli’s salt. These results are the first evidence that sGC may contribute, at least in part, to 

the inotropic and/or lusitropic action of HNO in the intact heart.  

In this study, it is shown that Angeli’s salt induces HNO/sGC-mediated, dose-

dependent vasodilatation in the intact rat heart. This is consistent with previous reports in 

isolated large conduit and smaller resistance-like vessels in vitro (Irvine et al., 2003; Favaloro 

& Kemp-Harper, 2009), as well as in the intact heart studied under conditions of constant 

flow ex vivo (Favaloro & Kemp-Harper, 2007). Although coronary vascular tone under basal, 

physiological conditions is largely regulated by Kv channels (Leblanc et al., 1994; Shimizu et 

al., 2000), no role for Kv signalling in the vasodilator response to Angeli’s salt in the rat 

coronary vasculature is observed in this study, consistent with previous observations (Irvine et 

al., 2003; Favaloro & Kemp-Harper, 2007). In contrast, the vasorelaxant actions of Angeli’s 

salt are mediated, in part, via Kv channels in the mesenteric circulation (Irvine et al., 2003; 

Andrews et al., 2009), perhaps due to regional differences in K
+
 channel subtype distribution. 

Although KATP channels may also play a role in coronary vasodilatation in response to 

Angeli’s salt (Favaloro & Kemp-Harper, 2007), this was not investigated in the present study. 

Previous studies have suggested a potential contribution of CGRP to the coronary 

vasodilator response to Angeli’s salt, as described in the isolated rat heart studied under 

constant flow conditions ex vivo (Favaloro & Kemp-Harper, 2007), but not to the peripheral 

arterial or venous vasorelaxation, as reported in a canine model in vivo (Paolocci et al., 2001). 
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Although no contribution of CGRP-dependent signalling to the vasodilator actions of 

Angeli’s salt in the isolated rat heart studied under constant pressure conditions ex vivo is 

detected in this study, the reason for this discrepancy remains unresolved. Angeli’s salt co-

releases both HNO and nitrite at physiological pH (Miranda et al., 2005b), HNO rather than 

nitrite likely mediates the vasodilator responses observed here. Firstly, the HNO-selective 

scavenger, L-cysteine, markedly impaired these responses, and secondly, nitrite has almost 

negligible dilator activity in the rat coronary vasculature, with 15000-fold less potency than 

Angeli’s salt (Irvine et al., 2003; Favaloro & Kemp-Harper, 2007). Given that a residual, 

modest Angeli’s salt-induced vasodilatation remains in the presence of L-cysteine, there is 

possibility of oxidation of HNO to NO under the experimental conditions in this study. The 

inability of the NO-selective scavenger HXC to blunt the vasodilator response to Angeli’s salt 

however suggests this is unlikely, at least in the extracellular milieu. Intriguingly, this 

vasodilator response was actually augmented in the presence of HXC; whether this reflects a 

loss of endogenous NO and thus an increased responsiveness of sGC to stimulation by HNO 

was however not determined. 

The positive cardiac inotropic and lusitropic actions of HNO donors are well-

established, both in the intact heart in vivo, as well as in isolated cardiomyocytes and 

trabeculae in vitro (Paolocci et al., 2001; Tocchetti et al., 2007; Kohr et al., 2010). It is now 

confirmed that the prototypical HNO donor, Angeli’s salt, potently enhances both cardiac 

contraction and relaxation in the intact rat heart ex vivo. These actions were markedly 

attenuated by both L-cysteine and DTT, specifically implicating HNO. The positive inotropic 

and dilator effects of Angeli’s salt are not likely to be mediated by co-release of nitrite, as this 

has no appreciable effect on cardiomyocyte contractility (Kohr et al., 2010). Early reports 

describing the positive inotropic actions implicated the neuropeptide CGRP at least in part in 

this mechanism of action, based on sensitivity to the CGRP receptor antagonist, CGRP8-37 
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(Paolocci et al., 2001). CGRP itself elicits positive inotropic and lusitropic effects via 

activation of cAMP/PKA/L-type Ca
2+

 channel signalling (Huang et al., 1999). These actions 

are however dependent on β-adrenoceptor signalling (Katori et al., 2005), in contrast to those 

of HNO, which are β-adrenoceptor-independent (Paolocci et al., 2003). Results here are 

consistent with the absence of a role for CGRP in the inotropic and lusitropic actions of 

Angeli’s salt.  

As the myocardial effects of Angeli’s salt are all evident even at relatively low doses 

(e.g. from 10 nmol), concomitant with doses required to elicit vasodilatation, this raises the 

possibility that these myocardial effects are a secondary effect to vasorelaxation, in 

accordance with the Gregg effect (Westerhof et al., 2006). The vasodilator response however 

plateaus at ~1 μmol, whereas the enhancement of left ventricular contractility and relaxation 

induced by Angeli’s salt continue to further progress with increasing doses of the HNO donor, 

Angeli’s salt. Given that previous reports suggest that the vasodilator actions of Angeli’s salt 

are evident at markedly lower concentrations (e.g. 0.1 μM) than required for effects on 

cardiomyocyte function (e.g. 500 μM) (Favaloro & Kemp-Harper, 2007; Tocchetti et al., 

2007), it remains likely that Angeli’s salt-mediated vasodilatation occurs at lower 

concentrations while the contractile effect of Angeli’s salt occurs only at higher 

concentrations. This suggests that the contractile effect of Angeli’s salt appears independent 

of its dilatory effect.   

The cardiac inotropic and lusitropic effects of HNO donors have been traditionally 

attributed to cGMP-independent mechanisms, through a thiol-mediated interaction with the 

sarcoplasmic reticulum Ca
2+

-handling proteins, RyR and SERCA (Tocchetti et al., 2007; 

Kohr et al., 2010). These previous reports concluded that the myocardial actions of HNO 

were cGMP-independent on the basis of an absence of detectable increases in plasma cGMP 

in vivo (Paolocci et al., 2001), as well as a perceived lack of sensitivity to ODQ (Tocchetti et 
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al., 2007). Of note, the only previous investigation of the role for cGMP in the cardiac 

inotropic and lusitropic effects of HNO donors utilised isolated cardiomyocytes rather than 

the intact heart, and the concentration of HNO donor (1 mM) far exceeded that used for ODQ 

(10 µM) (Tocchetti et al., 2007). ODQ is considered an oxidiser (rather than a competitive 

inhibitor) of sGC, which irreversibly inhibits the enzyme. There is however one report that 

suprapharmacological concentrations of Angeli’s salt (1 mM) may still be able to stimulate 

any residual sGC still in its reduced state (Zeller et al., 2009). In the present study, the effects 

of HNO on left ventricular contractility and relaxation were determined in the intact heart, 

concomitantly with its vasorelaxant effects. Administration of ODQ under these conditions 

significantly attenuated (but did not abolish) the left ventricular inotropic and lusitropic 

effects of Angeli’s salt, suggesting for the first time that HNO may mediate a part of these 

actions via sGC/cGMP-dependent signalling.  

Although the impact of both NO and sGC on cardiac contractile function has been 

previously examined in a broad range of scenarios, no consensus has yet been reached, with 

negative inotropic (Balligand et al., 1993; Brady et al., 1993; Grocott-Mason et al., 1994; 

Weyrich et al., 1994; Kojda et al., 1996; Sandirasegarane & Diamond, 1999; Muller-Strahl et 

al., 2000; Gonzalez et al., 2008; Cawley et al., 2011; Derici et al., 2012), positive inotropic 

(Klabunde & Ritger, 1991; Smith et al., 1991; Kojda et al., 1995; Kojda et al., 1996; Kojda et 

al., 1997; Sarkar et al., 2000; Layland et al., 2002; Langer et al., 2003) or no change observed 

(Ritchie et al., 2006; Ritchie et al., 2009). Indeed, the relationship between NO/sGC and 

myocardial force may be differentially modulated by concentration, whereby smaller 

increases in NO/sGC levels elicit positive inotropic effects either secondary to 

phosphodiesterase-3 inhibition (elevating cAMP), while high concentrations elicit a cGMP-

mediated negative inotropic effect, perhaps secondary to formation of S-nitrosothiols on key 

cardiomyocyte Ca
2+

-handling proteins such as RyR, SERCA and PLN (Smith et al., 1991; 
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Kojda et al., 1996; Kojda et al., 1997; Zahradnikova et al., 1997; Paolocci et al., 2000; 

Layland et al., 2002; Langer et al., 2003; Gonzalez et al., 2007; Rastaldo et al., 2007; 

Gonzalez et al., 2008; Wang et al., 2008; Ziolo, 2008). It is also likely that distinct 

cardiomyocyte pools of cGMP also contribute to this lack of consensus with respect to the 

nature of any possible impact of NO/sGC on inotropic mechanisms, as has been suggested for 

natriuretic peptide receptors (Qvigstad et al., 2010). There is however consensus with respect 

to cardiac relaxation, which is enhanced by NO (Paulus et al., 1994; Carnicer et al., 2013). In 

our study DEA/NO (which releases two NO molecules per molecule of DEA/NO) did tend to 

enhance systolic function, but this was more modest than that achieved by the equivalent 

concentration of Angeli’s salt (despite it only releasing a single HNO molecule per molecule 

of Angeli’s salt). It has previously been demonstrated that HNO donors such as Angeli’s salt 

and IPA/NO do not increase cardiomyocyte cAMP or CGRP content (Lin et al., 2012; Irvine 

et al., 2013b).  

In this study, the thiols L-cysteine and DTT were similarly effective at blunting the 

Angeli’s salt enhancement of inotropic and lusitropic function at the concentrations used (4 

mM vs 0.1 mM). In contrast, only L-cysteine (and not DTT) blunted the vasodilatation 

response. L-cysteine is conventionally used as an HNO scavenger (Tocchetti et al., 2011), 

blocking both Angeli’s salt-induced coronary vasodilator and positive inotropic actions by 

removing available HNO. HNO is considered to enhance cardiac contractility and relaxation 

by inducing a reversible oxidation of key thiol residues on specific cardiomyocyte Ca
2+

 

cycling/sensitisation proteins (e.g. RyR and SERCA), without altering net thiol redox status 

(i.e. GSH/GSSG ratio) (Fukuto & Carrington, 2011).  Findings in this study with both thiols 

are perhaps consistent then with the Angeli’s salt-induced vasodilatation dependent on HNO 

and sGC (but not proteins implicated in Ca
2+

 cycling/sensitisation), whereas its enhancement 
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of cardiac contractility and relaxation may be mediated at least in part by both sGC-dependent 

and sGC-independent mechanisms (such as HNO-mediated oxidation of RyR and SERCA). 

The thiol modification induced by HNO is quite distinct to that induced by NO. NO 

leads to S-nitrosation via an indirect action, as it is initially oxidised to nitrous anhydride 

which then reacts with protein thiol groups to form protein-SNO (Lima et al., 2010; Heinrich 

et al., 2013). In contrast, the interaction of HNO with thiols is direct and thus extremely rapid 

(Jackson et al., 2009), first generating the intermediate, N-hydroxysulphenamide, which can 

then either be irreversibly arranged to form N-hydroxysulphenamide, or alternatively can 

reversibly interact with an additional thiol, to form a disulphide and hydroxylamine. The 

predominant thiol modification induced by HNO is thus considered formation of a 

sulphinamide or disulphide, rather than S-nitrosation (Fukuto & Carrington, 2011). As 

Angeli’s salt only releases NO at a very acidic pH (Miranda et al., 2005b), together with our 

finding that the coronary vasodilator action of Angeli’s salt was not diminished in the 

presence of the NO scavenger HXC, it is highly unlikely that Angeli’s salt will form S-NO in 

the presence of thiols such as L-cysteine. Thus, in contrast to NO donors, Angeli’s salt dose-

dependent enhancement of cardiac contractility and relaxation is unlikely to result from S-

nitrosation of Ca
2+

-handling proteins.  

In conclusion, the HNO donor Angeli’s salt elicits dose-dependent enhancement of 

left ventricular systolic and diastolic function, with vasodilatation, in the intact rat heart. 

These effects are all L-cysteine-sensitive and mediated by HNO, with contributions from both 

sGC-dependent and s-GC-independent mechanisms. No role for CGRP, NO or Kv in Angeli’s 

salt cardiac effects was evident. HNO thus acutely modulates both left ventricular contractile 

function and left ventricular relaxation, whilst concomitantly unloading the heart. These 

properties, in combination with the powerful antihypertrophic and superoxide-suppressing 
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actions we have previously demonstrated, may favour HNO donors as a potential strategy for 

managing heart failure (alone or in addition to standard care).  
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Chapter 6 

6. The acute improvement in cardiac and 

vascular function by Angeli’s salt after I/R 
 

6.1 Introduction  

 After an acute episode of myocardial infarction, patients are highly susceptible to heart 

failure. Several studies have shown that patients with acute heart failure and a lower systolic 

blood pressure at admission have a higher rate of in-hospital and post-discharge mortality 

(Gheorghiade et al., 2006; Shiraishi et al., 2011). First-line treatments for acute heart failure 

are diuretic agents to treat pulmonary oedema which is the most common clinical presentation 

in heart failure and vasodilators such as glyceryl trinitrate (GTN) or nitroprusside to reduce 

pre-load and after-load in the heart (McMurray et al., 2012). In cases where there is a low 

cardiac output and the peripheral vasculature is under-perfused, a positive inotrope will be 

introduced, commonly dobutamine, a potent β-adrenoceptor agonist (McMurray et al., 2012). 

Dobutmaine is a well-established therapeutic agent in patients with heart failure, however 

numerous studies indicate deleterious effects including cardiac arrhythmias (eg. tachycardia) 

and increased myocardial oxygen consumption that could lead to myocardial ischaemia 

(Sonnenblick et al., 1979; Monrad et al., 1986; Sato et al., 1997). A higher mortality rate with 

dobutamine infusion in patients with congestive heart failure compared to placebo grouphas 

been observed (O'Connor et al., 1999). Further, Unverferth and colleagues showed that 

patients may develop tolerance to dobutamine after 3 days of continuous infusion (Unverferth 

et al., 1980).  
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In addition, a major limitation of treating heart failure patients with nitric oxide (NO) 

donors such as GTN, to induce vasodilatation is that early development of tolerance occurs to 

the action of NO donors with loss of effectiveness during sustained treatment may occur 

(Munzel et al., 2005). This phenomenon is called nitrate tolerance. Nitrate tolerance is 

associated with increased reactive oxygen species production, endothelial dysfunction and 

increased sensitivity to vasoconstrictors (Munzel et al., 2005). Pre-treatment of rabbits with 

GTN increased the vascular production of superoxide anions and this reduced the NO 

bioavailability and contributed to the attenuated relaxation response to NO donors GTN and 

3-morpholino-sydnonimine and acetylcholine (Munzel et al., 1995). Concomitant treatment 

with antioxidants such as ascorbic acid preserved the sensitivity of the vasculature to NO 

donors (Bassenge et al., 1998). The vasodilator response to acetylcholine and the 

vasoconstrictor response to the non-selective inhibitor for nitric oxide synthase (NOS), N-

monomethyl-L-arginine (L-NMMA) were also inhibited in the forearm vasculature of healthy 

male subjects after 6 days with GTN treatment (Gori et al., 2001). Five days of continuous 

transdermal GTN treatment also resulted in acetylcholine-induced vasoconstriction, instead of 

endothelium-dependent dilatation suggesting impaired endothelial function (Caramori et al., 

1998). The reduction in forearm blood flow induced by angiotensin II and the α-adrenoceptor 

agonist phenylephrine was enhanced in patients with stable coronary artery disease pre-treated 

with GTN for a 48-h period compared to the placebo group (Heitzer et al., 1998). This 

suggests a hypersensitivity to vasoconstrictors with GTN pre-treatment. 

 In Chapter 5, it is reported that the HNO donor, Angeli’s salt simultaneously 

increases cardiac contractility and coronary flow in normal rat hearts (Chin et al., 2014). 

Further, Paolocci and colleagues demonstrated that Angeli’s salt enhanced cardiac 

contractility in canine failing hearts to the same extent as in a normal canine heart, despite 

many defective signalling mechanisms (Paolocci et al., 2003). In contrast, NO donors, 
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DEA/NO or GTN, either reduced or showed no effect on cardiac contractility in canine failing 

hearts (Paolocci et al., 2003). In addition, Angeli’s salt administration did not induce 

tachycardia or cardiac arrhythmias in hearts in vitro or in vivo (Paolocci et al., 2003; Favaloro 

& Kemp-Harper, 2007). Therefore, the HNO donor Angeli’s salt may be a potential 

therapeutic agent to increase cardiac output and improve blood flow in heart failure. In this 

study, we tested the hypothesis thatthe cardiac contractile and vasodilator actions of Angeli’s 

salt are preserved in acute heart failure secondary to myocardial I/R. 

 

6.2 Methods 

This investigation conforms with the National Health and Medical Research Council 

of Australia code of practice for the care and use of animals for scientific purposes. All the 

procedures involved in this project were approved by RMIT University andAlfred Medical 

Research Educational Precinct Animal Ethics Committees.  

 

6.2.1 Langendorff heart preparations 

Hearts isolated from adult male Sprague-Dawley rats (250-300g) anaesthetized with 

325 mg/kg sodium pentobarbitone were Langendorff-perfused as described in Chapter 2.3. 

Rat isolated hearts were perfused at a constant pressure of 45 ± 5 mmHg to achieve a basal 

coronary flow of about 10 ml/min.  

 

6.2.2 Experimental protocols 

After 20 min equilibration, rat isolated hearts were assigned to one of two groups:  

sham: hearts were continuously perfused with Krebs’ buffer for a total period of 80 min;  

I/R: hearts were subjected to 30 min global ischaemia followed by 30 min reperfusion. 

Ischaemia and reperfusion were carried out as described in Chapter 2.4. 
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At 5 min before the completion of 80 min perfusion in sham hearts or 30 min 

reperfusion in I/R-treated hearts, hearts were infused with the thromboxane A2 mimetic 

U46619 (3 µM, 0.1-1.5 ml/min) continuously via a port just above the aortic cannula, to 

contract the coronary vasculature reducing basal coronary flow rate by ~50% (i.e. from ~10 

ml/min to ~5ml/min). A single dose of the vehicle for the HNO donor, Anegli’s salt or the NO 

donor, DEA/NO, 10 mM NaOH or the vehicle for the clinically used inotrope for acute heart 

failure, dobutamine, Krebs’ buffer, was then added to the heart via a second injection port. 

The construction of the respective dose-response curve to Angeli’s salt (1 nmol- 10 μmol), 

DEA/NO (1 nmol- 1 μmol) or dobutamine (100 pmol- 100 nmol) was then carried out in 

randomized order as shown in Figure 6.1. The dose-response curve was performed by 

administering bolus doses of drugs to the heart in increasing doses 1 min apart. A 5 min wash-

out with Krebs’ buffer was carried out between dose-response curve for each dilator allowing 

all parameters of contractile function and coronary flow to return to baseline levels.  
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Figure 6.1: Schematic diagram showing the experimental protocol. Rat isolated hearts were 

subjected to sham or I/R treatment followed by the construction of dose-response curve to the 

HNO donor, Angeli’s salt, NO donor, DEA/NO and clinically used itnotrope for acute heart 

failure, dobutamine with U46619 pre-constriction in randomized order.   
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6.2.3 LDH assay 

LDH assay was carried out as described in Chapter 2.5. Coronary effluent from sham 

hearts or I/R-treated hearts was collected at 5 time points (i.e. 51
st
, 52

nd
, 55

th
, 60

th
, 75

th
 min 

perfusion in sham hearts and 1, 2, 5, 10 and 15 min reperfusion in I/R-treated hearts).  

 

6.2.4 Assessment of reperfusion-induced arrhythmias 

Assessment of reperfusion-induced arrhythmias was performed as described in 

Chapter 2.8. Experimental records of left ventricular pressure (LVP) from I/R-treated hearts 

were used to analyse the incidence of arrhythmias. The total duration (in sec) of LVP showing 

a LVDP <5 mmHg (indicative of ventricular fibrillation) in the first 10 min of reperfusion 

was measured. 

 

6.2.5 Statistical analysis 

All results were expressed as group mean ± SEM, with the number of independent 

experiments denoted as ‘n’. Data analysis was performed using Graphpad Prism
®
 (version 

6.0, USA). The vasodilator and cardiac contractile responses to each drug were expressed as 

percentage change from the baseline value. The difference between the response in control 

and I/R-treated hearts was analysed using 2-way ANOVA with Sidak’s multiple comparisons 

test. LDH assay and all haemodynamic values were compared using Student’s unpaired t-test. 

In all cases, p<0.05 was considered statistically significant.  

 

6.2.6 Drugs and reagents 

All chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and 

dissolved in distilled water unless otherwise stated. Angeli’s salt, DEA/NO and U46619 were 
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obtained from Cayman Chemical Company (Ann Arbor, MI, USA) and were prepared as 

described in Chapter 5.2.4.  Dobutamine was dissolved in distilled water with gentle heating. 

 

6.3 Results 

6.3.1 Basal haemodynamic characteristics in sham and I/R-treated hearts 

 Basal haemodynamic characteristics of all buffer-perfused rat hearts used in this study, 

at the end of the 20 min equilibration, prior to any sham or I/R treatment are shown in Table 

6.1. There were no significant differences in basal haemodynamic values in sham and I/R-

treated groups, although LVSP and LVEDP tended to be higher in I/R-treated hearts. 
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Table 6.1: Basal haemodynamic characteristics of hearts at the end of 20 min equilibration 

from sham (n=8) and I/R-treated groups (n=7), prior to any ischaemic insult in the I/R-treated 

group. Data are expressed as mean ± SEM. 

Parameters Sham (n=8) I/R (n=7) 

LVSP (mmHg) 73 ± 5 86 ± 5 

LVEDP (mmHg) 1.6 ± 3.1 5.9 ± 1.3 

LVDP (mmHg) 71 ± 4 80 ± 6 

LV+dP/dt (mmHg/s) 2246 ± 126 2218 ± 158 

LV-dP/dt (mmHg/s) -1391 ± 59 -1661 ± 166 

Heart rate (beats/min) 253 ± 15 261 ± 7 

Coronary flow (ml/min) 9.9 ± 0.3 10.1 ± 0.1 
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6.3.2 Effect of I/R on cardiac function, cell death and arrhythmias 

Haemodynamic values of hearts from sham at the end of the 75 min perfusion (n=8) or 

I/R-treated hearts at the end of 25 min reperfusion (n=7) were shown in Table 6.2. LVSP and 

LVEDP were significantly higher in I/R-treated hearts compared to sham (p<0.001) while 

reduced LVDP, LV±dP/dt and coronary flow were observed in I/R-treated hearts at the end of 

25 min reperfusion compared to sham hearts at the similar time point (p<0.05). The heart rate 

was not significantly different between the two groups. 

Myocardial cell death was assessed by the release of LDH following the loss of 

membrane integrity in the heart tissue into the coronary effluent. The total release of LDH 

from hearts subjected to 30 min ischaemia followed by 30 min reperfusion was significantly 

elevated compared to sham hearts (p<0.0001, Figure 6.2).  

Early reperfusion-induced ventricular fibrillation occurred in four of the seven hearts 

subjected to I/R (mean duration of ventricular fibrillation 271 ± 99 sec), but in none of the 

sham hearts.  
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Table 6.2: Haemodynamic characteristics of hearts from sham after 75 min perfusion (n=8) 

and I/R-treated groups after 25 min reperfusion (n=7), prior to the commencement of U46619 

infusion and the construction of dose-response curves. *p<0.05, ***p<0.001, ****p<0.0001 

vs sham hearts, Student’s unpaired t-test. Data are expressed as mean ± SEM 

Parameters Sham (n=8) I/R (n=7) 

LVSP (mmHg) 67 ± 10 119 ± 5 *** 

LVEDP (mmHg) 2.4 ± 5 77 ± 4 **** 

LVDP (mmHg) 68 ± 6 42 ± 8 * 

LV+dP/dt (mmHg/s) 2116 ± 113 971 ± 236 *** 

LV-dP/dt (mmHg/s) -1258 ± 84 -623 ± 129 *** 

Heart rate (beats/min) 229 ± 18 181 ± 30 

Coronary flow (ml/min) 9.1 ± 0.7 1.7 ± 0.6 **** 
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Figure 6.2: Total lactate dehydrogenase (LDH) release after 80 min perfusion in sham hearts 

(n=8) and hearts subjected to 30 min ischaemia followed by 30 min reperfusion (n=7). 

****p<0.0001 vs sham, Student’s unpaired t-test. Data are expressed as mean ± SEM.  
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6.3.3 Vasodilator action of Angeli’s salt, DEA/NO and dobutamine in sham and I/R-

treated hearts 

In sham hearts, the HNO donor, Angeli’s salt (1 nmol-10 μmol) and the NO donor, 

DEA/NO (1 nmol-1 μmol) caused a dose-dependent vasodilatation in the coronary 

vasculature pre-constricted with U46619 (Figures 6.3A and B). There was a ~80% increase in 

flow at highest doses, 10 μmol and 1 μmol of Angeli’s salt and DEA/NO respectively. Bolus 

addition of dobutamine at lower doses (0.1-1 nmol) reduced flow, while higher doses of 

dobutamine (10-100 nmol) induced vasodilatation in sham hearts (Figure 6.3C). The increase 

in flow by dobutamine was much less (by ~50%) than that induced by Angeli’s salt and 

DEA/NO.  

In hearts subjected to 30 min ischaemia and 30 min reperfusion, the vasodilator action 

of Angeli’s salt and dobutamine was preserved (Figures 6.3A and C). In contrast, I/R 

significantly impaired the increase in flow by DEA/NO by ~50% compared to sham hearts 

(p<0.05, Figure 6.3B).  
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(A)                       (B) 

   

(C)       

 

Figure 6.3: The vasodilator response to (A) Angeli’s salt, (B) DEA/NO and (C) dobutamine 

in rat isolated hearts perfused for 80 min with Krebs’ buffer (filled symbols, n=8) or subjected 

to 30 min ischaemia and 30 min reperfusion (open symbols, n=7). *p<0.05 vs sham hearts, 2-

way ANOVA with Sidak’s multiple comparisons test. Data are expressed as mean ± SEM. 
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6.3.4 Positive inotropic action of Angeli’s salt, DEA/NO and dobutamine in sham and 

I/R-treated hearts 

In sham hearts, Angeli’s salt caused a dose-dependent increase in cardiac contraction 

(Figures 6.4A, 6.5A and 6.6A). Angeli’s salt at the highest dose used in this study (10 μmol), 

increased LVSP, LVDP and LV+dP/dt by ~80% of the basal value. Similarly, dobutamine 

exerted a positive inotropic action in sham hearts (Figures 6.4C, 6.5C and 6.6C). The 

maximum increase in LVSP, LVDP and LV+dP/dt by 10 nmol of dobutamine was ~60% of 

basal values (Figures 6.4C and 6.5C). Conversely, DEA/NO had no significant effect on 

cardiac contraction in sham hearts ((Figures 6.4B, 6.5B and 6.6B). 

In I/R-treated hearts, the increase in cardiac contraction caused by Angeli’s salt was 

significantly reduced by ~80% (p<0.0001, Figures 6.4A, 6.5A and 6.6A). Similarly, the 

maximum increase in cardiac contraction caused by dobutamine was significantly reduced by 

~75% in I/R-treated hearts (p<0.001, Figures 6.4C, 6.5C and 6.6C). I/R caused a reduction in 

LV+dP/dt when DEA/NO at 1 μmol was administrated (p<0.05, Figure 6.6B).  
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(A)         (B) 

      

(C) 

 

Figure 6.4: The inotropic action expressed as a percentage change in LVSP exerted by (A) 

Angeli’s salt, (B) DEA/NO and (C) dobutamine in rat isolated hearts perfused with 80 min 

Krebs’ buffer (filled symbols, n=8) or subjected to 30 min ischaemia and 30 min reperfusion 

(open symbols, n=7). *p<0.05, ***p<0.001, ****p<0.0001 vs sham hearts, 2-way ANOVA 

with Sidak’s multiple comparisons test. Data are expressed as mean ± SEM. 
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(A)        (B) 

      

(C)        

 

Figure 6.5: The inotropic action expressed as a percentage change in LVDP exerted by (A) 

Angeli’s salt, (B) DEA/NO and (C) dobutamine in rat isolated hearts perfused with 80 min 

Krebs’ buffer (filled symbols, n=8) or subjected to 30 min ischaemia and 30 min reperfusion 

(open symbols, n=7). *p<0.05, ***p<0.001, ****p<0.0001 vs sham hearts, 2-way ANOVA 

with Sidak’s multiple comparisons test. Data are expressed as mean ± SEM. 
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(A)      (B) 

   

(C)        

 

Figure 6.6: The inotropic action expressed as a percentage change in positive rate of change 

of left ventricular pressure (LV+dP/dt) exerted by (A) Angeli’s salt, (B) DEA/NO and (C) 

dobutamine in rat isolated hearts perfused with 80 min Krebs’ buffer (filled symbols, n=8) or 

subjected to 30 min ischaemia and 30 min reperfusion (open symbols, n=7). *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 vs sham hearts, 2-way ANOVA with Sidak’s multiple 

comparisons test. Data are expressed as mean ± SEM. 
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6.3.5 Cardiac relaxation caused by Angeli’s salt, DEA/NO and dobutamine in sham and 

I/R-treated hearts 

In sham hearts, Angeli’s salt also caused a dose-dependent increase in cardiac 

relaxation (Figures 6.7A and 6.8A). Angeli’s salt at 10 μmol, improved LV-dP/dt by ~55% of 

the basal value (Figure 6.8A). Similarly, dobutamine increased cardiac relaxation in sham 

hearts (Figures 6.7C and 6.8C). The maximum improvement in LV-dP/dt by dobutamine at 10 

nmol was ~125% of the basal value (Figures 6.8C). DEA/NO had no significant effect on 

cardiac relaxation in sham hearts ((Figures 6.7B and 6.8B). 

In I/R-treated hearts, the increase in cardiac relaxation caused by Angeli’s salt and 

dobutamine was significantly impaired. The improved LV-dP/dt caused by Angeli’s salt (10 

μmol) was abolished by I/R (p<0.01, Figure 6.8A), however the change in LVEDP induced 

by Angeli’s salt in I/R-treated hearts was not different from sham hearts (Figure 6.7A). The 

maximum enhancement in LV-dP/dt by 10 nmol dobutamine was also impaired by 50% in 

I/R-treated hearts (p<0.001, Figure 6.8C), and the reduction in LVEDP (suggesting better 

cardiac relaxation) caused by dobutamine was almost abolished in I/R-treated hearts (Figure 

6.7C).  
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(A)           (B) 

    

(C)         

 

Figure 6.7: The effect of 30 min ischaemia and 30 min reperfusion (open symbols, n=7) and 

80 min perfusion in sham hearts (filled symbols, n=8) on the cardiac relaxation expressed as a 

change in LVEDP affected by (A) Angeli’s salt, (B) DEA/NO and (C) dobutamine. 2-way 

ANOVA with Sidak’s multiple comparisons test, p=ns. Data are expressed as mean ± SEM. 
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(A)             (B) 

     

(C)         

 

Figure 6.8: The effect of 30 min ischaemia and 30 min reperfusion (open symbols, n=7) and 

80 min perfusion in sham hearts (filled symbols, n=8) on the cardiac relaxation expressed as a 

percentage change in negative rate of change of left ventricular pressure (LV-dP/dt) affected 

by (A) Angeli’s salt, (B) DEA/NO and (C) dobutamine. **p<0.01, ***p<0.001 vs sham 

hearts, 2-way ANOVA with Sidak’s multiple comparisons test. Data are expressed as mean ± 

SEM. 
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6.3.6 Heart rate response to Angeli’s salt, DEA/NO and dobutamine in sham and I/R-

treated hearts 

In sham hearts, both Angeli’s salt and dobutamine increased heart rate while DEA/NO 

had no effect (Figures 6.9A and C). The increase in heart rate caused by Angeli’s salt was not 

affected by I/R while I/R increased the dobutamine-induced tachycardia (p<0.01, Figure 

6.9C). A reduction in heart rate was observed at the highest dose of DEA/NO (1 μmol) in I/R-

treated hearts compared to sham hearts (p<0.001, Figure 6.9B).  
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(A)      (B) 

   

(C)       

 

Figure 6.9: The effect of 30 min ischaemia and 30 min reperfusion (open symbols, n=7) and 

80 min perfusion in sham hearts (filled symbols, n=8) on the heart rate affected by (A) 

Angeli’s salt, (B) DEA/NO and (C) dobutamine. **p<0.01, ***p<0.001 vs sham hearts, 2-

way ANOVA with Sidak’s multiple comparisons test. Data are expressed as mean ± SEM. 
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6.4 Discussion 

The key findings of this study are that the vasodilator action of the HNO donor, 

Angeli’s salt, but not the NO donor, DEA/NO, was preserved in hearts after I/R. Both the 

cardiac contractile action of Angeli’s salt and dobutamine were markedly impaired by I/R 

while the dobutamine-induced tachycardia was exacerbated in I/R-treated hearts.  

After myocardial I/R, endothelial dysfunction has been reported to occur due to a 

decrease in NO availability consequent to oxygen-derived free radical generation during 

reperfusion (Lefer et al., 1991; Hein et al., 2003; Seal & Gewertz, 2005; Rani et al., 2013). 

This results in impaired endothelium-dependent vasorelaxation after I/R and likely contributes 

to increased accumulation of neutrophils in the microvasculature which can form aggregates 

with platelets that plug capillaries, further impairing coronary flow to the myocardium 

(Schwartz & Kloner, 2012). This restricts blood flow to the myocardium even after a 

revascularization strategy has been performed, a condition called “no-reflow” phenomenon. 

Galiuto and colleagues reported that in 24 patients with acute myocardial infarction, no-

reflow, measured using myocardial contrast echocardiography 24 h after successful 

percutaneous coronary intervention, was detected in 65% of patients (Galiuto et al., 2003). At 

one month follow-up, sustained no-reflow with left ventricle remodelling was observed in 

50% of these patients (Galiuto et al., 2003). A pharmacological intervention to restore the 

blood flow to the basal level after I/R is desirable.  

In this study, Angeli’s salt and DEA/NO were both effective dilators of coronary 

vasculature in the normal rat intact heart. The dilator response to Angeli’s salt was preserved 

after I/R, in contrast to DEA/NO where responses were markedly impaired. One reason for 

this discrepancy could be the increased oxidative stress after I/R. It is reported that oxidative 

stress remained elevated and a marked reduction in endogenous antioxidant enzymes level 

was present up to weeks after reperfusion in hearts after acute myocardial infarction (Hill & 



183 

 

Singal, 1996). Studies have shown that HNO is resistance to scavenging by superoxide anions 

while NO reacts readily with reactive oxygen species resulting in the formation of the highly 

reactive species peroxynitrite which is cytotoxic (Miranda et al., 2002). We also reported in 

rat isolated aorta with pyrogallol-induced increased oxidative stress, the vasodilator action of 

Angeli’s salt was unaffected while the dilator action to DEA/NO was attenuated (Leo et al., 

2012). In the same study, it is also reported that in diabetic rats, where increased vascular 

oxidative stress is evident, endogenous NO-mediated vasorelaxation was impaired while the 

HNO-mediated relaxation was preserved (Leo et al., 2012). The dilator response to Angeli’s 

salt in isolated aorta from angiotensin II-induced hypertensive mice, where superoxide level is 

usually increased, is also preserved (Wynne et al., 2012). The vascular action of NO donors in 

hypertension is however controversial. A preserved dilator response to the NO donor, sodium 

nitroprusside in isolated aorta from spontaneously hypertensive rats compared to that in 

normotensive rats was reported (Fukami et al., 1998). In isolated perfused mesenteric arteries 

from rats with portal hypertension, the vasodilator response to the NO donor, 3-morpholino-

sydnonimine was enhanced compared to the control (Heinemann & Stauber, 1996). A recent 

study by Irvine and colleagues has demonstrated that the vasodepressor ability of Angeli’s 

salt and DEA/NO was also preserved in conscious hypertensive rats (Irvine et al., 2013a). In 

contrast, in isolated aorta from renal hypertensive rats, the dilator action to sodium 

nitroprusside was impaired (Bonaventura et al., 2011). Elevation of intra-luminal pressure in 

resistance arteries from 50 mmHg to 120 mmHg for 1 h before resetting to basal 50 mmHg 

attenuated the vasodilator response to the NO donor, S-nitroso-N-acetyl-D,L-penicillamine 

(Christensen et al., 2007). This impaired activity was due to the increased formation of 

superoxide anions by NADPH oxidase in response to elevated intra-luminal pressure 

(Christensen et al., 2007). 
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Both Angeli’s salt and DEA/NO induces vasodilatation via a sGC-dependent 

signalling pathway (Chin et al., 2014), activating sGC by interacting with the iron-containing 

haem protein in the sGC forming a ferrous-nitrosyl complex (Miranda et al., 2003a; Stasch et 

al., 2006). It was reported that HNO preferentially targets ferric ion (Fe
3+

) which 

predominates in diseased states where there is high oxidative stress (Miranda et al., 2003b; 

Stasch et al., 2006). NO, in contrast has a preferential affinity for ferrous ion (Fe
2+

) and has 

limited reaction with Fe
3+ 

(Miranda et al., 2003b; Stasch et al., 2006). In patients with acute 

heart failure and peripheral oedema, resistance to glyceryl trinitrate treatment to reduce 

systemic vascular resistance has been reported (Magrini & Niarchos, 1980). It is proposed that 

the oxidation of the sGC due to increased oxidative stress in acute heart failure (or in the 

setting of I/R), shifted the redox state of iron in the prosthetic haem from Fe
2+

 (ferrous haem) 

to Fe
3+ 

(ferric haem), and resulted in this sGC-NO-resistant state (Münzel et al., 2007). A 

further advantage of HNO is the absence of tolerance. It is reported that tolerance to GTN 

treatment (where improved haemodynamic variables including pulmonary wedge pressure 

and right atrial pressure was lost and levels returned to baseline values) was seen within the 

first 24 h of therapy in patients with congestive heart failure (Elkayam et al., 1992). 

Treatment with HNO, which is able to react with oxidised sGC and does not develop 

tolerance to its own action may be favourable over NO to increase venous compliance in this 

disease setting (Irvine et al., 2007). 

The cardiac contractile response to both Angeli’s salt and dobutamine after global I/R 

was markedly impaired. HNO released from Angeli’s salt is reported to exert its positive 

inotropic effect and improved cardiac relaxation by acting directly on sarcoplasmic reticulum 

proteins (i.e. SERCA, RyR and PLN) via a thiol-interaction (Tocchetti et al., 2007; Froehlich 

et al., 2008). Dobutamine which is a β1-adrenoceptor agonist, exerts positive inotropic and 

cardiac relaxation action via the activation of the cAMP/PKA-dependent signalling pathway 
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(Steinberg, 1999). The activation of PKA leads to the phosphorylation of regulatory proteins 

involved in cardiac excitation-contraction coupling including L-type Ca
2+ 

channels and 

sarcoplasmic reticulum proteins and causes cardiac contraction and relaxation (Steinberg, 

1999). The reduced number of intact sarcoplasmic reticulum proteins and impaired Ca
2+ 

uptake and release activities in rat isolated hearts after acute myocardial infarction, as a 

consequence of increased oxidative stress during I/R, have been reported (Osada et al., 1998; 

Temsah et al., 2000; French et al., 2006). In female guinea pigs, reduced β-adrenoreceptor 

binding affinity and impaired sensitivity to β-adrenergic stimulation of the surviving, non-

infarcted myocardium 3 days post acute myocardial infarction have also been reported 

(Baumann et al., 1981). The blunted response to dobutamine in hearts after I/R is also 

consistent with previous finding by Vleeming and colleagues (Vleeming et al., 1991). These 

defective mechanisms may contribute to decreased cardiac contractile response to Angeli’s 

salt and dobutamine after I/R. 

Although depressed β-adrenergic stimulation after myocardial I/R is reported, 

electrophysiological disturbances resulting in ventricular tachycardia and fibrillation, caused 

by elevated cAMP levels and subsequent increase in cytosolic Ca
2+ 

concentration in hearts 

after l/R have also been reported (Podzuweit et al., 1978; Lubbe et al., 1992). In this study, 

dobutamine which is able to increase the level of cAMP in the heart may worsen these 

electrophysiological changes and result in cardiac arrhythmias. By contrast, Angeli’s salt-

induced tachycardia was not affected by I/R. In our previous study, we have reported that the 

Angeli’s salt-induced tachycardia was independent of HNO as the presence of the HNO 

scavenger, L-cysteine had no effect on the Angeli’s salt-induced tachycardia in rat intact 

hearts (Chin et al., 2014). In addition, infusion of Angeli’s salt in dog failing hearts in vivo 

did not cause any cardiac arrhythmias (Paolocci et al., 2003). This is favourable to prevent the 
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adverse effect of arrhythmias that occur with most of current clinically used inotropes 

including dobutamine and levosimendan (Mebazaa et al., 2007). 

 In conclusion, one beneficial action of Angeli’s salt is its coronary vasodilator 

capacity which importantly was maintained after I/R. The positive inotropic action of 

Angeli’s salt was impaired by I/R similarly to observations with dobutamine, an agent 

currently used to treat cardiogenic shock in patients with acute heart failure. The post-acute 

myocardial infarction dilator capacity plus the inotropic action suggest Angeli’s salt may have 

advantages over dobutamine. 
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Chapter 7 

7. General Discussion 

7.1 The effect of DiOHF on the temporal change in the expression of pro-injurious and 

pro-survival kinases during myocardial I/R  

 Early reperfusion of the myocardium after a prolonged period of ischaemia is essential 

for myocardial salvage; however this reperfusion strategy can itself induce myocardial injury 

and reduce the benefit of myocardial reperfusion. Cardioprotection using pharmacological or 

non-pharmacological interventions reduces infarct size and improves post-ischaemic cardiac 

contractile function in experimental models of I/R suggesting that this reperfusion injury is 

not inevitable and can be reduced with cardioprotective interventions. Unfortunately, there is 

no treatment that has achieved successful outcomes in the clinical setting, therefore, the 

development of a novel cardioprotective agent to reduce I/R injury may improve patient 

outcomes after I/R.  

 It is now evident that DiOHF confers cardioprotection against myocardial I/R injury. 

DiOHF exerted cardioprotection against I/R injury in rodent isolated hearts and large animals 

such as sheep and goats in vivo (Wang et al., 2004; Wang et al., 2009; Qin et al., 2011). 

DiOHF is an effective antioxidant and vasodilator and an earlier report suggested that 

DiOHF-induced cardioprotection is mediated by its ability to scavenge superoxide radicals 

that are found abundantly during myocardial I/R (Wang et al., 2004). DiOHF also increases 

NO bioavailability and preserves vasodilator reserve after I/R (Chan et al., 2003). Increasing 

evidence has demonstrated that DiOHF can protect against I/R injury independent of its 

antioxidant and dilator effects. DiOHF may act as a signalling molecule to activate a series 
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signalling pathways resulting in cell survival or cell death. Together with the study by Lim 

and colleagues (Lim et al., 2013), we found that DiOHF-induced cardioprotection during 5 

min and 30 min reperfusion may be mediated by distinct signalling mechanisms. During 5 

min reperfusion, we found that DiOHF reduced the activation of PLN (Chapter 4) and this 

may prevent the sarcoplasmic reticulum Ca
2+ 

leak resulting in arrhythmias and mPTP 

opening. Indeed, it is reported that DiOHF treatment during ischaemia and before reperfusion 

inhibited the Ca
2+

-induced mPTP opening in isolated cardiac mitochondria after ischaemia 

during 15 min reperfusion in anaesthetized rats (Woodman et al., 2014). Mitochondrial PTP 

opening which is a major mediator of cell death occurs within minutes after the onset of 

reperfusion and this marks the first window of opportunity for cardioprotection. In the later 

phase of cardioprotection (30 min reperfusion), DiOHF prevented cell death by inhibiting the 

activation of kinases involved in apoptosis or necrosis such as JNKs and p38 MAPK. I/R-

induced activation of protective kinases Erk 1/2 and STAT3, but not Akt was sustained with 

DiOHF treatment and this may be important for the protective action of DiOHF in myocardial 

I/R. The reduction in myocardial infarct size and cell death after I/R in vivo and in vitro 

respectively was evident with DiOHF treatment at 30 min reperfusion. It has also been 

reported that DiOHF may bind directly onto the multi-functional enzyme, CaMKII (which is 

the upstream kinase of JNKs and p38 MAPK) and inhibit its activation. This resulted in 

subsequent inhibition of the activation of JNK and p38 MAPK signalling pathways. However, 

further experiments are required to confirm this observation. 

 The clinical application of flavonol as an adjunctive therapy for I/R injury in humans 

is limited due to their poor water solubility. Recently, the development of the water soluble 

derivative of DiOHF, NP202, which has the similar cardioprotective capacity as DiOHF has 

the potential as a therapeutic agent for clinical use (Thomas et al., 2011; Lim et al., 2013). 

Although there is improvement in the treatment for acute myocardial I/R injury, the prognosis 



189 

 

of patients remains poor. This may be due to the presence of many complications of acute 

myocardial infarction.  

 

7.2 The effect of I/R on the cardiac and vascular actions by the HNO donor, Angeli’s salt  

One of the major complications of acute myocardial I/R is acute heart failure. A major 

manifestation of acute heart failure is systolic dysfunction where the heart fails to pump blood 

to meet the requirement of metabolizing tissues and this can result in multiple organ failure. A 

number of inotopic agents have been introduced to improve ejection fraction in patients with 

acute heart failure, however the prognosis of these patients remains poor as these inotropic 

agents can result in adverse effects particularly cardiac arrhythmia. Therefore, there is a 

necessity to develop new inotropic agents without causing any adverse effects to improve the 

prognosis of patients with acute heart failure. 

HNO which is a positive inotrope may have advantages over dobutamine as the HNO 

donor, Angeli’s salt- (but not dobutamine) induced tachycardia, was not aggravated by I/R 

(Chapter 6). In addition, the Angeli’s salt–induced tachycardia in normal rat hearts was not 

affected by the presence of the HNO scavenger suggesting that HNO has no effect on the 

increased heart rate by Angeli’s salt (Chapter 5). Increased oxidative stress in hearts after I/R 

may react with the NO produced by DEA/NO and reduce the dilator action of DEA/NO 

whereas the vascular action of Angeli’s salt was not affected. This suggests that Angeli’s salt 

may have a superior dilator capacity after I/R. Improved vasodilatation during acute heart 

failure may reduce and pre-load and after-load of the heart and increase stroke volume leading 

to improved perfusion of peripheral vasculatures; however the application should be strictly 

monitored to prevent adverse effects such as hypotension.  
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7.3 Future directions 

 In this study, the effect of DiOHF on I/R injury was investigated using an ex vivo 

isolated heart model. This preparation is denervated and experiments are carried out in the 

absence of other confounding factors of other organs. This may be advantageous as the effect 

of DiOHF on I/R injury and its mechanism of action are cardiac-specific, however, the 

disadvantage of this technique is that it is one step further away from the in vivo state where 

systemic circulation and a host of peripheral effects including neurohormonal regulation are 

present. Therefore, a myocardial I/R in vivo model in rats could be established to study the 

effect of DiOHF against myocardial I/R injury. Myocardial I/R in vivo is established by 

temporary occlusion of the left coronary artery and DiOHF can be infused during reperfusion 

when the occlusion is relieved. The mechanism of DiOHF-induced cardioprotection could be 

investigated at different time points of reperfusion. 

DiOHF has shown to inhibit the activation of PLN on sarcoplasmic reticulum (Chapter 

4), however its effect on other Ca
2+

-related receptors and downstream targets of CaMKII such 

as RyRs and SERCA has not been investigated. The effect of DiOHF on endoplasmic 

reticulum stress could also be investigated using endoplasmic reticulum stress markers such 

as 78 kDa glucose-regulated protein, X-box binding protein-1 and C/EBP homologous protein 

which are activated during I/R. These will further improve our understanding of the 

mechanism of DiOHF-induced cardioprotection in I/R. 

The effect of DiOHF on I/R injury can be studied in a more complex model of 

cardiovascular disease with co-morbid conditions of diabetes, hypertension and 

atherosclerosis to mimic the situation in the clinical setting where most patients presenting 

with acute myocardial infarction have a co-morbid illness. The presence of these disease 

states may affect the response of the heart to cardioprotection during I/R.  
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The mechanism of cardiac and vascular action of Angeli’s salt, as well as dobutamine 

and DEA/NO during I/R can be investigated.  The mechanism of action can be investigated in 

the presence of the HNO and NO scavengers to confirm the action of Angeli’s salt and 

DEA/NO is mediated via HNO and NO respectively; β-adrenoceptor antagonist timolol, sGC 

inhibitor ODQ, the non-competitive inhibitor of SERCA thapsigargin and the RyR blocker 

ruthenium red could also be used to investigate the mechanism of action of dobutamine, 

DEA/NO and Angeli’s salt. 

 

7.4 Conclusion 

 The investigation of the signalling pathway activated by DiOHF during I/R improves 

our understanding of the mechanistic action of DiOHF. This is important before its translation 

into the clinical setting as an adjunctive therapy for reperfusion injury. In addition, further 

investigations on the mechanism(s) of cardiac and vascular actions of Angeli’s salt in the 

setting of I/R are required before it can be used as a therapeutic agent to improve left 

ventricular ejection fraction in acute heart failure.  
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