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Abstract: In this paper an improved algebraic reconstruction technique (IART) is presented for the 

tomographic reconstruction of ionospheric electron density (IED). This method applies the total electron 

content (TEC) data measured by an ionospheric tomography system to invert the spatial distribution of 

IED from a set of apriori IED distributions. In this method, a data-driven adjustment of the relaxation 

parameter is performed to improve the computation efficiency and image quality of the classical algebraic 

reconstruction technique (ART). In addition, the new algorithm is also combined with ionospheric space 

discretization technique and CHAMP occultation data to improve the vertical resolution. A numerical 

simulation experiment based on the known positions of GPS satellites and ground receivers is carried out 

to validate the reliability of the new method. It is then applied to the inversion of IED from real GPS data. 

Inverted results show that the IART algorithm has better sufficiency (accuracy?) and efficiency than the 

conventional ART algorithm. The reliability of the IART algorithm is also validated by ionosonde data 

recorded at Wuhan station. 

Keywords: GPS; computerized ionospheric tomography (CIT); total electron content (TEC); algebraic 

reconstruction technique (ART), ionospheric electron density (IED). 

1 Introduction 

Ionospheric TEC is an important physical parameter of the ionosphere, which can be measured by the 

received dual-frequency radio signals passing through the ionosphere from satellite systems such as GPS. 

Since ionospheric TEC is the line integral of IED along the ray path from a satellite to a receiver, TEC data 

from multi-station can be usually applied to study the horizontal variations of ionospheric structure. 

However, it is disadvantageous to monitor the vertical variations of ionospheric structure because the 

conventional approaches to measure TEC cannot derive the IED distribution along a ray path. Therefore, 

imaging ionospheric electron densities from real satellite radio signals has become an indispensable 

technique for many scientific and engineering applications. 

Austen et al (1986) first proposed the CIT technique and demonstrated its feasibility to reconstruct IED 

distribution by using TEC data. Various theoretical studies (Raymund et al, 1990; Na and Lee, 1990; 

Fremouw et al. 1992) and experimental observations (Andreeva et al. 1990; Kunitsyn and Tereshchenko, 

1992; Pryse and Kersley, 1992) have been carried out since then. In these studies, however, only radio 

signals from the Navy Navigation Satellite System (NNSS) received by several ground stations are applied. 

Although they are helpful for understanding the vertical structure of the ionosphere, only two-dimensional 

ionospheric image at a fixed longitude chain can be obtained (Ma and Maruyama, 2005). In addition, since 



 

 

the temporal and spatial coverage of the NNSS observations is limited, the recovered IED profile can not 

be obtained with ideal temporal-spatial resolution. The advent of GPS has opened a new avenue for 

monitoring and investigating ionospheric activities due to its advantages such as high-precision, near 

real-time availability and high-resolution. The establishment of more and more global and regional 

ground-based GPS networks (e.g. the international GNSS service (IGS)) and space-based GPS 

observations (e.g. CHAMP occultation data) makes it possible to reconstruct three-dimensional image of 

the IED. Up to now, GPS-based tomographic investigations have been extensively studied (e.g. Hajj et al. 

1994; Hansen et al. 1997; Leitinger et al. 1997; Rius et al. 1997; Howe et al. 1998; Hernandez-pajares et al. 

1998; Bust et al. 2000; Stoll et al.2003; Yin et al. 2004; Ma and Maruyama, 2005; Yizengaw et al. 2005).  

For GPS-based CIT, it has been found that the reconstructed images of the IED are usually distorted. 

The reasons are as follows: first, the number of ground receivers is usually limited, and they don’t 

distribute evenly; second, horizontal ray paths in satellite-to-receiver geometry, which are very important 

to improve the vertical resolution of ionospheric tomography, are absent. Therefore, the imaging quality of 

the IED needs to be effectively advanced. 

To solve the above problems, numerous algorithms have been presented in recent years. As a whole, 

they can be divided into two categories: one is the iterative reconstruction algorithm such as the ART; the 

other is the non-iterative reconstruction algorithm such as the singular value decomposition (SVD) (Wu et 

al. 2000). For an ionospheric tomography system, which needs high temporal-spatial resolution, the 

projection matrix that needs to be inverted is usually very large. This makes it difficult to invert the matrix. 

In this case, SVD technique is not applicable. Although some researchers (e.g. Kunitake et al. 1995; 

Ruffini et al. 1998) have applied SVD technique to reconstruct three-dimensional tomographic images of 

the ionosphere, real temporal-spatial resolution of the recovered IED profiles are limited. On the other 

hand, it has been demonstrated that the ART can provide better reconstruction from either very few or 

limited views (Andersen, 1989; Oskoui and Stark, 1989), and it is especially suitable for the inversion of 

IED with high temporal-spatial resolution. However, its disadvantage is the heavy computation power 

requirement. Therefore, it is necessary to develop a three-dimensional ionospheric tomgoraphy method 

with high-resolution and high-efficiency. For this purpose, a new ionospheric tomography algorithm is 

presented and validated in this paper. The algorithm is an improved ART, called the IART, which improves 

both computation efficiency and imaging quality by introducing an adaptive adjustment to relaxation 

parameters during the inversion process. In addition, to improve the vertical resolution both ionospheric 

region discretization technique and space-based CHAMP occultation data are combined with the IART to 

jointly perform the inversion of IED. Numerical simulation experiments based on the known positions of a 

set of GPS satellites and ground receivers show that IED images can be reconstructed in three-dimensional 

mode by using the IART with both high reconstruction quality and computation efficiency. Then it is 

successfully applied to the IED inversion from real GPS observation data, and the reliability of the inverted 

results is also validated by ionosonde observation data recorded at Wuhan station. 

2 Tomographic formulation  

As mentioned above, ionospheric slant TEC (STEC) is the line integral of IED along the ray path from a 

satellite to a receiver, and it can be defined as: 

( )
l

STEC Ne s ds= ∫                                (1) 



 

 

where ( )N s  (this is not exactly the same with Ne(s)???) represents the IED, and l  is the ray 

propagation path of each GPS satellite-receiver pair. 

 From equation (1), it can be seen that the relation between ionospheric STEC and IED is not linear. For 

the simplicity of IED inversion, an imaged region of the ionosphere is first discretized into some small 

pixels in a selected reference frame. Within each pixel, the electron density can be assumed constant. The 

STEC along the ray path can then be expressed as a finite sum of shortest integrals in all segments of the 

ray path. Each set of TEC values along the ray path from a satellite to a receiver can be written as: 

i

1

STEC
n

ij j i

j

A x e
=

= +∑                                 (2) 

Equation (2) can be generally written in a simple matrix notation as: 

1 1 1m m n n m
y A x e× × × ×= +                                 (3) 

where n  is the number of pixels in the image, m  is the number of STEC measurements, y  is a 

column vector of the m  known STEC measurements, A  is an ×m n  matrix with 
ij

A  being the 

length of ray i  traversing pixel j , x  is a column vector consisting of all the unknown electron 

densities in all the pixels, and e  is a column vector associated with the discretization errors and 

measurement noises. 

Ionospheric tomography is an inversion technique whereby a series of IED profiles can be recovered 

from a set of TEC measurements derived from the received GPS signals at ground-based and space-based 

GPS receivers. Thus the inversion precision of the IED mainly depends on the quality of the available TEC 

measurements and the performance of the selected reconstruction algorithm. Methods for computing STEC 

from GPS observations have been described in several papers (Klobuchar, 1991; Sardon et al., 1994; Breed 

et al., 1996). More specifically, Horvath and Essex (2003) have clearly outlined the method used in this 

paper. Hence, the focus of this work is the improved reconstruction algorithm only. 

3 An improved algebraic reconstruction technique (IART) 

The ART is a conventional algorithm in solving equation (3), and the procedure can be described as 

follows: 

( ) ( ) ( )( )1k k k

k i i
x x y a xλ+

= + −                              (4) 

and the column vector 
k

λ  consisting of all relaxation parameters is given as: 

 ( )T T

k i i i
a a aλ γ= ⋅                                  (5) 

where 
i

a  represents the ith row vector in projection matrix A, γ  is called relaxation parameter which is 

fixed in an ionospheric tomography system. From equations (4) and (5), it can be seen that how to 

determine column vector 
k

λ  is very important for the ART. Effective determination of the column vector 



 

 

k
λ  is advantageous for the reconstruction of IED with high-resolution. According to equation (5), 

k
λ  

only depends on γ  because vector 
i

a  does not vary with the inverted process of IED. It is noted that the 

column vector 
k

λ  consisting of a set of small relaxation parameters can usually reduce the artifacts 

(artificial????) noise in ART, but the disadvantage is the degradation of computation efficiency. It is 

therefore necessary to improve the conventional ART in order to image IED with high-efficiency and 

high-quality. This means that the column vector 
k

λ  should be adaptively adjusted in an iterative process 

so that all relaxation parameters in vector 
k

λ  become gradually smaller with the increase of the number 

of iterations, and the convergence can be improved. In this paper, the column vector 
k

λ  in equation (5) 

will be improved as follows: 

                                
( ) ( )( )1 1k k

k i
g a gλ − −

= ⋅                                (9) 

where 
( ) ( ) ( ) ( )1 1 1 1

1 2, , ,
T

k k k k

n
g g g g

− − − − =  ⋯  and 
( ) ( )1 1k k

i ij jg a x
− −

= . With this method, the relaxation 

parameter for each pixel can be adjusted according to its estimation obtained from the last iteration. The 

artifacts noise can also be reduced because the relaxation parameter adaptively decreases with the increase 

of the iterative number. Thus, the adaptive adjustment of the relaxation parameters can improve 

computation efficiency and imaging quality of the ART algorithm. 

4 Numerical experiments 

4.1 Experiment 1 (using simulated data) 

In this paper, the primary purpose is to further improve the computation efficiency and the imaging 

quality of the ART. Therefore, the IART is evaluated by a comparison of the computation efficiency and 

the imaging quality between the IART and the ART. Before the IART is applied to perform the inversion of 

IED from real TEC data, it is also necessary to validate the method. For these purposes, a test experiment 

is devised here. In this scenario, a set of IED distributions corresponding to 10:40-11:00LT, 19 August 

2003 (02:40-03:00UT, 19 August 2003) is provided by the IRI2001 model, and precise known positions of 

GPS satellites and ground receivers selected from Crustal Movement Observation Network of China 

(CMONOC) during the observation period of interest are used for establishing coefficient matrix A. 

Using the above IED distributions, a set of simulated TEC data are produced for 13 receivers located in 

China to test the IART method, and then a small amount of random noise is added to the simulated TEC 

data. The maximum noise is 5% of the average value of the simulated TEC data. In this simulation, there 

are 4256 ray paths. It should be noted that the number of ray paths varies with that of visible satellites in 

the sky at the same time. In addition, a set of initial IEDs is usually required for performing the two 

tomographic algorithms. In this work, the initial IEDs are set to 0.8 times of the above IED distributions 

and move 50km upward in height.  
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Figure 1. Contour plots of the modeled and the reconstructed ionspheric electron density distribution at longitude110 E° , and IED is expressed in the 

unit of 12 3
10 e m . (a) Modeled IED distribution with the IRI2001 model;  (b) Reconstructed IED distribution with the new algorithm (IART).  

 

Figure 1(a) shows the IED distribution on 19 August 2003 at 11:00h local time along a fixed longitude 

meridian of 110 E° , which is obtained from the IRI2001 (Bilitza, 2003) model. The reconstructed IED 

image with the IART is shown in Figure 1(b). It can be seen that the equatorial ionization anomaly is 

reconstructed particularly well. The average density error is 
9 39.5 10 e m× , which is very small 

compared with the typical peak electron density of 
12 31.1 10 e m× . It proves that the IART is feasible to 

perform ionospheric tomography with a sufficiently high accuracy by using the simulated TEC data. A 

comparison of convergence performance between the IART and ART technique is shown in Figure 2.  
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Figure 2. A IED image obtained from numerical ionospheric model and two reconstruction process of five-iteration by the two algorithms. The unit of 

IED is 12 3
10 e m . (a) Original IED image with the IRI 2001 model; (b) Reconstructed image with the IART algorithm; (c) Reconstructed image with 

the ART algorithm. 

 

For simplicity of description, in the following section, one-iteration means that all available ray paths are 

used to update the reconstruction once. To compare the convergence performance of the IART and the ART, 

before the convergence of the iteration, the two-dimensional images along a fixed longitude meridian of 

110 E° obtained from the IRI2001 model is compared with those reconstructed from five-iteration results 

with the IART and the ART, which are shown in Figures 2(b)-2(c), respectively. The two reconstructed 

images illustrate that the IART has the quicker convergence and the better reconstruction quality.  



 

 

 

Table 1 Error statistics of the reconstructed IED based on two algorithms by using simulated data 

Geographic locations ( )104 ,26E N° °  ( )110 ,30E N° °  ( )116 ,36E N° °  

Reconstruction methods ART IART ART IART ART IART 

Maximum of IED errors (1010e/m3) 7.08 3.51 8.52 3.74 2.60 1.19 

Minimum of IED errors (1010e/m3) -9.93 -6.36 -7.51 -2.42 -6.76 -1.07 

Average of IED errors (1010e/m3) 0.64 0.34 0.43 0.13 -0.28 -0.12 

Variance (1020(e/m3)2) 13.7 4.58 12.3 4.24 8.85 2.01 
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Figure 3. A Comparison among the modeled IED profiles with the IRI2001 model and the reconstructed IED profiles by the IART and the ART at the 

following geographic locations (a) ( )104 ,26E N° ° , (b) ( )110 ,30E N° ° , and (c) ( )116 ,36E N° ° . The IED is in the unit of 12 310 e m . 

 

Figures 3(a-c) compare the simulated vertical IED distributions at the three geographic 

positions ( )104 ,26E N° ° , ( )110 ,30E N° °  and ( )116 ,36E N° °  with the corresponding reconstruction results 

by using the IART and the ART. A comparison is made through the differences between the results 

obtained from the two methods and that obtained from the IRI2001 model. Table 1 lists the errors statistics 

of the inverted IED at the above geographic positions by using the simulated TEC data. From Table 1 and 

Figure 4, one can see that the IED profiles obtained from the IART agree better with the IRI2001 model 

than those obtained from the ART as a whole. This indicates that the IART is superior to the ART in 

performing ionospheric tomography. Similar results are also obtained with the modeled data for different 

solar activities, seasons and local time. 

4.2 Experiment 2 (using real TEC data) 

With TEC data derived from dual-frequency GPS observations, the IART was applied for the inversion 



 

 

of IED. In this work, dual-frequency GPS data was obtained from 13 permanent GPS stations in China, 

and the sample interval is 30 seconds. To study hourly variation of IED, GPS observations within 20 

minutes in every hour are analyzed, and the inversion is carried out in the earth-fixed reference system. 

Since the vertical resolution of ionospheric tomography is usually very limited due to the insufficiency of 

horizontal ray paths from GPS satellites to the ground receivers, CHAMP related occultation observations 

are incorporated into this inversion as much as possible in order to improve the vertical resolution. 

Corresponding to ionospheric heights, areas of data assimilation are bounded at the bottom level of 

100km and up level of 1000km in height. Thus, the plasmasphere is not included in the reconstruction 

process. However, GPS satellites are orbiting the Earth at an altitude of 20,200km approximately and the 

transmitted electromagnetic waves traverse through the plasmasphere before they are received on the 

ground or onboard LEO satellites at altitude of 400km for CHAMP. Plasmasphere electron densities are of 

the order 8 310 e m , which is 3~4 orders smaller than the electron densities in ionosphere. Nevertheless, 

the plasmasphere may contribute to TEC measurements along GPS rays significantly (Lunt et al. 1999). To 

estimate the contribution of plasmasphere to the observed TEC value, a simple model proposed by 

Angerami and Thomas (1964) is used in this work. According to this model, the electron density is 

assumed decrease exponentially with height, so the electron density distribution ( )n h  from 1000km to 

20,200km in height is expressed as: 

( ) ( ) 0

0

s

h h
n h n h exp

H

 −
= − 

 
                             (10) 

where ( )0
n h  is the electron density at the top of the ionospheric region and 

s
H  is the scale height of the 

density decay in the plasmasphere. Although the electron density of the plasmasphere is distributed along 

geomagnetic field lines and the scale height 
s

H  varies with the season of solar activities, local time and 

other factors. For simplicity, the value is fixed at the height of 2000km (Reinisch et al. 2001; Leitinger et al. 

2002). This is reasonable because the aim of this work is to reconstruct the electron density profile of the 

ionospheric region, where the contribution of the plasmaspheric region to the measured 
m

STEC  along 

the corresponding ray path is considered to be very small. Under this assumption, the plasmaspheric 

contribution to the 
m

STEC  along the ray path of each GPS satellite-receiver pair is given as 

( ) ( )
0

0
0 0

1 1sath

pl s
h

s

h h
STEC n h exp dh n h H

cos H cos

 −
= = − ≈ 

θ θ 
∫                 (11) 

where 
sat

h  is the altitude of each GPS satellite and θ  is the inclination of the ray path with respect to 

the vertical direction. To obtain accurate IED distribution, the STEC used in ionospheric tomography 

system should be the difference between 
m

STEC  and 
pl

STEC .    
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Figure 4. Tomographic reconstruction images using ground-based and space-based occultation GPS data on 19 August 2003. Each image represents 

the corresponding IED reconstructed in different universal time epochs. The IED is expressed in the unit of 12 310 e m  

 

Figure 4 illustrates the hourly variation of the IED along a fixed longitude meridian of 110 E° . From 

this figure, it can be seen that there are lager differences between the characteristics of ionospheric electron 

densities in mid-latitude and low-latitude areas, and the values of ionospheric electron densities in the 

north are smaller than those in the south as a whole. This indicates that there is a strong correlation 

between the property of IED and latitude. Comparing all subfigures in Figure 4, it can also be seen that the 

peak height of the IED gradually increases during the time period from 2UT to 10 UT, and then it began to 

fall during the next time period, the peak height of the IED falls to 270km at 22UT. This reflects the 

characteristics of vertical variations of the IED for the day. Figure 5 shows contour plots of the 

longitude-height cross section at 30 N°  in latitude obtained from 14UT.  

 

To validate the reliability of the vertical 

resolution of the IART, IED profiles reconstructed 

with the IART and the ART are compared with 

those obtained from ionosonde data. In this 

research, ionosonde data from Wuhan station is 

used, and a comparison is shown in Figure 6. 

Table 2 shows the error statistics of the 

reconstructed IED by using the real TEC data. 

Table 2 and Figure 6 show that the recovered 

reconstructed IED profiles from the IART agree 

better with those obtained from ionosonde at 

Wuhan station than those recovered from the ART 

as a whole. Hence, it is suggested that a reliably 

vertical density distribution may be reconstructed 

by using the IART. In addition, the comparison 

between the IART and the ART also shows that the 

IART is superior to the ART algorithm as a whole. 
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Figure 5. Contour plot of IED (in units of 12 310 e m ) distribution in a longitude-altitude plane. 
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Figure 6 Comparisons of IED profiles obtained from the IART (solid line), ionosonde data (dash line) and the ART (dash dot line). The IED is express 

in units of 
12 310 e m .  

Table 2 Error statistics of the reconstructed IED based on ART and LART algorithms using real GPS data 

Time (UT) 02:00 10:00 18:00 

Reconstruction methods ART IART ART IART ART IART 

Maximum of IED errors (1010e/m3) 5.22 2.95 13.0 5.98 4.16 2. 28 

Minimum of IED errors (1010e/m3) -3.68 -2.90 -9.13 -1.98 -2.46 -1.87 

Average of IED errors (1010e/m3) 0.46 0.21 0.97 0.35 0.36 0.10 

Variance (1020(e/m3)2) 6.24 1.83 7.23 2.87 4.24 1.13 

 

5 Error analysis 

Although the ionospheric image can be satisfactorily reconstructed with the IART algorithm, there exists 

difference between the true image and the reconstructed image. Hence, it is necessary to find the reasons 

why the difference occurs. In general, any tomographically reconstructed image is composed of three 

components: true image, error and artifacts. The true image is the desired image, and it can only be 

produced when the complete projection data is obtained. There is a difference due to the fact that there 

exists errors and artifacts. There are various error sources such as experimental measurement error, the 

errors caused by various approximations and assumptions made on the projection operator, discretized 

error of ionospheric region, and the error induced from the idealized geometry or conditions, etc. 

 As mentioned above, GPS-based ionospheric tomography with the IART applies the STEC to invert 

IED. The reconstruction accuracy of the IART mainly depends on that of STEC. Since the STEC is 

obtained from the difference between the carrier phases and the difference between the pseudoranges of the 

two GPS signals in this work, the clock errors of GPS satellites and receivers cannot be taken into account. 

Then the difference between the true image and the reconstructed image with the IART is partly attributed 

to the GPS observation errors such as data noise, cycle slips, multipath effects and instrumental bias, etc. 

The errors exist no matter how the GPS data is processed. 

 

6 Conclusion 

A new reconstruction technique of IED, termed IART, is proposed in this work. The IART develops a 

data-driven adjustment for relaxation parameters. It overcomes the disadvantags of the ART to some extent. 

The performance of the new method has been demonstrated using simulated data generated by the IRI2001 

model. Comparisons are made between the IART and the ART. It has been found that the IART can further 

improve the reconstructed image of the IED and has a better convergence performance. The inverted 



 

 

results also demonstrate that the IART is superior to the ART in constructing the ionospheric tomography 

with high-resolution and high-efficiency. The reconstruction results with the IART agree well with those 

from ionosonde observation data obtained at Wuhan station. The reliability of the IART in representing the 

ionospheric tomography is confirmed. In this work, a set of three-dimensional images of IED are 

successfully reconstructed. In the future, this method is expected to extend to a four-dimensional 

tomography by considering temporal variations of the ionosphere. 
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Figure 1. Contour plots of the modeled and the reconstructed ionspheric electron density distributions at 

longitude110 E° . IED is expressed in units of 12 3
10 e m . (a) Modeled IED distribution with the IRI2001 

model, (b) Reconstructed IED distribution using the new algorithm proposed (IART).  

 

Figure 2. Numberical ionospheric model and images reconstructed through five-iteration by the two 



 

 

algorithms proposed. (a) Original IED image from the IRI 2001 model;  (b) Reconstructed image using 

the IART algorithm;  (c) Reconstructed image using the ART algorithm. 

 

Figure 3. A Comparison among the modeled IED profiles with the IRI2001 and the reconstructed IED 

profiles by the IART and the ART methods at the geographic positions (a) ( )104 ,26E N° ° , (b) ( )110 ,30E N° ° , 

(c) ( )116 ,36E N° ° . The unit of IED is 12 310 e m . 

 

Figure 4. Tomographic reconstruction images using both ground-based and space-based occultation GPS 

data on 19 August 2003. Each subfigure represents the corresponding IED reconstructed in different 

universal time epochs.  

 

Figure 5. Contour plots of IED (in units of 12 310 e m ) distribution in a longitude-altitude plane. 

 

Figure 6 A comparison of IED profiles obtained from the IART (solid line), ionosonde data (dash line) and 

the ART (dash dot line). The IED is express in units of 12 310 e m .  

 


