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Abstract 

Polydimethylsiloxane (PDMS) composites with different weight amounts of multi-walled 

carbon nanotubes (MWCNT) were synthesised as membranes to evaluate their gas separation 

properties. The selectivity of the membranes was investigated for the separation of H2 from 

CH4 gas species. Membranes with MWCNT concentrations of 1% increased the selectivity to 

H2 gas by 94.8%. Furthermore, CH4 permeation was almost totally blocked through 

membranes with MWCNT concentrations greater than 5%. Vibrational spectroscopy and X-

ray photoelectron spectroscopy techniques revealed that upon the incorporation of MWCNT 

a decrease in the number of available Si–CH3 and Si–O bonds as well as an increase in the 

formation of Si–C bonds occurred that initiated the reduction in CH4 permeation. As a result, 

the developed membranes can be an efficient and low cost solution for separating H2 from 

larger gas molecules such as CH4. 
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1. Introduction 

The purification of hydrogen (H2) gas is of paramount importance for many 

applications. However, most of the conventional gas purification methods are costly, require 

bulky equipment, and demand high energies. Membrane technologies offer an alternative low 

cost, efficient and low energy solution for H2 gas separation.[1, 2] The use of membranes for 

separating different gas species has been increasing in past few years, especially for H2 gas 

separation and purification. Moreover, it has been estimated that in year 2020 the market will 

depend on membrane gas separation technology five times more than that of year 2000 [3].  

This trend is attributed to the advantages that membrane technology possesses over others. 

Some of these advantages include high efficiency and stability, low energy requirement, ease 

of operation and mechanical robustness [4-7]. However, further growth of the market scale 

for gas separation membrane technology depends on the availability of new and more 

efficient types of selective membranes that offer unique capabilities. Hence, recent research 

on gas separating membranes has focussed on improving the permeability and the selectivity 

to specific gases by investigating the use of new materials [8-10]. 

Membrane-based gas separation involves a mixture of two or more gases interacting 

through a semipermeable barrier, allowing some components to permeate freely, whilst 

selectively blocking the other components [11]. It is this selective blocking that favours the 

application of polymer-based mixed matrix membranes (MMMs) as the transport layer. In 

addition, researchers have been turning to MMMs to increase the desired selectivity, while 

maintaining permeability for the target gas [9, 10, 12, 13].  

A MMM consists of a base polymer with additive fillers. The fillers that can be added 

to polymer to produce the MMM can be varied for different purposes creating unique 

composites with the capability of tuning various properties such as robustness, conductivity, 



and for the purpose of this project, gas selectivity [14, 15]. It has been shown that selectivity 

within a polymer can be improved using many types of fillers including metal oxides, metals 

as well as many other organic and inorganic fillers [12, 13, 16].  

Many carbon-based fillers such as carbon black (CB), graphene, and carbon 

nanotubes (CNT) have been used in MMMs to evaluate their effect in changing their 

properties. These carbon-based fillers have been widely implemented due to their 

conductivity, affinity to small molecules such as H2 and ability to endure high temperatures 

and aggressive chemicals [3]. Several studies have been performed on the effect of the 

incorporation of carbon-based fillers into polymers on the selectivity and gas separation 

properties, especially H2 gas from other gas species [9, 17-19]. Our previous study showed 

that CB nanoparticles are attractive additives to polydimethylsiloxane (PDMS) for improving 

H2/CH4 selectivity [9]. Moreover, other studies have incorporated CNT's within different 

polymers, such as polyimide (PI)[18], poly(imide siloxane) [17], and polysulphone 

(PSF)[19], to alter their gas permeation properties, making them more selective and sensitive 

to target gases.  

The development of a successful MMM with the desired properties depends on the 

proper selection of the polymer and filler materials, their structural and physiochemical 

properties, and the ratios of their concentrations [3]. A favourable base polymer that is 

commonly used for developing MMMs for gas separation is PDMS [20-22]. PDMS has been 

widely used for MMM applications due to its ideal properties, which include low cost, 

biocompatibility, nontoxicity, and ease of fabrication [20-26]. PDMS offers one of the 

highest permeability coefficients for a wide range of gas species and it provides a very 

modest selectivity [7]. This creates the opportunity to utilise fillers to provide enhanced 

selectivity of PDMS to target gasses.  



CNT, which are graphite sheets rolled into circular bundles, have been researched 

extensively as filler in MMMs due to their ideal properties [27-31] with both single-walled 

(SW) and multi-walled (MW) versions of CNT being utilised [3, 10, 15, 32, 33]. Their 

extraordinary mechanical and electrical properties nominate their use as a filler to reinforce 

the structure of the polymer matrix or to increase the electrical conductivity of the composite 

materials. The nanoscale dimensions of CNT provide a large surface-to-volume ratio, and 

hence, increase the chances of the permeate gas molecule to interact with their surfaces [31]. 

CNT also have a high surface energy that can interact with most gas molecules [31]. In 

addition to such properties, a number of studies have confirmed that the use of CNT as a filler 

in different types of polymers have altered their gas separation characteristics [17-19]. For 

example, Sanip et al. [18] has embedded functionalized multi-walled CNT (MWCNT) into 

polyimide to separate CO2/CH4. Kim et al. coated CNT within a thin polysulfone (PSF) layer 

[19] and in another study demonstrated that CNT–poly(imide siloxane) MMMs have changed 

the permeability of CH4 through membranes [17]. However, the aforementioned studies 

suffer from lack of proper characterization and analysis of the membranes operation and do 

not provide any in-depth understanding of the mechanisms of gas separation. 

We have previously shown that at 6% of CB in PDMS, we could create a MMM 

which efficiently separated H2 and CH4 gases [9]. Based on our previous studies on CB-based 

PDMS MMM and the aforesaid properties of CNT, it can be hypothesised that incorporating 

CNT into PDMS would lead to the enhancement of the MMMs’ separation ability of H2 and 

CH4 and that the separation can occur at much lower concentration of CNT.  

The intention of this work is to validate these hypotheses, which will be verified by 

fabricating and analyzing MMMs consisting of CNT dispersed within PDMS. In addition, to 

identify conditions for optimum performance, MMMs with varying CNT concentrations will 

be prepared. The gas separation properties of these nanocomposite membranes for separating 



H2 and CH4 gas species will be evaluated, and correlated to their chemical structure as 

determined by electron microscopy, vibrational spectroscopy, and X-ray photoelectron 

spectroscopy (XPS). 

 

2. Materials and Methods 

2.1 Membrane preparation 

For the fabrication of polymer nanocomposites membranes, PDMS (Sylgard 184, 

Dow Corning Corporation) and MWCNT with outer diameter of 20–40 nm and length of 10–

30 µm (Cheap Tubes, Inc.) were utilised. Beside a pure PDMS membrane, three different 

MWCNT-PDMS nanocomposite membranes were prepared with MWCNT weight 

percentages including 1%, 5%, and 10%. First, MWCNT’s were dispersed in toluene, to 

facilitate effective and uniform dispersion of MWCNT within the PDMS viscous matrix. The 

toluene/MWCNT suspension was then added to PDMS base followed by vigorous manual 

mixing. The mixture was then sonicated in an ultrasonic bath for 0.5 h before being 

mechanically stirred for 1 h at 70 °C to evaporate the toluene solvent. Allowing the mixture 

to cool to room temperature, PDMS curing agent (Sylgard 184 kit, Dow Corning 

Corporation) was added at a weight ratio of 1:1 to the PDMS base. The mixture was stirred 

for 10 min before drop casting and levelling on petri dishes with dimensions of 100 mm 

diameter and 15 mm depth. These petri dishes were placed in vacuum oven for 1 h at 70 °C 

to degas and allowed to cure at room temperature for a period of 2 days. The resultant 

membranes had similar thicknesses of approximately 100 µm and were sectioned into 

20 mm × 20 mm squares for permeability measurements. 

 

 



2.2 Microstructural and spectroscopic analyses 

The characterizations of pure PDMS and nanocomposite MWCNT/PDMS membranes 

were conducted using electron microscopy, vibrational spectroscopy, and XPS. An FEI Nova 

NanoSEM scanning electron microscope (SEM) was used to image and study the cross-

sectional morphology of the membranes. A Thermo Nicolet 6700 spectrophotometer was 

used to record the Fourier transform infrared (FTIR) spectra of PDMS and MWCNT/PDMS 

membranes. Micro-Raman characterization of the samples was performed using a Renishaw 

InVia Raman spectrometer at 633 nm wavelength and 20 s exposures over 3 accumulations 

with a laser power of 5 mW. XPS was performed using a Thermo Scientific K-alpha 

instrument with an Al Kα source.  

2.3 Gas sensing setup  

A gas chamber setup, shown in Fig. 1, was designed and implemented to conduct 

measurements on the permeability and selectivity of the membranes to CH4 and H2. The 

setup was comprised of the membrane under examination, placed adjoining the main gas 

chamber of dimensions 17 × 12 × 5 cm
3
. The chamber contains a 0.5 cm radius opening with 

a semiconducting gas sensor fixed to the membrane outside of the chamber (see inset of Fig. 

1). The sensor was housed in such a way that only the diffused gas passing through the 

membrane could affect its response. An accurately calibrated commercial CH4 

semiconducting gas sensor (TGS 2611, Figaro, Inc., USA) was used for monitoring the 

concentration of the gases diffused through the membrane. This sensor was chosen for the 

strong response it shows to H2 in addition to its sensitivity to CH4. This cross-response was 

desirable, making it practical for assessing the selectivity of different membranes to CH4 and 

H2. From the data sheet for TGS 2611 CH4 sensor, the response of this device to CH4 is 

approximately 1.5 times larger than its response to H2 for the same concentration of the 

gases.   



A mass flow controller (MKS Instruments, Inc, USA) was used to regulate the gas feed 

into the chamber. The sensor measurements were carried out using a custom data acquisition 

system using a custom design LABVIEW software-based program. 

 

3. Results and discussions 

3.1 Microstructural and spectroscopic analyses 

The nanocomposite MWCNT/PDMS membranes were characterized using SEM, 

vibrational spectroscopy techniques and XPS to determine their properties at different 

MWCNT concentrations. 

3.1.1 Cross-sectional electron microscopy 

In order to examine the dispersion of MWCNT throughout the polymer and the 

morphology of the composites, SEM was used. To prevent charging of the nanocomposites 

under the microscope, the pure PDM and 1% samples were coated with platinum and all of 

the other samples images were captured at relatively low beam voltages. 

 Fig. 2 shows the SEM images of the fabricated MWCNT/PDMS composites (the 

pure PDMS SEM image is presented in Supplementary Information Fig. S2 for comparison). 

It was observed that particle dispersion was reasonably homogenous in all samples. However, 

some MWCNT dense areas bundles were still present in the membranes. Visually as the 

concentration of MWCNT increases in the membrane, its structure transformed further to a 

composite structure. No exceptional morphological behaviour was observed after the addition 

of MWCNT particles at different concentrations. 

 

 



3.1.2 FTIR studies 

Fig. 3 illustrates the FTIR spectra of pristine PDMS and MWCNT/PDMS composites 

of different concentrations (See Fig.S3 in Supplementary Information for the full FTIR 

spectra ). The peaks between 1400–1420 cm
−1

 and between 1240–1280 cm
−1

 correspond to –

CH3 deformation vibration in PDMS [34]. The Si–O–Si stretching multi-component peaks for 

PDMS are observed in the range between 930 to 1200 cm
−1

. The peaks that appear between 

2100–2200 cm
-1 

are due to the formation of Si–H bond in the matrix [35]. The symmetric and 

asymmetric peaks that appear at 2906 cm
-1

 and 2950–2970 cm
-1

 (as can be seen in Fig. S3) 

are due to the –CH3 stretching in ≡Si–CH3. It has been previously reported [34, 36, 37] that 

Si–C bands and Si(CH3)2 rocking peaks appear in the region of 825–865 cm
−1

 and 785–815  

cm
−1

, respectively, which are also seen in our FTIR spectra for composites. The significant 

difference between pure PDMS and MWCNT/PDMS composite FTIR spectra is observed at 

905 cm
−1

 for which the peak becomes sharper and gains a notably lower intensity as the 

concentration of MWCNT increase in PDMS. This could be due to the formation of Si–C 

bond.  

3.1.3 Raman spectroscopy studies 

The pure PDMS membrane Raman spectrum presented in Fig. 4 (continuous line), 

contains the typical PDMS peaks, concurring with the spectra presented in previous works 

[36]. It comprises of a Si–O–Si symmetric peak at 488 cm
−1

 and at 607 cm
−1

 appears the Si–

CH3 symmetric rocking peak. The Si–C symmetric stretching appears at 708 cm
−1

 and CH3 

asymmetric rocking appears at 787 cm
−1

. At 862 and 1262 cm
−1

, CH3 symmetric rocking and 

symmetric bending are seen, respectively [38]. Following the dispersion of MWCNT' within 

the MMM, we observe that the Si–CH3 symmetric rocking band shift peak decreases as the 

concentration of MWCNT increases. 



MWCNT's Raman spectra have been thoroughly studied, and have band assignments that are 

well established [39-41].  

The Raman spectra of the MWCNT-PDMS nanocomposites show the first order 

carbon bands as the D band (disorder band) at around 1330 cm
-1

 and a wide G band (TM-

tangential mode or graphite band) at around 1605 cm
-1

. The two bands can be clearly seen in 

Fig. 4 with the D band showing the disorder in the graphitic structure of MWCNT [42-44]. 

The wide peak observed in the G band can be explained by the disentanglement of the 

MWCNT and subsequent dispersion in the PDMS matrix as an outcome of polymer 

infiltration into the MWCNT bundles [45]. The intensity ratio of D and G bands has been 

shown to be a strong indicator of the structural arrangement [39, 46]. The intensity ratios of D 

band to the G band (ID//IG) in the composites ranged from 1% to 10% increased from 1.59 to 

1.72, respectively, showing the reduction in the order as the amount of MWCNT increases.  

3.1.4 XPS studies 

Fig. 5(a) and 5(d) show the C(1s) XPS spectra of the PDMS membrane and the 

PDMS+1% MWCNT composite, respectively. Curve fitting reveals a singular peak centred 

around a binding energy of approximately 284 eV, which corresponds to CC, C=C, and 

CH bonds [47, 48]. It is important to note that the CSi bond also lies within this peak at 

283.8 eV. The C(1s) peak within the pure PDMS membrane resulted in 44% of the overall 

binding energy, while in the nanocomposite membrane was responsible for 48% of all 

binding energy. This was expected with the addition of the MWCNT within the polymer 

matrix. The O(1s) spectrum of the PDMS and the PDMS+1% MWCNT composite presented 

in Fig. 5(b) and (e) show a singular peak fitted to approximately 532 eV that match up to 

those found in past studies [49].   



It was also important to examine the Si(2p) XPS spectrum for the pure PDMS and the 

PDMS nanocomposite as shown in Fig. 5(c) and 5(f), respectively, to assess the type of bonds 

that Si atoms establish. The deconvolution of the Si(2p) spectrum results in two  peaks, one 

occurring at 102 eV (peak A in Fig. 5(c) and 5(f)) ,which can be attributed to Si-O bonds 

within PDMS and the other at and 103.7 eV (peak B in Fig. 5(c) and 5(f)), which corresponds 

to silicon bonding to three oxygen atoms, which compares to those found in earlier reports 

[50, 51]. The figures show a clear reduction in the occurrence of the higher binding energy 

peak within the nanocomposite, when compared to the pure PDMS spectrum. This suggests 

that the reduction in quantity of silicon to three oxygen bonds is in response to this increase 

in the number of SiC bonds occurring with the addition of MWCNT. 

3.2 Gas permeability and sensitivity  

The gas selectivity and permeability of the composite membranes were inspected at 

several concentrations of CH4 and H2 in ambient air, pumped through the mass flow 

controller setup that was presented in Section 2.3. All measurements were performed at room 

temperature and the commercial sensor’s heater was supplied with a 5 V DC as 

recommended by the manufacturer. The sensor’s resistance was sampled every 10 s during 

the gas exposure. In order to evaluate the cross-talk and gas permeability for the composites, 

several gas streams of varying concentrations of H2 and CH4 mixtures in ambient air were 

pumped into the chamber via the mass flow controller. First, H2 gas streams were pumped 

with concentrations of 0.5% and 1.0% in ambient air, and to facilitate sensor recovery 

ambient air was pumped following the two gas cycles. Afterwards, the chamber was filled 

with streams of 0.5% and 1.0% CH4 (also in ambient air), similarly followed by ambient air 

after gas cycles for sensor recovery. Finally, to examine the behaviour of the sensor and the 



membrane in mixed gas environment, the mass flow controlled pumped a mixture of 

0.5% H2 and 0.5% CH4 into the chamber.   

Due to the different permeability of the gas species through the membranes exposure 

times were varied. For the relatively fast gas permeability of H2, the exposure time was 

10 min with a 25 min ambient air recovery in between exposures. CH4 gas diffusion was 

relatively slower, and required a longer exposure time of 20 min and 40 min ambient air 

recovery between exposures. 

As the chamber was filled with these gases, the concentrations of the analyte gases 

that permeated through the different membranes were measured by the commercial sensor. 

Utilizing the different MWCNT/PDMS membranes in conjunction with the commercial 

sensor, when exposed to the different concentrations of gas species, the relative normalized 

permeability ratios for the various composite membranes for different gas species were 

obtained and demonstrated in Fig. 6. In this graph, all measurements were acquired at room 

temperature as mentioned previously. The dynamic response of sensing system at different 

concentrations of gases, used to extract the data presented in Fig. 6, is presented as 

Supplementary Information Fig. S1. 

As can be seen in Fig. 6, for different wt% MWCNT/PDMS composites, the response 

magnitudes and their trends were fairly similar upon exposure to both 0.5% and 1.0% H2. The 

permeation of H2 through the membranes decreased as the concentration of MWCNT 

increased within the polymer matrix. The permeation of the 0.5% H2 in ambient air dropped 

by around 21%, 60%, and 77% through the 1%, 5%, and 10% MWCNT/PDMS composites, 

respectively. In addition, the permeation of the 1.0% H2 decreased by approximately 11%, 

53%, and 57% through the 1%, 5%, and 10% MWCNT/PDMS composites, respectively.  

As can be seen, embedding MWCNT in PDMS considerably attenuated the 

permeability of the membranes to CH4. As the concentration of MWCNT increased beyond 



1% within the composite material, the membrane almost completely blocked CH4 diffusion, 

while allowing the passage of H2. For the 0.5% CH4 in ambient air the permeation was 

attenuated by 96% through 1% MWCNT/PDMS composite and was almost completely 

blocked at 5% and 10% MWCNT/PDMS composites. The permeation through the 1% 

MWCNT/PDMS composite of 1% CH4 dropped by 77% and by around 99% through the 5% 

and 10% MWCNT/PDMS composites.  

It is important to consider that CH4 molecules are much larger and heavier than H2 

molecules, and as a result their permeations through the membranes take longer. 

Consequently, CH4 molecules spend longer time in the membranes, and hence, have a higher 

chance to interact with the content of the membranes. Additionally, their larger size also 

increases their chance of interaction with the surroundings. This means that the change in the 

polymerization and increase in the filler concentration, affect them more significantly than H2 

molecules.  

It is observed that H2 gas molecules permeation also experiences a decrease at higher 

concentrations of MWCNT. It would be interesting to report the concentration of MWCNT at 

which a complete blockage of H2 molecules permeation would occur. However, it is actually 

not possible to increase the MWCNT concentration in the PDMS/MWCNT composite further 

than 10%. Due to the dominance of MWCNT over the PDMS part at such concentrations, the 

membrane cannot be made continuous anymore. As a result, the membrane would have sub-

micron or micro-pores that allow the passage of all gases indiscriminately.          

As mentioned previously in Section 3.1.2 and revealed from our FTIR analysis 

(Fig. 3), the intensity of the peak observed at 905 cm
−1

 decreased as the concentration of 

MWCNT increased in the composite, which corresponds to the formation of SiC bond. 

Moreover, with the increase of MWCNT in PDMS, the Si(CH3)2 rocking peaks appear to 



decrease which coincides with an increase in the intensity of SiH peak. This suggests that 

these bonds play a significant role in blocking CH4 through the composite membranes. 

Similarly, micro-Raman spectra (Fig. 4) from Section 3.1.3, demonstrates the decrease of the 

SiCH3 symmetric rocking band as the concentration of MWCNT increases which agrees 

with the results obtained from FTIR. Additionally, the XPS analysis from Section 3.1.4 

shows a decrease in the number of silicon to three oxygen bonds occurring, allowing the 

increased formation of the SiC bonds.  

We have seen a similar behaviour in the Raman and FTIR spectra of the composites 

after increasing the concentration of CB fillers [9]. However, there is a striking difference 

between the behaviour of MWCNT-PDMS and CB-PDMS membranes. CB-PDMS 

membranes showed blocking of CH4 only at 6% of CB but the membranes with the higher 

concentration of CB could not block CH4. This was associated to the decrease in the number 

of non-polymerized Si−O and Si−CH3 bonds. Interestingly, the concentration of these bonds 

increased at higher concentrations of CB in the membranes.  

We see the same trend for MWCNT/PDMS composites at low concentration of 

MWCNT, a decrease in the number of SiCH3 and SiO bonds and increase in the number of 

Si−C bonds. However, for MWCNT composites, increasing the MWCNT concentration 

above 1% also enhance the blocking of CH4 even further. This is in agreement with 

characterization outcomes which confirm that the prevalence of Si−C bonds remain high, 

even at high concentrations of MWCNT. The most significant difference between CB and 

MWCNT is the large surface area of MWCNT. While at high concentrations of CB the 

polymerization of the PDMS onto the surface of carbon was reduced, the same trend was not 

seen for MWCNTs composites due to the fact that MWCNT have much smaller dimensions, 

much higher surface activity, and better dispersion in the polymer matrix. These observations 



confirm our initial hypothesis predicting better performance of MWCNT as a filler for gas 

separation membranes. 

4. Conclusion 

In this work, a number of different weight concentrations of MWCNT in 

MWCNT/PDMS composite membranes were synthesized (1%, 5% and 10%). The effect of 

the MWCNT concentration on membrane selectivity towards H2, and the blockage of CH4, 

was studied. It was found that in general the presence of MWCNT in PDMS produced 

selectivity towards H2 over CH4. It was also observed that as the weight ratio of MWCNT 

increases in PDMS composites, the selectivity to H2 increased by efficient blocking of CH4. 

The advent of selectivity occurred at low MWCNT concentration of only 1% and we ascribed 

it to the formation of SiC bonds, a decrease in the number of available Si–CH3 and Si–O 

bonds and to some extent the surface reaction of MWCNT with the larger CH4 molecules in 

comparison with H2. Our developed membranes can offer many industrial applications by 

enabling efficient in situ selective H2 separation from other gas species, with CH4 

demonstrated in our work, using low cost and passive membrane technologies. 
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Fig. 1. Schematic of the gas sensing setup illustrating the gas sensing module and location of 

the gas selective membrane (not to scale). 

  



 

 

Fig. 2. Cross sectional SEM images of MWCNT/PDMS nanocomposite membranes of 

different concentrations, showing the bundle distributions for MWCNT weight 

concentrations of: (a) 1%; (b) 5%; and (c) 10%. 

  



 

 

Fig. 3. FTIR spectra for the pure PDMS and MWCNT/PDMS nanocomposite membranes. 

  



 

 

Fig. 4. Micro-Raman spectra for: pure PDMS and three different MWCNT concentrations in 

MWCNT/PDMS nanocomposite membranes. 

  



 

 

Fig. 5. XPS analysis results: (a)-(c) show C, O, and Si peaks for the pure PDMS, 

respectively. (d)-(f) show C, O, and Si peaks for the 1% MWCNT /PDMS, respectively. 

  




