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Abstract

According to statistics from World Health Organization (WHO), cancer is the

second cause of death in developed countries and top ten cause of death in de-

veloping countries. The economic impact of cancer on society due to human toll

and associated medical costs is disproportional and depends on demographics

and medical facilities patients have access to. Despite significant breakthroughs

in medical technologies, advanced treatments and research efforts to combat can-

cer, burden of cancer remains devastating on human life.

Recent advancements in medical science and health care technologies, and de-

velopment of innovative medical instruments proved to enhance cancer treatment;

however, there is still no substantial slowdown in mortality rate and treatment

costs. The significant socio-economic impact of cancer and shortfalls of currently

available conventional treatment methods motivate scientists and engineers to

scavenge for novel cost-effective cancer treatment approaches with less severe

side-effects and enhanced efficacy.

In most cases, cancers arise from genetic alterations in the DNA of a somatic



cell. Small coding sequences along a strand of DNA, genes, control all functions of

human body. The genes are codes that “tel” a cell how to make different proteins,

which are building blocks of cells that control their behaviour. Although all genes

are present in all cells of a body, not all are active at the same time. Genes that

control cell growth are active at certain times of life. Proto-oncogene is one of

those genes that have many different functions in a cell; some provide signals that

lead to cell division, while others regulate programmed cell death (apoptosis). An

oncogene, a permuted proto-oncogene, contributes to the growth of a tumor. In

order to control oncogenes, the correlation between its coding sequences and its

biological activity needs to be unravelled. Hence, there are numerous attempts to

model this complex correlation. Among these models, the Resonant Recognition

Model (RRM) has demonstrated and proved to be a reliable computational ap-

proach to modelling structure-function relationships between biomolecules (pro-

teins and DNA) as well as their interaction with external electromagnetic fields

(EMFs). The RRM theory proposes that an external electromagnetic field at a

particular activation frequency will produce resonant effects on a protein biolog-

ical activity, and this activation frequency can be determined computationally.

According to the RRM model implementation for oncogene and proto-oncogene

proteins, wavelengths of external irradiation in the range of 3500nm-6500nm will

demonstrate effects on the functionality of oncogene proteins.

External electromagnetic radiation (EMR) of low intensity light mainly in the
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visible and near infrared wavelengths demonstrated to induce therapeutic effects

on various medical conditions, including wound healing. It was shown that the

induced EMR effects are dependent on a particular wavelength, intensity and

duration of EMR exposures. There are studies that showed that applied EMR in

the visible and infrared light range can modulate protein and cellular activity.

This research project evaluates experimentally cytotoxic effects of external ex-

posures of low intensity light in the wavelength range of 3500nm to 6500nm (the

range predicted computationally by the RRM) on selected cancer and normal

cells. For this purpose, an exposure device is designed and fabricated to irradiate

cells at the selected far infrared wavelength range. The exposure system is used

for external in vitro irradiation of human and animal normal and cancer cells.

The effects of applied irradiation are evaluated quantitatively and qualitatively,

with the findings are being presented and discussed in the thesis. The structure

of this thesis is as follows.

Chapter 1 - comprehensive overview of cancer: its development and effects on

human life; socio-economic impact of cancer on society; cell cycle and cell cycle

control mechanisms; interruptions and erroneous processes in cell cycle progres-

sion that lead to cancer development; Current conventional treatment methods

and their long- and short-term side effects; and finally complementary and novel

cancer treatment methods.
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Chapter 2 - a comprehensive literature review relevant to the project scope is

presented : various applications of low intensity light therapy and other similar

new medical radiation techniques are described.

Chapter 3 - exposure system design and development: different design proposals

including their limitations due to imposed experimental conditions are presented

and discussed. After selection of the appropriate design for the device fabrication,

the enforced experimental limitations from biological and electrical point of view

are discussed in this section. Finally, the scope and boundaries of this project

are clearly indicated.

Materials and methods used in this project are explained in Chapter 3. The

choice of culture medium, cell types, exposure LEDs, experimental set ups and

quantitative and qualitative cell-based assessment assay procedures are also de-

scribed in details.

Chapter 4 - presents the quantitative analysis of experimental evaluation of

different EMR exposures on selected cancer and normal cells. The results ob-

tained from implementation of the quantitative cell based assays (LDH, MTT,

PrestoBlueTM) on animal and human cancer and normal cells are presented and

discussed.

Chapter 5 - presents the results of far infrared exposures on cell morphology of

cancer and normal cells. These qualitative assessments are conducted by phase

iii



contrast microscopy and confocal laser scanning microscopy (CLSM) on animal

and human cancer and normal cells.

Future work and further possible extensions of this experimental work is re-

counted briefly in Chapter 6.

Finally, Chapter 7 - summarizes and concludes the findings of the experimental

in vitro evaluations of the effects of low intensity light radiation on animal and

human cancer and normal cell lines.
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Chapter 1

Introduction

The aim of this project is to experimentally evaluate a theoretical hypothesis pro-

posed within the Resonant Recognition Model (RRM) [1–3], which states that

external electromagnetic radiation (EMR) of far infrared (3500nm to 6500nm)

wavelengths would induce cellular apoptotic effects in cancer cells that will lead

to therapeutic effects in cancer. This project attempts to evaluate the validity

of the proposed hypothesis in the controlled experimental conditions. Hence, in

vitro irradiation of normal and cancer cells at the proposed wavelengths range is

conducted for different cell lines and different regimes of exposure. The effects

of EMR on cancer and normal human and animal cell lines are measured using

three standard cell-based quantitative assays along with two qualitative assays.

Moreover, for the completeness of the analysis, irradiation of cells at other wave-

lengths outside the proposed far infrared range is conducted as well with the

induced effect being compared and discussed.
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To achieve this goal an exposure device is designed to bias the far infrared range

LEDs to perform at their optimum efficiency. LEDs working at the optimum

efficiency, radiate the electromagnetic radiation at the required wavelengths with

the maximum nominal optical power. The exposure device is then used to radiate

a number of animal and human cancer and normal cells with the proposed far

infrared LEDs as well as other LEDs in the visible and near infrared range. All

experiments are conducted inside the incubator to be as close as possible to the

conditions of a living organism.

The experimental work in this project thrive to test the theoretical hypothe-

sis proposed by RRM approach implementation [1–3]. The ultimate aim of this

project is to test an alternative approach toward cancer treatment. Furthermore,

this novel approach might be able to pave the way for development of a non-

invasive and cost-effective cancer therapy method that is not only effective in

cancer treatment but also addresses the limitations of the current cancer treat-

ment methods in terms of cost of treatments.

The chapter 1 starts with the definition of cancer and different classification.

After that, a brief history regarding the first appearance of cancer in human’s

ancient literature will be narrated. Then, a brief insight into cancer causes, which

can result in development and spread of cancer in human-beings, is provided.

Subsequently, statistics of cancer regarding its diagnostics and mortality rate as

well as its impact on our societies economically and socially is explored. In order
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to propose a novel cancer treatment method, a comprehensive insight into the

development and progression of cancer is critical in understanding of how cancer

develops and spread biologically and what can be done to break this vicious circle.

After that, deterrent procedures and check points that human body has in order

to inhibit or combat the progression of cancer is presented.

1.1 Definition of Cancer

Like all other living organisms, human body consists of cells. The average number

of cells that make our body is approximately about 60 trillion cells [4]. Genes,

inside the nucleus of a cell, are responsible for this tightly regulated cell repro-

ductions and cell deaths [4]. Out of billions of cells that are created each day,

there are sometimes abnormal cells being created. Typically, these abnormal cells

are detected, repaired or eliminated by the immune system [5]. This process is

very routine for human body and it is believed that everyone can develop pre-

cancerous cells during their life time but only less than half of human population

develop cancer [4].

Generally, damaged cells stop reproducing on their own and they would form

a tiny, harmless lumps. However, there is a chance that these faulty cells could

not be repaired or eliminated. Long before the appearance of a tumor (lump)

that can be tested and diagnosed by physician/oncologist, cancer cells start with
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Figure 1.1: Development of Cancer [6]

changes in one cell or a small group of cells. Then, they grow uncontrollably

into aggressive tumors that is being called cancer [4]. These tumors can affect

the health of an individual by blocking the digestive system or blood vessels,

by pressing against nerves or even by releasing hormones that can affect normal

function of the body [4].

Tumors are generally categorized into two forms: benign (noncancerous) and

malignant (cancerous). Benign tumors are those that usually grow quite slowly

and do not spread to other parts of the body. These tumors usually are covered by

normal cells. Benign tumors become problematic only when they grow very large,

become uncomfortable by taking space or pressurizing body organ, or when they

release hormones that interfere with normal body works. In contrast to benign

tumors, malignant tumors grow rapidly, damage and destroy surrounding normal

tissues and spread throughout the body [4].
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Figure 1.2: Development of Primary and Secondary Cancer [6]

The spreading ability of cancer cells makes it very aggressive and harmful. The

tumor that appeared first is called “primary tumor”. These cancerous cells can

travel through blood (circulatory system) or lymphatic system to form secondary

tumors. Malignant tumors can be locally invasive, so they can only damage

surrounding tissues and turn normal cells into cancer cells. Or, the metastatic

form of tumors, which means that faulty cancerous cells spread around and invade

other organs and tissues of the body to form tumors all over the body [5,6].

Cancers are classified into different categories according to the type of fluid or

tissue they originate from or according to the body organ, in which they develop

first. There are five broad classifications of cancers depending on the tissue and

blood categorization [5].

Carcinoma is a type of cancer found in epithelial body tissues that cover or

line surfaces of organs, glands or body structures. These type of cancers account
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for 80 to 90 percent of cancer cases.

Sarcoma is a malignant tumor, which grows in connective tissue type cells such

as fat, cartilage, muscle, tendons, and bones. This type of cancers usually affect

young adults.

Lymphoma is originated from the nodes or glands of the lymphatic system or

in organs such as brain and breast. Lymphoma has two categories of Hodgkin’s

and non-Hodgkin’s lymphomas.

Leukemia, which is also known as blood cancer, is a cancer of bone marrow.

This type of cancer inhibits bone marrow from the production of normal red and

white cells and platelets which are needed to resist infection and prevent anemia

respectively.

Myeloma develops in plasma cells of bone marrow. When myeloma cells are

collected in one bone and form tumor, it is called plasmacytoma. And, the

collection of myeloma cells forming many tumors in many bones is called multiple

myelomas.

Despite distinctive characteristic differences exhibited in various categories of

these group of diseases, in vivo and in vitro studies have shown that certain traits

are common along all types of cancer cells. The main common characteristic of

cancer cells is uncontrolled growth in the body or on culture dish [7]. Genetic
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changes in DNA promote cell proliferation uncontrollably, which will result in

generating malignant tumors that invade surrounding healthy tissues.

The other common characteristic of cancer cells is morphological changes in

cytoplasm, which make cancer cells less adhesive to other cells and non-cellular

substrates. This loss of adhesiveness allows cancer cells to detach from a tumor

mass and move to other organs of the body. If these tumors do not spread

through other organs of body, they usually can be removed by surgical procedure.

However, malignant tumors tend to separate from the parent mass and spread to

distant sites where they establish the lethal tumors that are no longer removable

or curable [7].

Another common feature of cancer cells is the fact that they are not following

the apoptosis process, a natural cell cycle process destroying damaged cells. In

normal condition, when chromosome content of normal cells becomes disturbed,

a signaling pathway is usually activated for self-destruction (apoptosis) of a cell.

However, this process is not followed in cancerous cells. Generally, the chro-

mosomes’ content of cancerous cells are highly disturbed but this natural self

destruction process does not take place in these cells.

One more common feature of cancer cells is ignoring neighboring cells signal

and moving over to other cells. Thus, they form a much higher cell density than

normal cells. When normal cells are surrounded by other cells, they stop their
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proliferation. They do not move over to another cell; therefore, a mono layer on

the bottom of a culture dish is formed.

The formation of blood vessels is another common characteristic of cancer cells.

These vessels provide a steady supply of oxygen and nutrient to the faulty cells.

Thus, they are responsible for the growth of cancer cells because the absence

of these nutrition supplies can stop or slow down the spread of cancer cells.

In general, the circulatory system grows a network of new blood vessels into

and around the tissues during growth or repair process. This process is called

angiogenesis. Cancerous cells employ similar technique and send chemical signals

called activator molecules to the neighboring healthy cells to promote the growth

of new blood vessels.

To combat development and spread of cancer, human body has several defen-

sive mechanisms. Human natural defensive systems to fight against cancer are

lymphatic system, leukocytes (white blood cells), and antibodies (activated when

immune system detect antigen, and Natural Killer (NK)) [4]. However, cancer

develops when these natural defensive mechanisms are not performing properly.

1.2 History of Cancer Diagnosis

Recorded history shows that cancer has always been part of human and animal

existence. The earliest evidence of cancer is found in fossilized bones and human
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mummies. For instance, a type of bone cancer is detected in human mummies of

ancient Egypt. The oldest discovered cancer description document dates back to

3000 BC in Egypt. This manuscript is called Edwin Smith Papyrus and is part

of Egyptian textbook on surgery. This document describes 8 cases of tumors and

it says that “There is no treatment” [5].

However, Greek physician Hippocrates, the “Father of Medicine”, is the first

physician who named this disease. He described non-ulcer forming tumors as

“carcinos” and ulcer forming tumors as “carcinoma”. The name means ”Crab”

in Greek which describes the finger-like spreading of cancer cells. Later on, a

Roman physician, Celsus, is the first physician who coined the name “cancer”

instead of carcinos, a Latin word for crab. After that, another Roman physician

named cancer as “oncos” (Greek for swelling), which is now used for the specialists

of cancer, oncologists [8].

Prior to twentieth century revelation, tumors were perceived as foreign viruses

that are taken root in the body of affiliated patients similar to HIV and Flu mech-

anism. The biological revolution of mid twentieth century triggered by Watson

and Crick’s discovery of the DNA double helix, changed the perception of biologi-

cal processes and their underlying science [5]. The discipline of molecular biology

that starts its existence following mid-twentieth century discovery explained inti-

mate details of genetics and heredity. This molecular foundation explained how

cells grow and divide, how the tissues develop under the control of specific genes
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and how does genetic constitution of a cell and organism determine its appear-

ance and functionality. Without this foundation, modern cancer research could

not be developed this far [8].

According to advancement of biological science in mid twentieth century, un-

restrained growth of cancer cells form a lump of tissue called a tumor. Except

leukaemia, all other types of cancer form tumors [5, 8]. This new knowledge also

revealed that tumors, like normal tissues, are composed of masses of cells. In con-

trary to earlier virus approach for cancer, it is proven now that tumors are often

derived from normal cells rather than invading from outside of the body. Tumors

are cells that lost the ability to assemble and create tissues of normal form and

function. Cancer is considered a genetic disease of cellular control mechanism.

It is defined by a group of genetically permuted cells forming invasive tumors,

which ceased to respond to normal growth control signals. Furthermore, cancer

tumors tend to travel across patient’s body and reside in a new position at quite

a distance from where the tumor first appeared.

1.3 Cancer Causes

An in-depth view along a strand of DNA reveals small coding sequences called

genes along a strand of DNA (often referred as “molecule of life”). All the func-

tions of body are led by genes. Genes are the codes that tell a cell how to make
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different proteins that control cell behavior [9]. Thus, anything that damages

cell’s DNA can potentially lead to tumor development. In cancer cells, some of

these genes found to be mutated, so they cannot perform their normal functions.

In order to develop cancerous tumor, a number of genes in a cell need to be

damaged [6].

Cancer arises from genetic alterations in the DNA of a somatic cell. These

genetic mutations in DNA result in out of control cell behavior and lead to tumors.

Genetic mutations sometimes happen in the germline, which result in inherited

cancers or predisposition to cancer. Most often these mutations occur in somatic

cells. These somatic mutations are accumulated over lifetime. In general, cancers

are caused by multiple genetic mutations. Currently, there are 70 genes associated

with germ line mutations and 342 genes associated with somatic mutations [10,

11].

To shed some light into the cause of gene mutation, contributing factors are

examined and investigated. These factors are age, human habits and lifestyle,

medical history, genetic heredity factor, environmental conditions, hormonal and

virus influences, past treatments and other external factors.

The following risk factors and mechanisms are considered to contribute to cancer

development:

1. Age is considered as the largest risk factor for cancer since majority of cases



1.3 Cancer Causes 12

Figure 1.3: Structure of a Cell [6]

of cancer are diagnosed in people over 65 years old.

2. The other major risk factor is lifestyle. High-fat diet, working with toxic

chemicals and smoking are the most recognized lifestyle elements contribut-

ing to cancer development. In fact, tobacco was the first recognized con-

tributing factor for gene mutation. The findings by a clinician in London

came hundred fifty years after the first trials of tobacco by Japanese scien-

tist. He classified tobacco as a carcinogen (a substance believed or known

to cause cancer in human) [4, 5].

3. The next contributing risk factor is family history, inheritance of genetic

mutations. Genetic factors play important role in childhood cancers. How-

ever, genetic predisposition does not necessarily mean that an individual



1.3 Cancer Causes 13

will develop a certain type of cancer. It was found that genetic factor con-

tributes to upto 10% of all cancers. The other 90% are caused by lifestyle

and environmental factors [4].

4. The existence of some genetic disorder is another risk factor. For instance,

Wiskott-Aldrich and Beckwith-Wiedemann syndrome are known to alter

the immune system. One theory suggests that when cells in the bone

marrow, the stem cells, become damaged, they make abnormal or cancer

cells [5].

5. Another contributing factor can be exposure to certain viruses. This does

not mean that cancer can spread from person to person but those infected

with these diseases have increased risk of developing cancer later on. Some

of these viruses are human papilloma virus (HPV), Hepatitis B and C

viruses, Epstein-Barr virus, and HIV virus. The latter two viruses have

been linked to development of Hodgkin and non-Hodgkin lymphoma in

childhood cancers [5, 6].

6. Environmental exposure to carcinogen chemicals and substances are be-

lieved to cause cancer. Till date, pesticides, fertilizers and possibly power

line are considered to have direct effect in development of childhood can-

cers [5]. The search for the environmental causes of genetic mutation in

cancer led to the classification of many other specific substances as car-

cinogens such as coal tars and their derivatives (i.e. benzene), some hy-
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drocarbons, aniline, asbestos, and ionizing radiation sources including sun,

radon gas and X-ray [8]. As of 2012, more than 100 chemical, physical

and biological carcinogens were identified by World Health Organization’s

International Agency [12]. Moreover, high dosage of chemotherapy and ra-

diotherapy may contribute to the development of a second malignancy later

in life [5].

Even though several hypotheses are considered to contribute to DNA permu-

tation, there is no concrete single reason identified for gene mutation that result

in cancer development. A risk factor does not necessarily cause the disease, but

it may, in fact, increase the chances of cancer incidents since it makes the body

less resistant to it [13].

1.4 What are the impacts of cancer?

Cancer has maintained its position as the second cause of death in developed

countries and among the top ten cause of death around the world [7,13,14]. One

out of every two men and one out of 3 women develops cancer in their lifetime

based on American Cancer Society data in 2008 [7, 13]. Thirty years after the

declaration of the global fight against cancer, the most recent mortality and

incident rates of cancer in 2008 do not reflect any significant slow down in these

numbers. According to statistics, every year 12.7 million people are diagnosed
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with cancer and 7.5 million dies from the disease [14,15].

American cancer society provides comprehensive information on financial and

economic impact of cancer on society. The economic burden of cancer on a

society is assessed in two categories of direct medical costs and indirect costs.

Indirect medical cost is the cost of productivity loss due to premature death.

In the United States alone, the cost of direct medical cost in 2008, according

to National Institute of Health, was $77.4 billion and indirect mortality costs

associated with cancer was $124 billion [16]. All in total, the monetary burden

of cancer on American health system and people was $201.5 billion for that year

alone.

A joint study of American Cancer Society and LIVESTRONG [17] estimates the

economic toll of cancer as the highest economic loss. This comparison conducted

on all causes of death globally, including communicable, non-communicable dis-

eases. The research is based on death and disability from 17 forms of cancer in

188 nations who are member of World Health Organization (WHO). According

to the 2010 report [18], the total global economic impact of cancer due to pre-

mature death and disability is calculated to be $895 billion in 2008. This figure

is 1.5 percent of world’s gross domestic product (GDP). This figure for financial

loss due to cancer is 19 percent higher than a loss caused by the heart disease.

According to statistics, heart disease with the cost of $753 billion is the second

leading cause of death [17]. The cancer treatment costs mentioned in these stud-
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ies exclude direct medical cost associated with cancer treatment. Inclusion of

cancer direct medical costs further increases its overall economic impact [17].

At human level, cancer is taking an enormous human toll around the world and

this number is on the rise for developing and third world countries. According

to the report [16], every year in the United States 580,350 individuals dies from

cancer. Majority of these people who develop cancer do not have proper health

insurance. Moreover, they develop cancer later in their life time which brings

immense hardship and affect their quality of lives [16]. On the global scale, death

and disability from lung, colon and breast cancer has the highest economic loss,

while other types of cancer impose considerable economic burden especially on

underdeveloped countries.

Apart from death and disability resulted from cancer, the profound social psy-

chological and financial pressure that individuals and families go through should

not be ignored. These conditions are especially more profound in developing and

underdeveloped countries where loss of income due to illness or death of fam-

ily member quickly undermines family’s finances. According to the findings of

the American Cancer study and other similar studies, cancer is projected to be

the leading cause of death worldwide, followed by heart disease and stroke. In

2008, sixty percent of total cancer death of 7.6 million took place in developing

country [18]. In addition, out of 12.4 million global cancer diagnosis cases, more

than half of these are diagnosed in developing countries. These alarming figures
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Figure 1.4: Distribution of new diagnosed cases of cancer [12]

demonstrate the fact that preventable forms of cancer are taking disproportionate

human toll [18].

This disproportionate human toll and economic loss in middle- and low-income

countries is an indication that the impact is not evenly distributed. For instance,

Unites States has the highest economic loss from cancer in terms of actual dollar

sign but this money loss is 1.73 percent of its Growth Domestic Product (GDP).

A country such as Hungary, with much smaller population, is losing 3.05 percent

of its GDP [18]. This study further confirms the “silent pandemic” of cancer is

penetrating into underdeveloped and developing countries. If a substantial global

response is not established soon, this problem can overwhelm the health systems,

threaten social structures and finally challenge economic development efforts [18].

These statistical results are clear indication of socio-economic inequalities of can-
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cer survival rate [19]. Thus, WHO and global health experts believe that more

cost effective and targeted interventions could mitigate the human and financial

toll of cancer worldwide [18].

Australia has the highest incident rate of melanoma in the world due to its

environmental problem related to ozone layer depletion. Sun exposure is respon-

sible for 95 to 99 percent of skin cancers in Australia. Skin cancer accounts for

80 percent of newly diagnosed cancer cases and over AUD $1 million is billed by

GPs for skin cancer consultation. Melanoma, the most dangerous form of skin

cancer, is the fourth most common form of cancer in Australian men and women.

While melanoma makes up only 2.3% of all skin cancers, it is responsible for 75%

of skin cancer death [20].
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Figure 1.5: Skin cancer mortality rate [16]

In 2009, there were over 11,500 new diagnosed cases of melanoma, which is

approximately 10 percent of all cancer type diagnosis. In 2011, 1544 deaths

resulted from melanoma [21]. Melanoma mostly affects men and women in their

80s. The risk ratio for men is 1 in 14 and for women the risk ratio is 1 in 23,

approximately twice the rate of Unites States, Canada and United Kingdom. For

instance, United States statistics of 2013 shows 76,690 newly diagnosed melanoma

cases from which 9,480 people are expected to die. The risk of melanoma for
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whites is about 2 percent, 0.1 percent for blacks and 0.5 percent for Hispanics [16].

The conventional methods of treatment increase five year survival rate by 91%

for melanoma detected before spreading and at early stages of cancer. This rate

decreases dramatically for more advanced stages of melanoma.

1.5 Cell Cycle and Cancer

The cell division process depends on tightly regulated sequence of events taking

place in orderly fashion. These chains of events depend on the proper level of

transcription and translation of certain genes. Disturbance in the order of this

crucial process results in unregulated cell growth. Fundamental alteration in the

genetic control of cell division leads to unrestrained cell proliferation that is called

cancer. Out of approximately 30,000 genes exist in the human genome, a small

subset of these genes is crucial for prevention, development and progression of

cancer [22, 23].

Cell cycle irregularity associated with cancer occurs through mutation of pro-

teins that are important at different stages of the cell cycle. Mutations in gene

encoding of CDK, cyclins, CDK-activating enzymes, CKI, CDK substrates, and

checkpoint proteins [24] are observed in cancer [25]. Mutations in cells led to

cancer occurrence in two categories of genes: genes whose protein products pro-

mote cell division or inhibit cell death; and genes whose protein products directly
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Figure 1.6: Comprehensive Cell Cycle Control and Signalling pathways [22]
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or indirectly prevent cell division, promote cell death, or repair the damaged

genes [6, 26]. In other words, two types of genes are responsible for turning a

normal cell into a cancerous one. These genes are Oncogenes (unrestrained cell

proliferation) and Tumor suppressor genes (prevention of cell apoptosis and gene

repair).

1.5.1 Oncogenes

Proto-oncogenes promote cell division in a regulated manner. They include

growth factors, growth factor receptors and cyclins [22, 23, 27]. They play an

important role in early stages of human life by stimulating cell growth and pro-

liferation as an organism develops. They usually control the rate of cell division

and growth in the body. Once the process completed, proto-oncogenes go to

dormant state or turned “off” state. Later in the life when proto-oncogenes are

inappropriately turned “on” by changes or mutation, it randomly multiplies the

cell and eventually causes cancer [9]. Thus, the products of proto-oncogenes at

different stages of cell cycle stimulate cell proliferation, while its mutated version

or oncogenes lead to tumor growth [11]. When gene mutation takes place, the

cells replicate at a rate that far exceed cell loss [28].

For instance, cell cycle progression from a G(gap) phase to either S-phase (DNA

replication) entry or M-phase (mitosis or DNA split) entry is controlled by four

factors; i) mass factor for somatic cells, which is the accumulation of a specific
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cellular mass; ii) growth rate factor, which is a specific growth rate requirement

for M-phase entry of some cells; iii) time factor, which is mainly important for

embryo cells to control the timing of successive M-phase by timer or oscillator

genes; and iv) replication factor, which ensures the completion of proper DNA

duplication at S-phase [29, 30]. Proto-oncogenes, in their normal state, code for

the normal proteins controlling these critical processes. However, permuted proto-

oncogenes (oncogenes) code the proteins to facilitate cell cycle progression forward

uncontrollably. Usually, oncogenes are responsible for unregulated progression

of cell cycle from G-phase to either S-phase or M-phase which contribute to

uncontrolled cell division and tumor growth. In addition, oncogenes can save

cells from programmed cell death or apoptosis. It is believed that oncogenes alter

receptors at the cell surface to give a wrong “on” position signal [31]. Receptors

are responsible for signaling the cell to divide. These receptors bind to growth

factors, proteins that interact with DNA to initiate duplication, and signaling

molecules to initialize DNA duplication through various pathways [31,32].

Genetic alteration of proto-oncogene leads to different irregularities in a cell

cycle. Sometimes, mutations permanently activate proteins that normally switch

between activation and inactivation state. This type of mutation results in un-

limited cell proliferation. Another type of mutation causes chromosomal translo-

cation where broken DNA is reattached. This mutation type leads to altered

regulation of protein expression or formation of fusion proteins. Moreover, the
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presence of multiple copies of a proto-oncogene rather than its permutation ver-

sion is another form of gene alteration.

Oncogenes that promote unregulated cell growth are considered one of the most

important discoveries in cancer research [33]. Recent study of proto-oncogene

mutation of 1000 cancer samples representing 17 types of cancer showed that the

permutation of 14 proto-oncogenes with diverse cellular functions is associated

with a high propensity for cancer [32–34]. Oncogenes activation is believed to

be induced by a number of factors such as radiation, viruses, certain chemical

in the environment, changes in genes, mutation of DNA molecule and break or

rearrangement of chromosomes.

1.5.2 Tumor suppressor genes

In contrary to cell proliferation-stimulating function of proto-oncogenes and onco-

genes which drive the cell cycle, tumor suppressor genes code for proteins that

generally impose cell cycle arrest, repair DNA errors and restrict cell growth and

division [22, 23]. In some circumstances, these genes promote programmed cell

death or apoptosis. Due to their functionality, tumor suppressor genes are mainly

involved in maintenance of cell cycle checkpoints and proteins required for apop-

tosis induction. In normal cell cycle progression, any damage to cell’s DNA is

detected by tumor suppressor genes. Then, they react according by inducing cell

apoptosis. When cell cycle is supposed to continue its progress, these genes are
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switched off by other proteins in the cell cycle before the growth phase of cell

can grow. If they are not switched off, they inhibit cell growth. Mutation or

damage of tumor suppressor genes lead to dysfunction of proteins inhibiting the

progression of cell cycle [25, 31]. When tumor suppressor genes are permuted,

they do not work properly. Thus, cell growth and division continues uncontrol-

lably resulting in tumor development. Two of the most notable tumor suppressor

genes are p53 and pRb.

p53

This gene is located on human chromosome 17 and expresses tumor suppressor

activities. p53 is one of the most important and the best known and studied tumor

suppressor gene [22, 23]. This gene was discovered in 1979 through research into

the viral etiology and the immunology of cancer [35]. p53 tumor suppressor is

a sequence-specific DNA-binding protein that plays a crucial role in determining

whether a cell needs to undergo cell arrest or cell apoptosis at the cell cycle

checkpoints after detection of abnormalities such as DNA damage, hypoxia and

the activation of oncogenes [27,31].

p53 consists of 393 amino acids. Any substitution of p53 amino acid sequences

results in loss of its tumor suppressor functionality. While mutation of amino

acids 175, 248 and 273 leads to loss of functionality, changes in amino acid 273 is

the most common [27]. Reproduction of damaged DNA cell results in uncontrolled
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cell growth. Inactivation of p53 result in loss of p21 regulation in response to DNA

damage. One of the mechanism that prevents cancer progression is to stop cell

division until the damaged DNA is repaired [25].

p53 is the most commonly mutated tumor suppressor gene in human cancer

[31]. Around 50% of human cancers are associated with mutations in p53. In

addition, cancers that are associated with p53 mutations are more aggressive

and have higher mortality rate. p53 mutations are confirmed to contribute to

the development of bladder, breast, cervix, colon, lung, liver, prostate and skin

cancers [30].

pRb

This gene is located on human chromosome 13 and is another gene with tumor

suppressor activities. Retinoblastoma protein (pRb) and its corresponding gene,

RB1, the first identified tumor suppressor, are the well-studied factors of cell cycle

arrest or apoptosis [22, 23]. It is the most important CDK substrate during G1

phase. pRb interacts with a protein called E2F. E2F is a nuclear transcription

factor involved in cell replication during the S phase. Interaction of pRb with

E2F prevents progression of cell replication. For this interaction to occur, pRb

should not be phosphorylated by a kinase. In case of mutation, pRb is always

found to be phosphorylated by a kinase. When phosphorylated by kinase, pRb

becomes inactive and unable to regulate E2F. Hence, control of cell division at
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the S phase does not occur [22,23,30,31].

The inhibitory activity of CKI for induction of growth suppression is conducted

through activation of pRb. The functionality of pRb is interconnected with p16

and CDK-cyclin D, so perturbation of any of these cell cycle regulators affect

cell cycle regulation. In fact, deletions and mutations lead to non-functional or

complete absence of pRb, which can result in binding of certain tumor virus pro-

teins such as human papillomaviruses (HPV) [25]. Thus, absence or functionality

loss of pRb is closely associated with unrestrained cell cycle progression. This

condition is common in acute lymphoblastic leukaemia [36]. Mutations of pRb

in human leads to retinoblastoma (a juvenile eye cancer) and lung cancer. Mu-

tations or abnormalities in some component of pRb pathway have been found in

approximately 90% of human cancer [37].



Chapter 2

Literature Review

One out of every two men and one out of three women develop cancer in their

lifetime based on American Cancer Society data published in 2008 [13]. Statisti-

cally, cancer is the second cause of death in developed countries [7]. Due to its

impact on the human well-being, immense scientific effort is dedicated towards

finding a cure for cancer. These efforts led to the development of treatments such

as chemotherapy and medical radiation. However, these treatments have limited

success [15]. Therefore, there is still a need for novel methods and approaches as

interventional treatments. Substantial progress in understanding the molecular

basis of cancer led to development of three broad categories of cancer treatment

methods: conventional treatment methods, complementary and alternative treat-

ment methods, and interventional treatments.

The following section comprehensively describes currently available cancer treat-

ment methods, their side effects, as well as their short comings. Then, closely

28
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related techniques with therapeutic applications are discussed. Subsequently,

medical applications of different forms of wave and light therapy as well as low

intensity light therapy approach are presented as these techniques are closely rel-

evant to the novel hypothesis of this project. This study aims to experimentally

investigate the effects of theoretically proposed far infrared range radiation on

cancer cells. Lack of similar experimental and clinical research as well as publica-

tion resources in the literature arise from the novelty of this approach for cancer

treatment. However, this chapter provides literature review of available external

low intensity radiation techniques for various other medical conditions.

2.1 Conventional Treatment Methods

Conventional methods of cancer treatment are mainly based on western medicine

and generally conducted by trained and licensed medical professionals in medical

facilities. These treatments are based on established scientific principles and

have been proven effective in most cases. Conventional treatment methods are

categorized as follow: surgery, radiotherapy, chemotherapy, Hormone therapy and

immunotherapy (also known as biotherapy). Among them, surgery, radiotherapy,

and chemotherapy are the most widely practiced treatment methods.

In early 20th century, small and localized tumors that could be completely

removed by surgery were considered curable cancer types. Later on, radiation
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therapy introduced as a supplement to surgery treatment for controlling small

tumors that were not removable surgically. At last, chemotherapy was discovered

to cure small tumors that could not be removed by surgeon or radiotherapist.

Among these conventional cancer treatment methods, surgery is known to be

the most effective and acceptable method used for treatment of many cancers.

Although chemotherapy and radiation are less invasive therapies, complication

and severe long term side-effects associated with these methods make them less

optimum methods.

2.1.1 Surgery

Surgery is one of the oldest, most efficient and common medical procedure.

Surgery has been performed since the beginning of human civilization. Ancient

Hindus believed to be the first people used surgery to remove tumors. Ancient

surgeon and physician such as Celsus, Hippocrates and Galen acknowledged reap-

pearance of cancer tumors once they have been surgically removed. There are

numerous cases reporting that when a tumor is surgically removed, the disease

has returned later when a scar was formed [8]. Reports of re-occurrence tumors

led to the misconception that considered cancer as an incurable disease. Mis-

conceptions about cancer and complications and primitive procedures involved

in cancer surgery led to a slow development progress in cancer treatment. De-

spite significant progress of medicine in some ancient civilizations, no considerable
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progress in cancer treatment is observed in literature [8].

This approach towards cancer was prevailed until 19 and 20th centuries when

advancement of human knowledge and technology introduced new materials and

techniques reducing risks, complications and recovery time of surgery. Discovery

of anesthesia in 1846 by John Hunter, Astley Cooper and John Warren, raised

the popularity of surgery as a swift and precise procedure. Three surgeons who

contributed immensely to cancer surgery were Bilroth in Germany, Handley in

London, and Halsted from John Hopkins University in Baltimore. Through the

efforts of these surgeons and their followers for development of cancer surgery,

limitations of cancer surgery have been recognized [8].

Further innovations of 20th century in design and development of more sophis-

ticated and advanced medical instruments, reduced the side effects of surgery.

Hence, surgery becomes one of the most effective and popular cancer treatment.

The type of surgery, recommended for cancer treatment, differs for every patient

depending on the type of cancer and patient’s health. Therefore, several types of

surgery are known to be beneficial for cancer patients [8]. Some of these surgeries

are used in combination with other conventional methods of treatment such as

chemotherapy and radiotherapy. The following is a list of these surgeries [4], [5]:

− Curative Surgery is used to remove tumors that are localized and have

not yet been spread beyond its original site. However, this treatment is not
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used as the only treatment method. Generally, this method of surgery is

used in conjunction with radiotherapy either after or before the surgery.

− Preventive Surgery is used to remove precancerous, abnormal and normal

tissues and lumps that may develop into cancers later on.

− Diagnostic Surgery takes a sample for biopsy from a tissue that is sus-

pected to have cancer cells developed.

− Staging Surgery is used to remove parts of a tissue to be examined for

the degree of cancer’s spread in the body. Laparoscopy is a special tube

with camera and biopsy function that is inserted through a small incision

to inspect the extent of the disease.

− Debulking or Cytoreductive Surgery is used to remove parts of, not

all, a tumor when removal of the entire tumor may damage or endanger

an organ or the body. This treatment method is used in combination with

radiotherapy or chemotherapy after the surgery to kill the rest of cancer

cells.

− Palliative Surgery is not a curative treatment but rather relief of cancer

symptoms. This method of treatment is used for advanced stages of cancer

spread to relieve discomfort or remove problems created by cancer or cancer

treatment methods.

− Reconstructive Surgery is used to restore the function or appearance of
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a body part that is deformed or damaged by cancer or cancer treatment

methods [4], [5].

During tumor removal surgery, some tissues surrounding the tumor are removed

by a surgeon as a margin. These margins are categorized into two margins; i.e.

clean margin and positive margin. Clean margin is the margin that does not

contain any cancerous cells. This margin indicates that all cancerous cells are

removed. Positive margin is the margin containing cancer cells. These cancerous

cells in positive margin can be removed by additional surgery or other conven-

tional treatment methods [4].

Advances in imaging techniques such as ultrasound (sonography), Computed

Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, and Positron

Emission Tomography (PET) scans enable surgeons to have a detail understand-

ing of the type, location and size of a tumor. These imaging modules help surgeons

to conduct surgeries with high precision. Among these imaging techniques, CT

scans and ultrasound are used to guide biopsy needles into tumors [8].

In addition, advancement of medical devices utilized in fiberoptic technology,

endoscopy and other special surgical instruments facilitate minimal opening of a

skin during the surgery. This minimal incision for surgery reduces the recovery

time and complications. Fiberoptics are usually used for abdomen (laparoscopic)

surgery or chest (thorascopic) surgery. Endoscope is used to remove tumors in
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colon, esophagus or bladder cancers [8].

There are currently even less invasive ways of destroying tumors inside the body

and removing them. Cryosurgery (cryotherapy or cryoablation) freezes the tumor

with liquid nitrogen spray. This method is mainly used to kill abdominal cancer

cells. Laser is another technology used for cutting through tissue (instead of a

scalpel) or vaporizing (burn or destroy) tumors. This method is used for cervix,

larynx, liver, rectum, skin and other organs. Apart from laser, radio frequency

ablation is used to kill cancer cells by heating cells with radio waves through the

antenna placed in a tumor [8].

Utilization of the above mentioned advanced medical instruments and tech-

niques reduces the side effect of cancer surgery but it does not completely elimi-

nate it. Issues associated with cancer surgery include the following [5]:

− Damaging or deforming organs or part of the body;

− Blood loss or clots;

− Allergic or adverse reaction to medicines;

− After surgery pain and discomfort;

− Infections from surgical procedure;

− Other illnesses such as pneumonia.
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2.1.2 Radiotherapy

Radiation therapy also known as therapeutic radiology or radiation oncology

utilizes high energy waves or particles to combat disease. In radiotherapy for

cancer treatment, high energy is delivered to the area of the body affected by

cancer. It is evident that certain levels of radiation work to destroy cancer cells

and prevent normal and cancer cells from growing and dividing. Radiotherapy

usually utilizes X−rays (a form or subset of ionizing radiation) to kill cancer cells

and stop their growth and division. These radiations damage DNA and other

structural aspects of cancer cells. This damage either kills the cells immediately

or weaken them to the degree that they cannot be reproduced [4]. Cancer cells

radiated with this high energy beam are less able to recover and repair themselves

compared to normal cells.

In late 19th century, a German physicist, Wilhelm Conrad Roentgen, discovered

a new kind of ray named as “X-ray”. Four years later, he was awarded the

Nobel Prize in physics for this discovery. Within months, X-ray was utilized as

a diagnostic tool (X-rays) and a few years after that its therapeutic effects for

cancer treatment (radiotherapy) was proposed [6, 8]. Initially, radiation therapy

was performed with low-voltage diagnosis machine using radium.

Interestingly, in early 20th century, it was discovered that radiation could cause

cancer development. It was also discovered that cure of cancer depends on the
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strength of radiation emitted by the radiotherapy machines. In those days, many

radiologists used the skin of their arms to obtain pink reaction or “erythema

dose” for the proper daily dose of radiation for patients. There is no surprise

that many of them developed leukemia later on [8]. With advancements in tech-

nology, more complex and precise radiation machines were developed. Nowadays,

advanced radiotherapy machines expose cancer affected areas with a very high

precision beam, which lead to reduction of side-effects of radiatheraoy on normal

surrounding tissues.

Advancements in molecular biology enabled development of more complicated

treatment protocols and integration of radiation treatment with surgery or chemother-

apy. Some types of cancers are cured completely by using radiotherapy alone,

but some others require a combination treatment of radiotherapy with surgery

or chemotherapy for a more effective healing response. In recent years, about 50

percent of recently diagnosed cancer patients benefited from these treatment pro-

tocols. About 40 to 60 percent of all cancer patients, whether they have primary

or advanced cancer, use radiotherapy as part of their treatment plans. Radiother-

apy is also used to control cancer by stopping cancer from spreading, when cure is

not possible or to relieve symptoms of cancer to reduce pain and prolong patients

life expectancy [5, 38]. There are two main broad categories of radiotherapy ra-

diation: external radiation (external beam radiotherapy or EBRT) and internal

radiation (brachytherapy, implant radiation).
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External therapy uses X-ray (photon), cobalt irradiation, electrons, and rarely

other particles such as protons. External radiation is delivered through a machine

called linear accelerator, which directs the radiation beam to the tumor site with

a minimum damage to the surrounding normal tissues. External radiotherapy

is the preferred method of treatment for most types of cancers including brain,

head and neck cancers, larynx, breast, lung, cervix, bladder, prostate, vagina and

rectum cancers [6,8]. In external radiotherapy, different machines are utilized with

different characteristics and techniques for delivering high beam radiation. The

two major types of radiation beams are photons (X-ray) and electrons. Electrons

have shorter wavelengths and can generally penetrate a tissue to a certain depth.

The choice of using photons or electrons mainly depends on the location of a

tumor inside the body. In addition, protons beam causes a little damage to

organs and tissues when passing through but it is very effective in killing cells at

the end of its path [5, 8].

− Conformal Radiation Therapy (CRT) uses CT images and special

computers to map the location of tumor sites precisely in three dimensions.

It is particularly useful for conducting radiotherapy on tumors near vital

organs that are sensitive to medical radiation effects.

− Intensity-Modulated Radiation Therapy (IMRT) works similar to

CRT in locating tumors in 3D space. However, in IMRT, photons beams

are delivered in different directions. Conformal protons beam radiation
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therapy uses a similar approach to IMRT, but instead of using X-ray, this

radiation technique utilizes protons beams. It is especially useful in prostate

and head and neck cancers.

− Stereotactic radiation therapy or radiosurgery is a radiotherapy tech-

nique delivering large precise radiation dose to a small tumor. Unlike what

its name is suggesting, no incision is made for this technique. The beam

is delivered through a especially designed linear accelerator called Gamma

Knife or CyberKnife. Its main application is for therapy of brain tumor.

Internal radiation is another type of medical radiation radiotherapy. These

types of radiotherapy techniques are used to conduct medical radiation for inter-

nal organs and tissues that are hard to reach by usual external radiation tech-

niques due to tissue penetration limits. In this technique, medical radiation

dosage is delivered orally as a pill or liquid absorbed by cancer cells or by placing

radioactive implant inside, or close to, the tumor through an intravenously (IV)

or catheter. In some types of internal radiation techniques, chemical modifiers are

used before the external radiation. Chemical modifiers are substances prompt-

ing cancer cells to develop agents that make tumors more sensitive to medical

radiation. This method protects normal cells from absorbing radiation [4, 5, 38].

Two main internal radiation methods are intraoperative radiation ther-

apy (IORT) and chemical modifiers or radiosensitizers. IORT is a form
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of treatment that delivers radiation in the middle of surgery. In this approach,

higher radiation beam is given directly to tumors or to their nearby tissues after

removing the cancer to prevent cancer reoccurrence. This method is very com-

mon in abdominal or pelvic cancers and minimizes the amount of normal tissues

exposed to the radiotherapy [4, 6].

Brachytherapy is another internal radiation therapy commonly used to treat

localized tumors by implanting radioactive device inside a body cavity. This

method is mainly used for treatment of bronchus, cervix and vagina cancer. In

other cases, radioactive “seeds” are placed into the tumor through needles and

these radioactive seeds lose their radioactivity within a short period of time [5].

This method is mainly used for prostate, breast, head and neck cancers. Since it

is placed inside the body close to the tumor, it is a very effective treatment with

less side effects that EBRT [4,38].

However, as was mentioned above, radiotherapy methods not only kill or dam-

age cancer cells but also they damage or kill the surrounding normal tissues.

These cancer radiotherapy methods lead to short-term and long-term side effects.

Depending on the area treated with radiotherapy, some potential side effects are

mentioned below:

− Fatigue

− Hair loss can be permanent if radiation is for head or neck cancer



2.1 Conventional Treatment Methods 40

− Nausea, vomiting, abdominal pain

− Eating disorder and loss of appetite

− Mouth ulcers, gum destruction

− Skin irritation, dry skin and photo sensitivity

− Constipation, diarrhea

− Decrease in blood cell counts

− Abdominal or bladder pain

− Swelling

− Infertility

− cough or shortness of breath

2.1.3 Chemotherapy

Chemotherapy is one of the most common treatment methods prescribed by on-

cologist to combat cancer. It is a drug-based treatment method used to slow down

or stop the growth of cancer cells. Depending on the type of cancer, patient’s

health condition and other prescription drugs taken, there is a large number of

different chemotherapy drugs. This treatment is usually given in the form of

injection into the muscle or fat tissue, drip (intravenous (IV) infusion) into the
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bloodstream through a vein, topically (applied to the skin), directly into a body

cavity or sometimes even in the form of tablets or capsules [38], [4].

The idea of using chemical drugs for cancer treatment started during World War

II. At that time, changes of bone marrow cells into blood cells were reported for

naval personnel who were exposed to mustard gas during military action. Simul-

taneously, US Army was studying a number of chemicals aiming at developing

more effective agents and as a protective measure. One of the chemicals studied

for that purpose is called nitrogen mustard. It demonstrated to work effectively

against lymphoma cancer [8]. This discovery led to the development of a series of

more effective agents (called alkylating agents) that have therapeutic effects on

cancer. They damage DNA of rapidly growing cancer cells. Soon after, Sidney

Farber of Boston demonstrated that nitrogen mustard has therapeutic effects on

children with acute leukemia. Further investigation of the biological processes led

to therapeutic effects revealed that aminopterin produced by this chemical blocks

a critical chemical reaction needed for DNA replication. This chemical is the pre-

decessor of today’s drug used for cancer treatment, methotrexate. The discovery

of drug that can block cell functions led to the beginning of chemotherapy era [8].

From 1956, when the first tumor, called choriocarcinoma, was treated by methotrex-

ate, chemotherapy became one of the main cancer treatment method. Till date,

different groups of drugs have been developed and used in different ways to fight

cancer cells [6]. To optimize their efficiency for cancer treatment, chemotherapy
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may be used alone for some type of cancer or in combination with other treatment

methods such as surgery or radiotherapy [5]. When chemotherapy is received be-

fore surgery or radiotherapy to shrink the tumor before chemotherapy, it is called

neo-adjuvant chemotherapy [8]. Patients may receive post-operative or adjuvant

chemotherapy after surgery to eliminate undetected cancer cells and to decrease

the chance of reoccurrence [4]. These different methods of using chemotherapy

result in complete or partial remission of cancer for many types of cancers.

Chemotherapy drugs have the common ability of damaging cells as they grow or

divide by damaging the genes inside the nucleus of cells. Different chemotherapy

drugs damage cells at different stages of cell division. Some drugs damage cells

at the point of splitting, while some others destroy cells when they are making

copies before splitting. These drugs can be categorizes as following [4]:

− Alkalyting- agents bind to DNA in the cell to prevent cell division.

− Antimetabolites- replace nutrients needed for DNA replication with an

inactive substances.

− Antitumor antibiotics- interfere with DNA structure and prevent DNA

from uncoiling.

− Hormonal drugs- suppress hormone processes required for cell growth.

− Plant alkaloids- interfere with internal cell structures aiming to prevent
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cell division.

From the mechanisms of actions of chemotherapy drugs, it can be deducted that

chemotherapy interrupts chemical processes involved in normal and abnormal cell

division. Thus, chemotherapy drugs kill not only cancer cells but also normal cells

that are constantly growing and dividing such as skin, bone marrow producing

blood cells, hair follicles and lining of digestive system continuously renewing

themselves [6]. Thus, a variety of mild to severe short-term and long-term side

effects from chemotherapy drugs on individuals are inevitable. Depending on the

types of drugs used for the treatment, some of the following immediate and early

side effects can be seen [4, 38]:

− Allergic reaction

− Flu-like symptoms

− Nausea, vomiting, abdominal pain, dizziness

− Pain or swelling at the injection site

− Red/orange color urine

− Bone and joint pain

− Loss of appetite and changes in sense of smell and taste

− Mouth ulcers
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− Skin rashes, dry skin and photo sensitivity

− Constipation, diarrhea

− Decrease in red blood cell counts

− Increase risk of infection and bleeding

− Numbness and tingling feeling in fingers and toes.

To date, the known long-term side effects of chemotherapy are listed below

[5,38]:

− Hair loss (reversible)

− Secondary malignancies (rare)

− Early menopausal symptoms and infertility impairment

− Weakness and fatigue

− Liver, lung, kidney, bladder and heart damage

− Seizure

Among presented above conventional cancer treatment methods, surgery is con-

sidered the most effective and leading method for a variety of cancers. Although

chemotherapy and radiation are less invasive therapies, there are well known com-

plications and severe long-term side-effects associated with these therapies. These
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draw backs of existing cancer therapies prompted cancer researchers to look for

new approaches and methods for cancer therapy that are more cost-effective with

less severe side-effects and better healing effect [8].

2.2 Complementary and Alternative Methods

(CAM)

Complementary and Alternative Methods are two different approaches used in

cancer treatment. However, these two approaches are generally classified in one

category since they are not considered as conventional methods. Complemen-

tary treatments are used concurrently with mainstream conventional treatment

methods, while alternative treatment methods are used instead of the conven-

tional treatment. Generally speaking, complementary methods do not aim to

induce healing effects. They are mainly concerned with patients’ sense of well-

being by uplifting general or mental health of patients [6]. In addition, these

cancer treatment methods help to relieve pain and symptoms of cancer, or side

effects of cancer treatment. In the past, complementary treatment was referred to

as supportive care. Examples of complementary therapies include acupuncture,

aromatherapy, herbal medicine, massage therapy, meditation and yoga [8].

On the other hand, alternative methods are complete systems of theory and

practice developed separately from and/or in parallel with the conventional treat-

ments [39]. These methods claim to induce therapeutic effects on cancer, even
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though they are not scientifically approved yet either due to a long process of

testing or lack of clinical or theoretical support. Examples of these treatment

methods include naturopathy, immune therapy, homeopathy, chinese herbs and

megavitamins. Homeopathic and naturopathic treatments are developed in West-

ern culture, while Chinese medicine and Ayurveda are based on Eastern religious

beliefs [39].

2.3 Interventional Treatment Method

Although some types of cancers are clinically managed quite effectively with con-

ventional methods, the most invasive and common cancers such as breast, lung

and melanoma cancers are not handled efficiently with these conventional meth-

ods [40]. Some other cancer types, such as prostate cancer, are resistant to the

conventional methods [41,42]. These treatment methods are used cautiously due

to their long-term and short-term significant side effects. Excessive use of conven-

tional methods may result in deterioration of patient’s health considerably and

cause secondary severe health conditions [8]. With progress in cancer research

and new knowledge of cancer development and progression, new therapies are

being developed that target specific tumor cells or inhibit their growth. These

new promising methods on their own or in combination with the conventional

methods are reported to either reduce the size of tumors or alleviate their symp-

toms [4]. Some of these new treatment methods are laser therapy, electromagnetic
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radiation (EMR), photodynamic therapy (PDT), cryotherapy and hyperthermia.

Most of these treatment methods are a form of radiation. A brief description of

these method along with its therapeutic applications are presented in this section.

2.3.1 Electromagnetic Field (EMF) and Electromagnetic
Radiation (EMR)

According to definition, Electromagnetic Field (EMF) is a physical field pro-

duced by charged objects. Electromagnetic field is generated from the interac-

tion of electric field produced by stationery charged particles and the magnetic

field produced by moving charged particles. The interaction between electromag-

netic field, charges and currents are defined by Lorentz force law and Maxwell’s

equations shown in Table 2.1 and Equation (2.1).

F = q(E + v ×B) (2.1)

where the force

F

enforce on a particle of electric charge

q

with instantaneous velocity

v

.

E
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Name Integral equations Differential equations

Gauss’s law
v

∂ΩE · dS = 1
ε0

t
Ω
ρ dV ∇ · E = ρ

ε0

Gauss’s law for mag-
netism

v
∂ΩB · dS = 0 ∇ ·B = 0

Maxwell-Faraday
equation (Faraday’s
law of induction)

∮
∂Σ

E · d` = − d
dt

s
Σ

B · dS∇× E = −∂B
∂t

Ampére’s circuital law
(with Maxwell’s cor-
rection)

∮
∂Σ

B · d` = µ0

s
Σ

(
J + ε0

∂E
∂t

)
· dS ∇×B = µ0

(
J + ε0

∂E
∂t

)
Table 2.1: Maxwell’s Equation

is electric field,

B

is magnetic field.

The main difference between these two concepts is the fact that electromagnetic

radiation is the wave propagation of energy through the space. Electromagnetic

Radiation (EMR) is a particular form of the more general electromagnetic field,

where a form of energy emitted and absorbed by charged particles as it travel

through the space in wave form. EMR is associated with electromagnetic field

that moves away from its source. EMR has both electric and magnetic field com-

ponents oscillating with 90o degree phase difference from each other perpendicular

to the direction of wave propagation or energy.
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2.3.2 Electromagnetic Spectrum

Electromagnetic Radiation is a type of energy transmitted in the form of waves.

These waves correspond to spatial and time variations of the electric and magnetic

field. Electromagnetic fields are divided into different categories (called spectra)

depending on their frequency (measured in cycles per second (Hertz)), wavelength

(measured in meters), and certain characteristics and applications that each di-

vision has. The electromagnetic spectrum is generally divided into 7 broad cate-

gories of Radio, Microwave, Infrared, Visible, Ultraviolet, X-ray, Gamma ray [43].

Some of these classifications are further divided into subcategories as shown in

Table 2.1.

Electromagnetic radiation is described as a stream of mass-less particles called

photons. Each photon has a certain energy level and is traveling in a wave-like

pattern at the speed of light in vacuum (3×108). The energy level of each type of

photon is defined through oscillation rate in Hertz. Rate of oscillation is inversely

proportional to the distance each photon travels in meters. Higher photon energy

means higher frequency of oscillation and shorter wavelength. Thus, radio waves

contain photons with the lowest energy level, while Gamma rays have the highest

energy level in the spectrum [44].

Radio waves are generally used by radio stations for broadcasting and in space

emitting by stars and gases [43]. These radio wave radiations have long been sus-



2.3 Interventional Treatment Method 50

Category Frequency (Hz) Wavelength (m)

ELF (Extremely Low Fre-
quency)

3− 30 1× 108-1× 107

Long Wave SLF (Super Low Frequency) 30− 300 1× 107 - 1× 106

ULF (Ultra Low Frequency) 300− 3× 103 1× 106-1× 105

VLF (Very Low Frequency) 3× 103 − 3× 104 1× 105-1× 104

LF (Low Frequency) or Long
Wave (LW)

3× 104 − 3× 105 1× 104-1× 103

RadioWave MF (Medium Frequency) or
Medium Wave (MW)

3× 105 − 3× 106 1× 103-1× 102

HF (High Frequency) or Short
Wave (SW)

3× 106 − 3× 107 1× 102-1× 101

VHF (Very High Frequency) 3× 107 − 3× 108 1× 101- 1
UHF (Ultra High Frequency) 3× 108 − 3× 109 1 - 1× 10−1

Microwave SHF (Super High Frequency) 3× 109 − 3× 1010 1× 10−1-1× 10−2

EHF (Extremely High Fre-
quency)

3× 1010 − 3× 1011 1× 10−2-1× 10−3

Far Infrared 3× 1011 − 3× 1012 1× 10−3 − 1× 10−4

Infrared Mid Infrared 3× 1012 − 3× 1013 1× 10−4 − 1× 10−5

Near Infrared 3× 1013 − 3× 1014 7× 10−5 − 1× 10−6

Visible red, orange, yellow, green,
blue, violet

3× 1014 − 7.5× 1014 4× 10−9 − 7× 10−7

Ultraviolet 7.5× 1014 − 3× 1016 1× 10−7 − 4× 10−7

X rays 3× 1016 − 5× 1019 1× 10−11 − 1× 10−8

Gamma rays 5× 1019 − 3× 1020 > 3× 1019

Cosmic rays 3× 1020 − 3× 1022 1× 10−10-1× 10−12

Table 2.2: Approximate wavelength, frequency of each region of the electromag-
netic spectrum [43].
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pected and tested for their negative effects on biological system, while a number

of other number studies investigate their healing effects [45,46].

Microwave radiation is used by astronauts to learn about the structure of galax-

ies in their vicinity. Microwave radiation is used in bioelectromagnetic radiation

for therapeutic applications. [47] investigates the biological effects of microwaves

for extremely high frequency range [millimeter waves (MMWs)] at non-thermal

power intensities on Escherichia coli (E. coli) cells and rat thymocytes. The

findings of this experimental work demonstrate interaction of microwaves with

cell-to-cell communication. This study uses low intensity linear, right and left

polarized waves in the frequency range of 30-300 GHz with two different cell den-

sities of 4×107 and 4×108. This in vitro study reveals several factors contributing

to the effects of low intensity microwaves on the chromatin conformation in cells.

These factors are frequency dependencies of resonance type, dependence of the

resonance effects on polarization, “window” dependence of Power Density (PD),

narrowing of the resonances, and rearrangement of action spectra frequency with

decrease in the PD. In addition, this study shows that at the cellular level certain

parameters affect the final result. These parameters are the genotype of E. coli

cells, the growth stage of the bacteria culture, the cell density, static magnetic

field during exposure, and the time interval between exposure and start of analy-

sis process. Depending on the affecting parameter, MMWs inhibits or stimulates

the growth functions [47].



2.3 Interventional Treatment Method 52

Infrared waves have long been utilized in night vision goggles to pick the heat

wave emitted from objects. In space, they are used to map the dust between

stars. Due to its nature, this range of waves is considered the safest range for hu-

man body. Thus, it is considered as an interesting range for various therapeutic

applications [44]. This range of electromagnetic radiation is further subdivided

into three ranges of Near Infrared (760nm - 1500nm), Mid Infrared (1500nm -

4000nm), Far Infrared (4000nm - 106nm). In fact, this research project inves-

tigates the applicability of this radiation range as an alternative treatment for

cancer. This range is discussed extensively in later sections.

The most well-known visible light in the space is the light emitted from the

stars in the sky. Visible light is detectable by human eye so it has been utilized

extensively in day-to-day life of everyone as a source of light, alarm systems and

etc. Visible light consists of all rainbow colors (in the range of 400nm to 700nm)

violet, blue, green, yellow, orange and red.

Due to its visibility to human eye, this range of light is used by early medical

science for treatment of different medical conditions [49]. The effects of in vitro

radiation of light on cancer and normal cells is investigated here for comparing

the effects of the proposed far infrared irradiation range and other ranges.

The most well-known ultraviolet radiation is emitted from the Sun. These rays

are mainly famous for skin tans and burns which is proven to have harmful effect
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Figure 2.1: Visible light range [48]

on human skins. The known harmful effects of these waves are related to skin

cancer and premature skin aging.

X-rays have very high frequency range and low wavelength which enable these

rays to pass through the objects. Thus, they are mainly used in medical imaging

of teeth and body parts. They are also used for security purposes in scanning

bodies or objects.

Gamma rays have the highest photon energy implying that they travel the

shortest distance of all rays in the spectrum. Thus, Gamma rays characteristics

make deep tissue imaging a possible reality.

Due to the higher energy level of Gamma and X-rays, they are used in two forms

of ionizing and non-ionizing radiation. Ionizing radiation is when light particles

carry enough energy to liberate an electron from a molecule or atom. Gamma
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and X-rays and some of UV are ionising radiation because the photon energy

is high enough to remove electrons from atoms. Non-ionising radiation would

be anything with hν of less than 14eV. These ionising radiations have various

application in medical imaging.

2.3.3 Electromagnetic Field (EMF) Therapy

Bioelectromagnetics is the term used to describe interaction of non-ionizing elec-

tromagnetic fields with biological systems. There are a number of studies demon-

strating that low level electromagnetic fields induce non-thermal therapeutic

effects. For instance, [50] reports of non-thermal biological effects of electro-

magnetic field exposures in microwave frequencies. Pulsed electromagnetic field

(PEMF) has gained popularity as a therapeutic agent over the last forty years,

following the promising evidence that electric currents accelerate bone forma-

tion [51, 52]. Electromagnetic field is used in two different ways for therapeutic

purposes. The first therapeutic application of PEMF is on high frequencies which

the opposite side of low frequencies in magnetic spectrum. High rate of changes

in PEMF induce significant biological currents in tissue. This induced current

leads to a greater biological effect depending on the magnitude of the induced

current. However, the high frequency nature of this field induces heat effect in

biological organisms [51,53].

The second and the most popular therapeutic application of PEMF is extremely
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low frequency (ELF) which is at low end of electromagnetic spectrum from 0 Hz

up to 300 Hz. [54] investigates the underlying electrical properties of tissues, cell

membranes from ELF wavelength range in microwave range and in sinusoidal

waveform. This work discusses and evaluates the possible mechanism for ther-

mal and non-thermal weak interaction between the induced energy and tissues.

Authors concluded that slow rate of changes in ELF do not induce any biological

current in the tissue. PEMF at extremely low frequency fields are either inducing

no significant heating to the tissue or thermal effect is in the range of naturally

occurring thermal fluctuation in tissue [55].

PEMF stimulation gained credibility as a therapy following the observation that

physical stress on bones induces small electric current enhancing bone formation.

In this process, electrical stimulation of chondrocytes promotes the synthesis

of proteogylcans, the major component of cartilage matrix. The experimental

therapies for extremely low frequency are emerged in recent years for a variety

of medical conditions such as non-union bone fractures [56, 57], joint disorder,

skin ulcers [58], migraines [59], degenerative nerves [60], pelvic pain, neurological

disorders and etc. [51].

While majority of ELF sources of electromagnetic field stimulation are sinu-

soidal waveforms, they can have various shapes such as asymmetric, biphasic, and

quasi-rectangular or quasi-triangular [51,61]. It is established that specific types

of low-level electromagnetic fields induce specific biological functions depending
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on wave magnitude, frequency, and form of the field [51, 55]. For instance, in

1979, the United States Food and Drug Administration (FDA) approved the use

of quasi-rectangular and quasi-triangular waveforms as efficient forms of treat-

ment for disorders associated with fractures [62]. Moreover, it has been estab-

lished that intermittent use of PEMF provides better outcome that its continuous

use [63–65].

In some studies, ELF-EMF exposure is associated with carcinogenesis [66], while

more recent studies shows that ELF-EMF induces therapeutic effect on cancer

tumors. One of the more recent experiment published in 2011 [67] demonstrates

that ELF-EMF induces positive effect on enhancement of immune system to fight

against cancer. The patients in this clinical work were exposed to low intensity

coherent electromagnetic fields for 8 hours per day and 6 days a week for 4

weeks. The results from this human trial study show that the coherent exposures

of electromagnetic field on end-stage cancer patients result in significant increase

of cancer cytotoxicity in all treated patients [67].

Recently, in vivo animal study [68] investigated the hypothesis of using ELF-

EMF as an anti-proliferation method for treatment of cancer cells. Among all

experiments using ELF-EMF, there are a number of research studies dedicated

to the effects of various field strengths measured in Tesla and different frequency

of time varying magnetic field on cancer [69–71]. [72] presents a thorough study

of therapeutic effects and analysis of amplitude modulations as well as tumor
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corresponding frequencies ranging from 0.1 Hz to 114 KHz of electromagnetic

field exposures on thyroid, lung, pancreatic and leiomyosarcoma cancers. The

authors concluded that cancer-related frequencies appear to be tumor specific

and they observed better treatment outcome for advanced cancer patients.

The effect of this electromagnetic exposure at cellular level is also investigated

in several other publications such as [73]. In this work enhancement of p53

inhibitor as a result of LF-EMF exposure is explored. Furthermore, [74] demon-

strates therapeutic changes in cell cycle kinetics and G1 phase protein resulted

from low frequency electromagnetic field radiation. In addition, in vitro experi-

ments in [75] report that exposures by ELF-EMF on BEL-7402 cell line induced

therapeutic effects. In [76], the effect of both time varying and static magnetic

field is reported to enhance apoptosis and tumor growth inhibitors. Authors used

1mT of electromagnetic field with Extremely Low Frequency (ELF) at 50Hz used

on MCF7 cells and MRC-5 lung fibroblast.

Furthermore, a recent paper [77] reported the findings of a clinical study where

very low levels of amptitude-modulated electromagnetic fields induce therapeutic

responses in cancer patients. The study is conducted on advanced hepatocellular

carcinoma (HCC). In their approach, HCC is exposed to 27.12 MHz electromag-

netic field using in vivo exposure system. In addition, breast cancer cells are

exposed to tumor-specific modulation frequencies with in the same 100Hz-21kHz

range as cancer-specific frequencies. Their tumor-specific modulation frequen-
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cies are obtained by biofeedback method. This clinical study confirmed a sig-

nificant reduction in HCC and breast cancer cells proliferation by exposure of

HCC-specific and cancer-specific modulation frequencies, respectively.

2.3.4 Photodynamic Therapy (PDT)

Photodynamic therapy, photoradiation therapy or photochemotherapy are all dif-

ferent names for a method that is used as an experimental treatment method for

some types of cancer. PDT is a form of light therapy [78] or phototherapy that

consists of exposure of cancer cells to a specific wavelengths of light in the presence

of an active drug in the target area. In this method, a special drug, called pho-

tosensitizing agent, is used to make cancer cells sensitive to a specific wavelength

of external light.

When a photosensitizing drug is exposed at a particular wavelength, it reacts

and produces a form of oxygen that kills nearby cells [79–81]. These photosen-

sitizer agents that are concentrated in cancer cell absorb the light and destroy

a tumor through production of a form of oxygen resulting from the agents’ ac-

tivation [8]. Each photosensitizer is activated by a light exposure at the specific

wavelength [81,82]. Thus, activation wavelengths determine the penetration dis-

tance that each light source travels into the body [81,83].

Photosensitizer agent is injected into the bloodstream or, in case of non-melanoma
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skin cancer, is applied on the skin as a cream. The photosensitizer agent is ab-

sorbed by all cells in the body but stays longer in cancer cells than normal cells.

After that (24 hours to 72 hours after the injection), when the drug is removed

from normal cells but is still active in cancer cells, the tumor is exposed for about

45 minutes to a specific wavelength of light that activates the drug [79]. The

time intervals between the drug injection and light exposures is called drug-to-

light interval, which depends on the type of a drug used. PDT can not only be

used directly to destroy cancer cells but also it can be used to shrink or destroy

tumors by activating immune system to attack cancer cells and by damaging the

blood vessels in the tumor, which blocks the supply of nutrient [79–82].

The light source used in PDT is mainly generated by laser or Light Emitting

Diodes (LEDs) [80, 83]. The laser light can be directed to the tumor site(s)

through fiber optic cables, when internal organs are affected by cancer (lung or

esophagus cancer). Argon laser is used in PDT as it penetrates for about an

inch through the tissues without damaging them [5]. LEDs are usually used for

surface tumors such as skin cancer.

A clinical report published in 2010 [84] provided a significant incentive for ap-

plication of LEDs in PDT cancer treatment. This study was a clinical research

conducted on a patient with nevoid basal cell carcinoma syndrome (NBCCSI),

a genetic disorder characterized by multiple basal cell carcinomas (BCCs) along

with skeletal abnormalities. Patients were treated with PDT using blue light
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(approx. 475nm) radiation and 20% e-aminolevulinc acid.

In [85], non-melanoma skin cancer cell lines such as basal cell carcinoma (BCC)

and squamous cell carcinoma (SCC) were irradiated by light (LED) at five dif-

ferent wavelengths of 460, 525, 630, 730 and 850 nm. Each LED had a spectral

bandwidth of 10-15 half width, half maximum (HWHM). These LEDs were se-

lected from the visible and near infrared light range in order to quantify their ex-

posure effects on the concentration of oxygenated and deoxygenated hemoglobin.

In this study, the light sources were computer controlled and the exposure sys-

tem was designed to illuminate 40.5mm× 30mm area of tissue [85]. In addition,

an image acquisition technique was incorporated to quantitatively measure and

monitor a tissue oxygenation supply. This system was applied in the preliminary

clinical study of nine skin cancer lesions [85]. It was observed that for super-

ficial BCC and SCC in vivo measurements, there were significant spatial and

inter-subject variations. Volume maps demonstrated three times greater con-

centration of hemoglobin in the lession than in a normal tissue by visible light

irradiation at the wavelengths of 460, 525, and 630nm targeting tissue volume

penetration within approximately 1 mm in tissue. Specifically, the findings dis-

cussed in this paper provide spatially resolved insight into light penetration in

tissue and oxygenation. Therefore, this approach provides a more quantitative

and controlled dosimetry specific to the lesion. The authors conclude that the

developed methodology has a potential to positively improve treatment outcomes
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by optimizing the execution of PDT for its various intensities and duration.

Furthermore, there is a number of photosensitizer agents approved by U.S.

Food and Drug Administration (FDA) to be used in PDT. These are porfimer

sodium (Photofrin), Aminolevulinic acid (ALA or Levulan), and Methy ester of

ALA (Metvixia cream) [8]. To date, PDT is approved to be used for the fol-

lowing cancers: vocal cord, cervical, skin (non-melanoma), lung, head and neck,

vaginal, vulva, penile, and esophageal cancers [5, 86, 87]. Concurrently, PDT is

a progressive research area where a number of research and clinical studies are

underway to apply PDT for brain, prostate, tonsil, pancreatic, mouth, gallblad-

der, bladder and peritoneal cavity cancers [86–88]. Simultaneously, there is a

strong focus on development of a more effective light source and photosensitizer

agents [79–81,83,87,89].

However, penetration of the light used in PDT is limited by the wavelength,

which makes PDT applicable for certain types of cancers [90]. This technique

is used to treat cancers on the lining of internal organs or cavities such as head

and neck area, oesophagus or bronchus [6]. In addition, PDT is not efficient

for treatment of large tumors because the light cannot penetrate deep into the

tumor [80,81,91]. Moreover, it is not effective in advanced stages of cancer, where

tumors is spread to different parts of the body [92].

Implementation of this treatment method usually does not require hospitaliza-
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tion and is performed as an outpatient procedure [91]. To increase its efficiency,

PDT is used in conjunction with other methods such as chemotherapy, radio-

therapy and surgery. PDT provides less invasive treatment option compared to

other treatment methods. There is no known long-term side effect associated

with PDT. However, its short-term side effects are well known and presented

here [8, 92]:

− Photosensitivity reactions for up to 6 weeks;

− Skin changes;

− Swelling and burn of nearby healthy tissue;

− Allergic reaction.

2.3.5 Hyperthermia Therapy

Hyperthermia or heat therapy is another method used for cancer treatment [93,

94]. Therapeutic heating effect in hyperthermia is induced by different forms of

radiations (electromagnetic fields), by placing patients in a strong magnetic field,

and by planting electrodes to transfer heat via perfusion process. According to

the National Cancer Institute (NCI), hyperthermia helps to shrink the size of

tumors by damaging cells due to excessive induced heat or by depriving cells

from their vital nutritions [5]. Hyperthermia is applied in three different ways:

local, regional and whole body hyperthermia (depending on the spread of disease).
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However, the aim of this project is not to induce any heating effect. This project

aims to test the hypothesis that a specific range of far infrared wavelengths can

induce therapeutic effects on cancer cells. Thus, extra measures are taken into

consideration to remove any heat effect on cancer cells being exposed to low level

infrared radiation in the range of 3500nm to 6500nm.

2.3.6 Light Therapy

Light, a sub set of electromagnetic radiation, in the form of both artificial and

natural light, is utilized for different medical applications. Hippocrates, founder

of bioelectromagnetism, prescribed sun exposures for breast cancer in ancient

Greece [61]. The concept of using light for medical purposes is a centuries-old

concept. This concept was employed in ancient Egypt, Greece, China and India.

This old therapy method was used historically by Egyptians as solar therapy.

In their healing practices, direct sunlight was utilized. Avicenna used light for

healing diseases as well as a diagnostics tool for different physical conditions of

patients [95].

Two thousand years after its first usage by Hippocrates, Luigi Galvani tried

to treat tumors, aneurisms and hemorrhages by applying electricity to the af-

fected tissues [95]. Even in 1840, Pravaz and Recamier demonstrated a method

for killing cancer cells in uterus by using electricity [95]. However, in the nine-

teenth century, the focus of science shifted toward the matter rather than energy
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which resulted in advancement of medical applications in surgery and antisep-

tic. Interest in healing using light radiation sources declined in the nineteenth

century.

In 20th century, research discoveries in light and chromotherapy changed the

perception of scientific society toward the use of light for medical purposes. One of

these discoveries was in 1951, when Takkata studied the effects of direct sunlight

exposures on menstrual cycles [95]. This idea gradually attracted more interest

and attention, when more experimental results corroborated the fact that light

radiation induces changes in the biological processes of human body. Although

the basis of such effects was not well perceived until recently, the experimental

results were showing biological effects to occure upon light exposures.

In later nineteenth and early twentieth centuries, EMR in the form of electricity

current or light exposure was used as a common practice for simple and compli-

cated medical conditions. For instance, sun exposure was a common prescription

for different medical conditions such as seasonal disorder. In fact, during World

War II, sun rooms were built in hospital for treatment of such disorder [61]. In

1904, Nils Finsen won the Nobel prize for his Ultraviolet (UV) therapy [96]. [97] is

a comprehensive review of psychiatric clinical study of light therapy. It presents

the fact that light therapy has long been used as a psychiatric intervention for

seasonal affective disorder (SAD) [98] and sleep disorders [99]. In recent years,

light therapy demonstrates to be able to induce therapeutic effects on a num-
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ber of other illnesses such non-seasonal depression [100], bipolar depression [101],

attention deficit hyperactivity disorder (ADHD) [102], Alzheimer’s disease [103],

parkinson’s disease and dementia [104].

During 1960s, when laser (Light Amplification by Stimulated Emission of Radi-

ation) invented, investigations of EMR side-effects became a hot research topic.

Endre Mester, a scientist at Semmelweis University in Budapest, tried to explore

whether laser exposures lead to cancer by testing the effect of laser exposures on

two groups of mice [105]. The dorsal hair of both groups mice were shaved for

the experiment. Then, one group was exposed to low power ruby laser (694nm)

light, while the other group was not exposed. At the end of the experiments,

no sign of cancer development, as a result of laser exposures, was recorded but

surprisingly the treated group grew the shaved hair quicker than the unexposed

one. This was the first demonstration of “laser biostimulation”. Since then, in

the last fifty years, numerous research projects have been conducted with mainly

coherent (laser) light exposures, while growing interest is recently shifted toward

non-coherent (LED) light applications.

In terms of cancer treatment, light in the forms of laser or LED is used to

provide a non- or less- invasive treatments. Light has medical applications in

two general categories: high intensity and low intensity light. Each category has

therapeutic applications that are very different in their concepts and applications.

High intensity light therapy usually uses a different type of laser beam as its source
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of light. Due to its concentrated form of light, it is a very powerful and precise

tool. These types of lasers are used to remove small tumors as a surgery tool,

to apply heat to tumors to shrink them or as diagnostics tool in cancer. For

instance, one application of laser in cancer therapy is known as laser therapy.

This method utilizes high intensity laser light to shrink or destroy tumors due to

the high energy transferred into and absorbed by a tumor. The major benefit of

laser therapy is the fact that it causes less bleeding and damage to surrounding

tissues. While high intensity or high beam laser therapy is not a new approach

for cancer treatment, the concept of using low intensity light for cancer treatment

is a novel approach that is of interest to this project.

2.3.7 Low Intensity Light Therapy (LILT)

The idea of using light radiation to control biological function has always been fas-

cinating to scientists. This approach is long been implemented in plants research

extensively [106,107]. As an example in [108], authors presented a system, called

a promoter system, that induces a gene promotion by irradiating short pulses of

light. This system is based on red light irradiation that modulate the activities of

two chimeric proteins to select a gene promoter. The authors also demonstrated

that this induced gene promoter is reversed by far-red light exposure. In this

paper, the extent of induction is precisely controlled with the number of photons

delivered to cells by the light pulses.
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To expand the methodology of using LILT in other living organism motivated

researchers to investigate the underlying mechanisms that lead to changes in bi-

ological function of cells. This approach invigorates the possibility of controlling

and using cellular signaling pathways to induce a biological function for therapeu-

tic purposes by programming and engineering biological networks [31, 109–113].

For instance, in [113], the authors utilize the light exposures at the wavelength of

650nm and 750nm to control a cellular behavior. The authors propose the use of a

new genetically encoded light-control system based on reversible protein-protein

interaction from the phytochrome signaling network of Arabidopsis thaliana. It

is also demonstrated that this system can translocate the target proteins pre-

cisely and reversibly to the membrane [113]. This process is used to reshape and

direct the cell morphology of mammalian cells. The outcomes of this research

lead to opportunity of designing diverse light-programmable reagents that en-

able a new generation of perturbative, quantitative experiments in cell biology.

The study [112] provides a modification for the current strategies of stimulating

intracellular signal transduction pathways.

A recent study [31] provides a different strategy and approach to designing new

signaling pathways. The authors explained the molecular mechanism of cell sig-

naling networks in eukaryotes. This paper discusses the possibility of exploiting

cell signaling mechanisms to engineer cells to perform new functions. Although

this study mainly look in cell signaling at molecular level, it is evident that their
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system can be used to induce or precisely control cell signaling for therapeutic

purposes. Subsequently, in [114], the authors utilize the cell mechanism con-

cepts for signaling pathways and demonstrate the frequency dependence of signal

transduction in the osmo-adaptation pathway of Saccharomyces cervisiae. In this

study, a negative feedback is used to infer a concise predictive model.

Side Effects of LILT

As discussed in a number of studies and due to the low intensity nature of LILT

exposures, the energy transferred through these methods of exposures is not high

enough to break the molecular bonds between cells or tissues. According to

[115,116] no detectable temperature rise in the tissue and no macroscopic changes

in the tissue structure were observed by the authors. Furthermore, [117] and [118]

investigated the effect of LLLT for wound healing and pain relief. No changes in

the structures of the tissues are reported by the authors. In [119], the authors

tried to determine the optimum wavelength and power for lipoplasty without

altering macroscopic structure of the tissue.

Low intensity light (laser or LED) therapy (LILT) is widely believed as a benign

treatment modality. Even though this method is not considered to impose any

severe side effects, it is still at its early experimental stages [120–123]. To firmly

confirm that low intensity light exposure does not induce substantial side-effects,

a number of research studies are being dedicated to this cause. For instance, [124]
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thoroughly investigates any possible DNA or protein damage in B14 cells after

low intensity laser irradiation of near infrared range (810nm). This paper could

not establish any cytotoxic or genotoxic effect as result of the exposures. The

authors also showed that LILT exposures do not lead to direct damage in DNA.

Therapeutic Application of LILT

Several recent studies concluded that biological signaling processes correspond to

electrical properties of radiation such as frequency (Hz), intensity of exposure or

exposure power (mW), duration (s), and amplitude modulations [95, 125–129].

Effectiveness of this treatment approach highly depends on their proposed en-

ergy transferred (measured by duration and intensity of exposure) and the wave-

length of light irradiation. Any changes in these two crucial variables (energy

transferred and wavelength) mitigate the therapeutic effect predicted by different

research study [97]. For instance, in [119, 130–135], the authors found that the

optimum therapeutic effect for bio-modulation is observed at the wavelengths be-

tween 630nm and 640nm. Any variation to the wavelengths or total transferred

energy other than their specifically predicted parameters reverses the effect or

results in a negative outcome [136,137].

Research has shown that low intensity (in mW/cm2) of light irradiation induces

therapeutic effects compared to the higher level light radiation [138]. According

to the research result from [138], intensities higher than 1000 mW/cm2 introduce
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heat energy that is not safe for medical applications such as exposure of human

eye. The authors in [138] also describe that different intervals of light in wave-

length range of 600nm to 900nm is known and proven to induce certain therapeu-

tic effect. The importance of this parameter is discussed and demonstrated by a

number of in vitro and in vivo studies in humans [139] and animals [140]. Thus far,

studies have shown that low intensity (less than 100 mW/cm2 range) laser or light

therapy (LILT) is confirmed to have positive effect in pain reduction [141–143],

promotion of wound healing [144–149], tissue repair [150–152], tissue growth and

post-surgical healing [115, 153–155], inflammatory response reduction [156–158].

In addition, LILT is confirmed to induce therapeutic effect on tissue damage pre-

vention and regeneration of diseases in neurology [159], ophthalmology in [160],

cardiology in [161], and otolaryngology in [162], relief of neurogenic pain and

neurological problems and some other medical conditions [138, 163–168]. It has

also received market clearance by FDA for reducing pain for breast augmentation

surgery [169].

Moreover, a very recent study [170] showed that low intensity laser (light) ther-

apy used in fat reduction and lipoplasty to avoid the side effects and risks of

current use of ultrasound and laser lipoplasty method [171–173]. This technique

can be used as a substitute to the current methods by a non-invasive alternative

modality for fat reduction [174]. For instance, in this experiment, the authors con-

firmed that 14mW of 635nm wavelength exposure results in significantly improved
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liposuction procedure. This review study mainly focuses on current research that

have reported on the effect of LLLT for liposuction [115, 153–155], non-invasive

body contouring and fat reduction [175–182], cellulite reduction [175, 176, 180]

and serum cholesterol and triglyceride level reduction [183,184]. The main prin-

ciple of LILT lies beneath the fact that changes in energy state of bio-molecules

by external electromagnetic radiation (EMR) lead to changes in a particular bi-

ological function [185,186]. Although these cellular changes are often difficult to

predict, it is inferred that depending on the intensity level of external EMR as

well as absorption level of such irradiation at cellular level, a particular cellular

effect would be induced.

In [187], a comprehensive overview of therapeutic application of far infrared

radiation is presented. The wavelength range explained in this literature review

is from 5.6 µm to 1000 µfm. This recent study showed that clinical application

of far infra-red therapy as a non-invasive and convenient therapeutic modality

could improve access flow, inflammatory status and survival of the artreiove-

nous fistula (AVF) in hemodialysis (HD) patients through both thermal and

non-thermal effect. The non-thermal effects of far infra-red application were

endothelial-improving, anti-inflammatory, antiproliferative and antioxidative ef-

fect. The authors proposed that the anti-inflamatory effect of FIR therapy is

maximized for 4, 6 and 24 hours of FIR radiation. It is also stated that FIR en-

ergy transfers as 2-3 cm into subcutaneous tissue without irritating or overheating
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effect on skin. The authors recorded the steadily increase in skin temperature to

around 38-39◦C during FIR treatment for 30 to 60 minutes when radiation source

was more than 20cm away from the skin.

Using LED or Laser as a Light Source in LILT

According to an argument presented in [188] by Tiina Karu, a well-known scientist

in LILT, low intensity light/laser radiation conducted with laser, a coherent non-

ionizing form of light, or LED, a non-coherent non-ionizing form of light, induces

the same effects on cells. Although early studies used lasers as the source of light

radiation, it is now believed that non-coherent light emitting diodes [153] are

as effective as coherent laser light [189–191]. Professor Karu in [188] explained

that the characteristic differences of LED, non-coherent light source, and laser,

coherent light source, do not affect their therapeutic outcomes. The authors

demonstrated that wavelength, intensity and duration of low intensity visible

monochromatic light radiations are responsible for induction of therapeutic effects

on biological systems of E. coli, yeast and HeLa, not the type of exposure light

source. These parameters are considered as the most significant elements in

therapeutic effects of light radiation. Following the experimental findings of Karu

[188], a growing number of experiments are being conducted with LEDs instead

of laser [192].

The motivation to use LED for LILT is analyzed and discussed in [170]. The
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authors discuss a number of research studies utilized LEDs rather than laser

for cellulite reduction at red (660nm) and near-infrared (950nm) wavelengths

[153,175,193]. Furthermore, authors in [194] investigate the intra-cellular changes

induced by irradiation of visible and near infrared wavelength light. In this anal-

ysis a series of low intensity LEDs with different wavelengths is used to obtain

the maximal stimulation. The study found that central wavelength of 590nm±14

nm stimulate Cytochrome c oxidase (Cco)/nitric oxide (NO) synthesis at physi-

ological nitrite concentration which exerts beneficial effects on cells and tissues.

In fact, [195] provides a comprehensive review of all known clinical and exper-

imental therapeutic effect of low intensity light therapy for near infrared LED

exposures. This research reported that LED exposures in the far red to near

infrared region of the spectrum (630nm-1000nm) modulated a number cellular

functions including wound healing acceleration, improvement in recovery of heart

injury, attenuation of injured optic nerves. The study reviewed current research

on the use of far red to near infrared wavelength in in vitro and in vivo mod-

els. The authors demonstrated that NIR-LED light stimulates mitochondrial

oxidative metabolism in vitro, while accelerating cell and tissue repair in vivo.

Review of these in vitro and in vivo effects of NIR-LED led to the conclusion

that NIR-LED light exposure is potentially a novel, non-invasive, therapeutic

intervention for a range of diseases linked to mitochondrial dysfunction such as

age-related macular degeneration, Leber’s hereditary optic neuropathy, Parkin-
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son’s and Alzheimer’s disease.

Application of LILT in Cancer Treatment

LILT is increasingly gaining popularity for various medical conditions due to its

non-invasive, non-ionizing and non-thermal effects approach on cells and tissues.

These characteristics of LILT are attracting researchers to apply low intensity

laser or light exposure as an alternative cancer treatment in the last couple of

years. Despite the recent shift in the focus of international oncology research

toward LILT, this topic is not yet reached its adolescence [196] to be qualified as

an approved cancer treatment modality. However, extensive amount of research

is conducted on inter cellular changes and pathways induced by exposure to low

intensity light [49,197–209].

There is a growing number of experiments in the visible and near infrared wave-

lengths range attempting to implement the novel approach of LILT for cancer or

cancer symptoms treatment [85,210–216]. For instance, [210] used low level laser

therapy to stimulate lymphangiogenesis, encourage lymphatic motility, and re-

duce lymphostatic fibrosis for treatment of lymphedema after breast cancer. The

authors observed that low power laser exposure reduced limb volume. However,

the risk of recurrence of cancer or metastasis is not evaluated here.

Study [217] investigates the effects of low level laser therapy on murine melanoma



2.3 Interventional Treatment Method 75

cells, B16F10. The experiments are conducted in vitro and in vivo. The cells for

in vitro investigation were examined 24, 48 and 72 hours post irradiation with

Tripan Blue, MTT and cell quest histogram tests. The results showed that a sig-

nificant increase in the hypodiploid melanoma cells was observed at 72 hours post

irradiation. In the in vivo examinations, the mouse models were irradiated once

every day for three days with laser at frequency of 660nm and intensity of 50mW

laser for 60 seconds and 420 seconds. The volume and histological characteristics

of tumor were examined for possible effects of exposures. The treatment with

longer duration of irradiation (420s) demonstrated significant increase in tumor

volume, blood vessels and cell abnormalities compared to other treatments that

did not show significant changes in tumor’s morphology. This research concluded

that longer duration of radiation (420s), indicating higher transferred energy, sig-

nificantly increased melanoma tumor growth in vivo, while shorter radiation time

demonstrated negative effect [217]. The authors concluded that shorter duration

of in vivo exposure induces more therapeutic effect on B16F10 than a much longer

exposure duration of 420s.

Furthermore, study [218] evaluates the effect of LILT at molecular and cellular

level. In this paper, MCF7 (breast cancer) cells are exposed to 366 nm He-Ne

laser with different low intensity levels (5, 28.8, and 1000 mJ/cm2). Changes in

cell viability of MCF7 cells is measured by Trypan Blue, a cell based assay. The

relevant biochemical alterations and vibrational spectra of experiments are ob-
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tained by micro-Fourier transform infrared technique. These experimental results

demonstrate that the degree of the cell metabolism influence (RNA, phosphate

and serine/threonine/tyrosine bands) depends on the intensity of light exposure.

Lowest intensity of laser exposure on MCF7 cells showed bio-inhibition with de-

crease in metabolic rates, while the highest intensity led to bio-stimulation with

the increase in the metabolic rates. The middle intensity surprisingly, showed

elevation in the metabolic rate without any cell proliferation being noticeable.

Moreover, in [219] authors used low level laser therapy concurrently with radio-

therapy of head and neck cancer patient to reduce the pain and complications.

The most common complication from the radiotherapy treatment of head and

neck cancer is the oral mucositis. The authors used 10mW He-Ne laser at the

wavelength of 632.8nm simultaneously with radiotherapy for oral cavity carci-

noma patients with the stages II-IV cancer progression. In the 6 week period

of observation, they observed the effective treatment results in preventing and

healing mucositis in cancer patients.

One of a very few studies that can relate to this research project partially

is [220]. In this study near infrared irradiation of a light source similar to so-

lar irradiation is used. The non-thermal effect of this irradiation on doxorubicin

in xenografts in nude mice is investigated. The authors introduced a pre- and

parallel-irradiational cooling to exclude any thermal effect on their experiments.

The aim of this research was to measure any induced non-thermal cytocidal effects
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in cancer cells. In their earlier publication, this group of authors demonstrated

that NIR penetrates the skin and induces non-thermal affect on dermis [221–224].

To explore the non-thermal effect of NIR radiation, changes in cell viability of

cells, DNA damage response pathways, and the percentage of mitotic cancer cells

after the treatment is measured and reported. Then, anti-cancer effects of exter-

nal NIR irradiation in nude mice is measured and compared with docorubicin in

xenografts. This evaluation and comparison is conducted by measuring a tumor

volume and immunoblot analysis of protein phosphorylation. According to their

analysis, the results of the in vitro experiment with A549 lung adenocarcinoma

cells irradiation using NIR light with the intensity of 2 mW/cm2 demonstrated a

reduction in cell viability of lung adenocarcinoma cells. Promotion in phospho-

rylation of ataxia-telangiectasia mutated (ATM) in A549 cells is observed as a

result of this treatment. Additionally, mitotic percentage of A549 cells points to

a significant reduction due to this treatment. Nude mice experiments on tumor

growth of MDA-MB435 melanoma cell xenografts exhibit the inhibition due to

both NIR and doxorubicin. The paper concluded that NIR irradiation induced

non-thermal cytocidal effects in cancer cells as a result of activation of DNA

damage response pathway [220].



Chapter 3

Exposure Device Design,
Materials and Methods

In this chapter, a complete technical overview of the project and the detailed

explanation of the experimental setup and considerations are provided. This

chapter also outlines the exposure system design and its limitations, materials and

methods used for in vitro experimental evaluations. To experimentally evaluate

the theoretical hypothesis proposed in [1–3], a radiation device is fabricated and

tested on normal and cancer cells.

The design of the exposure system requires several considerations to be ad-

dressed first. The selection of the radiation source and the limitations that would

be enforced by such decision are discussed in the first section. This section also

presents input and output signal characteristics of different radiation sources.

After that, Section 3.1 provides a few different design proposals based on the

constraints imposed by the environmental factors as well as experimental con-
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ditions, and the choice of the radiation exposure light. Then, the final design

proposal is presented in the next section. This section also points out certain

limitations that are imposed on the project’s scope. These restraints are inher-

ent to the nature of experimental in vitro evaluation of the proposed theoretical

hypothesis.

In section 3.2 of this chapter, a detailed description of cell lines, cell culture

materials, experimental setup are presented. Afterward, different regimes of ex-

posure and post exposure incubation and their selection methods are explained.

Finally, a description of the qualitative and quantitative assays employed here to

evaluate and measure the effects of different wavelengths and exposure regimes

on cancer and normal cell lines is provided.

3.1 Exposure System Design

The first critical factor taking into account in design of the exposure system is

the light source used for irradiation of cells. The selection of light source energy

is between coherent light of Light Amplification by Stimulated Emission (Lasers)

and non-coherent light of Light Emitting Diodes (LEDs). Hence, the next section

is concerned with the characteristic differences between LED and Laser. The

following section outlines specifications of selected far infrared LEDs as well as

the their optical intensity provided by LEDMicrosensors, Russia.
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Then, three different design proposal based on the choice of the particular light

source and experimental environmental condition are proposed and discussed

along with their advantages and disadvantages. Subsection 3.1.4 presents the

final design specifications of the developed prototype used in this project. Sub-

sequently, final subsection expresses scope constraints imposed by the design,

implementation and characteristic limitations that arise from the in vitro exper-

imental evaluation of the proposed theoretical hypothesis.

3.1.1 LED versus LASER

LEDs are combination of two different semiconductors n-doped and p-doped. N-

doped semiconductors have excess of electrons while p-doped electrons have holes

or lack of electrons. When a voltage is applied, electrons from the n-doped region

move toward the p-doped region. As a result of this movement, a light of the

specific wavelength will be emitted. The color of the light emitted form LEDs

depends on the chemical composition of semiconductor combination used in the

LED [164].

Low intensity light therapy exposure system can be designed with either lasers

or LEDs, but their characteristic differences should be considered when designing

such system. Some of the main differences for the design purposes will be named

here. In terms of the structures, they both require a double hetero structure for

better carrier and optical confinement. Lasers provide coherent light in contrast to
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LEDs that provide non-coherent light. Although there have been lots of interest

in using laser for healing purposes, there is no reason to believe that coherent

Laser light is any better than LEDs [138].

Lasers are dominated by the stimulated emission, while LEDs are by the spon-

taneous emission. Power and spectral characteristics in Lasers are sensitive to

temperature fluctuations, despite the fact that LEDs are indifferent to temper-

ature fluctuations. As a result of this sensitivity, Lasers require expensive drive

electronics for temperature stabilization. LEDs have low intensity noise, while

Lasers have high intensity noise [225–227].

In addition to that, one of the most recognized researcher in LLLT, Professor

Tina Karu, demonstrated in her research with various types of radiation sources

that lasers do not have better therapeutic effect than LEDs. Coherent properties

of light are not reflected when it interacts with biological tissues at the molec-

ular level. In fact, the absorption of low-intensity light in biological systems is

incoherent [202,228].

Therefore, Laser or coherent light is not any better than LEDs or non-coherent

light in terms of its penetration or action. In fact, the benefits are based on each

photon action which is the same in both lights [138, 229, 230]. Moreover, LEDs

are much cheaper than Lasers [138].

The reason that it has been more research in Low Laser Light Therapy (LLLT)
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for healing than LEDs is for the fact that “Laser” has a superior marketing

appeal and sound mysterious. However, lasers are costly, means that patients

can not do the treatment at home. Karu concluded [228, 231, 232] that under

physiological conditions the absorption of low-intensity light by biological system

in purely non-coherent. It goes on to the conclusion that at cellular level coherent

and non-coherent light with the same wavelength, intensity and irradiation time

provide the same biological effects [228,231,232]. It was shown that at the cellular

level coherent and non-coherent light with the same wavelength, intensity and

irradiation time provide the same biological effects [232].

3.1.2 Visible, Near Infrared (NIR) and Far Infrared (FIR)
LEDs

According to the proposed hypothesis presented in the RRM, external radiation of

the wavelength range 3500nm to 6500nm is expected to have effect on the biolog-

ical function of oncogenes and proto-oncogenes [1–3]. And thus, this irradiation

is expected to induce therapeutic effects on cancer cells. In this project, LEDs

are chosen as the exposure light source over Lasers for the following reasons.

First, according to the earlier discussion in Section 3.1.1, non-coherent light of

LEDs and coherent light of Lasers induce the same biological effect on biolog-

ical systems. In addition, therapeutic effects of LEDs on a number of medical

conditions are proven, so the use of LEDs as a light source for exposures is an
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emerging, novel idea that it is gaining popularity in medical research. LEDs ex-

posure does not require expensive medical setup, since it is safer to work with

and they are generally cheaper to be used in exposure systems. Moreover, no

experiments could be found in the literature that LEDs are used as light source

for exposure of cancer cells. Hence, here LEDs are chosen over Lasers for the

novelty of the proposed method and their identical effects on living organisms.

To comprehensively evaluate the proposed hypothesis, a number of LEDs in

and outside the proposed range are selected for external in vitro irradiation. The

main idea behind this selection is to measure whether the proposed far infrared

range induce cytotoxic effects on cancer cells; or this effect can be seen at other

wavelengths outside that range, too. Hence, apart from the selected six LEDs in

the far infrared range, three low intensity LEDs in the visible range and three

LEDs in the near infrared range are chosen for this in vitro experimental project.

In the following paragraphs, the characteristic specifications of each LED are

presented consecutively in the ascending wavelengths:

Visible Range LEDs

The visible range LEDs, also called colored LEDs, are 466nm (Super Bright

Blue Color LED) manufactured by Kingbright, 585nm (Yellow Color LED), and

626nm (Red Color) manufactured by HEWLETT PACKARD. The biasing and

performance characteristics of these LEDs are shown in Table 3.1.
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LED Package
Size

(5mm)

View-
ing

Angle

Radiant
Intensity
(mW/sr)

Forward
Voltage,
VF (v)

Rise/Fall
time
(ms)

Forward
Current
IF (mA)

typ max typ max
810nm 5 ±12 70 135 1.4 1.9 20 100
850nm 5 ±10 120 140 1.5 1.8 20 100
950nm 5 ±10 20 40 1.3 1.9 20 100

Table 3.2: Characteristics of Near Infrared LEDs

∗Note: Power of the light source is measured by the luminous intensity. It is

directional and is measured in Candela (cd). Candela(cd) is the SI base unit of

luminous intensity in a specific angle from a light source.

Near Infrared Range LEDs

Three near infrared LEDs are chosen for this project: 810nm, 850nm, and 950nm

wavelengths. These LEDs are purchased from Power Light System, Vishay Semi-

conductors, OSRAM(Opto Semiconductors) in consecutive order. The biasing

requirements and radiation specification of these LEDs are demonstrated in Ta-

ble 3.2.

Far Infrared Range LEDs (Theoretically Proposed Range)

Six LEDs in the computationally calculated far infrared wavelengths range are

selected and purchased from LED Microsensor. The wavelengths of the purchased

LEDs are: 3400nm, 3600nm, 3800nm, 3900nm, 4100nm, 4300nm. Each LEDs has

characteristics that is shown in Table 3.3.
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Figure 3.1: Intensity vs. Wavelength for far infrared LEDs [233]

Figure 3.1 shows the maximum optical intensity for LEDs in the far infrared

wavelengths. The images (demonstrated the peak wavelengths) show that each

LED is operating at it’s maximum nominal optical intensity.

Then, the optical angles at which different types of LEDs are irradiating, are

shown in Figure 3.2.

The purchased LEDs are with the parabolic reflectors, therefore the electromag-

netic wave radiation is conducted with a narrow optical angle. The optical angle

for these LEDs is between -10◦ and +10◦ or in other words its viewing angle is

±10◦. Narrow viewing angle indicates a minimum dispersion of the radiated light

and the maximum possible optical intensity.

Voltage and current characteristics of these far infrared LEDs are provided in
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Figure 3.2: Angle vs. Optical Intensity for far infrared LEDs [233]
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Figure 3.3: Specifications of 3400nm LED [233].

the following figures. Figure 3.3 depicts current-voltage, power, current, and

temperature characteristics of 3400nm LED.

Figure 3.4 demonstrates current-voltage, power, current, and temperature char-

acteristics of 3800nm LED.

In Figure 3.5, characteristics of 3900nm LED are shown with current-voltage,

power, current, and temperature graphs.
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Figure 3.4: Specifications of 3800nm LED [233].
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Figure 3.5: Specifications of 3900nm LED [233].
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Figure 3.6: Specifications of 4100nm LED [233].

The following images (Figure 3.6) show the current-voltage, power, current, and

temperature characteristics of 4100nm LEDs in the far infrared range.

Finally, Figure 3.7 illustrates current-voltage, power, current, and temperature

characteristics of 4300nm LEDs used for in vitro experiments in this project.

Now, Table 3.4 represents the optical powers per steradian for all LEDs used

in this project, according to the measurement provided by LED Microsensor.

Since low intensity light radiation is the main scope of this project, the LEDs are
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Figure 3.7: Specifications of 4300nm LED [233].
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selected based on their low intensity [187,217].

Optical Power

The LED mechanism of light emission is due to a release of a quantum of energy,

called a photon, when the excited electron from a higher energy level moves to a

lower energy band gap. The energy of each photon is measured as follow:

Ep =
hc

λ
(3.1)

where Ep is the photon’s energy and λ is the wavelength. Since LED is emitting

a number of photons depending on its forward current, then the light power (P)

is energy per second which equivalently means the number of photons multiplied

by the energy of each photon. This statement is demonstrated in Equation 3.2.

P = NηintEp/t (3.2)

where N is the number of electrons. P is the light power and measured in mW.

ηint is internal efficiency and t is time. N can be replace with current (I) multiply

by time (t) divided by electron charge (e). That is, N = It
e

. Thus, Equation 3.2

can be rewritten as:
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P =
ηintEp
I

Or, P (mW ) =
ηintEp(eV )

I(mA)
(3.3)

where light power (P) is measured in mW, Ep is measured in electron Volts

(eV) and current (I) in mA.

Depending on the LEDs intrinsic design characteristics including optical irra-

diation angle and design structure, a radiant intensity is commonly measured in

power per area (mW/cm2) or power per steradian (mW/sr). The SI standard

for the radiant intensity measurement is power per steradian. However, the dif-

ference between these two units of measurement comes from their methods of

measurement. LED light is irradiated in a cone shape angle as shown in Figure

3.8.

If this area is measured as cone shape and considering a sphere contains 4π

steradians, then a zone area is Az = 2πR(h = R − d). And, if a detector is used

for measuring the intensity, the area of the detector would be AD = πr2. Thus,

the solid angle of the cone is calculated as follow:

ω =
4πAz
As

=
2πh

R
(3.4)

The conversion of power per area to power per steradian is:
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Figure 3.8: Solid angle measurement [234]
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Ee,srω(mW/sr) = Power/Intensity = Ee,areaAD(mW/cm2)

Ee,srω = Ee,areaAD

Ee,sr =
Ee,areaAD

ω
(3.5)

Moreover, a luminous intensity of a monochromatic light source with a specific

wavelength λ is calculated as follow:

Ev = 683.002× ȳ(λ)× Ee (3.6)

where Ev (Iv) is the luminous intensity in candelas (cd = lm/sr). Ee (Ie) is the

radiant intensity in watts per steradian (W/sr). And, ȳ(λ) also known as V (λ)

is the standard luminosity function. This function is dimensionless and describes

an average spectral sensitivity of human visual perception of brightness for dif-

ferent wavelengths. Even though the numbers are not perfectly accurate, they

are good evaluations for experimental purposes. Commission Internationale de

I ′Éclairage (CIE) established a standard ȳ(λ) function to be used for conversion

of the radiant energy into the luminous energy. A particular value corresponds

to each wavelength, which is normalized to a peak value of unity at 555nm. If a

monochromatic wavelength is used, a corresponding ȳ(λ) function value (a con-

stant) is replaced in Equation 3.6. In case of multi-wavelength, sum or integrate
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over the spectrum of present wavelengths should be used for luminous intensity

calculation.

Ev = 683

∫ inf

0

ȳ(λ)
dEe(λ)

dλ
dλ (3.7)

Moreover, in these calculations, a luminous flux or luminous power is measured

by lumen (lumen(lm)= candela(cd).steradian(sr)).

3.1.3 Different Exposure System Designs

In this section, three different types of the proposed exposure system are described

and presented. These design proposals are based on the proposed theoretical hy-

pothesis investigated experimentally in this project. According to the wavelengths

obtained from the RRM calculations [1–3], some effect on functionality of onco-

genes and proto-oncogenes in regard to cell growth are expected to be observed.

The far infrared wavelength range proposed by the theoretical implementation of

the RRM approach is between 3500nm and 6500nm. Hence, the selected LEDs in

the mentioned wavelength range are required to be biased appropriately to work

in their optimum range. Various environmental and physical constraints such as

humidity, size of the incubator shelves, robustness of the device, the maximum

number of LEDs to be biased, and the stability of the biased current imply a

meticulous design consideration. To address different aspect of these constraints,
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three different types of the design are proposed for this in vitro far infra-red ex-

posure system to be tested on human and animal cancer and normal cell lines.

Each design has its own advantages and disadvantages. Then, a combination of

these design proposals are used for the final design in this research project.

Detailed description of each design is presented in the following section: 1) the

first one is a fully digital circuit; 2) the second: a semi-digital circuit; followed by

3) a fully analog circuit.

Digital Circuit Design

The first design is the most optimal one and it utilizes a micro controller to

provide a more accurate tunable pulse as well as different levels of intensity. In

this circuit design, a micro controller (ATMega 32) and 3 Gals (v2500c) is used

as the main component of the circuit. In addition, a key pad is used to take the

frequency and peak to peak amplitude current pulse as input of micro controller.

Then, the entered current frequency is shown through 4 seven segments assigned

as part of this design. The frequency of the pulse is obtained by manipulating the

clock of micro controller through a command in the program of micro controller.

The advantages of this system are as follow:

First, the system provides a sharp and accurate pulse for different current in-

tensity.
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Figure 3.9: Digital Design Proposal
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Second, this design provides the identical input current frequency, modulation

and peak to peak amplitude for up to 6 LEDs.

Third, the frequency of the current pulse is tunable, since it can be adjusted

from the keypad.

Fourth, different Pulsed Width Modulation (PWM) of the output current is

obtained by a small adjustment in the command of the micro controller

program.

The disadvantages are:

First, for any modification to the system, a good knowledge of the computer ar-

chitecture, assembly language, C/C++ and gal programming are required.

So, it is a complex system in terms of trouble shooting and adjustments.

Second, any shock to the circuit due to any accidental fall of the board requires

the micro controller and/or gals to be programmed again since the system

is fully digital. Thus, it is sensitive to physical shocks.

Third, the proposed system is susceptible to moisture and heat. The experi-

ments are conducted inside the incubator of 37◦C with 5% CO2. Therefore,

this circuit is not able to perform well in the humid environment of the

incubator.
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Fourth, due to its complexity, any small glitches in the system require the ex-

pertise of an electrical engineer to handle it.

Semi-digital Circuit Design

Figure 3.10 is the second optimum design proposed for this project. In this design,

Integrated Circuit (IC) 555 is used to reduce the digital complexity of the system.

The current output pulse is regulated and stabilized through analogue element

such as resistors, diodes and transistors. This circuit accommodates 1 far infrared

LED only.

The advantages of this semi-digital circuit are:

First, working with IC 555 timer does not require a complex computer program-

ming knowledge.

Second, the output pulse current generated by this design is accurate.

Disadvantages are:

First, the circuit is not able to provide a stable input bias for various intensities

and different numbers of LEDs. Changing peak to peak current, modulation

and frequency input required for the optimum operation demands hardware

adjustments in the system.
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Figure 3.10: Semi-analog Design Proposal
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Second, changing the number of active LEDs changes the amplitude of the cur-

rent pulse. Thus, by adding extra LED, the output biased current for LEDs

is deteriorated.

Third, IC 555 output signal is very unstable in humid environment such as

incubator.

Fourth, duration of exposure affects the output current pulse accuracy. This

means that if the circuit runs for a longer time, the current pulse deteriorates

further.

Fifth, the output of the circuit is so unstable that it cannot accommodate to

drive more than one LED without significant changes in the hardware design

part.

Analogue Circuit Design

Figure 3.11 represents the third optimum design. To overcome the shortcoming

of digital and semi-digital designs for a humid environment, a fully analog circuit

is proposed. In this circuit, resistors, capacitors, diodes and transistors are used

to bias far infrared LEDs that can irradiate cells inside the incubator. The final

version of the circuit in figure 3.11 is modified during the board printing (PCB)

to accommodate more LEDs and incorporate some advantages of other design

proposals.
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Figure 3.11: Analog Design Proposal

Here are the advantages of this design:

First, the outcome of the system is very reliable and accurate since the design

is analog.

Second, this design is less affected by physical shock, moisture or heat compared

to the other two designs.

Third, the complexity of this design is less than the other two. By not using

a micro controller immensely reduces the design complexity. In case of

physical shock, a user does not face programming problems in assembly

and C/C++ language for GALs and a micro controller.

Fourth, unlike the second design, this circuit does not encounter current in-
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stability that requires hardware adjustment for different number of used

LEDs.

The only drawback of this system is lack of sharpness in rising edges of the

current pulse compared to the other two digital designs. However, as indicated in

their specifications, these far infrared LEDs are generally sensitive to the current

pulse level and its frequency, not the sharpness of current rising edge. Thus, this

issue does not present a huge obstacle for the optimum performance.

The following images in Figure 3.12 and 3.13 demonstrate a printed circuit

board (PCB) of the exposure system and the final fabricated exposure system

used for in vitro experimentations in this project.

The exposure system is placed upside down on 96-well plate, shown if Figure

3.14, for the quantitative assays and 24-well plates for the qualitative assays. Far

infrared LEDs placement in this device is as follow: three LEDs on the first row

from the top of the image and on the left hand side are 3400nm, the second row

from the top has three 3600nm LEDs, the third row has three 3800nm, the fourth

row has 3900nm, the fifth row contains three 4100nm LEDs, and the sixth row

has three 4300nm LEDs.

It is worth to mention that the area of each hole drilled for each LED is ap-

proximately identical to the area of each well in 96-well plate as it is shown in

Figure 3.14
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Figure 3.12: Printed Circuit Board (PCB) for the exposure system biasing one
far infrared LED. Scale of 1:1
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Figure 3.13: Final fabricated exposure system used for external in vitro irradia-
tion of cancer and normal cells in this project.
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Figure 3.14: standard flat bottom corning 96-well plate image from the internet.

3.1.4 Proposed Design Specifications

As explained earlier, the idea of using low intensity light is considered to be a

newly developed concept gathering more popularity as an innovative approach for

different medical conditions other than cancer research. The use of this approach

for cancer treatment is an innovative approach and novel attempt. Theoretical

hypothesis, from implementation of the RRM concepts, predicts that far infrared

wavelength range 3500nm-6500nm can induce changes in biological activity of

oncogenes and proto-oncogene proteins. These genes play crucial role in spreading

and development of cancer. According to the prediction, the external exposures

of the proposed wavelength range is expected to instigate therapeutic effects on
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cancer cells. To evaluate this theoretical hypothesis, experimental evaluation is

the first necessary step. Thus, an external exposure system that can emit light in

the proposed wavelength range is developed for in vitro experiments on normal

and cancer cell lines.

The proposed exposure system is expected to bias a selected number of fre-

quencies in the range of 3500nm-6500nm simultaneously. Each LEDs irradiates

a particular wavelength monochromatically. Since six LEDs are selected in the

far infrared range and three of each frequency are needed for triplicate of the

experiments, the input current for eighteen far infrared LEDs thus should be

accommodated in a single electrical board.

Scope Limitation

The hypothesis of this project falls into the category of the electromagnetic radi-

ation therapy for cancer treatment with the use of Low Intensity Light Therapy

(LILT). Specifically, this project is mainly concerned with in vitro experimental

radiation of the selected normal and cancer cells using Light-Emitting Diodes

(LEDs).

The first scope limitation is the types of cancer tumors that this hypothesis, if

validated experimentally, can induce therapeutic effects on cancer cells. These

constraines come from the intrinsic nature of the far infrared wavelengths pen-
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etration into a patient’s body. The penetration depth of the infrared radiation

depends on its wavelengths, and can reach up to some centimeters, while the

near infrared light has the deepest penetration rate [235–238]. Thus, the in-

frared radiation can penetrate through the body for two to three centimetres and

human body absorbs most of its energy in contrary to strong reflection of the

visible light. Hence, our hypothesis and design are proposed for the surface and

near the surface tumors. The fabricated exposure device is expected to induce

therapeutic effects on cancer cells such as melanoma, breast cancers and other

skin cancers. As a result of this limitation, mouse melanoma cell line (B16F10)

and human breast cancer cell line (MCF7) are used for the in vitro experimental

evaluation due to their availability and compatibility to the types of cancers that

the fabricated exposure system is designed for.

The other limitation is related to the far infrared wavelength LEDs used in this

project. Far infrared wavelength LEDs are not readily available in the market

due to their limited and specialized functionality such as gas sensing. There-

fore, conducting the experiments for each wavelength within the computationally

predicted wavelengths range is almost impossible. There are only a handful of

wavelengths (in the RRM predicted range) that are available for purchase and

they are very expensive.
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3.2 Materials and Methods

In this section, materials and methods used for the in vitro experimental evalu-

ation are described in details. This section begins with description of cell lines

used for the external irradiation and continues with cell culture medium used for

cellular subculture, storing and resuscitation. Then, different quantitative and

qualitative assays conducted in this work are explained in details.

3.2.1 Cell Lines

Four cell lines are used as the primary cells for the in vitro experiments. Two of

the cell lines are animal cells and the other two cell lines are human cell lines.

These cell lines are provided by the Biotechnology Lab, School of Applied Science,

RMIT University, Australia. Due to the limitation of the proposed device and

hypothesis, only near surface tumors are tested and evaluated. Therefore, mouse

melanoma and human breast cancer cells are used here, since both are regarded

as the near surface tumors.

Murine Melanoma Cell line (B16F10) is a murine melanoma cell line used

extensively in cancer research. The species of the cell line is Mouse and it is

skin tissue. The morphology of the cell line is categorized as Fibroblast-like

characteristics and their growth mode is adherent [239]. Thus, these cells

represent animal cancer cell line in this work.
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Chinese Hamster Ovarian Cell line (CHO) is a cell line derived from the

ovary of Chinese Hamster. CHO is used in medical and biological research

extensively. CHO cells are categorized as epithelial cells and have relatively

rapid growth in culture. This cell line is grown as a cultured monolayer

with adherent growth mode.

Human Breast Cancer Cell line (MCF7) is a breast cancer cell line which

was taken from human breast tumor at Michigan Cancer Foundation-7 in

1970. The cell line is an invasive breast ductal carcinoma. Growth mode

of MCF7 is adherent and the morphology of the cell line is categorized as

epithelial cell type. MCF7 is used in this research as a human cancer cell

line [240].

Human Epidermal Melanocyte Cell line (HEM) is human primary cell

line isolated from human neonatal foreskin. The cell morphology of HEM

is categorized as Epidermal with the growth mode of adherent. This cell

line represents human normal cell line. It is also used as a comparison for

human breast cancer cell line in the evaluation of far infrared exposure effect

hypothesis in this research work.

3.2.2 Cell Culture Medium

Medium solution used for cell culture and subculture of B16F10, Chinese Hamster

Ovarian (CHO), MCF7 and HEM cell lines consists of the following items:
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DMEM (Dulbecco’s Modified Eagle Medium) is purchased from Invitro-

gen life technologies, Australia. DMEM is a widely used basal medium for

supporting the cell growth in mammalian cells. According to invitrogen

webpage, variety of cells can grow in DMEM including primary fibrob-

lasts, neurons, glial cells HUVECs, and smooth muscle cells. The DMEM

medium used in this project is the invitrogen modification with high glu-

cose, L-glutamine, Phenol Red, and Sodium Pyruvate.

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) purchased

from Invitrogen life technologies, Australia. It is a zwitterionic organic

chemical buffering agent. Addition of HEPES to cell culture medium pro-

vides supplemental buffering at pH level of 7.2 to 7.6. HEPES does not

provide nutritional benefit to cells. The presence of HEPES in the media

is solely for the extra buffering capacity.

FBS (Fetal Bovine Serum) is purchased from Bovine Serum Biological, Aus-

tralia. FBS serum supports consistent cell growth over time because of its

high content of embryonic growth promoting factors. The serum is manu-

factured from fetal bovine blood collected from government approved abat-

toirs. It consists of ≤ 25mg/dL hemoglobin and ≤ 10EU/mL endotoxin

At first, HEPES is added to the DMEM with the ratio of 0.2 to 10. This

means HEPES added to DMEM is 2% of the total volume of DMEM. Then,

FBS is added to the solution with the ratio of 1 to 9 which means FBS
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amount added to the solution was 10% of the total solution volume [241].

Penicillin-Streptomycin is also purchased from Invitrogen life technology,

Australia. The ratio of 0.1 to 10 was added to the cell culture medium

which is around 1% of the solution to prevent cell culture contamination.

The combination of antibiotics penicillin and streptomycin are used to pre-

vent bacterial contamination of cell culture with gram-positive and gram-

negative bacteria [241].

0.05% Trypsin-EDTA (1X) with phenol red is used for cell dissociation

during the routine cell culture passaging. Trypsin is purchased from In-

vitrogen life technology, Australia. Trypsin is an irradiated mixture of

proteases derived from porcine pancreas [241].

Cells are sub-cultured at 70-80% confluency. The sub-cultured passages, used

in this work, are all passage numbers less than 15 to avoid any cell culture deteri-

oration and distortion of proper reaction to the treatments. Cells are also seeded

at the initial density of 1 × 104 for quantitative analysis and initial density of

2× 105 is used in qualitative assays. Furthermore, cells are incubated inside the

incubator at 37◦C with humidified atmosphere containing 5% CO2.
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3.2.3 Experimental Setup

The regimes of exposure and post exposure are determined after a number of

preliminary experimental tests for the optimum regime. To find the optimum

exposure and post exposure incubation, the effects of irradiation starting from 30

minutes of exposure and 30 minutes of post exposure incubation are recorded and

compared. Then, at each consecutive step, duration of exposure or post exposure

incubation are increased alternatively. Since the changes in cell viability or cell

morphology are not significant for 30 minutes of exposure, the timing of exposure

irradiation and post exposure incubation are increased alternatively to reflect its

exposure effect visibly. Hence, 30, 60, 90, 120 and 180 minutes of irradiation with

different post exposure incubation of 30 minutes, 3 hours, 6 hours, 18 hours and

24 hours of post exposure incubation are studied for possible biological effects.

Then, after a number of experiments, the following three regimes of exposure

and post exposure incubation reveal to induce the most visible effect that were

qualitatively and quantitatively assessed.

Exposure Regime 1 consists of 1.5 hours of exposure irradiation with no post

exposure incubation.

Exposure Regime 2 consists of 1.5 hours of exposure irradiation with 24 hours

of post exposure incubation.

Exposure Regime 3 consists of 3 hours of exposure irradiation with 24 hours
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of post exposure incubation.

These exposure regimes are determined to clarify whether the exposure irradi-

ation or post exposure incubation induce more significant biological effect. The

experimental setup for conducting EMR exposures and cell-based quantitative

and qualitative assays are explained in the following sections.

3.2.4 Plates Setup

Irradiation of cells for quantitative analysis of all experiments is conducted in

96-well plates. Plates are sterile, flat bottom 96-well plates from Corning Life

Sciences, NY, USA. The specification of the 96-well plates is presented in Table

3.5 and their image is shown in Figure 3.14. The shape and diameter size of LEDs

and their place in the exposure system are very closed to the diameter of each well

in the 96-well plates. In order to avoid the cross talk between and interference

from different wavelengths in the exposure system, experiments are conducted

in wells surrounded by empty wells. Hence, the 2nd, 4th, 6th, 8th, 10th and 12th

column of these plates and rows B, D, F are filled with 100µL of the medium

with cells (as indicated with black color in Figure 3.15). In addition, before the

start of experiments these sterile plates are UVed for 1.5 hours to remove any

contamination threat.

For qualitative assays, 24 well plates are used. These 24 well cell culture plates
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Figure 3.15: 96-well cell culture plate template for in vitro experiments.

are sterile, flat bottom plate from Corning Life Sciences, NY, USA. In phase

contrast microscopy each well of the second row (row B) is exposed to different

wavelength in the far infrared range. The same structure of the exposure is

repeated on the third row (row C). Sham exposed wells are the first row (row A)

as it is shown in Figure 3.16.

3.2.5 Heat Shield Gel

As it is evident, exposures at the far infrared wavelengths may induce heating

effects in cells. Although there is a 2mm gap between LED exposure and the cell

medium, extra measures are put in place to remove any heating effect. Heating

effects may cause hyperthermia in the experiments. The mechanism of hyper-
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Figure 3.16: Image of 24-well cell culture plate from the internet.

Type of
Plate

Well
Volume
(µ L)

Well
Depth
(mm)

Well Di-
ameter
(top/bottom)
(mm)

Plate
Length
(mm)

Plate
Width
(mm)

Plate
Height
(mm)

Well
Bottom
Thick-
ness
(mm)

96 well flat
bottom

360 10.67 6.86/6.35 127.8 85.5 14.2 1.27

24 well flat
bottom

1900 17.4 16.26/15.62 127.89 85.6 19.69 1.27

Table 3.5: Microplate Dimension for Corning 96 Well and 24 Well Microplates
from Corning Life Sciences
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Figure 3.17: Image of 96-well plate with heat shield gel.

thermia is a completely different mechanism from the mechanism of low intensity

light exposure, which present a main interest in this research project. To conduct

the experiments in a closely controlled environment for evaluating the effects of

proposed low intensity light on cancer cells, a heat shield gel is purchased and used

throughout the experiments. This heat shield gel is purchased from Inventables,

USA and dissipates any heat generated from far infrared exposures. According

to the specification, this gel shield up to 4100◦C . It also shields transfer of heat

from other wells. The gel is placed in the gaps between the wells and around each

well conducting the experiments as shown in the Figure 3.17.
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3.3 Cell-based Assays

To measure the effect of far infrared exposure irradiation, a number of cell-based

quantitative and qualitative assays are used. These assays are used to reveal any

biological effect that irradiation at the different regimes of visible, near infrared

and far infrared wavelengths may induce in normal and cancer cell lines. Ad-

ditionally, for human cancer cells an extra quantitative assay is used to further

evaluate the effect of far infrared exposure irradiation. To conduct this compre-

hensive study, the effects of external electromagnetic irradiation was first evalu-

ated quantitatively with LDH, MTT or PrestoBlueTM assays. Upon significant

detection of cellular apoptosis or cytotoxicity from implementation of quantitative

assays, two qualitative assays are used to detect any cellular morphology changes,

cellular apoptosis and necrosis. The following section describes the quantitative

assays and processes used for quantification of treated cells reaction to external

LED irradiation.

3.3.1 Quantitative Assays:

The three standard quantitative assays used in this project were Lactate Dehy-

drogenase(LDH) and 3-(4,5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bro-

mide(MTT) Assay and PrestoBlueTM .
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Lactate Dehydrogenase (LDH) Assay

LDH or Cytotoxicity Assay measures LDH activity release from damaged cells

and is performed by assessing LDH released into the media as a marker of lysed or

dead cells. LDH is a stable cytoplasmic enzyme present in all cells. Upon plasma

membrane damage, LDH is quickly released into the cell culture supernatant.

Basically, the assay determines the degree of plasma membrane damage in in

vitro cell systems. Different ways of conducting this measurement is explained in

details in [242,243]

LDH is an enzymatic cell assay of cell death or apoptosis detecting and quan-

tifying cell-mediated cytotoxicity in two steps. In the first step, LDH-catalyzed

conversion of lactate to pyruvate reduces NAD+ to NADH/H+. In the second

step, H/H+ from the NADH/H+ is transferred by catalyst (diaphorase) to tetra-

zolium salt INT which is reduced by formazon. This process increases the amount

of dead or plasma-membrane-damaged cells which result in increase of LDH en-

zyme activity in culture supernatant. Then, escalation in the amount of enzyme

activity increases the amount of formazon forming. The amount of formazons

is proportionally related to the number of lysed cells. The formed formazons

are water-soluble and show broad absorption maximum at about 500nm where

tetrazolium salt INT does not show any significant absorption [244].

In this work LDH kit from Roche Applied Science, Australia has been purchased
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and used for the LDH activity measurement. Here is the step by step procedure

for LDH Assay analysis:

Step 0 Cells are counted with Countess Cell Counter machine and cell concen-

tration of 1 × 104 cells per mL are deposited in 96-well plate. Template

of LDH assay is shown in Figure 3.18. Three wells are deposited with the

medium only as a background control for any possible medium effect on

the result, as shown in light green color in Figure 3.18. Three wells are as-

signed as low control (no exposure) shown in blue color. Then, three more

wells are assigned as high control, where lysis is used for those to quantify

the maximum cell death possible, and are shown in red color. Low and

high control wells are not exposed to irradiation. After that, the plates are

incubated over night.

Step 1 - Each well is irradiated according to the regime of exposure and post

exposure incubation being tested.

Step 2 - The following two mixture are prepared for testing:

Catalyst Mixture: Catalyst bottle is mixed thoroughly with 1mL of dou-

ble distilled water for 10 min.

Reaction Mixture: 250µL of Catalyst Mixture is mixed with 11.25mL of

Dye solution for 100 LDH tests.
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Figure 3.18: Image of 96-well plate template for LDH assay.

Step 3 5µL of Lysis solution is added in each of the 3 wells assign for high

control activity in LDH Assay.

Step 4 The plates are incubated for 15 minutes and then the rest of the process

is conducted in darkness due to the sensitivity of dye solution to light.

Step 5 100µL of Reaction Mixture to each irradiated well includes low Control.

After that the plates are covered by aluminium foils.

Step 6 The plates are then incubated for 5-10 minutes.

Step 7 50µL of Stop solution are added to each well to disrupt the process.

Step 8 The plates are shaken for 10 second.
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Figure 3.19: A sample of 96-well plate conducted with LDH assay.

Step 9 Reading of ELISA plate reader is conducted with 492nm filters.

Figure 3.19 demonstrates a sample of LDH assay analysis conducted on 96-well

plate.

Thiazolyl Blue Tetrazolium Bromide (MTT) Assay

In general, 3-(4,5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide(MTT)

is a chromogenic indicator and is used for in vitro assay of cells population’s re-

sponse to external factors. This colorimetric cell proliferation assay also provides

large scale assays. MTT is among one of the most popular and versatile as-
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says developed by Mossman [245]. The principle of this method is to measure

the amount of tetrazolium salts reduction. Measurement of tetrazolium salts is

widely accepted as a reliable way to examine cell proliferation.

The main process, involved in MTT assays, is to convert the water soluble

MTT (3-(4,5-dimethyl thiazol-2-yl)-2, 5-diphenyltetrazolium bromide) into insol-

uble formazans. MTT solution then enters the undamaged cells and passes into

the mitochondria where its amount is reduced and transformed into insoluble,

purple color formazan product. The amount of yellow tetrazolium MTT is re-

duced by the action of dehydrogenase enzymes in active cells to generate reducing

equivalents such as NADH and NADPH. Then, the resulting intracellular dark

purple formazons are solubilized with isopropanol and released formazan reagent

solution. This solution is then quantified by spectrophotometric means such as

ELISA plate reader. Quantification of the results with ELISA reader is measured

at a certain wavelength filter around 570nm [246] .

As MTT reduction can only occurs in metabolically active cell, the measured

level of activity is that of active cells. MTT measurements from spectrophotom-

etry are cell proliferation rate and viability of the cells. Metabolic events led to

apoptosis or necrosis result in reduction of cell viability. The reduction in live

cell numbers result in reduction of the amount of MTT formazon forming and

reduction in reading from plate readers such as ELIZA. In addition, MTT reagent

results in low background absorption values in the absence of the cells. However,
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physiological state of cells and variations of mitochondrial dehydorgenase activity

in different cell types impose limitation for the use of MTT. Despite these limi-

tations, MTT method is useful for the measurement of cell growth in response to

mitogens, antigeic stimuli, growth factors, other cell growth promoting reagents,

cytotoxicity studies, and in the derivation of cell growth curves [247].

In this project, Vybrant MTT Cell Proliferation Assay kit from Invitrogen,

Life technologies, Australia is purchased and used. Step by step process used to

evaluate changes in cell proliferation by MTT Assay is explained below.

Step 0 The cells are prepared and deposited in 96-well plate with the con-

centration of 1 × 104. 100µL of the prepared cells are placed in columns

2,4,6,8,10 and 12 and rows B, D, and E. Three repeats for each frequency

was assigned in the plate. Then, 3 wells in rows A were placed 100µL of

media only without cells. The other 3 wells on row A are used for low con-

trol which contained 100µL of the cell concentration without a treatment.

The last row of the plate was also used as control. Figure 3.20 shows the

order of MTT experiments are being conducted. The black filled wells are

those deposited with the prepared cell concentrations. The blue filled wells

are low controls and light green filled wells are cell-less mediums. After

that, the plates are incubated over-night before irradiation starts the next

morning.
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Figure 3.20: Image of 96-well plate template for MTT assay.

Step 1 The cells are irradiated the next day. Each plate is tested for one expo-

sure regime and this process is repeated three times for each experiment.

Step 2 After elapse of post exposure incubation time, the following two MTT

preparation steps are taken.

MTT Solution: 10mg/mL of MTT mixed with distilled water. Solution

filtered and sterilized after adding MTT. The solution can be kept for 6

months in −0◦C and stored for 4 days at 4◦C .

MTT Solvent: Isopropanol.

Step 3 10µL of MTT solution is deposited into each well and wrapped with
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aluminium foil to avoid light exposure.

Step 4 The plates are then left in the incubator at 37◦C , 5% CO2 for 4 hours.

Step 5 After 4 hours, cells are checked under microscope for the purple for-

mazan crystals. The process is conducted very quickly due to the sensitivity

of formazan crystals to the microscope light.

Step 6 Then, the media is removed from each well and replaced by 100µL of

MTT solvent (Acidified Isopropanol or DMSO) into each well in order to

solve the formazan crystals. These processes are all completed in darkness.

Step 7 The plate are shaken for 10 Seconds.

Step 8 The ELISA reader is used for OD reading with 595nm filters.

A sample of MTT assay conducted in 96 well plate is shown in Figure 3.21.

PrestoBlueTM Assay

PrestoBlueTM is a cell viability assay that evaluates the viability and prolifera-

tion of a wide range of cell types. This assay is described extensively in [248].

PrestoBlueTM reagent is a resazurin-based solution performed as a cell viability

indicator by utilizing the reducing power of living cells to measure cell prolifer-

ation quantitatively. PrestoBlueTM reagent is quickly reduced by metabolically
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Figure 3.21: A sample of 96-well plate conducted with LDH assay.
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active cells and provides a quantitative measurement of cell viability and cytotox-

icity. This reagent is (a cell-permeant compound) blue and nonfluorescent. When

reagents are added to the cells, they are modified by reducing the environment

of the viable cell. As a result of this modification, PrestoBlueTM reagent turns

red in color and becomes highly fluorescent. These changes are monitored using

fluorescence or absorbance measurements [249].

PrestoBlueTM cell viability reagent protocol by Invitrogen (Life technology,

USA) is purchased and used for evaluating changes in cell viability as a result of

external exposures. Here is a step by step process used to evaluate changes in

cell proliferation by PrestoBlueTM cell viability assay.

Step 0 The cells are prepared and deposited in 96-well plate with the concentra-

tion of 1×104. 100µL of the prepared cells are placed in columns 2,4,6,8,10

and 12 and rows B, D, and E. Three repeats for each frequency are assigned

in the plate and the whole process is repeated three times. Then, three wells

in the rows A are placed with 100µL of media only without cells. The other

three wells on row A are used for low control, and contain 100µL of the

cells concentration without treatment. Afterward, the plates are incubated

over night before irradiation the next day.

Step 1 After irradiation and elapse of post exposure incubation time, 10µL of

PrestoBlueTM reagent are added to each well.
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Step 2 The plates are incubated for around 30 minutes at 37C with 5% CO2.

Step 3 After the incubation, the plates are taken to ELISA reader for OD

reading with 595nm filter.

3.3.2 Qualitative Assays:

To comprehensively investigate and detect any morphological changes as a result

of irradiation in the far infrared, near infrared and visible range, two standard

qualitative assays are used: light microscopy and confocal microscopy.

Phase Contrast Microscopy

Phase contrast microscopy is an optical microscopy technique that works based

on the principle that different cellular components have different refractive in-

dex. Thus, the reflected light ray from different biological elements show phase

differences for the reflected light. Then, phase contrast microscopy transform

these phase differences into amplitude difference of light. The transformation

technique was discovered in 1950s by Zernike. The technique of transforming

phase differences to amplitude differences is also known as positive or dark phase

contrast [250].

The phase contrast microscopy is employed to study the effects of irradiation

on morphological changes in human breast cancer and normal cells. Cells are
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seeded at a density of 2 × 105 cells per mL in a 24-well plate and incubated

overnight. The next day, cells are radiated using the designed exposure device by

visible, near-infrared, and far-infrared wavelengths for 3 hours, and then further

incubated for 24 hours. After 24 hours of incubation, they are washed carefully

with phosphate-buffered saline (PBS). Phase contrast microscopy images for each

wavelength are taken at 100X magnifications using Nikon Eclipse Ti-E microscope

(Nikon Instruments Inc, Japan).

Confocal Laser Scanning Microscopy

The principle of this technique of imaging was developed by Marvin Minsky

in 1953. However, it took thirty years for laser to be developed and utilized in

confocal microscopy. Toward the end of 1980s, confocal laser scanning microscopy

became a standard imaging technique. Laser scanning confocal microscopy uses

a pair of pinhole aperture to confine the volume of the sample focal plane size to

approximately a micron. To image a relatively thick sample, a series of successive

volume sections along the optical (z) plane of the microscope is acquired.

Laser scanning or confocal microscopy scans an specimen sequentially point by

point, line by line or multiple points at once. Then, these pixel information are

reconstructed with a computer into one image. In addition, confocal microscopy

is able to provide images at different layers of a sample. The main feature of

confocal microscopy is its ability to construct a blur-free images of thick sample
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at the different depths. Confocal microscopy, multiphoton excitation and de-

convolution techniques utilize a process known as optical sectioning to enable

detailed observation of thick specimens without artifacts that can accompany

specimens by physical sectioning [251].

This imaging modality is utilized here to determine the apoptosis and necrosis

effects of far infrared irradiation by the apoptosis and necrosis assay. In this

assay, cellular staining with the Annexin V-Alexa Fluor 488 (AF488) conjugate

and Propidium Iodide (PI) is followed closely by the manual provided by Vybrant

Apoptosis Assay kit II (Invitrogen, USA) with some minor modifications. Early

stages of cell apoptosis stained by Annexin V can be detected using a filter de-

signed for florescence detection (excitation/emission = 485/535). Moreover, dead

cells stained by Propidium Iodine display strong fluorescent intensity which can

be detected with excitation and emission at 560nm and 595nm, respectively [252].

Cells are seeded at a density of 2 × 105 cells per mL in a 24-well plate and

incubated overnight. The next day, cells are exposed to far infrared radiation

for three hours, and then are incubated for 24 hours. After 24 hours of incuba-

tion, they are washed with cold phosphate-buffered saline (PBS) and labeled with

V-AF 488 and PI according to the manufacturer’s instructions with slight mod-

ifications. To each sample, 5 µL of AF488 and 1.5 µL of PI are added followed

by 20 minutes incubation at room temperature before being washed twice and

resuspended in a binding buffer (10 mM HEPES, 140 mM NaCl, 2.5 mM CaCl2



3.3 Cell-based Assays 136

at pH 7.4). Afterward, stained cells are protected from the light by aluminum foil

until they are examined by confocal laser scanning microscopy (CLSM). CLSM

images are taken at 100X magnifications due to a better resolution obtained from

this magnification. The pinhole aperture set at 1 using Nikon Eclipse Ti-E A1

laser-scanning confocal system (Nikon Instruments Inc, Japan). Images are then

analyzed with the NISElement imaging software.



Chapter 4

Quantitative Analysis of in vitro
Electromagnetic Radiation

The Resonant Recognition Model (RRM) is a physico-mathematical approach

based on digital signal processing methods [253, 254]. The RRM theory states

that an external electromagnetic field (EMF) at a particular activation frequency

would produce resonant effects on protein biological activity [255]. This hypoth-

esis has been successfully evaluated experimentally [3, 256]. It is confirmed that

external radiation of the certain frequencies, which were computationally deter-

mined using the RRM, can modulate a protein activity.

It was proposed in the RRM that specific wavelengths in the range of far infra-

red light can induce changes in biological functionality of oncogenes and proto-

oncogene proteins. In particular, it was proposed theoretically that wavelength

range of 3500nm to 6500nm can induce resonant effect that will lead to changes

in oncogene proteins and affect cancer cells. To test his hypothesis in vitro, an

137
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exposure device was designed and fabricated to irradiate light in the proposed

wavelengths range (3500nm-6500nm) accordingly [257]. The selected far infrared

LEDs’ wavelength range is known to be able to penetrate from two to three cen-

timeters into a tissue [235–238] and hence be suitable in application for treatment

of surface or near surface tumors.

To experimentally evaluate the RRM theoretical prediction, two surface or near

surface cancer cell lines are used in this project to test the hypothesis. Addi-

tionally, two normal cell lines are used to compare the effects of such far infrared

light irradiation on normal cells. The selected cancer cells are murine melanoma

(B16F10) and human breast cancer (MCF7), and normal cells are Chinese Ham-

ster Ovarian (CHO) and Human Epithelial Melanocytes (HEM). The experi-

ments are conducted in vitro and the cytotoxic effects of applied irradiation are

evaluated using L-Lactate Dehydrogenate (LDH), 3-(4,5-dimethyl thiazol-2-yl)-

2, 5-diphenyl tetrazolium bromide (MTT) and PrestoBlueTM assays. In order to

validate further the RRM hypothesis, the additional wavelengths of visible and

near infrared light were selected for evaluation of their possible effects on cancer

and normal cells. Hence, a comparative analysis of cytoxic effects of visible and

near infrared light exposures on the same cancer and normal cells is provided

here.

The chapter presents quantitative in vitro evaluation for visible light, near in-

frared and far infrared light irradiation on normal and cancer cell lines. The effects
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induced by the external irradiation are evaluated on two animal cell lines followed

by evaluation on two human cell lines for comprehensive analysis. B16F10 is a

mouse melanoma (cancer) cell line, while CHO is the normal animal cell line.

MCF7 cells are human breast cancer cells and HEM are human normal cells.

Cytotoxic effects of the low intensity light radiation are quantified using three

standard cell-based assays: LDH, MTT and PrestoBlueTM . LDH assay is used to

quantify the effects of selected wavelengths and three different regimes of exposure

and post exposure incubation through out examination of L-lactate dehydroge-

nase enzyme activity. Subsequently, MTT, another quantitative measurement

technique, is used to measure changes in cell proliferation of externally exposed

cells. Then, PrestoBlueTM is used only on MCF7 cells to provide a comprehensive

quantitative analysis. Thus, the order of this section is as follows.

Section 4.1 discusses and reports any cytotoxic effects as a result of external ex-

posures of different wavelengths and exposure regimes on B16F10, CHO, MCF7,

and HEM using the LDH assay. Then, the obtained results for different cell lines

are analyzed and compared with each other followed by a short discussion and

analysis of the results. In Section 4.2, changes in cellular proliferation of both

animal and human cell lines are investigated using the MTT assay. The results

are analyzed and followed by a brief discussion. In Section 4.3, the effects induced

by light exposures on MCF7 cells are further studied by PrestoBlueTM .
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4.1 LDH Cytotoxicity Assay

L-lactate hydrogenate (LDH) assay is used here to study the effects of selected vis-

ible, near infrared and far infrared wavelengths for three regimes of exposure and

post exposure incubation on B16F10 (Murine Melanoma cell) and CHO (Chinese

Hamster Ovarian cells).

Cells are seeded at initial concentrations of 1×104 cells per mL in 96-well plate

and incubated overnight before the start of experimentation. On each plate, three

wells are assigned for background control, where no cell and only the medium is

placed. Three more wells are assigned as low control, where the cells are exposed

to an external irradiation. Additionally, three wells are assigned as a high control

measurement to be lysed during implementation of the LDH assay protocol. Cells

are exposed to external light irradiation of 3400nm, 3600nm, 3800nm, 3900nm,

4100nm, 4300nm (computationally calculated wavelength in far infra-red range),

466nm, 595nm, and 626nm (visible light wavelength range); and 810nm, 850nm,

and 950nm (near infra-red wavelength range). To measure the effects of each

exposure regime for each selected wavelength, LDH assay protocol is conducted

and the outcome is measured by ELISA plate reader with OD reading set at

492nm.

Exposures at each particular wavelength and for each exposure regime are re-

peated three times in three wells on the same plate. Then, each set of experiment



4.1 LDH Cytotoxicity Assay 141

is repeated for different stock of B16F10 and CHO cells with different passage

number. Passage numbers used range from 2 to 11. In other words, each test is

conducted in three times triplicate. Importantly to note, the area around each

well is filled with a heat shield gel purchased from Inventable, USA to eradicate

any thermal effect due to external LED exposures. Furthermore, wells de-

posited with cells for in vitro experiments are placed in a way that four adjacent

wells around it are left empty.

The following figures (from Figure 4.1 to Figure 4.6), first demonstrate LDH

activity evaluation of cytotoxic effects in B16F10 and CHO cells induced by three

different regimes of exposure. This section starts with the LDH assay readings

obtained for 1.5 hours of exposure with no post exposure incubation on B16F10

and CHO cells. Next, LDH activity measurement for 1.5 hours of irradiation

followed by 24 hours of post exposure incubation is presented. The experimental

evaluation of 3 hours of exposure followed by 24 hours of post exposure incubation

quantified by LDH assay is presented in Figure 4.5 and 4.6. The same flow of

analysis is followed for two human cell lines, MCF7 and HEM. It is worth to

mention that all the results translate the cytotoxicity measurements from LDH

assay into cellular viability. Hence, the graphs in this section represent changes

in cellular viability due to external irradiation at the selected wavelengths light

and exposure regimes. LDH evaluations translation to cell viability is calculated

as follow:
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Cell viability (%) = 100 − Cytotoxicity (%) (4.1)

4.1.1 Exposure of Animal Cells - B16F10 vs. CHO Cells

The Figure 4.1 and 4.2 show cell viability (%) in box plot. Means and standard

errors of three times triplicate of the experimental repeats are observed from this

graphical representation of the LDH measurement results. First, cytotoxic effect

of 1.5 hours of exposure with no post exposure incubation for different wavelength

is evaluated by LDH assay.

As can be seen from Figure 4.1, both cancer and normal cells are irradiated for

1.5 hours at light wavelengths of 3400nm, 3600nm, 3800nm, 3900nm, 4100nm and

4300nm. The cell viability of untreated cells is used as a reference and measured

at 100% cell viability. By comparison cell viability of B16F10 and CHO in Figure

4.1, reduction in cell viability of cancer cells can be observed and are apparent

for all studied wavelengths of far infra-red range. These results in Figure 4.1

reveal that external irradiation at the selected far infrared wavelengths induce a

significant effects on cancer B16F10 cells that led to the high release of LDH and

cytotoxicity.

It is apparent from the graph shown in Figure 4.2, that the effects of visible light

(466nm, 595nm, and 626nm) for 1.5 hours exposures are not significant on B16F10
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Figure 4.1: External electromagnetic radiation (EMR) of selected far infrared
wavelength based on the first regime of exposure. Cells are irradiated for 1.5
hours without any post exposure incubation. The cytotoxic effect of this exposure
regime is measured by LDH and the results are recorded by ELISA plate reader
with OD reading of 492. The red boxes shown in Figure 4.1 represent LDH results
for cancer cells and the black boxes demonstrate LDH result for CHO cells. The
horizontal lines in the boxes show the mean value of three times triplicate of the
experiment. The lines on the top and bottom of the boxes indicate maximum
and minimum values of the experimental repeats.
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Figure 4.2: Cytotoxicity measurements by LDH assay: B16F10 and CHO cells
are irradiated for 1.5 hours by light at 466nm, 595nm, 626nm, 810nm, 850nm,
and 950nm (visible and near infra-red wavelength range). The red color boxes
represent changes in cell viability induced by external irradiation of animal cancer
cells, B16F10. The black color boxes represent cell viability measurement for
animal normal cell line, CHO. The horizontal line in the boxes indicate the mean
value obtained from all repeat within this particular experiment.



4.1 LDH Cytotoxicity Assay 145

and CHO. Furthermore, assessment of the same exposure regime for selected near

infrared wavelength (810nm, 850nm, and 950nm) demonstrates that cell viability

of neither of the cell lines are affected considerably. There is no noticeable effect

induced by these particular exposures.

In the second experiments, another LDH enzyme activity evaluation of second

exposure regime at different wavelengths in visible, near infrared and far infrared

ranges is shown in Figures 4.3 and 4.4.

As evident from Figure 4.3 exposure for 1.5 hours by far infrared irradiation

with 24 hours of post exposure incubation induce detrimental effects on cell vi-

ability of cancer cells shown in red color in Figure 4.3. These red boxes clearly

demonstrate the increased LDH activity in B16F10 cells after the exposure and

post exposure incubation. In contrary to the cell viability of exposed cancer

B16F10 cells, the cell viability of CHO cells (shown in black color) does not indi-

cate any significant deviation from the 100% cell viability of untreated cells. The

increased cell apoptosis measured by LDH is translated into the reduction in cell

viability of animal cancer cells, while normal cells do not demonstrate any visible

effect as a result of this exposure. Moreover, it can be seen that 24 hours post

exposure incubation that is added to the second regime of exposure only slightly

increases the cytotxicity of the exposed cancer cells.

Figure 4.4 shows changes in cell viability of cancer (B16F10) and normal (CHO)
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Figure 4.3: External electromagnetic radiation (EMR) of selected far infrared
wavelengths based on the second regime of exposure: Cells are exposed for 1.5
hours at far infrared wavelengths and incubated for 24 hours after the exposure.
The cytotoxic effects of the exposures are measured by LDH and the results are
recorded by ELISA plate reader with OD reading of 492. The red boxes represent
LDH results for cancer cells and the black boxes represent LDH results for CHO
cells. The horizontal lines in the boxes show mean value of three times triplicate
of the experimental data. The lines on top and bottom of the boxes indicate
maximum and minimum values of the experimental repeats.
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Figure 4.4: Cytotoxicity measurements by LDH assay on B16F10 and CHO cells
for 1.5 hours of external electromagnetic radiation (EMR) of 466nm, 595nm,
626nm, 810nm, 850nm, and 950nm wavelengths (visible and near infrared range)
followed by 24 hours of post exposure incubation. The red color represents
changes in cell viability measured by LDH assay for animal cancer cells, B16F10.
The black color represents cell viability measured by LDH assay for normal animal
cells, CHO. The horizontal lines in the boxes indicate the mean value obtained
from all repeats of that particular experiment.



4.1 LDH Cytotoxicity Assay 148

cell lines for 1.5 hours irradiation at the selected visible and near infrared wave-

lengths followed by 24 hours of post exposure incubation. The experiments were

repeated three times in triplicates with initial cell density of 1×104 cells per mL.

The red boxes demonstrate LDH analysis of B16F10 cells irradiated by visible

and near infra-red exposures, and followed by 24 hours post exposure incubation.

The black boxes show LDH analysis of the cells irradiated by three visible and

three near infrared exposures and post exposure incubation on CHO cells.

The cell viability measurements for the second exposure regime at 466nm,

595nm, 626nm (the first three visible light wavelengths from left) do not indicate

any apparent effect on either B16F10 or CHO cells. Moreover, LDH enzyme ac-

tivity measurement of the second exposure regime at 810nm, 850nm, and 950nm

(the last three wavelengths) of near infrared light demonstrate insignificant cyto-

toxic effect on both B16F10 and CHO cells. Hence, from LDH enzyme activity

analysis of the second irradiation regime of visible and near infra-red exposures,

it can be concluded that cellular viability of B16F10 and CHO cells does not

alter significantly compared to 100% cellular viability of untreated control cells

(unexposed or sham-exposed cells).

Finally, Figures 4.5 and 4.6 represent LDH enzyme activity measurements for

another exposure regime: 3 hours external irradiation by visible, near infrared

and far infrared wavelengths and 24 hours post exposure incubation of B16F10

and CHO cells.
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Figure 4.5: External electromagnetic radiation (EMR) at far infrared wavelength
for the third regime of exposure: Cells are exposed for 3 hours to selected far
infrared wavelengths (3400nm, 3600nm, 3800nm, 3900nm, 4100nm, 4300nm) and
then incubated for 24 hours. The cytotoxic effects of exposure are measured by
LDH and the results are recorded by ELISA plate reader with OD reading of
492. The red boxes represent LDH results for cancer cells and the black boxes
demonstrate LDH results for CHO cells. The horizontal lines in the boxes show
the mean values of three times triplicate of the experiment. The lines on the
top and the bottom of the boxes indicate maximum and minimum values of the
experimental repeats.
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As was shown in the previous Figures 4.1 and 4.3, far infrared exposures of

CHO cells do not lead to any significant changes in cell viability when it is com-

pared to the 100% cellular viability of untreated cells. In contrast, the irradiated

cancer B16F10 cells clearly exhibited changes in cell viability, when compared

to the untreated control cells. Moreover, LDH enzyme activity measurements at

different regimes of exposures indicate that 24 hours of post exposure incubation

only slightly increased cell apoptosis in cancer cells. The effects of 24 hours post

exposure incubation compared to that of the exposure duration is not very signif-

icant. It can be summarized that far infrared exposures contribute substantially

to the cell apoptosis measured by LDH assay.

Figure 4.6 shows changes in cell viability of cancer and normal cells for 3 hours

irradiation at selected visible and near infra-red wavelengths followed by 24 hours

of post exposure incubation. The experiments were repeated three times and each

time the specimen analysis was conducted in triplicate with initial cell density of

1× 104 cells per mL.

LDH enzyme activity measurements shown in Figure 4.6 for three wavelengths

in visible range (the first three wavelengths from left) demonstrate no changes in

cellular viability for CHO cells, while B16F10 cells show a minor cellular apoptosis

effect.

Additionally, the LDH enzyme activity at the last three wavelengths of expo-
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Figure 4.6: Cytotoxicity measurements by LDH assay of B16F10 and CHO
cells for 3 hours of external electromagnetic radiation (EMR) at 466nm, 595nm,
626nm, 810nm, 850nm, and 950nm wavelengths (visible and near infrared range)
followed by 24 hours of post exposure incubation. The red color represents cell
viability measured by LDH assay for animal cancer cells, B16F10. The black
color represents cell viability measured by LDH assay for animal normal cells,
CHO. The horizontal lines in the boxes indicate the mean value obtained from
all repeats of that particular experiment.
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sures in the near infrared range shown in Figure 4.6 does not demonstrate any

cytotoxic effects induced in either B16F10 or CHO cells. This result is similar to

the previous results achieved by the exposures at the first and the second regimes.

Figures 4.6 does not indicate significant changes in the LDH enzyme activity of

B16F10 and CHO cells.

LDH Assay of B16F10 and CHO Cells - Summary Remarks

Figures 4.1, 4.3, and 4.5 show the effects of three different exposure regimes at

the selected far infrared wavelengths on B16F10 and CHO cells. Quantitative

assessment of these exposures is measured by LDH assay. Comparison the cyto-

toxic effects induced by different regimes of exposures at far infrared wavelengths

on B16F10 and CHO, demonstrates a significant reduction in cellular viability

of cancer cells, while normal cells are not being affected significantly. LDH re-

sults shown in Figure 4.1, 4.3, and 4.5 indicate that the increased duration of

exposures at the far infrared wavelengths followed by 24 hours of post exposure

incubation induce more significant effects in cell viability of cancer cells. How-

ever, the cytotoxic effects are more evident by the increase in exposure duration

rather than post exposure incubation. For instance, irradiation for 1.5 hours at

the far infrared wavelengths induce more significant cytotoxic effects in cancer

cells compared to the relative increase (%) in cytotoxic effects achieved by 24

hours extra post exposure incubation. This result suggests that longer exposures
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can induce more significant cell apoptosis effect in cancer cells.

Figure 4.2, 4.4 and 4.6 show LDH enzyme activities measured by LDH assay

for analyzing the effects of the different exposure regimes in the visible and near

infrared range of light on B16F10 and CHO cells. The results obtained clearly

indicate that three different regimes of light at the wavelengths of 466nm, 595nm,

626nm, 810nm, 850nm, and 950nm do not induce a considerable effect on LDH

enzyme activity of either B16F10 or CHO cells. Only third regime (3 hours

of exposure followed by 24 hours of post exposure incubation) of visible range

exposures on B16F10, which requires a further investigation.

The cell viability reduction in cancer cells (compared to normal cells) due to

far infrared exposures can be further pinpointed by the histogram of cancer cell

viability and results plane for B16F10 and CHO cells. Figure 4.7 represents his-

tograms of all triple triplicate LDH cytotoxicity assessment for different regimes

of exposures and post exposure incubation.

The first histogram is obtained from evaluation of 1.5 hours of irradiation on

B16F10 at six far infrared wavelengths (3400nm, 3600nm, 3800nm, 3900nm,

4100nm, 4300nm) of light predicted computationally. As can be seen from the

first histogram graph, there is a considerable shift of cell viability can be observed

compared to the untreated cell viability of 100%. Subsequently, the second ex-

posure regime (1.5 hours of irradiation with 24 hours post exposure incubation)
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Figure 4.7: Histogram of the evaluated LDH activities for the different exposure
regimes on B16F10 cells. The histogram represents evaluated wavelengths at far
infrared irradiation for the first regime of exposure (1.5 hours of exposure). The
middle graph is the representation of LDH assay results for the second regime of
exposure (1.5 hours of exposure + 24 hours of post exposure incubation). The
bottom histogram demonstrates the LDH results for the third regime of exposure
(3 hours of exposure + 24 hours of post exposure incubation) on B16F10.
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Figure 4.8: LDH enzyme activities measurements by LDH assay are shown for
different regimes of far infra-red exposure and post exposure incubation for both
cancer (B16F10) and normal (CHO) animal cells.

led to a further reduction in cell viability although it is not significantly different

compared to the first graph. As can be seen from the last histogram, the third

regime of exposure (3 hours of irradiation with 24 hours of post exposure incuba-

tion) resulted in the most substantial overall reduction in cell viability of B16F10

cells.

Figure 4.8 shows further visual clarification of the LDH enzyme activity mea-

surement used for quantifying the effects of different exposure regimes on B16F10

and CHO.
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As evident from Figure 4.8, the effects of selected far infrared wavelength LEDs

irradiation is exhibited on B16F10 as opposed to CHO cells. From the graph, it

can be observed that these two animal cell line react differently to far infrared

exposures as their LDH assay are located in two different horizontal planes. LDH

results for CHO are around 100% cell viability, while the results for B16F10 cells

are in the range of 70 to 90% cell viability.

In summary, comparing results shown in Figures 4.1, 4.3, 4.5, 4.2, 4.4, and 4.6

obtained from LDH analysis of different regimes of external exposures reveals

that far infrared wavelengths radiation of animal cells induce significant cyto-

toxic effects on cell viability of B16F10 cells. Importantly, far infrared frequency

range predicted computationally by the RRM is depicted as the most effective

wavelength range for cancer cells which was experimentally evaluated here.

4.1.2 Exposure of Human Cells - MCF7 vs. HEM Cells

The following two graphs in Figure 4.9 and 4.10 demonstrate cellular viability

of two human cell lines of MCF7 and HEM. The cancer and normal cells are

irradiated for 1.5 hours using visible, near infrared and far infrared wavelengths

of light. The LDH analysis results are shown as relative changes in cell viability

of cells (%).

The graphs in Figure 4.9 show the results evaluation of external far infrared
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Figure 4.9: External electromagnetic radiation (EMR) at far infrared wavelengths
for the first regime of exposure. Cells are exposed for 1.5 hours of the selected
far infrared wavelengths. The cytotoxic effects of exposure are measured by LDH
and the results are recorded by ELISA plate reader with OD reading of 492. The
red boxes in the image represent LDH results for cancer cells, MCF7, and the
black boxes demonstrate LDH results for HEM cells. The horizontal lines in the
boxes show the mean value of three times triplicate of the experiments. The lines
on the top and the bottom of the boxes indicate maximum and minimum values
of the experimental repeats.
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Figure 4.10: Cytotoxicity measurements of MCF7 and HEM cells for 1.5 hours at
466nm, 595nm, 626nm, 810nm, 850nm, and 950nm wavelengths (visible and near
infrared range). The results obtained by ELISA plate reader with OD reading of
492nm. The red color represents cell viability measured by LDH assay for MCF7
cancer cells. The black color represents cell viability measured by LDH assay for
normal HEM cells. The horizontal lines in the boxes indicate the mean values
obtained from all repeats of that particular experiment.

exposures on cell viability of MCF7 cancer cells and HEM normal cells. The

LDH results demonstrate that 1.5 hour far infrared exposures induce cytotoxic

effects on cancer cells and reduce the cell viability of cancer cells compared to

normal HEM cells.

The graph shown in Figure 4.10 reveals the effect of 1.5 hours external irradia-

tion at three wavelengths of visible light (466nm, 595nm, and 626nm) on MCF7

cancer cells (red box plot, the first three wavelengths on left hand side). As seen
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from the figure, reduction in cell viability of MCF7 cells indicates that visible

range irradiation induces cytotoxic effects on cancer cells. Interestingly, there is

significant cytotoxic effect observed for the exposed HEM cells (shown in black

box plots).

Near infrared LEDs (810nm, 850nm, and 950nm) irradiation of MCF7 cells,

measured by LDH assay in Figure 4.10 induce similar cytotoxic effect obtained

from visible range exposures. Moreover, irradiation at the identical exposure

regime (1.5 hours of exposure) and wavelengths (810nm, 850nm, 950nm) do not

demonstrate any changes in LDH enzyme activity of HEM cells. Thus, it can be

inferred that external irradiation at these selected visible and near infrared LEDs

do not induce any significant cytotoxic effect on HEM cells.

In Figure 4.11, 4.12, the cytotoxic effects of the second regime of radiation (1.5

hours of exposure followed by 24 hours of post exposure incubation) on human

normal and cancer cells are shown and discussed.

Figure 4.11 demonstrates the effects of 1.5 hours of far infrared wavelength

external irradiation with 24 hours of post exposure incubation on cell viability of

both human cancer cells (in red boxes) and human normal cells (in black boxes).

Comparison of the LDH results for both cell lines clearly indicates a significant

cytotoxic effect of far infrared exposures on MCF7 cancer cells. Similarly, the

exposure effects of the same far infrared wavelengths on B16F10 as described in
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Figure 4.11: External electromagnetic radiation (EMR) of far infrared wave-
lengths for the second regime of exposure. Cells are exposed for 1.5 hours at the
selected far infrared wavelengths followed by 24 hours of post exposure incuba-
tion. The cytotoxic effects of exposures are measured by LDH and the results are
evaluated by ELISA plate reader with OD reading of 492. The red boxes in the
image represent LDH results for MCF7 cancer cells. The black boxes demonstrate
LDH result for HEM cells. The horizontal lines in the boxes show mean value
of three times triplicate of the experiment. The lines on the top and the bot-
tom of the boxes indicate the maximum and minimum values of the experimental
repeats.
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Figure 4.12: Cytotoxicity measurements by LDH assay on MCF7 and HEM cells
for 1.5 hours of external electromagnetic radiation (EMR) at 466nm, 595nm,
626nm, 810nm, 850nm, and 950nm wavelengths (visible and near infrared range)
followed by 24 hours of post exposure incubation. The LDH analysis results
were evaluated by ELISA plate reader with OD reading of 492nm. The red color
represents cell viability measured by LDH assay for MCF7 human cancer cells.
The black color represents cell viability measured by LDH assay for HEM human
normal cell line. The horizontal lines in the boxes indicate the mean values
obtained from all repeats of that particular experiment.

subsection 4.1.1, there are cytotoxic effects on human cancer cells when compared

to normal cells.

Figure 4.12 shows the results from 1.5 hours of irradiation with visible and near

infrared range followed by 24 hours of post exposure incubation. As displayed

with black box plots in the graph, LDH analysis of HEM cells in the visible range

(the first three black box plots on the left) does not exhibit any considerable
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cytotoxic effects as a result of this exposure regime. Similarly, almost no changes

in LDH enzyme activity of HEM cells are detected at near infrared range LEDs

(810nm, 850nm, and 950nm wavelengths).

The readings from LDH assay analysis for the second regime of exposure and

post exposure irradiation on MCF7 cells are illustrated in red box plots. The

first three wavelengths on the left hand side show that visible range irradiation

induce detrimental effect on cell viability of MCF7 cells. Additionally, the last

three wavelengths (in the near infrared range) shown in red boxes demonstrate

similar detrimental effect on MCF7 cells. Thus, it can be inferred that visible

and near infrared LEDs irradiation can induce cytotoxic effects on human cancer

cells, while normal cells were not affected at all.

Figure 4.13 and 4.14 demonstrate the effects of the third regime of exposure

(3 hours of exposure followed by 24 hours of post exposure incubation) on cell

viability of cancer and normal human cells at the selected LEDs in the visible,

near infrared and far infrared wavelengths.

Figure 4.13 shows the changes in cell viability of MCF7 and HEM as a result of

3 hours of far infrared external exposure with 24 hours of post exposure incuba-

tion. The LDH analysis shows measurements of LDH enzyme activity indicated as

relative changes in cell viability (%) of this exposure irradiation regime. Compar-

ison of the cytotoxic effects induced by exposures on MCF7 (shown in red color)
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Figure 4.13: External electromagnetic radiation (EMR) of far infrared wave-
lengths for the third regime of exposure. Cells are exposed for 3 hours at the
selected far infrared wavelengths followed by 24 hours of post exposure incuba-
tion. The cytotoxic effects of exposures are measured by LDH and the results
are evaluated by ELISA plate reader with OD reading of 492. The red boxes in
the image represent LDH results for MCF7 cancer cells. The black boxes demon-
strate LDH result for HEM cells. The horizontal lines in the boxes show the
mean values of three times triplicate of the experiment. The lines on the top
and the bottom of the boxes indicate the maximum and minimum values of the
experimental repeats.
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and HEM (shown in black color) demonstrate a more significant effect induced

in cancer cells for identical exposure regime and exposure condition. It seems

that MCF7 cells are more responsive to the external irradiation at far infrared

wavelengths. The relative changes in cell viability measured by LDH analysis

for cancer and normal cells are in accordance with the RRM computational pre-

dictions. It was predicted that wavelengths in the range of 3500nm to 6500nm

can affect biological functionality of oncogenes and proto-oncogenes, which are

crucial elements in cancer origination and development.

Figure 4.14 demonstrate the LDH enzyme activity changes as a result of the

third irradiation exposure regime in the visible and near infrared light range on

MCF7 and HEM cells. The black box plots represents changes in LDH activity

of HEM cells after 3 hours irradiation and 24 hours post exposure incubation.

As can be seen from Figure 4.14, there are no effects of these exposures on HEM

cells. In contrary, the same exposure regime at six LEDs in visible and near

infrared range (shown in red color boxes) demonstrate the detrimental effects

on cell viability of MCF7 cancer cells. Hence the exposures at 466nm, 595nm,

626nm, 810nm, 850nm, and 950nm induce cytotoxic effect on MCF7 cells.

LDH Assay on MCF7 and HEM Cells - Summary Remarks

In Figures 4.9, 4.11, and 4.13, the considerable cytotoxic effects are observed for

light exposures at the selected far infrared wavelengths on MCF7 human cancer
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Figure 4.14: Cytotoxicity measurements by LDH assay of MCF7 and HEM cells
exposed for 3 hours to 466nm, 595nm, 626nm, 810nm, 850nm, and 950nm wave-
lengths (visible and near infrared range) followed by 24 hours of post exposure
incubation. The LDH analysis results were evaluated by ELISA plate reader with
OD reading of 492nm. The red color represents cell viability, measured by LDH
assay on MCF7 human cancer cell. The black color represents cell viability of
HEM human normal cells. The horizontal lines in the boxes indicate the mean
values obtained from all repeats of that particular experiment.
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cells. Detrimental effects of this irradiation are demonstrated as relative changes

in cell viability of cancer cells for three different exposure and post exposure incu-

bation times. In vitro analysis of these far infrared wavelength LEDs on human

normal cells does not demonstrate any detectable cytotoxic effects. All three

regimes of exposure and post exposure incubation do not indicate any reduction

in cell viability of HEM cells compared to the sham exposed HEM cells as opposed

to the significant reduction in cell viability of the exposed MCF7 cells.

Figure 4.10, 4.12, and 4.14 present cell viability results of human normal and

cancer cells exposed by external visible and near infrared light. LDH enzyme

activity measurements of MCF7 and HEM for different regimes of irradiation are

illustrated for three LEDs in the visible range and three LEDs in near infrared

range. It is evident that visible and near infrared range irradiation have detri-

mental effects on cell viability of cancer cells, and induced cytotoxic effects on

MCF7 cells, while HEM cells are not affected by these exposures even slightly.

Figure 4.15 demonstrates histogram of all triple triplicate repeats of LDH results

for relative changes in cell viability of MCF7 cells as a result of far infrared

exposures using three different regimes of radiation. Figure4.16 shows the results

of far infrared exposures on MCF7 and HEM cells in two different planes.

Importantly, cell viability of MCF7 cancer cells are substantially affected by ex-

ternal irradiation at the far infrared wavelength compared to insignificant effects



4.1 LDH Cytotoxicity Assay 167

Figure 4.15: Histograms of the evaluated LDH activity for three different exposure
regime on MCF7 cells. The top histogram represents all evaluated far infrared
exposure for the first regime of radiation. The middle graph is the representation
of the second regime of exposure. The bottom histogram demonstrates the result
of the third regimes of exposure on MCF7.
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of such irradiation on HEM normal cells. The top graph in Figure 4.15 reveals the

cytotoxic effects induced by 1.5 hours of irradiation on MCF7 cells. As an be seen,

experimental data lies in the range of 80-90% of cell viability. This implies that

only a slight reduction in cell viability is recorded for the first regime of exposure.

The middle graph displays the results of 1.5 hours of exposure with 24 hours of

post exposure incubation on cell viability of MCF7 cells. Cell viability is still in

the range of 80-90% hence a second regime of exposure induced only slight effects

on cancer cells. Finally, the bottom graph reveals changes in cell viability due to

3 hours of far infrared exposures with 24 hours of post exposure incubation. This

graph indicates more significant effects on cell viability reduction in MCF7. This

graph clearly indicates the shift in cell viability to the region of 70-80%, which

is considered a significant reduction in cell viability, when compared to 100% cell

viability of untreated MCF7 cells.

Figure 4.16 further emphasizes on the changes in cell viability or cell apoptosis

in MCF7 cancer cells for different regimes of far infrared exposures in comparison

to non-cytotoxic effects of the same exposures on HEM cells. The cell viability

reduction (%) in MCF7 cells exposed to far infrared wavelengths shown in purple

color. LDH assay results for HEM cells are in the z-plane of 100% to 110%

cell viability compared to 100% cell viability of sham exposed HEM cells used

as control. In comparison, cell viability of the exposed MCF7 cells is overall

reduced down to 80% - 90%. Sham exposed MCF7 cells are used as control and
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Figure 4.16: LDH enzyme activity measurements by LDH assay are exhibited for
different regimes of far infrared exposures and post exposure incubations for both
cancers (MCF7) and normal (HEM) human cells.
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their cell viability is measured at 100%. Thus, assessment of these two planes for

exposed MCF7 and HEM cells strongly suggests that exposures at the selected

far infrared LEDs induces a substantial reduction in cell viability of MCF7 cancer

cells as opposed to no effect observed in the exposed HEM cells.

4.2 MTT Cell Proliferation Assay

A number of standard quantitative cell-based assays are proposed to be conducted

for in vitro evaluation of the RRM proposed hypothesis on both animal and

human cells. The analysis is conducted using MTT cell proliferation assay, which

is used to detect changes in cellular proliferation as a result of external radiation.

MTT assay is used to quantitatively measure the effects of external irradiation

at the selected wavelengths and different exposure regimes on cell proliferation of

B16F10 and CHO cells (cancer and normal animal cell line).

The LEDs used for external electromagnetic radiation in the far infrared range

are: 3400nm, 3600nm, 3800nm, 3900nm, 4100nm, 4300nm; in hte visible range

are: 466nm, 595nm, and 626nm, and in the near infrared range are: 810nm,

850nm, and 950nm. Cells are irradiated using three different durations of expo-

sures and post exposure incubation.

Cellular proliferation assessments are conducted by MTT assay kit obtained

from Invitrogen, Life technologies, Australia. Cells are seeded at initial concen-
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tration of 1 × 104 cells per mL in 96-well plate. Then, the plates are incubated

overnight before the start of each set of experiments. On each plate, three wells

deposited with cell-less medium are assigned for background control. In addi-

tion, three more wells are assigned for control, in which cells are not irradiated.

After the experiments, MTT cell proliferation analysis results are evaluated by

ELISA plate reader with OD reading of 595nm. Experimental exposure of each

well is repeated three times on each plate with three different wells. Each set of

experiment is repeated three times with different patches of B16F10 and CHO

and different passage number. Passage numbers range from 2 to 11.

4.2.1 Exposure of Animal Cells - B16F10 vs. CHO Cells

Figures 4.17 and 4.18 show cell viability measurements obtained from MTT assay

conducted on B16F10 and CHO cells for the first regime of exposure (1.5 hours of

exposure). In Figure 4.17, cells are exposed to selected far infrared wavelengths

range and in Figure 4.18, cells are irradiated with selected visible and near infrared

wavelengths LEDs.

The box plots in Figure 4.17 display the MTT cell proliferation analysis for

each selected wavelength in the proposed far infrared range. As it is apparent

from the box plot graph, 1.5 hours of irradiation at these far infrared range LEDs

induces a substantial cytotoxic effect on B16F10 cells (shown in red color boxes).

In contrary to the induced apoptotic effects in B16F10, exposures of CHO cells
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Figure 4.17: External electromagnetic radiation at the far infrared wavelengths
for the first regime of exposure. Cells are radiated for 1.5 hours with no post
exposure incubation. In this box plot representation, each box represents mean
(the middle box horizontal line) and standard errors (vertical lines outside the
box) of the repeated MTT results. Data values that are at the significant levels
are shown by +. The red color shows cell viability results from MTT assay for
B16F10 cells. The black color demonstrates cell viability results for CHO cells.
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Figure 4.18: Cell proliferation measurements in B16F10 and CHO cell exposed
for 1.5 hours at 466nm, 595nm, 626nm, 810nm, 850nm, and 950nm wavelengths
(visible and near infrared range). The red color represents cell viability measured
by MTT assay for animal cancer cell line, B16F10. The black color represents
cell viability measured by MTT assay for animal normal cell line, CHO. The
horizontal line in the boxes indicates the mean value obtained from all repeats of
that particular experiment.

(shown in black boxes do not demonstrate any significant changes in the cell

proliferation in CHO cells.

Figure 4.18 shows the cell viability changes for 1.5 hours of exposures at the

selected visible and near infrared wavelengths measured by MTT cell proliferation

assay. No substantial cellular apoptosis is induced in B16F10 and CHO cells by

the first three visible light wavelengths (466nm, 595nm, 626nm). Similarly, the

next three wavelengths representing near infrared wavelengths (810nm, 850nm,
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950nm) do not induced any major changes in cell viability of animal cancer and

normal cells, B16F10 and CHO cells respectively. The results obtained from

MTT analysis for the first regime of exposure is in agreement with the results of

LDH analysis on B16F10 and CHO for the same wavelengths of exposures and

exposure regimes. In both analyses no substantial cellular apoptosis effects are

observed for all three regimes of exposure in the visible and near infrared light.

Figure 4.19 and 4.20 display the cell proliferation effects of far infrared wave-

lengths as well as visible and near infrared wavelength on B16F10 and CHO cells.

These measurements are conducted with MTT assay for the second regime of

exposure and post exposure incubation (1.5 hours of exposure and 24 hours of

post exposure incubation).

Comparing the results of MTT cell proliferation evaluation for the second regime

of exposure on B16F10 cells, a slight reduction in cell viability is observed, while

assessment of the same exposure regime on CHO cell does not indicate any effects

on cell viability in CHO cells. The graph also clearly demonstrates that the extra

24 hours of post exposure incubation followed the second regime of exposure

induces some apoptotic effects on cell viability of cancer cells though the effects

are not significant.

Figure 4.20 show the results of cell proliferation analysis of B16F10 and CHO

cells that are exposed to visible and near infrared wavelengths. Apparently, no
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Figure 4.19: External electromagnetic radiation at the far infrared wavelengths
for the second regime of exposure. In this regime, cells are exposed at the selected
far infrared wavelengths for 1.5 hours and then incubated for 24 hours before the
implementation of MTT measurement protocol. In this box plot representation,
each box represents mean (the middle box horizontal line) and standard errors
(vertical lines outside the box) of the repeated MTT results. Data values that are
at the significant levels are shown by +. The red color shows cell viability results
from MTT assay for B16F10 cells. The black color demonstrates cell viability
results for CHO cells.
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Figure 4.20: Cell proliferation measurements in B16F10 and CHO cells exposed
for 1.5 hours at 466nm, 595nm, 626nm, 810nm, 850nm, and 950nm wavelength
(visible and near infrared range) followed by 24 hours of post exposure incubation.
The red color represents cell viability measured by MTT assay for animal cancer
cell line, B16F10. The black color boxes represent cell viability measured by MTT
assay for animal normal cell line, CHO. The horizontal line in the boxes indicates
the mean values obtained from all repeats of that particular experiment.
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clear indication of cell apoptosis or cytotoxicity is observed for the visible range

irradiation (the first three wavelengths from right hand side of graph) in B16F10

and CHO cells. Analysis of near infrared range irradiation does not indicate any

reportable effect on cell viability of either animal cancer or normal cells.

Finally, MTT evaluation of the third exposure regime for visible, near infrared

and far infrared wavelength for B16F10 and CHO cells are shown in Figure 4.21

and 4.22.

Figure 4.21 shows the effects of 3 hours of exposures followed by 24 hours of post

exposure incubation in terms of relative changes (%) in cell viability in B16F10

(shown in red color boxes). As evident from Figure 4.21, substantial reduction

in cell viability is induced by irradiation at the selected far infrared LEDs. This

range was predicted computationally by the RRM. As opposed to MTT results

of this irradiation regime on B16F10, there are no changes in cell viability values

do not reveal any noticeable changes in the exposed CHO cells (shown in black

color boxes).

As it is apparent from Figure 4.22, cell proliferation of B16F10 and CHO cells do

not show any cytotoxic effect after 3 hours of visible and near infrared wavelengths

exposure and 24 hours of post exposure incubation. As it can be observed from

both red box plots and black box plots MTT evaluation of B16F10 and CHO cells

respectively, less than 10% change in the cell viability of these cells was induced
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Figure 4.21: External electromagnetic radiation at far infrared wavelengths for
the third regime of exposure. In this regime of exposure, cells are irradiated for
3 hours at the selected far infrared wavelength LEDs followed by 24 hours of
post exposure incubation. In this box plot representation, each box represents
the mean value (the middle box horizontal line) and standard errors (vertical
lines outside the box) of the repeated MTT results. Data values that are at the
significant levels are shown by +. The red color shows cell viability results from
MTT assay for B16F10 cells. The black color demonstrates cell viability results
for CHO cells.
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Figure 4.22: Cell proliferation measurements of B16F10 and CHO cells for 3
hours exposure at 466nm, 595nm, 626nm, 810nm, 850nm, and 950nm wavelengths
(visible and near infrared range) followed by 24 hours of post exposure incubation.
The red color represents cell viability measured by MTT assay for animal cancer
cell line, B16F10. The black color represents cell viability measured by MTT
assay for animal normal cell line, CHO. The horizontal line in the boxes indicates
the mean value obtained from all repeats of that particular experiment.
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by these exposures, which is not regarded as a significant effect.

MTT Assay of B16F10 and CHO Cells - Summary Remarks

From the three graphs presented in Figures 4.18, 4.20, and 4.22, it can be ob-

served that external electromagnetic radiation at 466nm, 595nm, and 626nm

wavelengths (visible light) does not induce any considerable effects on cell prolif-

eration of B16F10 and CHO cells as measured by MTT assay. Moreover, similar

results are obtained for external irradiation at near infrared wavelengths (810nm,

850nm, 950nm). No considerable cytotoxic effect is observed for both cell lines.

Thus, it can be concluded that three different irradiation regime of visible and

near infrared light did not induce changes in cell viability of both cancer and

normal cell lines.

Figures 4.17, 4.19 and 4.21 show a substantial reduction in cell viability of

B16F10 cells measured by MTT assay at the far infrared exposures and all three

regimes of exposure and post exposure incubation. As opposed to the considerable

effect of far infrared external irradiation on cell viability of B16F10 cells, MTT

analysis of CHO cells for the same exposure regimes and wavelengths does not

detect any noticeable cytotoxic effect. Hence, according to MTT assay analysis of

different exposure wavelengths and regimes on B16F10 and CHO cells, it can be

concluded that far infrared exposures induce significant cytotoxic effect on cancer

cells (maximum 20% cell viability reduction), while normal cells are not affected
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Figure 4.23: Histograms of all MTT assay data (cellular proliferation) for dif-
ferent exposure regimes on B16F10. The top histogram represents all evaluated
far infrared wavelength for the first regime of exposure. The middle graph is the
representation of the second regime of exposure. The bottom histogram demon-
strates the results of the third regime of exposure on B16F10 cells.

by the same exposures.

To summarize the cytotoxic effects of visible, near infrared and far infrared

exposures on B16F10 and CHO cells measured by MTT assay, the following

Figures 4.23 and 4.24 are plotted to differentiate the exposure effect on these cell

lines.

The subplots in Figure 4.23 show the changes in cell viability of B16F10 cancer

cells for all three exposure regimes. The top plot illustrates the cell viability
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results measured by MTT assay for the first exposure regime (1.5 hours of irradi-

ation). As it is evident, cell viability of B16F10 cells is mainly around 80% and

90% compared to 100% cell viability of sham exposed B16F10 cells. The middle

plot illustrates that the second regime of exposure (1.5 hours of exposure and 24

hours of post exposure) does not induce noticeable effect in cancer cells similar

to the first regime of exposure. Majority of cell viability data shows cell viability

around 80% and 90%. Finally, the bottom plot in Figure 4.23 shows a visibly

different cell viability results achieved for the third regime of exposure (3 hours

of exposure followed by 24 hours of post exposure incubation) compared to the

first and second plot. In last plot, the results show cell viability is shifted toward

70% - 80% region. Thus, these findings clearly illustrate that the third regime of

exposure induced the most significant cytotoxic effect in B16F10 cells compared

to the other two regimes of exposure and post exposure incubation.

Figure 4.24 reveals the effects of different regimes of far infrared exposure on

cell viability of B16F10 and CHO cells as measured by MTT assay. In Figure

4.24, two planes of green and purple color are shown: the green plane that spread

on the 100% cell viability indicates that CHO cells are not substantially affected

by far infrared exposures. In contrary, the purple plane intersects with z-plane in

the range of 70%-80% cell viability indicates the significant effects of far infrared

exposures on cell viability of B16F10 cancer cells.
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Figure 4.24: The cellular proliferation measurements by MTT assay shown for
different regimes of far infrared exposures and post exposure incubations for both
cancer (B16F10) and normal (CHO) animal cells.
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Figure 4.25: External electromagnetic radiation of far infrared wavelengths for
the third regime of exposure. In this regime of exposure, cells are irradiated
for 1.5 hours at the selected far infrared wavelength LEDs. In this box plot
representation, each box represents mean (the middle box horizontal line) and
standard errors (vertical lines outside the box) of the repeated MTT results.
Data values at significantly higher levels are shown by +. The red color boxes
show cell viability results from MTT assay for cancer MCF7 cells. The black
color boxes demonstrate cell viability results for normal HEM cells.

4.2.2 Exposure of Human Cells - MCF7 vs. HEM Cells

Figure 4.25 and 4.26 illustrate the effects of external irradiation on cell viability

of human cells by implementing MTT assay. In these experiments, cells are irra-

diated for 1.5 hours using visible, near infrared and far infrared light exposures.

Figure 4.25 provides insight into the effects of 1.5 hour light irradiation on MCF7
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Figure 4.26: Cell proliferation measurements by MTT assay of MCF7 and HEM
exposed for 1.5 hours at 466nm, 595nm, 626nm, 810nm, 850nm, and 950nm
wavelengths (visible and near infrared range). The red color boxes signify cell
viability measured by MTT assay for human MCF7 cancer cells. The black color
boxes represent cell viability measured by MTT assay for human HEM normal
cells. The horizontal lines in the boxes indicate the mean values obtained from
all repeats of that particular experiment.

and HEM cells. The results demonstrated in the figure show a noticeable cellular

apoptosis effect of exposures on MCF7 cells, when compared to the insignificant

effects of such exposure on human HEM normal cell line.

The MTT assay results of MCF7 and HEM cells assessment for the first regime

of exposure demonstrated in Figure 4.26 show minimal effects of irradiation on

cellular viability of the MCF7 cancer cells but no effect is observed for HEM

cells. Comparison of MTT analysis of both MCF7 cells and HEM cells for the first
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three wavelengths (visible range) clearly demonstrate that MCF7 cells are affected

slightly by these exposures. Figure 4.26 also shows similar effects from near

infrared exposures (the last three wavelengths) of MCF7 and HEM cells, where

a slight cell viability reduction is observed for MCF7 cells and no cell viability

changes perceived for HEM cells. The changes observed in cellular proliferation of

MCF7 at the selected visible light wavelengths are not very significant compared

to that of far infrared exposure shown in Figure 4.25. Hence, it can be concluded

that irradiation of different wavelengths in visible and near infrared range does

not induce any considerable cytotoxicity on cultured cells.

Now, the MTT evaluation for the second regime of exposures (visible, near

infrared and far infrared) of MCF7 and HEM cells is shown in Figure 4.27 and

4.28.

The effects of the second regime of exposure (1.5 hours of exposure and 24 hours

of post exposure incubation) on two human cell lines are measured using MTT

assay and represented in Figure 4.27. The cell viability changes in MCF7 cell

induced by the exposures at the selected wavelengths in the far infrared range,

are quiet visible in Figure 4.27. In contrary to the effects of the exposures on

MCF7, no significant effects are identified for cell viability of normal HEM cells.

Apparently, visible and near infrared exposure of HEM cells, shown in Figure

4.28 do not indicate any significant cell proliferation effects, while a slight changes
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Figure 4.27: External electromagnetic radiation of far infrared light for the second
regime of exposure. In this regime of exposure, MCF7 and HEM cells are irra-
diated for 1.5 hours with selected far infrared wavelengths followed by 24 hours
of post exposure incubation. In this box plot representation, each box represents
mean (the middle box horizontal line) and standard errors (vertical lines outside
the box) of the repeated MTT results. Data values that are at the significant
levels are shown by +. The red color boxes show cell viability results from MTT
assay for MCF7 cells. The black color boxes demonstrate cell viability results for
HEM cells.
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Figure 4.28: Cell proliferation measurements by MTT assay of MCF7 and HEM
cells exposed for 1.5 hours at 466nm, 595nm, 626nm, 810nm, 850nm, and 950nm
wavelengths (visible and near infrared range) followed by 24 hours of post expo-
sure incubation. The MTT analysis results are evaluated by ELISA plate reader
with OD reading of 595nm. The red color boxes represent cell viability measured
by MTT assay for human cancer cell line, MCF7. The black color boxes repre-
sent cell viability measured by MTT assay for human normal cell line, HEM. The
horizontal lines in the boxes indicate the mean values obtained from all repeats
of that particular experiment.
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Figure 4.29: Cellular proliferation variation measurement by MTT assay of MCF7
and HEM cell exposed for 3 hours at the selected far infrared wavelengths followed
by 24 hours of post exposure incubation. The MTT results were evaluated by
ELISA plate reader with OD reading of 595nm.

in cell viability of MCF7 is visible. The changes in cell viability of MCF7 cells

are not considered substantial since it is around 10% of reduction. Hence, it

can be concluded that visible and near infrared wavelengths do not induce any

considerable cellular apoptosis effect on MCF7 or HEM cells.

At the next step, the changes induced in cellular proliferation of MCF7 and

HEM cells at the visible, near infrared and far infrared exposures are shown in

Figure 4.29 and 4.30.

Figure 4.29 represents the MTT assessment of cellular proliferation changes of
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Figure 4.30: Cell proliferation measurements by MTT assay of MCF7 and HEM
cells exposed for 3 hours at 466nm, 595nm, 626nm, 810nm, 850nm, and 950nm
wavelengths (visible and near infrared range) followed by 24 hours of post expo-
sure incubation. The MTT analysis results are evaluated by ELISA plate reader
with OD reading of 595nm. The red color boxes represent cell viability measured
by MTT assay for human cancer cells, MCF7. The black color boxes represent
cell viability measured by MTT assay for human normal cells, HEM. The hor-
izontal lines in the boxes indicate the mean value obtained from all repeats of
that particular experiment.

MCF7 and HEM cells exposed at the far infrared wavelengths (range predicted

computationally by the RRM). The effects of such exposure regime on MCF7 cells

are easily identifiable. The cytotoxic effects induced in human cancer cells lead to

cell viability reduction by approximately 20%. This cell viability reduction is in

agreement with other quantitative results obtained from LDH analysis in Section

4.1.2.
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Similar to other MTT results demonstrated in Figures 4.26 and 4.28, no con-

siderable effects have been detected by MTT assessment for irradiation of HEM

cells for 3 hours using visible and near infrared range LEDs and incubated for 24

hours after the exposures. Similarly, insignificant cell proliferation reduction in

MCF7 cells of less than 10% is observed and demonstrated in Figure 4.30 at the

visible and near infrared wavelengths.

MTT Assay on MCF7 and HEM Cells - Summary Remarks

To draw a final conclusion from the MTT assessment results on the effects of

visible, near infrared and far infrared exposures on cell viability of human MCF7

cancer and HEM normal cells, the following Figures 4.31 and 4.32 are presented

to depict dissimilarity of the induced effects in these two types of cells.

Three graphs displayed in Figure 4.31 provide a comprehensive illustration of

cellular apoptosis effects of three different exposure regimes evaluated in vitro on

human MCF7 cancer cells. The plots in this figure provide a clear demonstration

of changes in cell viability (%) as a result of variation in exposure and post

exposure incubation times. As it can be seen from the graphs, the cell viability

obtained from the first regime of exposure is approximately around 90% viability,

while the cellular viability obtained from the second regime of exposure shifts

toward 80% viability. This 10% shift in cell viability can be due to extra 24 hours

post exposure incubation of cells. Moreover, the bottom graph displays a further
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Figure 4.31: Histograms of MTT assessment results for triple triplicate of all
three different exposure regimes on MCF7 cells. The first histogram from the
top illustrates MTT evaluation of far infrared irradiation for the first regime of
exposure. The middle graph displays MTT assessment for the second regime of
exposure. At last, the bottom histogram demonstrates the results of the third
regime of exposure on MCF7.
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Figure 4.32: The proliferation results obtained from MTT assay are shown for
different regimes of far infrared exposure and post exposure incubation for both
cancer (MCF7) and normal (HEM) human cells.

reduction in cell viability compared to the above two graphs. The cell viability

due to the third regime of exposure measured is shown in the last histogram. In

this plot, the percentage of cellular viability appears to be shifted toward 70% and

80% by extension of exposure duration to 3 hours and post exposure incubation

time to 24 hours compared to the first regime of exposure.

Figure 4.32 further clarifies and distinguishes the effects of different exposure

regimes on both normal and cancer human cells. These two planes shown in

Figure 4.32 illustrate the effect induced by the far infrared exposures on MCF7

cancer and HEM normal cells. The green plane represents the MTT assessment
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of the induced effects on HEM normal cells. This plane generally is at z-plane of

100% cell viability, which means that no cytotoxic effects are observed in HEM

cells. As oppose to HEM cells’ MTT evaluation results, the effects of external

irradiation on MCF7 cells are demonstrated by the purple plane that is on z-plane

at 80% cell viability.

In conclusion, as proposed by the RRM hypothesis implementation, far in-

frared light in the range of 3500nm-6500nm predicted computationally by the

RRM induces a significant cellular apoptosis on cancer cells only. MTT cellu-

lar proliferation analysis of MCF7 and HEM cells for three different exposure

regimes in the visible and near infrared light wavelengths range demonstrates a

slight, almost insignificant cytotoxic effect, while HEM cells are not affected by

the same exposure regime and wavelengths.

Quantitative analysis of HEM normal cells irradiated by other wavelengths does

not indicate any induced effect on their cell viability as measured by MTT assay.

Although MCF7 cells are exposed by visible and near infrared wavelengths shows

some induced cytotoxic effects which requires a further investigation. Another

area that would require further analysis and experiments is the cell proliferation

detected on a number of experiments on normal cell lines. These proliferation

effects are shown in figures such as Figure 4.1, Figure 4.3, Figure 4.5, · · · . Since

the mechanism of such effects is not part of this thesis, it is not pursuit further

here.
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4.3 PrestoBlueTM Cell Viability Assay

To conclusively evaluate and further clarify the quantitative results obtained from

LDH and MTT assays for human cancer and normal cell lines, PrestoBlueTM as-

say was also conducted on MCF7 and HEM cells. PrestoBlueTM assay is used as

reagent for rapid evaluation of viability and proliferation of MCF7 cells irradiated

at three different regimes of exposure and post exposure incubation. The expo-

sures are conducted using six selected LEDs in the far infrared wavelength range

(as presented in previous sections). PrestoBlueTM quantitatively measures any

variation in cell viability of breast cancer cells due to external irradiation of these

wavelengths at the far infrared (3400nm, 3600nm, 3800nm, 3900nm, 4100nm,

4300nm). Cells are seeded at the initial density of 1 × 104 cells per mL in a

96-well plate and incubated overnight before the start of experiments. The ex-

periments are conducted in three times triplicate. The procedure and preparation

of cells for evaluation of their cell viability by PrestoBlueTM is closely followed

by the accompanied manual (Invitrogen Technologies, Australia). Then, the re-

sults are measured at OD reading of 595nm using a 96 well ELISA plate reader

(Thermo Electron Corporation, USA). The control is the mean absorption from

the untreated (non-exposed) cells and the background is just the cell-less culture

media.

Figure 4.33 demonstrates changes in cell viability of MCF7 cells irradiated at
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Figure 4.33: Cell viability measurements by PrestoBlueTM assay of MCF7 cells
exposed for 1.5 hours at the selected far infrared wavelengths. The horizontal
lines in the boxes represent the mean value of all measurement repeats for that
specific wavelengths and regime. The vertical lines indicate the range of the
measurement values (the maximum value at the top end and the minimum value
at the bottom end).
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Figure 4.34: Cell viability measurements by PrestoBlueTM assay of MCF7 cells
exposed for 1.5 hours at the selected far infrared wavelengths with 24 hours of
post exposure incubation. The horizontal lines in the boxes represent the mean
value of all measurement repeats for that specific wavelengths and regime. The
vertical lines indicate the range of the measurement values (the maximum value
at the top end and the minimum value at the bottom end).

the first regime of exposure. In this regime, cells are irradiated for 1.5 hours at

the selected far infrared wavelengths with no post exposure incubation after that.

As demonstrated in Figure 4.33, visible reduction in cell viability of MCF7 cells is

observed from PrestoBlueTM analysis. The results obtained here further reaffirm

the cytotoxic effects of the far infrared wavelengths on cancer cells.

The cell viability results evaluated by PrestoBlueTM assay in Figure 4.34 demon-

strate the effects induced by 1.5 hours irradiation at the selected far infrared
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Figure 4.35: Cell viability measurements by PrestoBlueTM assay on MCF7 cells
exposed for 3 hours at the selected far infrared wavelengths followed by 24 hours
of post exposure incubation. The horizontal lines in the boxes represent the mean
value of all measurement repeats for that specific wavelengths and regime. The
vertical lines indicate the range of the measurement values (the maximum value
at the top end and the minimum value at the bottom end).

wavelengths followed by 24 hours of incubation on MCF7 cell line. Based on

prediction by RRM approach, these far infrared light wavelengths are expected

to induce resonant effects in biological activity of oncogenes and proto-oncogenes.

As it can be seen here, the predicted far infrared wavelengths range demonstrate

visible effect on cell viability of cancer cells as measured by PrestoBlueTM assay.

The cell viability results of MCF7 cells shown in Figure 4.35 show the findings

measured by PrestoBlueTM assay, when cancer cells were exposed for 3 hours
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at the selected far infrared wavelengths followed by 24 hours of post exposure

incubation. The graph demonstrates the significant cell viability reduction due

to external exposures at the third regime of exposure in MCF7 cells.

4.4 Discussion - Quantitative Analysis and Fi-

nal Remarks

The quantitative results obtained from LDH assay for visible, near infrared and

far infrared irradiation corroborate the computationally predicted far infrared

light at the wavelengths in the range of 3500nm to 6500nm can induce cytotoxic

effects on cell viability of animal and human cancer cells. LDH analysis confirms

the significant cell viability reduction in B16F10 and MCF7 cells exposed to far

infrared wavelengths. In contrary to responses of B16F10 and MCF7 cancer

cells to far infrared irradiation, LDH analysis of normal CHO and HEM cells

irradiated at the same far infrared wavelengths does not indicate any cytotoxic

effects in their cell viability. Although irradiation by visible and near infrared

exposures demonstrated insignificant cytotoxic effect on B16F10 and MCF7 cells,

the underlying mechanism of that cytotoxic effect is not pursuit here, since it does

not input any valuable contribution to the scope of this project. Furthermore,

quantitative analysis of both animal and human cancer, and normal cell lines

with the MTT assay leads to the similar conclusion obtained from the LDH assay.

From the MTT evaluations, it can be deduced that the far infrared wavelength
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exposures can induce the substantial cytotoxic effects in cell viability of cancer

B16F10 and MCF7 cells, while normal CHO and HEM cells are not being affected

by such exposures. The last quantitative test is conducted by PrestoBlueTM on

MCF7 cells to further elucidate the cytotoxic effects of far infrared wavelengths

exposures. The result from PrestoBlueTM assay reafirm the results obtained from

LDH and MTT assays for human cancer MCF7 cells.

In addition, comparison of three different durations of exposures and post ex-

posure incubations by LDH, MTT and PrestoBlueTM assay analyses demon-

strates that the cytotoxic effects of longer exposure time exceeds the cytotoxic

effect of longer post exposure incubation time. As expressed in LDH, MTT and

PrestoBlueTM results obtained from three different exposure regimes differed from

each other by exposure or post exposure incubation times, the effects of longer

exposure time (3 hours) shows more significant cytotoxic effect. The results re-

veal that 3 hours of exposure and 24 hours of post exposure incubation induces

the maximum cytotoxic effects compared to the other two exposure regimes. It

is worth to mention that these optimum exposure regimes are proposed after a

number of trial and error experiments with cancer B16F10 and MCF7 cells.



Chapter 5

Qualitative Analysis of in vitro
Electromagnetic Radiation

As discussed in previous chapters, a recent theoretical hypothesis proposed in

the RRM is being evaluated experimentally in this work. Based on this proposal,

wavelength range between ≈ 3500nm and ≈ 6500nm is identified as activation

wavelength range for oncogenes and proto-oncogenes. These genes play crucial

role in unregulated growth of cancer cells. Hence, detrimental effect is expected

to be induced on cellular proliferation of cancer cells upon exposure to external

irradiation of these wavelengths.

In Chapter 4, quantitative analysis of RRM proposed theory is investigated

through three standard cell-based quantitative assays of LDH, MTT and PrestoBlueTM .

Evaluations of selected far infrared wavelengths irradiation demonstrate visible

cytotoxic effect on cell viability of animal and human cancer cells. The substantial

cytotoxic effect of external far infrared irradiation on both B16F10 and MCF7

201
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cells is shown by all quantitative assays. To further examine and verify the quan-

titatively obtained cytotoxic effect in Chapter 4, changes in cell morphology of

cancer cells for far infrared external exposure is investigated through qualitative

assays.

In this Chapter, the effect of far infrared irradiation on cell morphology is closely

examined by phase contrast microscopy and confocal laser scanning microscopy

(CLSM). Through phase contrast microscopy, the effect of three hours of ex-

ternal irradiation and 24 hours of post exposure incubation on cell morphology

of B16F10 is conducted for wavelengths of 3400nm, 3600nm, 3800nm, 3900nm,

4100nm and 4300nm. The cell morphological effect of such irradiation is com-

pare to untreated B16F10 cells. Then, the effect of same irradiation wavelength

on CHO cells is explored to compare the effect of these external irradiation on

CHO and B16F10 cells (Normal cells vs cancer cells). Subsequently, the effect

of third regime of exposure for all 6 far infrared wavelengths on cell morphology

of MCF7 and HEM cells is demonstrated. These images are then compared to

sham exposed cells for further clarification of external exposure effect on cellular

morphology. Investigation of HEM cells is conducted to provide a comparison

benchmark for the effect of far infrared exposure on normal human and cancer

human cells.

After qualitative analysis of B16F10 (cancer cell line) with phase contrast mi-

croscopy, the images from a more in-depth qualitative assay with confocal laser
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scanning microscopy (CLSM) is presented. At first, the necrosis and apoptotic ef-

fect of far infrared irradiation on B16F10 cells is studied for two far infrared range

LEDs of 3600nm and 4300nm as well as untreated B16F10 cells. Subsequently,

the necrosis and opoptotic effect of external far infrared exposure on MCF7 cells

is explored. This qualitative analysis on MCF7 is conducted on untreated MCF7

cells and cells exposed to wavelengths of 3600nm and 4300nm according to the

third regime of exposure. Finally, the last section of this chapter provides a dis-

cussion of the two qualitative analysis conducted on human and animal cancer

and normal cells.

5.1 Phase Contrast Microscopy

To measure any induced effects of the far infrared wavelengths on cell morphology

of cancer and normal human and animal cells, phase contrast microscopy is used

to analyze any effect qualitatively. For this assay, cells are seeded at the density

of 2× 105 cells per mL in 24-well plates and incubated overnight. Then, the cells

are exposed to external irradiation of far infrared LEDs based on the third regime

of exposure. Hence, cells are irradiated for 3 hours followed by 24 hours of post

exposure incubation. It is worth to mention that one well in each plate is sham

exposed and used as control for measurement of external exposure effects on can-

cer and normal cells. Upon elapse of post exposure incubation time, exposed cells

are washed very carefully with cold phosphate-buffered saline (PBS) to remove
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any cell detachment from the surface of the plates. After this step, the images

are taken by phase contrast microscopy to elucidate any induced effects imposed

on cell viability by the external exposures. These images for each wavelength

are taken at 100X magnifications using Nikon Eclipse Ti-E microscope (Nikon

Instruments Inc, Japan).

5.1.1 Animal Cell line - B16F10 vs. CHO cells

The effects of external irradiation of selected wavelengths (in the RRM compu-

tationally predicted far infrared range) are probed by phase contrast microscopy.

In this qualitative assay, B16F10, and CHO cells are externally irradiated by

the fabricated exposure device at the wavelengths of 3400nm, 3600nm, 3800nm,

3900nm, 4100nm, 4300nm. According to the experimental analysis from standard

cell-based quantitative assays, cancer cells radiated with these LEDs in the far

infrared range demonstrate to increase cellular death while normal cells are not

affected.

Thus, this section further investigates the findings from quantitative analysis

through qualitative assays conducted on both normal and cancer animal cell lines.

The first graph is phase contrast microscopy images of untreated cell culture for

B16F10 and CHO cells, respectively.

To comprehend and analytically assess any changes in cell morphology, a set
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Figure 5.1: Untreated cultured B16F10 cell line.
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Figure 5.2: Untreated cultured CHO cell line.
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of untreated cell culture from B16F10 as a cancer cell line and CHO cells as a

normal cell line are examined by phase contrast microscopy and demonstrated in

Figure 5.2 and 5.1. This set of microscopy images is used as a control to help us

identify any morphology or significant confluency changes in cell morphology of

B16F10 and CHO cells as a result of different external irradiation wavelengths.

Figure 5.3 and Figure 5.4 demonstrate the effect of 3400nm wavelength exposure

on B16F10 and CHO cell lines. A close look at the image taken for B16F10 cells

indicates the apparent cell detachment as a result of 3 hours of irradiation with

3400nm wavelength followed by 24 hours of incubation. When the images of

both B16F10 and CHO cells are compared, no apparent cellular detachment or

cell morphology changes are observed in CHO cells. Additionally, quantitative

analysis of identical exposure regime on CHO cells in Chapter 4 does not indicate

significant changes in cell viability of CHO cells.

Comparison of Figure 5.5 and 5.6 clearly demonstrate that far infrared wave-

length of 3600nm causes cell apoptosis and cell detachment in B16F10 as cancer

cells while CHO cells does not seem to be affected by this external electromag-

netic irradiation. According to the RRM proposed hypothesis, the wavelength

range of 3500nm to 6500nm is expected to induce resonant effects on the biolog-

ical functionality of oncogene and proto-oncogene proteins. The results obtained

from phase contrast microscopy for B16F10 cells compared to CHO cells not

only corroborate the quantitative analysis demonstrated in Chapter 4 but also is
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Figure 5.3: The effects of exposure irradiation of 3400nm wavelength on B16F10
as cancer cells. Cancer cells are exposed for 3 hours inside the incubator to
3400nm wavelength. The exposed cells are then incubated for 24 hours before
phase contrast microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon
Instruments Inc, Japan) with 100X magnification.
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Figure 5.4: The effects of exposure irradiation of 3400nm wavelength on CHO
as normal cell line candidate. Cells are exposed for 3 hours inside the incubator
to 3400nm wavelength. The exposed cells are then incubated for 24 hours before
phase contrast microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon
Instruments Inc, Japan) with 100X magnification.
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Figure 5.5: The effects of exposure irradiation of 3600nm wavelength on B16F10
as cancer cells. Cancer cells are exposed for 3 hours inside the incubator to
3600nm wavelength. The exposed cells are then incubated for 24 hours before
phase contrast microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon
Instruments Inc, Japan) with 100X magnification.
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Figure 5.6: The effects of exposure irradiation of 3600nm wavelength on CHO
as normal cell line candidate. Cells are exposed for 3 hours inside the incubator
to 3600nm wavelength. The exposed cells are then incubated for 24 hours before
phase contrast microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon
Instruments Inc, Japan) with 100X magnification.
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aligned with the RRM proposed hypothesis.

In Figure 5.7, visible cellular detachment in cell cultures irradiated externally

with 3800nm wavelength is observed. In contrary, Figure 5.8 does not demon-

strate any significant cytotoxic effects. Even though, CHO cells in Figure 5.8 and

B16F10 cells in Figure 5.7 are irradiated at the same far infrared wavelengths

and exposure regime, the cytotoxic effects are only observed on B16F10, which

is a cancer cell line. According to the proposed hypothesis, wavelength range of

3500nm to 6500nm is related to the active site(s) of oncogene and proto-oncogene

proteins. It has been proposed that external exposures at this wavelength range

can induce changes in biological functionality of proteins that lead to therapeutic

effect on cancer tumors.

Similarly, the external exposure of B16F10 as a cancer cell line in Figure 5.9

shows visible apoptotic effect while CHO as a normal cell line in Figure 5.9

does not demonstrate any visible sign of cellular death or cellular detachment.

The visible cellular detachment in B16F10 cells corroborates the quantitative

assays results which indicate increased cell apoptosis due to external far infrared

exposures. It can be deducted from comparing the images of B16F10 and CHO

cells that the external exposures at the selected far infrared wavelengths do not

lead to any cell detachment or cell apoptosis in CHO cells, while its cytotoxic

effects on B16F10 cells are apparent.
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Figure 5.7: The effects of exposure irradiation of 3800nm wavelength on B16F10
as cancer cells. Cancer cells are exposed for 3 hours inside the incubator to
3800nm wavelength. The exposed cells are then incubated for 24 hours before
phase contrast microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon
Instruments Inc, Japan) with 100X magnification.
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Figure 5.8: The effects of exposure irradiation of 3800nm wavelength on CHO
as normal cell line candidate. Cells are exposed for 3 hours inside the incubator
to 3800nm wavelength. The exposed cells are then incubated for 24 hours before
phase contrast microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon
Instruments Inc, Japan) with 100X magnification.
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Figure 5.9: The effects of exposure irradiation of 3900nm wavelength on B16F10
as cancer cells. Cancer cells are exposed for 3 hours inside the incubator to
3900nm wavelength. The exposed cells are then incubated for 24 hours before
phase contrast microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon
Instruments Inc, Japan) with 100X magnification.
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Figure 5.10: The effects of exposure irradiation of 3900nm wavelength on CHO
as normal cell line candidate. Cells are exposed for 3 hours inside the incubator
to 3900nm wavelength. The exposed cells are then incubated for 24 hours before
phase contrast microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon
Instruments Inc, Japan) with 100X magnification.
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Figure 5.11: The effects of exposure irradiation of 4100nm wavelength on B16F10
cells. Cancer cells are exposed for 3 hours inside the incubator to 4100nm wave-
length. The exposed cells are then incubated for 24 hours before phase contrast
microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon Instruments
Inc, Japan) with 100X magnification.
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Figure 5.12: The effects of exposure irradiation of 4100nm wavelength on CHO
as normal cell line candidate. Cells are exposed for 3 hours inside the incubator
to 4100nm wavelength. The exposed cells are then incubated for 24 hours before
phase contrast microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon
Instruments Inc, Japan) with 100X magnification.
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Images in Figure 5.11 and 5.12 qualitatively investigate any cytotoxic effect

on in vitro culture of cancer and normal animal cells. These cytotoxic effects

are studied through phase contrast microscopy for the level of cellular death and

detachment of confluent layer indicating apoptosis and necrosis. According to

these images, cellular detachment is observed for animal cell (B16F10) cultures

exposed to 4100nm wavelength. In contrast to animal cancer cells, normal animal

cells (CHO) do not exhibit any apparent cellular death or detachment, and hence

no cytotoxic effect cannot be detected from the image. Since the same expo-

sure regime and same wavelength were used in applied irradiation of both cells,

the results reveal that far infrared exposure of 4100nm wavelength induces apop-

totic effects on B16F10 cells, while CHO cells are not affected by such external

exposures.

The phase contrast microscopy images in Figure 5.13 reveal significant cellular

detachment upon 3 hours of external irradiation at 4300nm wavelength followed

by 24 hours of post exposure incubation. On the other hand, the images of CHO

cells in Figure 5.14 irradiated with the same regime of exposure and the same

wavelength do not illustrate any sign of cytotoxicity induced in the normal animal

cells. It can be deducted that external exposure of 4300nm wavelength induces

the cytotoxic effects on B16F10 cells (which are animal cancer cells) and CHO

cells are not affected by such exposures.
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Figure 5.13: The effects of exposure irradiation of 4300nm wavelength on B16F10
cells. Cancer cells are exposed for 3 hours inside the incubator to 4300nm wave-
length. The exposed cells are then incubated for 24 hours before phase contrast
microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon Instruments
Inc, Japan) with 100X magnification.
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Figure 5.14: The effects of exposure irradiation of 4300nm wavelength on CHO
as normal cell line candidate. Cells are exposed for 3 hours inside the incubator
to 4300nm wavelength. The exposed cells are then incubated for 24 hours before
phase contrast microscopy is conducted by Nikon Eclipse Ti-E microscope (Nikon
Instruments Inc, Japan) with 100X magnification.
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5.1.2 Human Cell Line - MCF7 Cells

This section is concerned with qualitative assessment of human cell lines. In the

previous chapter (Chapter 4), measurement of standard cell-based quantitative

assays demonstrate significant cell death or apoptotic for MCF7 cells as a result

of external exposure at the selected wavelengths in the far infrared range, while

no considerable changes in cell viability of HEM cells is observed through these

quantitative assays. Thus, phase contrast microscopy is utilized to examine mor-

phological changes of MCF7 cells since substantial changes in cell viability of this

cell is observed from quantitative analyses.

This assay measures apopototic effects of external irradiation of selected wave-

lengths in far infrared range on MCF7 cells. The experimented wavelengths are

3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm. These wavelengths are

in the range that is proposed to have effect on the functionality of oncogenes and

proto-oncogenes. The procedure that is conducted for imaging of MCF7 cells is

identical to the protocol implemented for phase contrast microscopy of B16F10

and CHO cells. Cells are irradiated for 3 hours followed by 24 hours of post

exposure incubation. Then, they are washed carefully with cold PBS to remove

cells that are detached and floated in the media.

The first phase contrast image is from the untreated MCF7 cells. Then, the

images are provided successively from 3400nm to 4300nm wavelength in increasing
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order.

Obviously, untreated MCF7 cells does not indicated any cytotoxic effect on

MCF7 cells as a human cancer cell line. Thus, no cytotoxic effect is observed

from the phases contrast microscopy image of untreated MCF7 cells. Cells are

suspended in 24-well plate with concentration of 2 × 105 for this qualitative as-

sessment module.

The image shown in Figure 5.16 is obtained from MCF7 cells exposed to 3 hours

of 3400nm external irradiation followed by 24 hours of post exposure incubation.

Even though no significant cell detachment is observed from the image, a slight

apoptotic effect is detectable to some extent. As it can be seen, morphology

shape of a number of cells are changed into a circular form. These changes in

cellular morphology of MCF7 cells indicate possible cell death or apoptotic. These

morphological changes are formed in small patches and are not demonstrating any

substantial cell death or detachment.

The phase contrast images presented in Figure 5.17 are taken after 3 hours

irradiation of MCF7 with 3600nm LEDs followed by 24 hours of post exposure

incubation. On the bottom left hand side of the image, a visible cellular de-

tachment is noticeable upon the exposures. This cellular detachment indicates

considerable cell apoptotis as a result of this external irradiation of far infrared

wavelength on MCF7 cells. Thus, it can be deducted that 3600nm wavelength of
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Figure 5.15: Sham exposed (untreated) MCF7 cells.
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Figure 5.16: The effects of exposure irradiation of 3400nm wavelength on MCF7
cells. Cancer cells are exposed for 3 hours inside the incubator to 3400nm wave-
length. Then, exposed cells are incubated for 24 hours before phase contrast
microscopy imaging is conducted by Nikon Eclipse Ti-E microscope (Nikon In-
struments Inc, Japan) with 100X magnification.
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Figure 5.17: The effects of exposure irradiation of 3600nm wavelength on MCF7
cells. Cancer cells are exposed for 3 hours inside the incubator to 3600nm wave-
length. Then, exposed cells are incubated for 24 hours before phase contrast
microscopy imaging is conducted by Nikon Eclipse Ti-E microscope (Nikon In-
struments Inc, Japan) with 100X magnification.
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exposure induces significant cytotoxic effect on MCF7 cells as a cancer cell line.

Figure 5.18 shows any cytotoxic effect induced to MCF7 cell for 3 hours radi-

ation of 3800nm wavelength and 24 hours post exposure incubation. From the

image, cell free sections can be observed. These sections, when compared to sham

exposed MCF7 cells, are the indication of cellular detachments that are induced

from external exposures of far infrared wavelengths. Thus, it can be concluded

that exposure of 3800nm wavelength causes cellular apoptosis in MCF7 cells as

a cancer cell line. Comparison of the exposed and unexposed MCF7 cells further

corroborates the cytotoxic effect of far infrared exposure on cancer cell viability.

The image in Figure 5.19 reflects similar cellular death effect as result of far

infrared exposure as it is visibly shown in the far infrared range proposed by the

RRM implementation. Phase contrast microscopy image in Figure 5.18 is from

MCF7 cells exposed to 3900nm wavelength for 3 hours followed by 24 hours of

post exposure incubation. The image clearly demonstrates cellular detachment on

the bottom right hand corner of the image. Additionally, around the detachment

area on the right hand side, there are visible signs of cell death on the cultured

plate.

Similarly, Figure 5.20 shows sporadic cell detachment patches in the cultured

plate resulted from 3 hours exposure of 4100nm wavelength with 24 hours of post

exposure incubation. These detachments indicate that external far infrared light
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Figure 5.18: The effects of exposure irradiation of 3800nm wavelength on MCF7
cells. Cancer cells are exposed for 3 hours inside the incubator to 3800nm wave-
length. Then, exposed cells are incubated for 24 hours before phase contrast
microscopy imaging is conducted by Nikon Eclipse Ti-E microscope (Nikon In-
struments Inc, Japan) with 100X magnification.
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Figure 5.19: The effects of exposure irradiation of 3900nm wavelength on MCF7
cells. Cancer cells are exposed for 3 hours inside the incubator to 3900nm wave-
length. Then, exposed cells are incubated for 24 hours before phase contrast
microscopy imaging is conducted by Nikon Eclipse Ti-E microscope (Nikon In-
struments Inc, Japan) with 100X magnification.
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Figure 5.20: The effects of exposure irradiation of 4100nm wavelength on MCF7
cells. Cancer cells are exposed for 3 hours inside the incubator to 4100nm wave-
length. Then, exposed cells are incubated for 24 hours before phase contrast
microscopy imaging is conducted by Nikon Eclipse Ti-E microscope (Nikon In-
struments Inc, Japan) with 100X magnification.
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radiation induces cytotoxic effect on cell viability of MCF7 cancer cells when

compared with sham exposed MCF7 cells. The untreated cancer cells in Figure

5.15 do not demonstrate any detrimental effect on cell viability of MCF7 cells

while the induced cytotoxicity is visible in far infrared exposure through cell

detachment and cell morphology forming a round shape (cell death indication).

The image in Figure 5.21 exhibits cellular detachment and cytotoxic effect.

These cells are radiated for 3 hours followed by 24 hours of post exposure in-

cubation by far infrared LED in 4300nm range. Like other images from the far

infrared exposed MCF7 cells in this section, exposure of MCF7 cells with 4300nm

range LED exposure demonstrates visible cellular detachment and cell death.

5.1.3 Phase Contrast Microscopy - Summary Remarks:

As predicted by the RRM approach, far infrared wavelength of 3500nm to 6500nm

is expected to induce cytotoxic effect on cancer cells by affecting biological func-

tionality of oncogene and proto-oncogene proteins. Quantitative cell-based assays

in Chapter 4 show that external radiation of the proposed far infrared range in-

duces detrimental effects on cell viability of cancer cells, while normal cell lines

are not affected by such wavelengths exposures. To further investigate the quan-

titatively measured induce effects on cancer cells, phase contrast microscopy is

utilized here.
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Figure 5.21: The effects of exposure irradiation of 4300nm wavelength on MCF7
cells. Cancer cells are exposed for 3 hours inside the incubator to 4300nm wave-
length. Then, exposed cells are incubated for 24 hours before phase contrast
microscopy imaging is conducted by Nikon Eclipse Ti-E microscope (Nikon In-
struments Inc, Japan) with 100X magnification.
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The images from both animal and human cancer cell lines clearly illustrates

that radiation of selected wavelength in the proposed far infrared range induces

detrimental effect on cell viability and cell morphology of cancer cells. This

cytotoxic effect is more visible when the images of both exposed and sham exposed

cancer cells are shown and compared with each other. In addition, no visible

cytotoxic and morphological effects from the qualitative analysis of normal animal

cells strongly imply that irradiation at these selected far infrared LEDs cause

reduction in cell viability of cancer cells as proposed by the RRM hypothesis

employed in this project.

5.2 Confocal Laser Scanning Microscopy (CLSM)

The results of the quantitative cell-based assays imply that external exposures of

the far infrared wavelengths (proposed by the RRM hypothesis) induce cytotoxic

effects on cell viability of cancer cells, while radiation of the same wavelengths

and same exposure regimes on normal animal and human cells do not replicate

the same observed cytotoxic effects on cancer cells. These experimental analyses

and their measured effects urge for further qualitative analysis for a more reliable

conclusion.

Hence, the apoptotic and necrotic effects of external far infrared radiation is

explored qualitatively by confocal laser scanning microscopy (CLSM) in this sec-
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tion. Cells are seeded at initial cell density of 2 × 105 cells per mL in 24-well

plates and incubated overnight. Then, the cells are exposed to external irradia-

tion of far infrared LEDs based on the third regime of exposure. Hence, cells are

irradiated for 3 hours followed by 24 hours of post exposure incubation. After

that, exposed cells are washed very carefully with cold phosphate-buffered saline

(PBS) to remove any cell detachment from the surface of the plates. Then, CLSM

protocol is conducted to capture any apoptotic or necrotic effects.

CLSM protocol conducted for CLSM imaging is that after 24 hours of incuba-

tion, cells are washed with cold phosphate-buffered saline (PBS) and labeled with

V-AF 488 and PI according to the manufacturer’s instructions with slight mod-

ifications. To each sample, 5 µL of AF488 and 1.5 µL of PI are added followed

by 20 minutes incubation at room temperature before being washed twice and

resuspended in a binding buffer (10 mM HEPES, 140 mM NaCl, 2.5 mM CaCl2

at pH 7.4). Afterward, stained cells are protected from the light by aluminum

foil until they are examined by confocal laser scanning microscopy (CLSM).

5.2.1 Animal Cell Line - B16F10 Cells:

In this section, exposures at the far Infrared wavelengths on animal cancer cells are

qualitatively investigated through confocal laser scanning microscopy (CLSM).

These experiments conducted after 3 hour of exposure and 24 hours of incubation

since the statistical results display a maximum effect for that regime of exposures.
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The following figures illustrate CLSM images of the untreated B16F10 cells as

well as cells exposed to 3600nm and 4300nm wavelengths.

The first figure is from the sham exposed B16F10 cells. These images are used

as a benchmark for measuring the level of the induced effects on exposed animal

cancer cells.

Figure 5.22 shows the CLSM images of untreated B16F10 cells. As it can be

deducted from the confocal images, no apoptotic or necrotic effects are detected

for the sham exposed cells. These images are used as a control to compare and

identify any qualitative changes in exposed cancer B16F10 cells.

The CLSM analysis in Figure 5.23 is conducted after 3 hours irradiation at

3600nm wavelength followed by 24 hours of post exposure incubation. The CLSM

images disclose the significant apoptotic effects measured by Annexin V, and the

necrotic effects measured by Propidium Iodine. Apparently, the low intensity

light exposure at the wavelength of 3600nm induces the apoptotic or necrotic

effects on B16F10 cells despite the fact that untreated cells do not indicate any

cellular toxicity as shown in Figure 5.22. The images from this figure imply

that 3600nm exposure does not induce any noticeable cell detachment, while the

induced cell toxicity is very apparent.

The analysis of the combined image of Annexin V and PI of the effect of the

exposures at 4300nm reveals the apparent cell detachment as well as cell death.
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(a) Necrotic image of untreated B16F10
cells

(b) Apoptotic image of untreated B16F10
cells

(c) Untreated B16F10 cells image with
bright light microscopy

(d) Combination of necrotic and apoptotic
image of untreated B16F10 cells

Figure 5.22: Apoptosis and necrosis measurements of untreated B16F10 cells.
CLSM images were taken at 100X magnifications with the pinhole aperture set at
1 using Nikon Eclipse Ti-E A1 laser-scanning confocal system (Nikon Instruments
Inc, Japan).
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(a) Necrotic effects of far infrared wave-
length exposure on B16F10 cells marked
with red color

(b) Apoptotic effects of far infrared wave-
length exposure on B16F10 cells marked
with green color

(c) Effects of far infrared exposure on
B16F10 cells with bright light microscopy

(d) Combination of necrotic and apoptotic
effects on B16F10 cells

Figure 5.23: Apoptosis and necrosis effects of irradiation at 3600nm wavelength
for 3 hours followed by 24 hours of post exposure incubation. CLSM images
are taken at 100X magnifications with the pinhole aperture set at 1 using Nikon
Eclipse Ti-E A1 laser-scanning confocal system (Nikon Instruments Inc, Japan).
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(a) Necrotic effects of far infrared wave-
length exposure on B16F10 cells marked
with red color

(b) Apoptotic effects of far infrared wave-
length exposure on B16F10 cells marked
with green color

(c) Effects of far infrared exposure on
B16F10 cells with bright light microscopy

(d) Combination of necrotic and apoptotic
effects on B16F10 cells

Figure 5.24: Apoptotic and necrotic effects of irradiation at 4300nm wavelength
for 3 hours followed by 24 hours of post exposure incubation. CLSM images
are taken at 100X magnifications with the pinhole aperture set at 1 using Nikon
Eclipse Ti-E A1 laser-scanning confocal system (Nikon Instruments Inc, Japan).
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The amount of cell detachment is visible in the images, though the cytotoxic

activity induced by 4300nm exposure is not as significant as it is observed at

3600nm exposure. Comparison of confocal microscopy images shown in Figure

5.22, 5.23 and 5.24 lead to the conclusion that the exposures at far infrared

wavelengths result in detrimental effects on cell viability of animal cancer cells.

5.2.2 Human Cell Line - MCF7 Cells

Apoptotic and necrotic effects induced by 3 hours of far infrared exposures along

with 24 hours of post exposure incubation on human cancer cells are analyzed

using CLSM technique. As no significant quantitative effect is detected for HEM

cell line, the CLSM assay is used for MCF7 cells which is a human cancer cell line.

The following CLSM images are taken at 100X magnifications with the pinhole

aperture set at 1 using Nikon Eclipse Ti-E A1 laser-scanning confocal system

(Nikon Instruments Inc, Japan). Images are then analyzed with the NISElement

imaging software.

In this section, CLSM images from untreated MCF7 cells are provided as a

benchmark for assessing the significance of exposure’s effects on this human cancer

cell line. Then, the effect of third exposure regime on MCF7 cells at 3600nm and

4300nm wavelengths are displayed.

Obviously, the images of sham-exposed MCF7 cells, shown in Figure 5.25, are
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(a) Necrotic analysis of untreated MCF7
cells

(b) Apoptotic analysis of untreated MCF7
cells

(c) Analysis of untreated MCF7 with
bright light microscopy

(d) Combination of necrotic and apoptotic
analysis of untreated MCF7 cells

Figure 5.25: Apoptosis and necrosis detection of untreated MCF7 cells. CLSM
images are taken at 100X magnifications with the pinhole aperture set at 1 using
Nikon Eclipse Ti-E A1 laser-scanning confocal system (Nikon Instruments Inc,
Japan).
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not expected to reveal any necrosis, apoptotic or cell detachment effects as the

untreated MCF7 cells have not demonstrated any negative cell viability effect in

the previous quantitative and qualitative assays.

Figure 5.26 present CLSM images taken from Nikon Eclipse Ti-E A1 laser-

scanning confocal microscope. The images are used as the second qualitative

assessment assay for evaluation of necrotic and apoptotic effects that far infrared

radiation induces in MCF7 cancer cells.

Fiugre 5.26a illustrates the necrotic effects that third regime of exposures induce

on MCF7 cells. As it is apparent from PI stained cells, these necrotic effects are

visible and shown by the red color dots. Figure 5.26b reveals apoptotic effects

at 3600nm radiation wavelength through staining of MCF7 cells with Annexin

V. The apoptotic cells marked with green color are substantially noticeable on

MCF7 cells upon 3600nm radiation. Furthermore, the combination of necrotic

and apoptotic effects are shown in Figure 5.26d, while bright light microscopy

image (Figure 5.26c) exhibits a cell detachment as a result of 3600nm exposure.

Despite no visible indication of cellular detachment is shown in Figure 5.26b, the

significant cell apoptotic and necrotic effects are evident in PI and Annexin V

images.

The CLSM images shown in Figure 5.27 are taken with Nikon Eclipse Ti-E

A1 laser-scanning confocal system. They demonstrate the effects of 3 hours of



5.2 Confocal Laser Scanning Microscopy (CLSM) 242

(a) Necrotic effects of far infrared expo-
sure on MCF7 cells that is marked with
red color

(b) Apoptotic effects of far infrared expo-
sure on MCF7 cells that is marked with
green color

(c) Effects of far infrared exposure on
MCF7 with bright light microscopy

(d) Combination of necrotic and apoptotic
effects on MCF7 cells

Figure 5.26: Apoptosis and necrosis effects of irradiation at 3600nm wavelength
for 3 hours followed by 24 hours of post exposure incubation. CLSM images
are taken at 100X magnifications with the pinhole aperture set at 1 using Nikon
Eclipse Ti-E A1 laser-scanning confocal system (Nikon Instruments Inc, Japan).
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(a) Necrotic effects of far infrared expo-
sure on MCF7 cells that is marked with
red color

(b) Apoptotic effects of far infrared expo-
sure on MCF7 cells that is marked with
green color

(c) Effects of far infrared exposure on
MCF7 cells with bright light microscopy

(d) Combination of necrotic and apoptotic
effects on MCF7 cells

Figure 5.27: Apoptotic and necrotic effects of irradiation at 4300nm wavelength
for 3 hours followed by 24 hours of post exposure incubation. CLSM images
are taken at 100X magnifications with the pinhole aperture set at 1 using Nikon
Eclipse Ti-E A1 laser-scanning confocal system (Nikon Instruments Inc, Japan).
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irradiation at 4300nm wavelength LEDs followed by 24 hours of post exposure

incubation. From Figure 5.27a, which shows cells stained with PI, necrotic ac-

tivity of MCF7 cells is investigated. The image indicates a substantial necrotic

effect as result of radiation at 4300nm wavelength. A close look at the image

obtained from Annexin V staining in Figure 5.27a illustrates a significant level

of cellular apoptosis in MCF7 cells exposed to 4300nm LEDs. The image in Fig-

ure 5.27c is used for analysis of any cellular detachment or cell death resulted

from the far infrared exposure at 4300nm. Bright light microscopy image does

not indicate a significant cellular detachment despite the observed cell apoptotic

and necrotic effects shown in other images. Moreover, the image in Figure 5.27c

displays the combination of necrotic and apoptotic effects from the far infrared

exposure measured by PI and Annexin V staining of MCF7 cells.

5.2.3 Confocal Laser Scanning Microscopy - Summary Re-
marks:

CLSM is used in the previous section to qualitatively assess the effect of external

far infrared exposures on cell viability of studied animal and human cancer cells.

The confocal images of exposed and sham-exposed animal cancer cell line clearly

imply that far infrared exposures at 3600nm and 4300nm wavelengths lead to a

considerable apopototic and necrotic effects in B16F10 cells. Unlike the significant

effects of exposures observed in B16F10 cells, sham-exposed cells do not show any

effects as this unexposed cells are used for comparison of exposure effect.
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Furthermore, images from MCF7 cells radiated with 3600nm and 4300nm strongly

suggest that exposures of these cells at these particular far infrared LEDs induce

necrotic and apoptotic effects measured by Propidium Iodine and Annexin V con-

secutively. Comparison of these exposed cell images to that of unexposed MCF7

cell denotes the scale of the induced effect as a result of the far infrared external

radiation.

5.3 Discussion - Qualitative Analysis

Earlier comparison of the quantitative assessment of different exposure regimes

on mouse cancer cells and human cancer cells revealed the significant increase in

cell death as a result of different far infrared exposure regimes. These quantita-

tive analysis of different exposure and post exposure incubation regimes did not

establish a considerable increase in cell death in normal animal and human cell

lines. According to the quantitative analysis of the different exposure regimes on

cancer cell lines, a considerable cell apoptotic effect was observed for both human

and animal cancer cell lines, while normal cell lines were not affected by such

exposures.

Thus, this Chapter investigated qualitatively the effects of selected far infrared

wavelengths radiation on B16F10 (Murine Melanoma cells) and CHO (Chinese

Hamster Ovarian cells) MCF7 (Human Breast Cancer cells). These qualitative
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analyses were based on phase contrast microscopy and confocal laser scanning

microscopy (CLSM) and probed for any changes in cellular morphology or cell

apoptotic as a result of such exposure.

At first, the apoptotic and necrotic effects of far infrared exposure on B16F10,

CHO and MCF7 cells are explored and discussed by phase contrast microscopy.

These cells are exposed to the far infrared light for 3 hours with 24 hours of

post exposure incubation. Then, two LEDs in the RRM proposed far infrared

wavelength range, one is in the lower range and another one is in the higher

wavelength range, were used for necrotic and apoptotic study with CLSM mi-

croscopy. The exposure regime used for this qualitative assay was the same one

used in phase contrast microscopy. In vitro qualitative analysis of human and an-

imal cells suggested that external far infrared exposure induced considerable cell

death in cancer cells only. This cell detachment and cell apoptosis and necrosis

effect were more evident in animal cancer cell line (B16F10) compared to human

cancer cell line (MCF7).

All in all, it can be deducted that external electromagnetic radiation of selected

wavelengths in the far infrared range induces cytotoxic effects on cancer cells,

while normal cells are not affected adversely by such irradiation. These selected

far infrared wavelength LEDs are within the RRM computationally calculated

range. Therefore, it can be concluded that the experimental evaluation of these

far infrared exposures can induce detrimental effects on cell viability of cancer
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cells as predicted by the RRM evaluations.



Chapter 6

Future Works

The RRM approach proposes that external electromagnetic radiation can induce

or affect biological processes that are driven by proteins [253, 254]. Implementa-

tion of the RRM method for oncogene and proto-oncogenes proteins proposed that

the external irradiation in the far infrared wavelengths ranging from 3500nm to

6500nm can induce resonant effects on biological function of these proteins [1–3].

These proteins play important role in uncontrolled growth of cancer cells. Ac-

cording to the RRM theory, the biological effects induced by external irradiation

of particular wavelengths can possibly have detrimental effects on cancer cells.

In this project, the main hypothesis, proposed by the RRM approach, has been

studied in vitro on human and animal cancer cells. If this hypothesis is proven to

be valid, it can revolutionize the treatment of surface or near the surface cancer

tumors.

Thus, this research project aims to investigate experimentally the hypothesis
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proposed within the computational RRM approach. The possibility of utilizing

this innovative method as a ground breaking cancer treatment module has been

investigated experimentally on B16F10 and MCF7 cells. In vitro analysis of the

computationally calculated RRM far infrared wavelengths on B16F10 as animal

cancer cell line and MCF7 as normal human cell line displayed apparent cytotoxic

effects on cell viability of cancer cells, while the normal cells (CHO and HEM)

used as controls did not demonstrate any significant effects upon irradiation.

Although, the RRM hypothesis has been evaluated in vitro here on human and

animal cell lines, the far infrared exposures have yet to be tested in vivo on

animals and humans before it can be claimed as a cancer treatment method.

Therefore, a number of possible future works closely related to this project can

be defined and conducted.

A possible relevant topic can be a further in vitro investigation of the RRM

hypothesis on other surface or near the surface cancer cells. In vitro investigation

of other cancer cell lines can be considered as an immediate future work stemmed

from this project.

Another possible future work can be in vitro analysis of human and animal

primary cell lines. Since this project only evaluated non-primary cell lines, ir-

radiation by the RRM-proposed far infrared wavelengths will be of importance,

since the outcomes of exposures may not result in similar effects as observed and

reported in this project.
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Animal trials and clinical trials of cancer tumors treatment can be considered

as the ultimate stages of the RRM hypothesiss evaluation. If the RRM concepts

are proved to be valid, then the external irradiation of far infrared wavelengths

can be accepted as an innovative, ground breaking cancer treatment module.

As it has been pointed out and discussed in Chapter 1, apart from oncogene

and proto-oncogene proteins, tumor suppressor genes, pRb and p15, play an

important role in development and spread of cancer tumors. Hence, the effects of

exposures on these genes and their proteins should be also studied. Then, based

on the RRM analysis of pRb and p15 proteins, the active wavelength range can be

calculated, and a device for non-homogeneous LED exposures can be fabricated

and tested of on the selected cancer cells.



Chapter 7

Conclusion

Cancer has been adversely affecting human life for a long period of time which

dates back to early available recorded history of human existence on earth. Toxic

effects of cancer can be viewed and discussed from different perspectives, since

it impacts our life from different aspects. Statistically, cancer has devastating

effects economically, socially and in terms of human toll. The economic loss due

to cancer is the highest financial loss in the world. It is 20% higher than death

toll caused by heart attack, which is recognized as a leading cause of death in

developed countries. Moreover, disproportional socio-economic impact of cancer

categorizes it as one of the main concerns of humankind in twenty first century.

As presented and discussed in Chapter 1, mutations in proto-oncogenes and

tumor-suppressor genes play key roles in development and spread of cancer. The

significant impacts of cancer on our day to day life and recent advancements in

biological understanding of cancer have motivated scientists over the last decades
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to combat cancer by developing effective treatment methods. Thus far, surgery,

radiotherapy and chemotherapy, the so called conventional treatment methods,

are established to be the most effective and widely used treatment methods.

These conventional treatment methods, along with other alternative methods,

were discussed comprehensively in Chapter 2. However, expensive employment

and severe long-term and short-term side effects associated with these methods, as

well as their inefficiency in treating some types of cancer as mentioned in Chapter

2, plea the need for a novel cost-effective and efficient treatment method.

In search for a better treatment method, several approaches have been proposed

for cancer treatment. One approach would be the used of low intensity light

therapy, which has proven to be successful for treatment of different medical

conditions.

Each biological process involves a number of interactions between proteins and

their targets, which are based on the energy transfer between the interacting

molecules. Protein interactions are highly selective, and this selectivity is de-

fined within the protein structure. The RRM is designed for analysis of protein

(DNA) interactions and their interaction with EMR [3,255,256,258–261]. A pro-

teins biological function is “written” in its primary structure, i.e. a sequence of

amino acids. The RRM is a physio-mathematical approach based on digital sig-

nal processing methods [253,254]. The RRM theory states that an external EMF

at a particular activation frequency would produce resonant effects on protein
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biological activity [186, 255, 261, 262]. In this project, the RRM computational

predictions have been tested experimentally on cancer and normal cells. It has

been known that information laid in the amino acids sequence encodes infor-

mation that determines the protein’s biological functions and their 3D structure.

The RRM is thriving to unravel the correlation between the amino acid sequence,

proteins structural patterns, and their functional sites [1, 2, 258–261].

The RRM model (presented in Appendix B) is a physio-mathematical approach

that is based on presentation of a protein primary structure as a numerical se-

ries. This numerical series is obtained by assigning a physical parameter value

to each amino acid. The assigned number is related to the protein’s biological

activity [253,254]. Implementation of this innovative approach proposed that the

characteristic frequencies of oncogene and proto-oncogene proteins are within the

range of 3500nm to 6400nm [1–3].

The aim of this experimental project was to evaluate the external radiation of

light at the wavelength range predicted from the implementation of the RRM

approach (3500nm - 6500nm). To conduct these experiments, an exposure device

was designed and fabricated, and then used to irradiate cancer and normal cells.

The experiments were conducted in three different regimes of exposure and post

exposure incubation. Far infrared wavelengths used in these experiments were

3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm. In addition to these

far infrared wavelengths, three visible range LEDs (466nm, 585nm, 626nm) and
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three near infrared LEDs (810nm, 850nm, 950nm) were used in the experimental

study. Three standard quantitative cell-based assays along with two qualitative

assays were used to evaluate the effects of different wavelengths on cancer and

normal cells.

To optimize the control of experimental conditions and eliminate other factors,

which could potentially affect the outcome of these in vitro experiments, certain

considerations needed to be addressed. These issues mainly arise from certain

limitations of conducting the experimentation in vitro. These concerns are de-

scribed and my approach to addressing these issue is given below:

7.1 The issue related to transfer of energy to

tissues and “hyperthermia” effect:

Human and animal cell lines, used in this project, are all adherent cell culture

type. Thus, they would form a single layer at the bottom of the plates with

100µL of medium on top of it. In these in vitro experiments, irradiation of cells

was not feasible outside the incubator or without a medium. This is because

cells were dying quickly outside of their natural humid environment (simulated

by incubator) or without their nutrition provided by medium.

For this reason, all experiments were conducted inside the incubator and with

100µL medium. LEDs, used in the experiments, are in µm range, with a parabolic
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reflective angle of 10◦C . These characteristics of LEDs indicate that most of the

infrared energy is transferred into a small surface area. Thus, when cells are

irradiated from the bottom of the plate, where irradiation source is very close to

cells adhered to the plate, it would induce a local hyperthermia effect. To avoid

this problem and prevent thermal/heating effects on cancer and normal cells, in

my experiments cell cultures were irradiated from the top of the plate, where

medium is considered as a barrier for far infrared energy transfer to the cultured

cells located at the bottom of the plate. Energy absorption by water at infrared

wavelengths is very high [263,264]. Thus, most of the energy would be absorbed

by the top layer of the medium and not by the cells at the bottom of the plate.

Hence, the amount of energy transferred to cells would be minimal.

In my project, irradiation of cells was conducted with different exposure du-

ration. Different time of exposure correspond to different doses of irradiation.

Hence, the induced effects of different time exposures/doses were evaluated and

compared in this study (the longest exposure time was 3 hours).

It is known, that longer exposure duration as well as absorption of infrared

energy by a medium could induce heating/or hyperthermia effect which was not

pursuit in this project. Of interest to this study, were non-thermal effects of

infrared light on cancer and normal cells. Therefore, a heat shield cooling gel

was purchased and used to reduce a possible hyperthermia effect. Cooling gel

was placed around each well contained experimental cell culture to absorb a heat
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generated from LEDs during longer exposure time that could induce heat in the

medium and affect experiment results. These extra measures were applied to

avoid heating effects on irradiated cells.

7.2 Issue of removing subconscious bias from

CLSM imaging:

To avoid selection bias of the images, images were taken by another colleague,

who was not aware which experimental regime of exposure or irradiation fre-

quency/wavelength was used for each particular measurement.

In addition, to take the images from the same location for all experiments, 3

specific wells were selected for each plate. Images were taken from approximately

a center of each well to avoid any selection bias based on the area chosen for

imaging.

Images then were analyzed by NISElement imaging software since it was the

only software available for the author of this thesis and any changes to other

imaging analysis software was not possible. Moreover, the distance from the

incubator to CLSM imaging machine was not long to cause unwanted effects on

the experiments. The imaging process was conducted as fast as possible for a

better accuracy of the results.

The conclusion remarks obtained from this project are outlined here:
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− The significant reduction in cell viability is observed quantitatively for the

external light radiation at the particular far infrared wavelengths on B16F10

animal cancer cells for three different regimes of exposure. The regime

of exposure (3 hours of exposure followed by 24 hours of post exposure

incubation) showed the most significant effects on cell viability of B16F10

animal cancer cells,

− No substantial changes in cell viability of normal CHO cells are observed

quantitatively for 3 different regimes of light radiation at the far infrared

wavelengths,

− External light radiation at the far infrared wavelengths induced considerable

cytotoxic effects on MCF7 human cancer cells while no significant effect is

detected on normal human HEM cells. The effects of the third regime

of exposure (3 hours of exposure followed by 24 hours of post exposure

incubation) on cell viability of MCF7 human cancer cells were the most

significant effects compared to the first and second regimes of exposures,

− No significant cytotoxic effect was detected from external light irradiation

at the visible and near infrared wavelengths on B16F10 animal cancer cells,

MCF7 human cancer cells, CHO animal normal cells, and HEM human

normal cells.

− Substantial cytotoxic effects, measured quantitatively for B16F10 animal
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cancer cells and MCF7 human cancer cells as a result of different exposure

regimes at the far infrared wavelengths, were corroborated in the qualitative

assays. The observed cells detachment and changes in cell morphology

of these cells indicate cell death and confirmed by both phase contrast

microscopy and confocal laser scanning microscopy images.

In summary, this research project developed the exposure system and evalu-

ated the applied visible, near infrared and far infrared (predicted by the RRM)

exposures on selected human and animal cancer cell for three different exposure

regimes. Extensive experimental evaluation of the external light radiation on

the selected cancer and normal cells demonstrates that the RRM proposed wave-

lengths induce the significant cytotoxic effects in cancer cells for all three regimes

of exposures and post exposure incubation, while normal cells were not affected

significantly.



Appendix A

Cell Cycle

A.1 In-depth View of Cell Division Cycle

Cell division process generally consists of two consecutive stages of DNA replica-

tion followed by segregation of replicated chromosomes into two separate cells [25].

Originally, cell division comprises two stages of Mitosis (M), i.e. nuclear division

process; and Interphase, interval between two M phases. Interphase stage pro-

vides DNA replication processes. Then, during mitosis the copied DNA is shared

out equally between two cells. This means that all the chromosomes must be

copied and divided into two full sets, one set at each end of cell that is splitting.

The outcome of this split is two identical daughter cells [25].

These mitosis (M) and interphase stages are further divided into four and three

stages consecutively. Mitosis is divided into four stages of prophase, metaphase,

anaphase and telophase. Prophase is the stage where genetic material of the cell
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Figure A.1: Mitosis (M) Phase Stages [265]

is loosely bundled in the cell condenses to form chromosomes. At this stage, each

chromosome is duplicated and has two sister chromatids. Then, within metaphase

stage, the chromosomes aligns the cell spindle in the middle to prepare for cell

splitting. After that, in the anaphase stage, those two sister chromatids formed

during the prophase stage separate from each other and move to opposite end of

the cell. Finally, in the telophase stage, cells prepare to split into two cells [266].

Traditionally, cell cycle division was divided into four stages of G1, S, G2 and

M phases. This view has changed and the first three stages of cell cycle division

are categorized as the interphase stage. Thus, the interphase stage consists of

three stages: G1, S and G2 phases. In “Gap 1” or G1 phase, cell grows in size
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Figure A.2: The stages of cell cycle [266]

and checks everything to be OK for division [267]. Then, the replication of DNA

occurs in “Synthesis” or S phase [267]. At last, “Gap 2” or G2 phase checks

whether DNA is correctly duplicated. If DNA duplication is correct, preparation

of cell for mitosis is conducted at this phase [267]. However, prior to G1 stage

where commitment for DNA replication takes place, cells are considered to enter

a resting stage called G0. This state is responsible for the major non-growth,

non-proliferation of cells in human body [25].
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A.1.1 Cell Cycle Control

The process of replicating DNA for cell division is described as a series of coor-

dinated events that follow a “cell division cycle”. Two types of cell cycle control

mechanisms are in place to ensure that the correct pathway for cell division is

followed. These control mechanisms are Cyclic-Dependant Kinase regulation and

a set of restriction points and checkpoints.

Cell Cycle Regulation: Cyclic-Dependent Kinase (CDK) regulation

This cell cycle mechanism is recognized as a cascade of protein phosphorylations

that relay a cell from one stage to the next one. This regulation control involves

a highly regulated kinase family. Kinase activation usually requires association

with a second sub-unit called cyclin [25].

The transition from one cell division to another one is regulated and controlled

by different cellular proteins. Cyclin-Dependent Kinases (CDK) are crucial reg-

ulatory proteins activated at specific points of the cell cycle. Among the nine

CDKs that have been identified so far, five are active during cell cycles shown in

Figure A.4 and Table A.1 [25].

One way to control cell cycle is through cyclin binding. CDKs are generally

activated by their cyclin protein. CDKs are not known to play a critical role in

normal cell cycle progression. They remain stable during the cell cycle in contrast
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Figure A.3: Control of the Cell Cycle [268].

Figure A.4: The site activity of regulatory CDK [25].
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to their activating proteins. Different cyclins are required at different phases of

the cell cycle and each one of them is responsible for different functionality [25].

CDK Cyclin Cell cycle phase activity

CDK4 Cyclin D1,D2,D3 G1 phase

CDK6 Cyclin D1,D2,D3 G1 phase

CDK2 Cyclin E G1/S phase transition

CDK2 Cyclin A S phase

CDK1 (cdc2) Cyclin A G2/Mphase transition

CDK1 (cdc2) Cyclin B Mitosis

CDK7 Cyclin H CAK, all cell cycle phases

Table A.1: Cyclin-CDK complexes are activated at specific phases of the cell
cycle [25].

One other way to control cell cycle is by regulating the activity of CDK by

phosphorylation on conserved threonine and tyrosine residues. For instance, to

fully activate CDK1, phosphorylation of threonine 161 is needed. This threonine

is achieved by the release of threonine 172 in CDK4 and threonine 160 in CDK2

and is brought about by CDK7-cyclin H complex, called CAK [25].

Another way to control the activity of CDK and cell cycle is through inhibitory

proteins called CDK Inhibitors (CKI) which has counteracting effect on cell cycle
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[25]. To regulate CDK activity, CDK inhibitors bind to CDK or to the CDK-

cyclin complex. Two discovered families of CDK inhibitors are INK4 family

and Cip/Kip family [269]. INK4 family, consists of p15(INK4a), p16(INK4b),

p18(INK4c), p19(INK4d), inactivates CDK 4 and CDK 6 in G1 stage.

The second family of inhibitors, Cip/Kip, consists of p21(Wafl,Cip1), p27(Cip2),

p57(Kip2). These inhibitors inactivate forming of CDK-cyclin complexes in G1

stage and to a lesser extent CDK1-cyclin B complexes. Moreover, p21 inhibits

DNA synthesis by binding to proliferating cell nuclear antigen (PCNA). The p21

expression is under transcriptional control of the p53 tumor suppressor gene. The

p21 gene promoter consists of a p53-binding site, that allows p53 to dictate the

activation of p21 gene [270]. The expression of p15 and activation of p27 promotes

growth arrest in response to transforming growth factor β(TGF − β).

CKI family Function Family members

INK4 family Inactivation of p15 (INK4b)
G1 CDK p16 (INK4a)
(CDK4, CDK6) p18 (INK4c)

p19 (INK4d)

Cip/Kip family Inactivation of p21 (Waf1, Cip1)
G1 cyclin-CDK p27 (Cip2)
complexes and p57 (Kip2)
cyclin B-CDK1

Table A.2: Cyclin dependent kinases inhibitors (CKI) bind to CDK alone or to
the CDK-cyclin complex and regulate CDK activity [25].
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The intracellular localization of various proteins directing cell cycle-regulation

leads to correct cell cycle progression. For instance, cyclin B sends out nuclear

exclusion signal continuously until the beginning of the prophase stage. CDK

inactivating kinases, Wee1 and Mytl in the nucleus and Golki complex, protect

the cell from premature mitosis [25].

Cell Cycle Regulation: CDK Substrates

Activation of CDK turns the target proteins into phosphorylated one on the CDK

consensus sites that result in physiological changes for cell cycle progression. The

substrate of CDK4 and CDK6 binding with cyclin D are the most studied tar-

gets. Product of the retinoblastoma tumor suppressor gene (pRb) is one of these

targets. At the early stages of G1, pRb becomes phosphorylated and disrupts the

complex with histone deacetylase protein (HDAC). This process is followed by

the release of transcription factors, E2F-1 and DP-1. The release of E2F-1 and

DP-1 regulates transcription of genes required for S phase progression, including

cyclin A/E and Cdc25 [25].

Cell Cycle Quality Control: Restriction point and Checkpoints

Cell cycle control mechanisms monitor the completion of critical events and delay

the progression to the next stage if necessary. These control mechanisms conduct

a supervisory role and they are essential part of the cycle progression machinery.
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Figure A.5: Cell Cycle Checkpoints [31].

These checkpoints usually detect flaws in critical events such as DNA replication

and chromosome segregation.

Apart from checkpoints, there is a Restriction point (R) atG1 phase. Restriction

point does not determine conditions for cell cycle progression but instead changes

the course of the cell cycle initiation [25]. This point is called restriction point

(R) in animals and Start point in yeast cells. This checkpoint is a critical point

of no return in G1. Following this stage, the commitment to start a cell cycle is

determine. At G1 checkpoint, just before entry to S phase, makes key decision to

initiate cell division, delay division or enter a resting stage. If cells are starved

from serum and cell division progression is not possible, they enter G0 stage.

Otherwise, cells progress to G1 stage. Cell starvation at later stage does not

affect progression to mitosis [25,271].
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There are three main checkpoints throughout the cell cycle process. These

checkpoints are G1−S or G1 checkpoint, G2 or G2−M checkpoint and Metaphase

or Mitotic spindle checkpoint [25, 29]. These checkpoints arrest the cell cycle

to provide time for DNA repair in case of DNA disturbance. DNA damage

checkpoints are situated before S phase (G1−S) or after DNA replication (G2−M)

[25].

The first checkpoint is positioned before cell enters S phase and is called G1−S

checkpoint. At this checkpoint, cell cycle arrest induced by DNA damage is p53-

dependent. Cellular level of p53 in normal condition is low but DNA damage leads

to increased activity of p53. p53 activity stimulates p21, Mdm2 and Bax. p21 is

a CKI that causes CDK inhibition and induces cell cycle arrest. Stimulation of

p21 prevents damaged DNA from replication and provides delay for DNA repair.

Then, Mdm2 regulates p53 release and works as a negative feedback loop. If

the damage of DNA is severe and is not repairable, p53 induces cell apoptosis or

cell death signal (e.g. Bax, Fas). DNA damage is detected by different protein

kinases such as Ataxia Telangiectasia Mutated (ATM) and rad3 related (ATR).

These protein kinases then phosphorelate p53 to block the cell cycle by p21 at

G1 − S checkpoint [25].

It is understood that there is a DNA damage checkpoint in S phase between

G1 and G2 checkpoints. Some studies indicate suppression of initiation and elon-

gation phases of DNA replication. ATM-medicated phosphorylation of Nijmegen
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Breakage Syndrome 1 (NBS1) is considered to induce S phase arrest during the

S phase checkpoint [25, 271].

The second checkpoint after DNA replication is called G2 or G2−M checkpoint.

This checkpoint ensures that cells with damaged DNA do not start mitosis process

before they have had a chance to repair after replication process [272]. When

DNA is damaged at G2 stage, cell cycle arrest in absence or presence of p53

initiates. The nature of this checkpoint involves activation of phosphotase known

as Cdc25. The progression of cell cycle into mitosis is prevented by maintaining

CDK1 in its inhibited form through inhibitory phosphorylation or by removing

components of CDK1-cyclin B complex outside the nucleus [25, 271]. Under this

condition, the cell cycle is arrested through activation of Chk1 and Chk2 during

ATM−dependent activity that phosphorylate Cdc25. Then, Cdc25 activity is

inhibited, while its binding to 14-3-3 proteins is promoted. As a result, Cdc25

presence outside nucleus is removed and CDK1-cyclin B activation and mitotic

entry is prevented. In addition to this process, p53 plays a regulatory role at

G2 −M checkpoint. p53 increases transcription of p21 and 14-3-3σ. Then, the

production of 14-3-3σ increases binding of cyclin B to 14-3-3σ which excludes it

from the nucleus. p53 also facilitate the detachment of CDK1-cyclin B complexes

by inducing Gadd45 (growth arrest and DNA damage inducible gene) [25, 271].

The third cell cycle checkpoint is called Metaphase or Mitotic Spindle check-

point. At this checkpoint, proper alignment of chromosomes on mitotic spindle
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is checked. In case of improper chromosome alignment at the mitotic plate, the

cell cycle is stopped in metaphase [272]. Mitotic Arrest Defiant (Mad) and Bud-

ding uninhibited by benomyl (Bub) have recently been identified as mammalian

spindle checkpoint-associated proteins. When defect in microtube attachment is

detected, these spindle checkpoint-associated proteins are activated. The acti-

vation of these proteins inhibits the Cdc25 sub-unit of the anaphase-promoting

complex (APC). This condition results in prevention of metaphase-anaphase tran-

sition [273,274].



Appendix B

Resonant Recognition Model
(RRM)

B.1 Protein Structure

Protein function can be the biochemical function of a molecule in isolation, or

the cellular function as part of a complex structure with other molecules, or the

phenotype it produces in an organism or the cell. Thus far, different aspects of

proteins’ functionality is studied including biochemical mechanism [275], molecu-

lar mechanism [276] and physiological mechanism [277], [278]. The most notable

examples of biochemical functions of proteins are binding, catalysis, operating as

molecular switches and serving as structure component of living organisms and

cells.

Proteins may bind to other macromolecules such as DNA for gene regulatory

proteins or DNA polymerases. They may bind to other proteins in case of a

271



B.1 Protein Structure 272

transporter or receptor that binds a signalling molecule [279]. The latter func-

tionality which is called catalysis ability enables proteins to interact with other

molecules with high accuracy. This functionality requires not only the specific

binding to substrate and sometimes to regulatory molecules but also specific

chemical reactivity. Regulated enzymes and switches like signaling G proteins

that are regulated enzymes for catalyzing the hydrolysis of GTP require large-

scale conformational changes. These changes depend on the fragile balance that

exists between structural stability and flexibility. Depending on their application

and functionality, structural proteins can be very strong or extremely tough and

durable as keratin such as the protein component of hair, horn and feature. Struc-

tural proteins may have complex dynamic properties which depend on nucleotide

hydrolysis as it is in the case of actin and tublin. These functional diversity

of proteins comes from the chemical diversity of their constituent amino acids,

the flexibility of the polypeptide chain and the number of ways that polypeptide

chains with amino acid sequences can fold [279].

Proteins are polymers of twenty diverse amino acids that are joined by peptide

bonds. Protein structure consists of four levels including primary, secondary,

tertiary and quaternary structure. The polypeptide chains of proteins fold into

a globular form at physiological temperatures in aqueous solution. The sequence

of different amino acids in a protein is determined by the sequence of nucleotides

in the gene encoding it. This amino acid sequence is called the primary structure
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of protein and it is shown in B.1a.

Then, the protein’s primary structure determines how the protein folds into

higher level structures. The form of polypeptide chain of protein is called its

secondary structure and may have the form of either alpha helics, or beta strands

that are shown in B.1b. The latter one formed through usual hydrogen bonding

interaction between N-H groups and C=O groups in the invariant parts of the

amino acids in the polypeptide backbone or main chain. Those elements of either

alpha helix, or beta sheet or both as well as loops and links that have no secondary

structure in the globular form are folded into a tertiary structure shown in B.1c.

Many proteins are formed by conjunction of the folded chains of more than one

polypeptide. This structure is called quaternary structure of a protein and it is

demonstrated in B.1d [279].

In order for a polypeptide to function as a protein, it should be able to form

a stable tertiary structure or fold under physiological conditions. At the same

time, the protein function requires that the folded proteins not to be very rigid.

As a result of these two constraints, there is a limited number of folds adopted

by proteins [279]. The total number of proteins necessary for all living organism

lies in the range of 4200 to 50,000 while the number of genes in higher organism

is under debate.

In addition, the chemical characters of amino acid side chains also play an
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(a) Protein Primary Structure [48] (b) Protein Secondary Structure [48]

(c) Protein Tertiary Structure [48] (d) Protein Quaternary Structure [48]

Figure B.1: Protein Structure Levels
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important role in determining the way that they participate in the folding and

function of proteins. The amino acid side chain has different tendency level to

interact with each other and with water, which can have effect on their contribu-

tions to a protein stability and protein function. The various interaction tendency

levels of amino acid residues include hydrophobic, hydrophilic, and amphipathic.

Proteins are linear polymers of amino acids that are linked together by amide

bonds. The sequence of amino acid residues within the proteins dictates their

biological functions and the specific amino acid sequence of proteins is specified by

the genetic information in genome of the organisms. There is a strong correlation

between the DNA sequence of gene and the amino acid sequence of the protein

that DNA sequence encodes. The genetic codes pass the heredity information

from genes into proteins. In order for proteins to fulfil their functionality, they

would need to form a well-defined three dimensional structure. At this stage,

the amino acid would have all the information required to order its final three

dimensional structure or fold. In many small proteins, these 3D structures can

be unfolded and refolded again in vitro without any losses of functionality. The

procedure of unfolding and refolding again happens more often in more complex

protein structures. These chaparones, proteins that assists these unfolding and

reassembling, are used to allow a protein to reach its properly folded or correct

three-dimensional state [280].
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B.2 Protein Structure Prediction

Protein structure prediction is one of the most important and difficult problems

in computational biology. According to the in-depth knowledge regarding the

proteins structure, it should be possible to deduct the structure of a protein from

its constituent amino acid sequence. Thus, there has been several attempts to

discover the rules governing the coding of the biological function of protein by

the amino acids sequences [281–293].

These approaches are mainly based on the homology characterization of spe-

cific feature of primary or secondary protein structures or they may deal with

molecular modeling of protein tertiary structure. Though these approaches pro-

vide significant insight into protein structure and active location site(s), they

are not able to provide sufficient knowledge about the informational, structural

and physiochemical parameters that are crucial to the selectivity of protein in-

teractions that can be used in de novo design for peptide or protein analogous

with desired biological functionality. Despite the numerous efforts and research

dedications, there are still different views and uncertainty surrounding the pre-

diction and modeling of protein functionality based on their constituent amino

acid sequence [253,294].

Protein structure prediction is not only interesting from a scientific point of

view but also from an engineering point of view. From engineering point of view,
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protein structure prediction can be used to tackle de novo protein design. The

objective is to identify amino acid sequences that would fold into proteins with

desired functions. De novo protein design can be viewed as design problem at

the molecular level. Since design problem starts with the structure and looks for

sequences that will fold into such structure. De novo protein design problem is

the “inverse” of protein folding problem that is followed by scientific community.

This problem has been tackled computationally and also by experimentalists with

mutagenesis, rational design, and directed evolution. However, comparison of

these methods and computational protein design methods reveal the fact that

the experimentalist methods can screen a limited number of structure [295].

One of the pioneer computational approaches in investigating the correlation

between amino acid sequence of protein and their biological functionality is that

of Anfinsen in 1973. It was proposed that proteins are not assembled into their

native structure by a biological process but rather folding is a purely physical

process. This approach believes that protein structure depends only on specific

amino acid sequence of the protein and the surrounding solvent. This physics

based method attempt to minimize the free energy and derive structure from

first principles. It allows deducting macroscopic structure of proteins from their

microscopic interactions between the protein’s constituents. Anfinsen’s thermo-

dynamic approach became the dominant principle used in computational protein

structure prediction over the last decade [295].
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Then, in recent years another computational structure prediction approach has

been developed for determining the protein structure. This alternative approach

is called knowledge-based as opposed to anfinsen’s physics based approach. These

knowledge-based approaches search databases of known structures to infer infor-

mation about an amino acid sequence of unknown three-dimensional structure.

Thus far, the research effort for protein structure prediction can broadly be

categorized into two categories of mathematical or knowledge-based approach and

physical-based approach. The first approach is based on mathematical analysis

of amino acid or nucleotide arrangement aimed at searching for information on

biological function. The second approach analyses the physical processes inside

the macromolecule that could contribute to its biological function [253].

The existing knowledge in the field of computer-aided molecular modeling and

protein structure analysis use to be divided into primary, secondary and ter-

tiary protein structure analysis that is described in details in [253, 254]. The

primary structure analysis is mainly concern with homologies among amino acid

sequences. The most common method used in this approach is homology search-

ing. The main idea of this approach is that amino acid sequences with the same

biological functions do have sequence homology and carry the main information

about function. This approach is very effective in conserved sequences including

histones, haemoglobins, and insulin as well as DNA regulatory sequences where

existence of core sequence of nucleotides has been validated [254, 295]. Some of
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the examples of using primary structure analysis includes [281–283,296].

In secondary structure analysis and prediction, various empirical, computer-

aided algorithms are used when the primary structure of the protein is known

but there is no experimental knowledge regarding protein secondary structure.

Majority of these algorithms are based on the average probability that any par-

ticular amino acid residue can be found in an α-helical, β-sheet or random coil

conformation [284, 285, 297]. The protein’s secondary structure prediction im-

proved substantially in 1990s. This prediction method has improved for correct

residue prediction from 60%-70% more than a decade ago to around 76% in re-

cent years. The improvement in accuracy of prediction which is due to the larger

databases available has boosted this method’s popularity substantially [298,299].

Tertiary structure analysis is another prediction method which is based on the

folding of the linear, primary polymer chain of a protein into a defined 3D struc-

ture. The increasing data based on experimentally obtained protein primary

structure in conjunction with computer algorithms to perform molecular mechan-

ics and dynamics provide an opportunity to establish computational algorithms

as a powerful tool to examine protein’s tertiary structure and predict protein

active conformations. This technique has been utilized in the [288,289].

In recent years, new classification for protein structure prediction has been

emerged due to advancement in biology science and computer aided chemical
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engineering. This new approach classification of protein structure prediction are

based on different analysis method including protein structure prediction, loop

structure prediction [300–302], and the first principle method, ASTROFOLD

[303–307]. A comprehensive review of protein folding structure prediction requires

the review of recent advances on different structure prediction method that can

be divided into four groups:

1. comparative modeling,

2. fold recognition,

3. first principle methods with database information, and

4. first principle methods without database information.

In comparative modeling the structure prediction of a protein is conducted by

comparing its amino acid sequence to a known native three-dimensional structure

[308–311]. The method is based on the observation that similarity in amino acid

sequence of two proteins implies similarity in their structure. While little progress

in homology template of this method has been done, continuous improvement in

sequence comparison technique has broaden the scope of homology modeling.

Fold recognition methods aim to predict three-dimensional folded structure of

amino acid sequences when there is no reliable comparative is available. This

method contains different approaches within itself that have demonstrated to be
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based on fold recognition method [312–315]. Then, we have the first principle

prediction with database information which is used for structure predictions that

do not used experimentally known structures [316–320]. Finally, first principle

prediction without database information make direct use of Anfinsen’s thermo-

dynamic hypothesis by attempting to find the minimum of the free energy of the

protein in its environment [321–323].

B.2.1 Resonant Recognition Model (RRM) Approach

Use of conventional cancer treatment methods often negatively affects healthy

tissues or organs of the body in the process of treating cancer. Thus, development

of a targeted treatment module can lead to the optimum treatment method.

However, such drugs or treatment methods should be designed in a way that

they would not adversely affect the functionality of key molecules in human body.

Sequence homology can provide a solution to avoid such similarities between drugs

and important molecules.

Significant efforts of scientific community in solving the problem of finding a cure

for cancer has led to development of new and advanced drug and methodologies

with some degree of success; however this battle with cancer is still an ongoing

issue. There is an urgent need for theoretical approaches that can analyze pro-

tein and DNA structure-functional relationships that can lead to a novel cancer

treatment methodology. The RRM provides a non-conventional computational
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approach for analysis of protein and deoxyribonucleic acid (DNA) sequences and

their interactions.

The functionality of proteins is derived from the properties of twenty amino

acid side chains that may exist in a protein molecule. This property of proteins

molecule and its constituent amino acid side chains is reflected in the wide range

of bioactivity of the formed protein molecules. However, the biological function-

ality of proteins can only be expressed when a certain active native conformation

is achieved. This is called three dimensional structure (3D). Thus, the particular

function of a given protein and it active 3D structure is determined by the se-

quence of amino acid conforming this particular protein molecule. It can be said

that protein’s biological function is encoded within proteins primary structure.

With rapid identification of protein databases, the revelation of biological activ-

ity of these newly identified sequenced protein or their contribution on functional

families of protein becomes crucial for advancement in biology science. These

advancements in biology science further confirms the fact that information laid

in the amino acids sequence encodes the protein’s biological functions and its 3D

structure.

The RRM is thriving to unravel the correlation between the amino acid se-

quence, proteins structural patterns, and functional sites. This method pro-

vides a novel engineering analysis of linear macromolecules: protein and DNA
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sequence [253,294]. The basis of biological function of a protein or DNA is related

to the ability of macromolecule to interact selectively with other proteins, DNA

regulatory segments, or small macromolecules. This method uses amino acid se-

quences and dopxyribonucleic acid (DNA) to predict the protein’s functional and

structural information. The RRM represents protein’s primary structure as a nu-

merical series by assigning a parameter value to each amino acid in the sequence.

This parameter value is relevant to protein’s biological activity.

According to the RRM, there is a substantial correlation between spectra of

numerical presentation of amino acid and their biological function. It has been

validated that proteins with similar biological functions share a common distinc-

tive frequency in their numerical spectra that is associated with their biological

function or interaction [253, 254]. That is, if the frequency of interaction or bio-

logical function is known, the RRM can determine the constituent amino acids

that correlate to that particular frequency which led to that specific function or

interaction. The reverse of this process is possible by designing peptides that

would have the desired frequency.

The RRM identifies these constituent amino acids by implementing inverse

Fourier transform (IFT) [253, 294]. After that, wavelet transformation, the new

signal processing tool, is used to extract the local feature of the numerical series

correspond to non-stationary signals that have obtained from IFT. In [324–326]

continuous wavelet transform (CWT) has been used successfully to determine
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the functional active sites of different protein families. The application of dif-

ferent wavelets have been investigated in scalogram of mouse epidermal growth

factor (EGF), human β hemoglobin, prolactin, and tuna heart cytochrome c

[324, 327]. For these applications, different wavelet functions such as Morley,

Meyer, Daubechies, Simlets, Coiflets and Mexican hat have been used to deter-

mine different proteins’ active site(s). The study of these protein types demon-

strated that the combination of Fourier and Wavelet method were useful ana-

lytical tool in determining the active site(s) of these proteins. The analysis also

established the sensitivity of these proteins to the wavelet functions used in the

analysis. Among the Wavelet (WT) functions Morely/Meyer wavelets were pro-

viding better approximate of the active site(s).

The novelty of this model is the new view of biologically relevant intermolecu-

lar interactions, which is suggested to consist in the transfer of resonant energy

between molecules. The successful implementation of this model can have signif-

icant impact on molecular biology and consequently on medicine, pharmacology

and agriculture. When the nature of protein interactions and their selectivity

is understood, this knowledge can be used for different application in molecular

biology. The proposed application of RRM includes

1. defining a particular function of a protein or DNA fragment,

2. predicting functionally crucial amino acids within the protein sequence to
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propose effective mutations,

3. predicting the feasibility of macromolecular interactions in specific protein-

DNA interactions, and

4. designing sequences with desired spectra and functional characteristics.

These different applications were used in a variety of research studies shown

in [253, 262, 294, 328]. All of these publications demonstrate the concept and

implementation of RRM method for modeling of different biological functions.

The most notable application of RRM is in de novo peptides and protein design

that can mimic the biological functionality of a natural protein or peptide. This

model has been utilized successfully in a number of de novo design peptides

[1, 186, 255, 261, 262, 328]. These experimental publications demonstrated the

applicability of the RRM theory in peptide design. In addition, RRM is used to

predict locations of a protein’s biological active site(s) binding utilizing digital

signal processing methods.

One of these investigations into implementation of RRM is presented in [328].

In fact, the study outcome and its hypothetical concepts were used as the basis

for this work. This study incorporates the continuous wavelet transform (CWT)

into the RRM method to predict the active site(s) of a chosen protein. The study

investigated the oncogenes functional group by utilizing digital signal processing
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techniques. In other words, the relationship between oncogene structure and its

function is explored.

Thus, the main focus of this work is to solve the problem of functional and

structural relationships of oncogene proteins using the RRM method with the

incorporated CWT. Oncogenes are generally categorized as growth factors since

they promote uncontrolled cell proliferation. These proteins derived from normal

cellular growth factors (so-called proto-oncogenes) by having modifications such

as mutations, deletions or insertions. As a result of this implementation, the

characteristic frequency and functional active sites of oncogene obtained [1–3].

After that, the design of the peptide analogous was performed.

The results reported in [1, 3] provide novel insight into the structure-function

relation of oncogene protein family. The concepts and computational analysis

reported in study [1–3] were used in this PhD project for design of the exposure

system and in vitro experimental irradiation of cells at the frequencies predicted

computationally by the RRM.

Another, topic that is very relevant to cancer treatment is RRM implementa-

tion for interaction analysis of Viral and tumor suppressor proteins [1–3]. This

study was motivated by other research studies that demonstrated the correla-

tion between T-antigen, common virus, and brain tumor in children. Hence, the

structure-function relation of T-antigen, p53 and pRb proteins have been exten-
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sively studied using RRM approach. They found that interestingly these three

proteins have a very prominent frequency component that is shared by all three

analyzed sequences.

B.2.2 Application of the Resonant Recognition Model for
analysis of oncogene and proto-oncogene proteins

The RRM theory also states that an external electromagnetic field (EMF) at a

particular activation frequency would produce resonant effects on protein biolog-

ical activity [255]. This hypothesis has successfully evaluated experimentally in

literature [3]. In earlier related studies [256], the effects of visible light radiation

in a range of 550-850nm and infrared light in the wavelengths ranging from 1140

up to 1200 nm on enzyme kinetics of L-Lactate Dehydrogenase (LDH) enzyme [3]

has been investigated. Previous experimental evaluation also demonstrated that

external irradiation of the certain frequencies, which were computationally deter-

mined using the RRM, can modulate a protein activity.

Each biological process involves a number of interactions between proteins and

their targets, which are based on the energy transfer between the interacting

molecules. The RRM is designed for analysis of protein (DNA) interactions and

their interaction with EMR [3,256,258–261].

The application of the RRM involves two stages of calculation. The first is

the transformation of the amino acid sequence into a numerical sequence. Each
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amino acid is represented by its Electron-Ion Interaction Potential (EIIP) value

which describes the average energy states of all valence electrons in a given amino

acid [329]. These EIIP values are calculated from the general model of pseudo-

potentials [329]:

〈k + q|w|k〉 = 0.25
Z sin(1.04× πZ)

2π
(B.1)

where q is the momentum change of delocalized electron when interacting with

potential w, while

Z =
∑ Zi

N
(B.2)

where Zi is the number of valence electrons of the i-th components of each amino

acids and N is the total number of atoms in amino acids.
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Amino Acid EIIP
Leu 0
Ile 0

Asn 0.0036
Gly 0.0050
Val 0.0057
Glu 0.0058
Pro 0.0198
His 0.0242
Lys 0.0371
Ala 0.0373
Tyr 0.0516
Trp 0.0548
Gln 0.0761
Met 0.0823
Ser 0.0829
Cys 0.0829
Thr 0.0941
Phe 0.0946
Arg 0.0959
Asp 0.1263

Table B.1: EIIP Values of 20 Amino Acids

A unique number can thus represent each amino acid or nucleotide, irrespective

of its position in a sequence. Then the numerical series obtained are analyzed

by digital signal analysis methods, Fourier and Wavelet transform, in order to

extract information pertinent to the biological function. A multiple cross-spectral

function is defined and calculated to obtain the common frequency components

from the spectra of a group of proteins. Peaks in such function denote common

frequency components for all sequences analyzed. Peak frequencies in such a

multiple cross-spectral function denote common frequency components for all
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sequences analyzed.

Prior to this work in [3,256,258–260], a relationship between the RRM spectra

of some protein groups and their interaction with visible light was established. It

has been shown that all protein sequences with a common biological function have

a common frequency component in the free energy distribution of electrons along

the protein backbone. This characteristic frequency was shown to be related to

protein biological function [3, 256,258–260].

Furthermore, it was also shown that proteins and their targets share a charac-

teristic frequency. Thus, it can be further postulated that RRM frequencies char-

acterize not only a general function but also a recognition/interaction between

the particular proteins and their target at a distance. Thus, protein interactions

can be viewed as a resonant energy transfer between the interacting molecules.

This energy can be transferred through oscillations of a physical field, possibly

electromagnetic in nature [253,258].

A strong linear correlation exists between the predicted and experimentally de-

termined frequencies corresponding to the absorption of electromagnetic radiation

of such proteins [253, 256]. It is inferred that approximate wavelengths in real

frequency space can be calculated from the RRM characteristic frequencies for

each biologically related group of sequences. These calculations can be used to

predict the wavelength of the light irradiation, which might affect the biological
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activity of exposed proteins [253,256]. The frequency range predicted for protein

interactions is from 1013Hz to 1015Hz. This estimated range includes IR, visible

and UV light.

These computational predictions were confirmed by comparison of:

a) Absorption characteristics of light absorbing proteins and their characteristic

RRM frequencies [253,259].

b) Frequency selective light effects on cell growth and characteristic RRM fre-

quencies of growth factors [253,261].

c) Activation of enzymes by laser radiation [253,256,258].

All these results indicate that the specificity of protein interaction is based

on a resonant electromagnetic energy transfer at the frequency specific for each

interaction observed. A linear correlation between the absorption spectra of pro-

teins and their RRM spectra with a regression coefficient of K = 201 has been

established. Using RRM postulates, a computationally identified characteristic

frequency for a protein functional group can be used to calculate the wavelength

of applied irradiation, λ , which assumingly would activate this protein sequence

and modify its bioactivity [253]:

λ =
201

fRRM
(B.3)
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Figure B.2: Activation frequency of transforming proteins. x axis being frequency
of transforming proteins.

In previous study, the RRM approach has been used to determine the charac-

teristic frequencies of oncogene and proto-oncogene proteins [1,3]. The frequency

range obtained from this analysis is presented in Figure B.2 and B.3.

By identifying computationally the difference between oncogene and proto-

oncogene proteins and designing the peptide analogues, the new field of inves-

tigation of oncogenic activity is opened.

These frequencies were determined as follow: Activation frequency of transform-

ing proteins is at f1 = 0.0322 (oncogene proteins) and the activation frequency
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Figure B.3: Activation frequency of non-transforming proteins. x axis being
frequency of transforming proteins.
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of non-transforming proteins is at f2 = 0.0576 (proto-oncogene proteins).

Using the equation B.3, these frequencies can be converted into a real space

wavelength of applied irradiation: λ1 = 6242nm and λ2 = 3490nm respectively.

Therefore, the proposed light emitting exposure system will have the operating

range of 3500nm-6400nm.
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